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Optimization of plane wave directions in plane wave
discontinuous Galerkin methods for the Helmholtz equation
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Abstract. Recently, the use of special local test functions other than polynomials in Discon-
tinuous Galerkin (DG) approaches has attracted a lot of attention and became known
as DG-Tre¤tz methods. In particular, for the 2D Helmholtz equation plane waves have
been used in [11] to derive an Interior Penalty (IP) type Plane Wave DG (PWDG) method
and to provide an a priori error analysis of its p-version with respect to equidistributed
plane wave directions. The dependence on the distribution of the plane wave directions
has been studied in [1] based on a least squares method. However, the emphasis in [1] has
been on the h-version of the PWDG method, i.e., decreasing the mesh width h for a fixed
number p of plane wave directions. In this contribution, we are interested in the p-version,
i.e., increasing p for a fixed mesh-width h. We formulate the choice of the plane wave
directions as a control constrained optimal control problem with a continuously di¤eren-
tiable objective functional and the variational formulation of the PWDG method as a
further constraint. The necessary optimality conditions are derived and numerically solved
by a projected gradient method. Numerical results are given which illustrate the benefits of
the approach.
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1. Introduction

The use of plane waves in the finite element approximation of the Helmholtz

equation goes back to the ultra weak variational formulation of the problem by

Cessenat and Després [4]. The approach can be interpreted as a Discontinuous

Galerkin (DG) approximation and is therefore referred to as the Plane Wave

Discontinuous Galerkin (PWDG) method. Since it uses local trial spaces consist-

ing of plane waves, it is also a particular example of a Tre¤tz-type finite element

approximation and hence called a Tre¤tz-type DG method. Due to its superior



performance compared to standard finite element approximations which su¤er

from the so-called pollution e¤ect, it has been studied extensively in the literature

(cf., e.g., [2], [3], [5], [7], [8], [10]). In particular, the h-version and the p-version of

the PWDG method have been analyzed in [9] and in [11], whereas the exponential

convergence of the hp-version has been established in [12].

The PWDG method features a triangulation ThðWÞ of the computational do-

main W � R2 with card
�
ThðWÞ

�
¼ N and the use of a certain number p ¼ 2mþ 1,

m a N, of plane waves in each element K a ThðWÞ which compose the local trial

spaces. The plane waves are of the form expðiodð j�1Þpþl � xÞ, where

dð j�1Þpþl ¼
�
cosðyð j�1ÞpþlÞ; sinðyð j�1ÞpþlÞ

�T
; 1a jaN; 1a la p;

x a K , and o stands for the wavenumber. It is known from the convergence

analysis of the PWDG method [11] that the p directions dð j�1Þpþl, 1a la p,

j a f1; . . . ;Ng; should be chosen in such a way that the minimum angle between

two di¤erent directions is greater or equal 2ph=p for some h a ð0; 1�. The issue

how to choose the directions in order to minimize a given objective functional

has been considered in [1] based on a least squares method similar to that in [15].

The emphasis in [1] has been on the h-version of the PWDG approach, i.e., dcreas-

ing the mesh width h for a fixed number p of plane wave directions. Moreover,

no constraints on the directions have been observed albeit it is known from [11]

that the approximation properties of the PWGD method get lost, if the di¤erence

between two di¤erent directions becomes too small.

In this paper, we are interested in the p-version, i.e., increasing p for a fixed

mesh width h, and we formulate this problem as a control constrained optimal

control problem with a continuously di¤erentiable objective functional and the

variational formulation of the PWDG method as a further constraint, where

the controls are the Np angles yð j�1Þpþl, 0a la p, 1a jaN. We derive the

first order necessary optimality conditions by means of the Lagrange multiplier

approach and derive a projected gradient type method with Armijo line search

to compute an optimal solution. Numerical results illustrate the dependence of

the L2-norm of the global discretization error on the choice of the plane wave

directions.

2. The PWDG method

For a bounded convex polygonal domain W � R2 with boundary G ¼ qW we

consider the Helmholtz equation

�Du� o2u ¼ 0 in W; ð2:1aÞ
n � ‘uþ iou ¼ g on G ¼ qW: ð2:1bÞ
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where o > 0 is the wavenumber, g a L2ðGÞ is a given function, and n denotes the

exterior unit normal vector on G. We rewrite (2.1) as the first order system:

ios � ‘u ¼ 0 in W; ð2:2aÞ
�‘ � s þ iou ¼ 0 in W; ð2:2bÞ
ion � s þ iou ¼ g on G: ð2:2cÞ

The variational formulation of (2.2) reads: Find ðs; uÞ a Hðdiv;WÞ �H 1ðWÞ such
that for all ðt; vÞ a Hðdiv;WÞ �H 1ðWÞ it holds

ðios; tÞ0;W þ ðu;‘ � tÞ0;W ¼ 3u; n � t4
H

1=2 ðGÞ;H�1=2 ðGÞ; ð2:3aÞ

ðs;‘vÞ0;W þ ðu; vÞ0;G þ ðiou; vÞ0;W ¼ 1

io
g; v

� �
0;G

: ð2:3bÞ

We consider a shape regular family of geometrically conforming, quasi-uniform

simplicial triangulations ThðWÞ of the computational domain W. For D � W

we denote by EhðDÞ the set of edges of the triangulation in D. For T a ThðWÞ,
we refer to hT as the diameter of T and set h :¼ maxfhT jT a ThðWÞg. For

E a EhðWÞ, the length of E will be denoted by hE . For functions v aQ
T AThðWÞ H

1ðTÞ the trace of v on E a EhðWÞ may exhibit a jump across E. For

E a EhðWÞ with E ¼ TþBT�, Te a ThðWÞ and E a EhðGÞ we define

fvgE :¼ ðvjTþBE þ vjT�BEÞ=2; E a EhðWÞ
vjE ; E a EhðGÞ

�
;

½v�E :¼ vjTþBE � vjT�BE ; E a EhðWÞ
vjE ; E a EhðGÞ

�
:

ð2:4Þ

For vector-valued functions we use an analogous notation.

We approximate (2.3a), (2.3b) by introducing the following local spaces

spanned by plane waves

VpðTjÞ :¼
n
vðxÞ :¼

Xp
l¼1

að j�1Þpþl expðiodð j�1Þpþl � xÞ
o
; p a N;

VpðTjÞ :¼ VpðTjÞ2; j a f1; . . . ;Ng;
ð2:5Þ

where að j�1Þpþl a C and dð j�1Þpþl, 1a la p, j a f1; . . . ;Ng, are p di¤erent unit

directions

dð j�1Þpþl ¼
�
cosðyð j�1ÞpþlÞ; sinðyð j�1ÞpþlÞ

�T
; 1a la p; m a N: ð2:6Þ
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We define y ¼ ðy1; . . . ; yNpÞT such that 0a yð j�1Þpþl < 2p, 1a la p, for j a
f1; . . . ;Ng. Setting

ŷyð j�1Þpþl ¼
yð j�1Þpþl; 1a la p

yð j�1Þpþ1 þ 2p; l ¼ pþ 1

�
; 1a jaN; ð2:7Þ

we require that y a K, where K is given as follows

K :¼ fy a ½0; 2pÞNp j ymina ŷyð j�1Þpþlþ1 � ŷyð j�1Þpþla ymax;

1a jaN; 1a la pg;
ymin :¼ ð2ph1Þ=p; ymax :¼ ð2ph2Þ=p; 0 < h1 < 1 < h2 < 3=2:

ð2:8Þ

The associated global spaces are given by

Vh :¼ fvh a L2ðWÞjvhjTj
a VpðTjÞ; 1a jaNg;

Vh :¼ fth a L2ðWÞ2jthjTj
a VpðTjÞ; 1a jaNg:

ð2:9Þ

Then, the PWDG approximation of (2.1a), (2.1b) amounts to the computation of

ðuh; shÞ a Vh � Vh such that for all ðvh; thÞ a Vh � Vh it holds

X
T AThðWÞ

�
ðiosh; thÞ0;T þ ðuh;‘ � thÞ0;T

�
�

X
T AThðWÞ

ðûuh; nqT � thÞ0;qT ¼ 0; ð2:10aÞ

X
T AThðWÞ

�
ðsh;‘vhÞ0;T þ ðiouh; vhÞ0;T

�
�

X
T AThðWÞ

ðnqT � ŝsh; vhÞ0;qT ¼ 0: ð2:10bÞ

Here, the PWDG flux functions ûuh and ŝsh are given by

ûuhjE :¼ fuhgE � b

io
½‘uh�E ; E a EhðWÞ

uh � d
�

1
io
nE � ‘uh þ uh � 1

io
g
�
; E a EhðGÞ

(
; ð2:11aÞ

ŝshjE :¼
1
io
f‘uhgE � a½uh�E ; E a EhðWÞ

1
io
‘uh � ð1� dÞ

�
1
io
‘uh þ nEuh � 1

io
nEg
�
; E a EhðGÞ

(
; ð2:11bÞ

where nE is the exterior unit normal on E and a > 0, b > 0, d a ð0; 1Þ are flux

parameters independent of h, p, and o.

By choosing th ¼ ‘vh in (2.10a), we can eliminate sh from (2.10a), (2.10b) and

obtain the following primal variational formulation of the PWDG method: Find

uh a Vh such that for all vh a Vh it holds
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X
T AThðWÞ

�
ð‘uh;‘vhÞ0;T � o2ðuh; vhÞ0;T

�
�

X
T AThðWÞ

�
ðuh � ûuh; nqT � ‘vhÞ0;qT þ ioðnqT � ŝsh; vhÞ0;qT

�
¼ 0: ð2:12Þ

Moreover, using Green’s formula for the first term on the left-hand side in (2.12)

and observing ð�D� o2IÞuhjT ¼ 0, T a ThðWÞ, we are led to a formulation of the

PWDG method involving only integrals over edges E a EhðWÞ: Find uh a Vh such

that

ahðuh; vhÞ ¼ lhðvhÞ; vh a Vh; ð2:13Þ

where the sesquilinear form ahð� ; �Þ : Vh � Vh ! C and the functional lh : Vh ! C

are given by

ahðuh; vhÞ :¼
X

E AEhðWÞ

�
ðfuhgE ; nE � ½‘vh�EÞ0;E þ ibo�1ðnE � ½‘uh�E ; nE � ½‘vh�EÞ0;E

� ðnE � f‘uhgE ; ½vh�EÞ0;E þ iaoð½uh�E ; ½vh�EÞ0;E
�

X
E AEhðGÞ

�
ð1� dÞðuh; nE � ‘vhÞ0;E þ ido�1ðnE � ‘uh; nE � ‘vhÞ0;E

� dðnE � ‘uh; vhÞ0;E þ ið1� dÞoðuh; vhÞ0;E
�
; ð2:14aÞ

lhðvhÞ :¼
X

E AEhðGÞ

�
ido�1ðg; nE � ‘vhÞ0;E þ ð1� dÞðg; vhÞ0;E

�
: ð2:14bÞ

As has been shown in [11], the variational equation (2.13) admits a unique solu-

tion uh a Vh. Moreover, if the solution u of (2.1a), (2.1b) satisfies u a Hkþ1ðWÞ,
k a N, and if the mesh width h of the triangulation ThðWÞ satisfies ohak

for some k > 0, then there exists a constant C > 0, independent of p and u,

but depending on k, such that the following a priori error estimate holds true

(cf. Theorem 3.14 in [11])

ku� uhk0;WaCo�1 diamðWÞhk�1 log p

p

� �k�1=2

kukkþ1;o;W; ð2:15Þ

where k � kkþ1;o;W stands for the o-weighted Sobolev norm

kvkkþ1;o;W :¼
�Xkþ1

j¼0

o2ðkþ1� jÞjvj2j;W
�1=2

; v a Hkþ1ðWÞ:

The global PWDG space Vh is spanned by Np basis functions
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Vh ¼ spanðjð1Þ
h ; . . . ; j

ðNpÞ
h Þ;

j
ðð j�1ÞpþlÞ
h :¼ exp

�
io
�
cosðyð j�1ÞpþlÞ; sinðyð j�1ÞpþlÞ

�T � x
�
;

1a jaN; 1a la p:

ð2:16Þ

Then, uh a Vh can be written as

uh ¼
XNp

j¼1

ujj
ð jÞ
h ; uj a C; 1a jaNp: ð2:17Þ

Further, setting y :¼ ðy1; . . . ; yNpÞT a CNp with yj :¼ uj, 1a jaNp, the PWDG

approximation (2.13) represents a complex linear algebraic system

AðyÞy ¼ bðyÞ; ð2:18Þ

where the matrix AðyÞ ¼
�
aklðyÞ

�Np

k;l¼1
a CNp�Np and the vector bðyÞ ¼�

b1ðyÞ; . . . ; bNpðyÞ
�T

a CNp are given by

aklðyÞ :¼ ah
�
j
ðlÞ
h ðyÞ; jðkÞ

h ðyÞ
�
; 1a k; laNp;

blðyÞ :¼ lhðjðlÞ
h Þ; 1a laNp:

ð2:19Þ

3. Optimization of the plane wave directions

The a priori estimate (2.15) for the L2-norm of the global discretization error

tells us how the error depends on the number p of plane wave directions, but

is does not provide any information on the appropriate choice of the directions

dð j�1Þpþl ¼
�
cosðyð j�1ÞpþlÞ; sinðyð j�1ÞpþlÞ

�T
, 1a jaN, 1a la p, except that

they are supposed to satisfy assumption (2.8). In fact, since

Vh ¼ span
�
expðiod1 � xÞ; . . . ; expðiodNp � xÞ

�
; ð3:1Þ

the solution uh a Vh of (2.13) depends on y :¼ ðy1; . . . ; yNpÞT a K according to

uhðyÞ ¼
XN
k¼1

Xp
l¼1

ukl expðiodðk�1Þpþl � xÞjTk
; ukl a C: ð3:2Þ

We attempt to choose y a K such that a given continuously di¤erentiable objective

functional J : Vh � CNp ! R is minimized. This can be formulated as the optimal

control problem

min
uh AVh;y AK

Jðuh; yÞ; ð3:3aÞ
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subject to the PWDG constraint

ah
�
uhðyÞ; vhðyÞ

�
¼ lh

�
vhðyÞ

�
; vhðyÞ a Vh: ð3:3bÞ

The algebraic formulation of (3.3a), (3.3b) turns out to be

min
y ACNp;y AK

Jðy; yÞ; ð3:4aÞ

subject to the state equation

eðy; yÞ :¼ AðyÞy� bðyÞ ¼ 0: ð3:4bÞ

Remark 3.1. A particular choice of the objective functional J is

Jðuh; yÞ :¼
1

2
kuhðyÞ � udk20;W; ð3:5Þ

where ud a L2ðWÞ is a given objective functional. Introducing the Hermitian

matrix MðyÞ ¼
�
mklðyÞ

�Np

k;l¼1
a CNp�Np and the vector cðyÞ ¼

�
c1ðyÞ; . . . ; cNpðyÞ

�T
according to

mklðyÞ :¼ ðjðkÞ
h ; j

ðlÞ
h Þ0;W; 1a k; laNp;

clðyÞ :¼ ðud ; j
ðlÞ
h Þ0;W; 1a laNp;

ð3:6Þ

in algebraic form the objective functional reads as follows

Jðy; yÞ :¼ 1

2
3MðyÞy; y4�Reð3cðyÞ; y4Þ: ð3:7Þ

We denote by G : K ! CNp the control-to-state map which assigns to the control

y a K the unique solution y a CNp of the state equation (3.4b) and by Jred : K ! R

the reduced objective functional

JredðyÞ :¼ J
�
GðyÞ; y

�
:

Then, the control-reduced formulation of the optimal control problem (3.4a),

(3.4b) reads as follows

min
y AK

JredðyÞ: ð3:8Þ

The existence of a solution follows by standard arguments from the theory of

constrained finite dimensional optimization problems (cf., e.g., [16]).
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Theorem 3.2. The optimal control problem (3.4a), (3.4b) admits an optimal solu-

tion ðy�; y�Þ a CNp � K.

Proof. Let fyðnÞgN, y ðnÞ a K, n a N, be a minimizing sequence, i.e., it holds

JredðyðnÞÞ ! min
y AK

JredðyÞ as n ! l: ð3:9Þ

Obviously, the sequence fyðnÞgN is bounded and hence, there exist a subsequence

N 0 � N and y � a Rp such that

yðnÞ ! y �; N 0 C n ! l:

In view of the closedness of K, we have y � a K. Moreover, due to the continuity

of both the control-to-state map G and of the reduced objective functional Jred
we deduce

GðyðnÞÞ ! Gðy �Þ; JredðyðnÞÞ ! Jredðy �Þ N 0 C n ! l:

Consequently, from (3.9) we have

Jredðy �Þ ¼ min
y AK

JredðyÞ;

and with y� :¼ Gðy �Þ it follows that the pair ðy�; y �Þ a CNp � K is an optimal

solution of (3.4a), (3.4b). r

Remark 3.3. Since the control-to-state map G is a non-convex function of the

control y, we do not have uniqueness of an optimal solution.

4. First order necessary optimality conditions

We will derive the first order necessary optimality conditions for the optimal con-

trol problem (3.4a), (3.4b) by the method of Lagrange multipliers which is justified

if the linear independence constraint qualification holds true [14], [16]. To this

end, we note that the bound constraints on the control can be expressed as the in-

equalities gðyÞa 0, where the mapping g ¼ ðg1; g2Þ : RNp ! RNp � RNp is defined

by means of

g1ðyÞ :¼ ðŷy2 � ŷy1 � ymax; . . . ; ŷyNpþ1 � ŷyNp � ymaxÞ;

g2ðyÞ :¼
�
ymin � ðŷy2 � ŷy1Þ; . . . ; ymin � ðŷyNpþ1 � ŷyNpÞ

�
:

ð4:1Þ
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For a local minimum ðy�; y�Þ a CNp � K of (3.4a), (3.4b) the active set is given by

Aðy�Þ ¼ A1ðy �ÞAA2ðy �Þ where

A1ðy �Þ :¼ fq a f1; . . . ; pg j ŷy�
qþ1 � ŷy�

q � ymax ¼ 0g; ð4:2aÞ

A2ðy �Þ :¼ fq a f1; . . . ; pg j ymin � ðŷy�
qþ1 � ŷy�

q Þ ¼ 0g; ð4:2bÞ

where ŷy�
q is defined as in (2.7) with yq replaced by y�

q .

We refer to Iðy �Þ :¼ f1; . . . ; pgnAðy�Þ as the inactive set. The linear indepen-

dence constraint qualification requires the linearization of
�
e; ðg1ÞA1ðy�Þ; ðg2ÞA2ðy �Þ

�
at ðy�; y�Þ to be surjective.

Theorem 4.1. Let p�
i :¼ card

�
Aiðy�Þ

�
, 1a ia 2 and assume Iðy �ÞA j. The

mapping�
‘eðy�; y �Þ;‘g1;A1ðy�Þðy �Þ;‘g2;A2ðy �Þðy�Þ

�
: CNp � RNp ! CNp � Rp�

1 � Rp�
2

is surjective. In particular, for any ðr; s1; s2Þ a CNp � Rp �
1 � Rp �

2 there exists a

unique solution ðdy; dyÞ a CNp � RNp of the equation�
‘eðy�; y �Þðdy; dyÞ;‘g1;A1ðy�Þðy �Þdy;‘g2;A2ðy�Þðy �Þdy

�
¼ ðr; s1; s2Þ:

Proof. For k a A1ðy�Þ we obviously have

‘g1;k 0 ðy �Þ ¼
�1; k 0 ¼ k

þ1; k 0 ¼ k þ 1

0; otherwise

8<
: ; ð4:3Þ

whereas for k a A2ðy�Þ

‘g2;k 0 ðy �Þ ¼
þ1; k 0 ¼ k

�1; k 0 ¼ k þ 1

0; otherwise

8<
: : ð4:4Þ

Since Iðy �ÞA j, there exists q a f1; . . . ;Npg such that q a Iðy�Þ. We renumber

the controls according to ~yy�
k :¼ y�

qþk�1,
~yy�
kþp ¼ ŷy�

k þ 2p, 1a kaNp, and set

ðdyÞk ¼ 0 for k a Ið~yy�Þ. If Að~yy �Þ ¼ j, there is nothing to show. If Að~yy�ÞA j,
there exists

kmin :¼ minfk a f2; . . . ;Npg j k a Að~yy�Þg:

Moreover, in view of Npþ 1 a Ið~yy �Þ, there also exists

kmax :¼ minfk a fkmin þ 1; . . . ;Npþ 1g j k a Ið~yy�Þg:
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In view of (4.3), (4.4), ðdyÞk, kmina ka kmax � 1, is the unique solution of a linear

algebraic system with a regular upper triangular matrix. For the computation of

ðdyÞk a Að~yy �Þnfkmin; . . . ; kmax � 1g we proceed in the same way.

On the other hand, the equation ‘eðy�; y �Þðdy; dyÞ ¼ r can be equivalently

written as

AðyÞdy ¼ ‘y

�
bðy �Þ � Aðy�Þy��dy;

which has a unique solution dy a CNp. r

Due to Theorem 4.1, the necessary optimality conditions can be derived by the

method of Lagrange multipliers.

Theorem 4.2. Assume that ðy�; y �Þ a CNp � K is an optimal solution of (3.4a),

(3.4b). Then there exist an adjoint state p� a CNp and a multiplier m� ¼ ðm�
1 ; m

�
2 Þ a

R
2Np
þ , m�

i ¼ ðm�
i;1; . . . ; m

�
i;NpÞ

T
, 1a ia 2, such that the state equation, the adjoint

state equation and the gradient equation

Aðy �Þy� � bðy �Þ ¼ 0;

AHðy �Þp� þ Jyðy�; y �Þ ¼ 0;

‘yJðy�; y�Þ þRe
��
‘y

�
Aðy �Þy� � bðy �Þ

�
; p�	�þ ‘yg1ðy �ÞTm�

1 þ‘yg2ðy �ÞTm�
2 ¼ 0

are satisfied as well as the complementarity conditions

gi;qðy �Þa 0; m�
i;qb 0; gi;qðy�Þm�

i;q ¼ 0; 1a qaNp; 1a ia 2:

Proof. We introduce the Lagrangian L : CNp � RNp � CNp � R
2Np
þ according to

Lðy; y; p; mÞ :¼ Jðy; yÞ þRe
�
3eðy; yÞ; p4

�
þ g1ðyÞ

Tm1 þ g2ðyÞ
Tm2:

Setting x :¼ ðy; y; pÞ and x� :¼ ðy�; y �; p�Þ, the first order necessary optimality

conditions are given by

qL

qy
ðx�; m�Þ ¼ 0;

qL

qy
ðx�; m�Þ ¼ 0;

qL

qp
ðx�; m�Þ ¼ 0; ð4:5aÞ

qL

qmi
ðx�; m�ÞTðni � m�

i Þa 0; ni a R
Np
þ ; 1a ia 2: ð4:5bÞ

The state equation, the adjoint state equation, and the gradient equation result

from the third, first, and second equation in (4.5a), whereas the complementarity

conditions are a consequence of (4.5b). r
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5. Projected gradient method

The projected gradient method is based on the formulation of the gradient equa-

tion as the variational inequality

�‘yJðy�; y �Þ þRe
��
‘y

�
bðy �Þ � Aðy �Þy��; p�	� a qIK;

where qIK is the subdi¤erential of the indicator function of the constraint set K.

Projected gradient method

Step 1: Choose an initial control y ð0Þ a K and a tolerance TOL > 0 and set n ¼ 0.

Step 2.1: Set n ¼ nþ 1 and compute yðnÞ a CNp and pðnÞ a CNp as the unique

solutions of the state equation

Aðyðn�1ÞÞyðnÞ ¼ bðyðn�1ÞÞ

and of the adjoint state equation

AHðyðn�1ÞÞpðnÞ ¼ �JyðyðnÞ; yðn�1ÞÞ:

Step 2.2: Compute ~yyðnÞ a Rp according to

~yyðnÞ ¼ yðn�1Þ � k
�
‘yJðyðnÞ; yðn�1ÞÞ þRe

��
‘y

�
Aðy ðn�1ÞÞyðnÞ

�
� bðy ðn�1ÞÞ

�
; pðnÞ

	�
;

where k > 0 is the Armijo line search parameter.

Step 2.3: Compute yðnÞ as the projection of ~yy ðnÞ onto the constraint set K.

Step 2.4: If n > 1 and

jJðyðnÞ; y ðnÞÞ � Jðyðn�1Þ; y ðn�1ÞÞj < TOL;

stop the algorithm. Otherwise, go to Step 2.1.

We will provide some details regarding the numerical realization of Step 2.2 in

case the objective functional J is chosen as in (3.5). For the update formula we

need to compute the following quantity:

‘yJðy; yÞ þRe
�
3‘yAðyÞy� bðyÞ; p4

�
:

For the computation of ‘yJðy; yÞ we observe (3.7). Moreover, according to (3.4b)

the vector y ¼ ðy1; . . . ; yNpÞT is the unique solution of

AðyÞy ¼ bðyÞ;
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where the Np�Np matrix AðyÞ and the Np vector bðyÞ are given by (2.19). We

note that for any two given basis functions f
ðkÞ
h and f

ðlÞ
h either,

m
�
suppðfðkÞ

h ÞB suppðfðlÞ
h Þ
�
¼ 0

or,

suppðfðkÞ
h ÞB suppðfðlÞ

h Þ ¼ T a ThðWÞ;

where m is the 2-D Lebesgue measure. Let Tk;l; 1a k; laNp, be defined as

Tk;l :¼
j; if m

�
suppðfðkÞ

h ÞB suppðfðlÞ
h Þ
�
¼ 0

suppðfðkÞ
h ÞB suppðfðlÞ

h Þ; otherwise

(
;

and let Tl, 1a laNp be given by

Tl :¼ suppðfðlÞ
h Þ a ThðWÞ:

Hence, we can rewrite (3.6) as

mklðyÞ :¼
ð
Tk; l

expðiodk � xÞ expðiodl � xÞ dx; 1a k; laNp;

clðyÞ :¼
ð
Tl

ud expðiodl � xÞ dx; 1a laNp:

ð5:1Þ

In view of (??) we obtain

‘yJðy; yÞ ¼ ‘y

� 1
2

XNp

k;l¼1

mklðyÞyk yl
�
� ‘y

�
Re
XNp

k¼1

ckðyÞyk
�
: ð5:2Þ

Di¤erentiating (5.1) with respect to yj it follows that

q

qyj

� 1
2

XNp

k;l¼1

mklðyÞylyk
�

¼ 1

2

�XNp

l¼1

yj yl

ð
Tj; l

ðiod �
j � xÞ expðiod j � xÞ � expðiodl � xÞ dx

þ
XNp

l¼1

ylyj

ð
Tj; l

ð�iod �
j � xÞ expðiodl � xÞ � expðiod j � xÞ dx

�
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¼ 1

2

�XNp

l¼1

yj yl

ð
Tj; l

ðiod �
j � xÞ expðiod j � xÞ � expðiodl � xÞ dx

þ
XNp

l¼1

yj yl

ð
Tj; l

ðiod �
j � xÞ expðiod j � xÞ � expðiodl � xÞ dx

�

¼ Re
XNp

l¼1

yj yl

ð
Tj; l

ðiod �
j � xÞ expðiod j � xÞ � expðiodl � xÞ dx; ð5:3Þ

where d �
j ¼

�
�sinðyjÞ; cosðyjÞ

�T
. Moreover, we obtain

q

qyj

�
Re
XNp

k¼1

ckðyÞyk
�
¼ Re

�
yj

ð
W

ð�iod �
j � xÞud expðiod j � xÞ dx

�
: ð5:4Þ

On the other hand, for Re
�
‘y3AðyÞy� bðyÞ; p4

�
we have

Re
q

qyj
3AðyÞy� bðyÞ; p4

� �
¼ Re

� q

qyj

XNp

k;l¼1

�
aklðyÞyl � bkðyÞ

�
pk

�

¼ Re
XNp

k;l¼1

qaklðyÞ
qyj

yl �
qbkðyÞ
qyj

� �
pk

 !
: ð5:5Þ

We obtain the derivatives
qaklðyÞ
qyj

and
qbkðyÞ
qyj

by directly di¤erentiating the formulas in

(2.19).

Using (5.3)–(5.5) provides the update formula in Step 2.2 of the projected

gradient method.

6. Numerical results

We provide a documentation of numerical results illustrating the performance

of the optimization algorithm by studying the global discretization error u� uh
in the L2-norm. Therefore, we consider two examples where either the exact

solution or a su‰ciently accurate approximate solution is known and we choose

the objective functional (3.5) with ud being given by the exact (approximate)

solution. We note that for problems where a desired state ud is not easily available

we may use any continuously di¤erentiable objective functional (e.g., the acoustic

energy associated with the problem) as outlined in Sections 3 and 4.

Example 1. As in [10], [11] we consider the Helmholtz problem (2.1a), (2.1b) in

W ¼ ð0; 1Þ � ð�0:5;þ0:5Þ with o ¼ 10 and g in (2.1b) being chosen such that the
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exact solution u (in polar coordinates) is given by

uðr; jÞ ¼ JxðorÞ cosðxjÞ; xb 0;

where Jx stands for the Bessel function of the first kind and order x. We note

that for x a N the solution is regular, whereas for x B N the solution satisfies

u a H 1þx�eðWÞ for any e > 0 and its derivatives have a singularity at the origin.

Figure 1 displays the exact solution for x ¼ 1 (top right), x ¼ 2=3 (bottom left),

and x ¼ 3=2 (bottom right).

For x ¼ 1, x ¼ 2=3, and x ¼ 3=2 the PWDG method has been implemented

with respect to a geometrically conforming simplicial triangulation ThðWÞ consist-
ing of eight isosceles triangles (cf. Figure 1 (top left)). The parameters a, b, and d

in the PWDG method (2.10a), (2.10b) are chosen either according to

a ¼ b ¼ d ¼ 0:5 ð6:1Þ

as in the ultraweak variational formulation by Cessenat and Després [4] or by

means of

a ¼ b�1 ¼ d�1 ¼ 10p

oh logðpÞ ð6:2Þ

Figure 1. Example 1: The computational domain W and the simplicial triangulation ThðWÞ
for the PWDG method (top left). The exact solution for x ¼ 1 (top right), x ¼ 2=3 (bottom
left), and x ¼ 3=2 (bottom right).
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as suggested in [11]. For the optimization of the plane wave directions, the objec-

tive functional has been chosen as in (3.5) with the desired state ud given by the

exact solution. Moreover, we have chosen equidistributed directions with respect

to the triangles T a ThðWÞ, i.e., dð j�1Þpþl ¼ dl, 1a la p, for all j a f1; . . . ;Ng.
For the projected gradient method the initial distribution y0 has been chosen as

either uniform as in [11] or random as suggested by Cessenat and Després. The

state equation as well as the adjoint state equation in Step 2.1 have been solved

by Gaussian elimination. We note that the optimization problem has multiple

local minima and hence, starting at di¤erent initial distributions the algorithm

may terminate at di¤erent local minima.

For x ¼ 1 Figure 2 and for x ¼ 2=3 Figure 3 display the global discretization

error u� uh in the L2-norm k � k0;W as a function of the number p of plane wave

basis functions. For the choice of the parameters a, b, and d according to (6.1),

the results for a uniform initial distribution y0 of the plane wave directions are

top left and for a random initial distribution y0 they are shown top right. On the

other hand, if the parameters a, b, and d are chosen by means of (6.2), the results

Figure 2. Example 1: The L2-error ku� uhk0;W as a function of the number p of plane
wave basis functions for x ¼ 1: Parameter choice (6.1) and uniform initial distribution y0
(top left), parameter choice (6.1) and random initial distribution y0 (top right), parameter
choice (6.2) and uniform initial distribution y0 (bottom left), parameter choice (6.2) and
random initial distribution y0 (bottom right).
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for a uniform initial distribution y0 are displayed bottom left, whereas for a

random initial distribution y0 they are shown bottom right. We see that both in

case of a regular solution (x ¼ 1) and of a singular solution (x ¼ 2=3) the uniform

distribution of y0 is optimal except for p ¼ 3; 5; 7; 9 where it is almost optimal (cf.

Figure 4 for x ¼ 2=3 and p ¼ 5). However, for a random initial distribution y0
the computed optimal distribution yields a reduction in the L2-error ku� uhk0;W
up to one order of magnitude. Figure 5 shows the randomly chosen initial distri-

bution and the computed optimal distribution for x ¼ 1 and p ¼ 7.

The (almost) optimality of the uniform distribution of the plane wave direc-

tions is probably due to the fact that the solution is symmetric (with respect to

the x1-axis). Moreover, we see that the di¤erence between the two parameter

choices (6.1) and (6.2) is only marginal. The results for the case x ¼ 3=2 are very

similar and are thus omitted.

We note that the condition number of the matrix AðyÞ deteriorates with in-

creasing number p of plane wave basis functions so that roundo¤ errors may e¤ect

Figure 3. Example 1: The L2-error ku� uhk0;W as a function of the number p of plane
wave basis functions for x ¼ 2=3: Parameter choice (6.1) and uniform initial distribution
y0 (top left), parameter choice (6.1) and random initial distribution y0 (top right), param-
eter choice (6.2) and uniform initial distribution y0 (bottom left), parameter choice (6.2)
and random initial distribution y0 (bottom right).
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the convergence. For x ¼ 1 we observe such a behavior for pb 23 (cf. Figure 2),

whereas in the singular case x ¼ 2=3 a slowdown of the convergence can already

be seen for pb 17 (cf. Figure 3).

Example 2. The second example deals with a screen problem which describes an

acoustic wave scattered at a sound-soft scatterer:

�Du� o2u ¼ f in W; ð6:3aÞ
n � ‘uþ iou ¼ g on GR; ð6:3bÞ

u ¼ 0 on GD; ð6:3cÞ

Figure 4. Example 1: Uniform initial distribution y0 of the plane wave directions (red
dotted line) and the computed optimal distribution (blue solid line) for x ¼ 2=3 and p ¼ 5:
Parameter choice (6.1) left and parameter choice (6.2) right.

Figure 5. Example 1: Randomly chosen initial distribution y0 of the plane wave directions
(red dotted line) and the computed optimal distribution (blue solid line) for x ¼ 1 and
p ¼ 7: Parameter choice (6.1) left and parameter choice (6.2) right.
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The computational domain is given by W :¼ ð�1;þ1Þ2nðS1AS2Þ where

S1 :¼ conv
�
ð0; 0Þ; ð�0:25;þ0:50Þ; ð�0:50;þ0:50Þ

�
;

S2 :¼ conv
�
ð0; 0Þ; ðþ0:25;�0:50Þ; ðþ0:50;�0:50Þ

�
:

Moreover, GR ¼ qð�1;þ1Þ2 and GD :¼ qS1A qS2. The right-hand sides f and g

are chosen according to f C 0 and

g ¼ cosðox2Þ þ i sinðox2Þ:

The exact solution u is not known explicitly. As a substitute for the exact solution

we have used an approximate solution us computed by the adaptive Interior

Penalty Discontinuous Galerkin method from [13] with a su‰ciently large number

of refinement steps. For o ¼ 15, the approximate solution us is displayed in

Figure 6 (right).

The PWDG method has been implemented with respect to a geometrically

conforming simplicial triangulation ThðWÞ shown in Figure 6 (left). The param-

eters a, b, and d of the PWDG method have been chosen according to (6.1) and

(6.2). For the optimization, we have chosen ud in the objective functional as the

substitute solution us. Moreover, for the projected gradient method the initial

distribution y0 of the plane wave directions has been chosen as a uniform

distribution. In Step 2.1 of the projected gradient method, the state equation and

the adjoint state equation have been solved numerically by GMRES [17].

In this example, we have compared uniform directions with optimal directions

in case of the same directions for each element of the triangulation (optimal direc-

tions I) and di¤erent directions per element (optimal directions II).

Figure 6. Example 2: The computational domain W and the simplicial triangulation ThðWÞ
for the PWDG method (left; the sound-soft scatterer is shown in blue). The substitute
solution us computed by the adaptive Interior Penalty Discontinuous Galerkin method
from [13] (right).
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Figure 7. Example 2: Uniform initial distribution y0 of the plane wave directions (red
dotted line) and the computed optimal distribution (blue solid line) for p ¼ 3 (top left),
p ¼ 5 (top right), p ¼ 7 (bottom left), and p ¼ 9 (bottom right). Parameter choice (6.1).

Figure 8. Example 2: The L2-error ku� uhk0;W as a function of the number p of plane
wave basis functions per element: Uniformly distributed directions (blue broken line),
optimal directions I (red dotted line), and optimal directions II (red solid line). Parameter
choice (6.1) (left) and parameter choice (6.1) (right).
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In case of optimal directions I, Figure 7 shows the uniformly chosen initial dis-

tribution y0 and the computed optimal distribution of the plane wave directions

for p ¼ 3; 5; 7, and p ¼ 9 (from top left to bottom right). The dependence of the

L2-norm of the global discretization error ku� uhk0;W is shown in Figure 8 for

both optimal directions I and optimal directions II. Since in this example there

are no dominant global directions of propagation, the convergence is better for

di¤erent directions per element than for the same directions.
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