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Optimization of plane wave directions in plane wave
discontinuous Galerkin methods for the Helmholtz equation
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Abstract. Recently, the use of special local test functions other than polynomials in Discon-
tinuous Galerkin (DG) approaches has attracted a lot of attention and became known
as DG-Trefftz methods. In particular, for the 2D Helmholtz equation plane waves have
been used in [11] to derive an Interior Penalty (IP) type Plane Wave DG (PWDG) method
and to provide an a priori error analysis of its p-version with respect to equidistributed
plane wave directions. The dependence on the distribution of the plane wave directions
has been studied in [1] based on a least squares method. However, the emphasis in [1] has
been on the h-version of the PWDG method, i.e., decreasing the mesh width / for a fixed
number p of plane wave directions. In this contribution, we are interested in the p-version,
i.e., increasing p for a fixed mesh-width 7. We formulate the choice of the plane wave
directions as a control constrained optimal control problem with a continuously differen-
tiable objective functional and the variational formulation of the PWDG method as a
further constraint. The necessary optimality conditions are derived and numerically solved
by a projected gradient method. Numerical results are given which illustrate the benefits of
the approach.
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1. Introduction

The use of plane waves in the finite element approximation of the Helmholtz
equation goes back to the ultra weak variational formulation of the problem by
Cessenat and Després [4]. The approach can be interpreted as a Discontinuous
Galerkin (DG) approximation and is therefore referred to as the Plane Wave
Discontinuous Galerkin (PWDG) method. Since it uses local trial spaces consist-
ing of plane waves, it is also a particular example of a Trefftz-type finite element
approximation and hence called a Trefftz-type DG method. Due to its superior
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performance compared to standard finite element approximations which suffer
from the so-called pollution effect, it has been studied extensively in the literature
(cf., e.g., [2], [3], [5], [7], [8], [10]). In particular, the h-version and the p-version of
the PWDG method have been analyzed in [9] and in [11], whereas the exponential
convergence of the hp-version has been established in [12].

The PWDG method features a triangulation 7,(Q) of the computational do-
main Q C R? with card(77(Q)) = N and the use of a certain number p = 2m + 1,
m € N, of plane waves in each element K € .7,(Q) which compose the local trial
spaces. The plane waves are of the form exp(iewd;_),, - X), where

. T .
dij—1)psr = (c0s(Oj-1)pir),sin(O0;_1)pir) ", 1<j<N, 1</ <p,

x € K, and o stands for the wavenumber. It is known from the convergence
analysis of the PWDG method [11] that the p directions d(;_y),1,, 1 </ < p,
j€{l,...,N}, should be chosen in such a way that the minimum angle between
two different directions is greater or equal 277 /p for some 7 € (0,1]. The issue
how to choose the directions in order to minimize a given objective functional
has been considered in [1] based on a least squares method similar to that in [15].
The emphasis in [1] has been on the A-version of the PWDG approach, i.e., dcreas-
ing the mesh width / for a fixed number p of plane wave directions. Moreover,
no constraints on the directions have been observed albeit it is known from [11]
that the approximation properties of the PWGD method get lost, if the difference
between two different directions becomes too small.

In this paper, we are interested in the p-version, i.e., increasing p for a fixed
mesh width /1, and we formulate this problem as a control constrained optimal
control problem with a continuously differentiable objective functional and the
variational formulation of the PWDG method as a further constraint, where
the controls are the Np angles 0(;_1),4,, 0 </ <p, 1 <j<N. We derive the
first order necessary optimality conditions by means of the Lagrange multiplier
approach and derive a projected gradient type method with Armijo line search
to compute an optimal solution. Numerical results illustrate the dependence of
the L2-norm of the global discretization error on the choice of the plane wave
directions.

2. The PWDG method

For a bounded convex polygonal domain Q C R? with boundary I' = 0Q we
consider the Helmholtz equation

—Au—’u=0 inQ, (2.1a)
n-Vu+iou=g onl =0Q. (2.1b)
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where @ > 0 is the wavenumber, g € L?(I") is a given function, and n denotes the
exterior unit normal vector on I'. We rewrite (2.1) as the first order system:

iwe —Vu=0 inQ, (2.2a)
—V.o+iou=0 inQ, (2.2b)
ion-6+iou=g onl. (2.2¢)

The variational formulation of (2.2) reads: Find (o, u) € H(div, Q) x H'(Q) such
that for all (z,v) € H(div,Q) x H'(Q) it holds

(iwe, 1)y o + W,V 1)y o =<u,n- T>H1/z(r),H71/2(r), (2.3a)

1
(6,V0) 0 + (1, 0)o 1+ (i, v)g o = (.—g,v) | (2.3b)
’ , iw or

We consider a shape regular family of geometrically conforming, quasi-uniform
simplicial triangulations 7;,(Q) of the computational domain Q. For D C Q
we denote by &,(D) the set of edges of the triangulation in D. For T € 7,(Q),
we refer to s as the diameter of 7 and set 4 := max{hr|T € 7,(Q)}. For
E € &,(Q), the length of E will be denoted by /z. For functions ve
reroH 1(T) the trace of v on E € &,(Q) may exhibit a jump across E. For
Ecé&(QwithE=T.nT_, Ty € 7,(Q) and E € &,(I") we define

{U} — (U|T+0E+U|T,GE)/2’ Eegh(Q)
£ ol Eegr)’

], == U|T+mE —vlp g E€&(Q)
E Lol Ee &)

(2.4)

For vector-valued functions we use an analogous notation.
We approximate (2.3a), (2.3b) by introducing the following local spaces
spanned by plane waves

?
V(1) 12{ Zaj 1)+ €xpliod ;1) p1/ - X)} peN,
/=1 (2.5)
V,(Tj) := V,(T))*, je{l,...,N},
where o(;_1y,4, € Cand d(;_1),ss, | </ < p, je{l,...,N}, are p different unit
directions

. T
dij—1)pre = (€08(O( 1) pis ), SIN(O -1y pir)) . 1< <p,meN. (2.6)
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We define 6 = (01,...,0N[,)T such that 0 <0(;_y1),4, <2rm, 1 </ < p, for je
{1,...,N}. Setting

<Jj<N, (2.7)

A {0(j1)1;+/7 1 S/Sp 1
Oj-typr1 +2m, £=p+1" ~ =77

Oj—1)p+e =

we require that 6 € K, where K is given as follows

K:={0€[0,20)" | Omin < 01, 1)prre1 — 0 1)prv < Omax,
1<j<N,1</<p} (2.8)
Omin = (27”71)/17» Omax := (27”72)/177 O<my <l<m,< 3/2'

The associated global spaces are given by

Vi :={u, € LZ(Q)|U;,|TJ_ € V,,(T/),l <j<N}, (2.9)
Vi = {z, € LA(Q)[tily, € V,o(T)), 1 < j < N}. '

Then, the PWDG approximation of (2.1a), (2.1b) amounts to the computation of
(up,61) € Vi x V, such that for all (v, ) € Vi x Vy, it holds

Z ((l‘wah,l’h)o‘j + (u;,, \ Th)O,T) — Z (ﬁh,ngr . Th)O,ET =0, (2103)

Te7,(Q) TeT)(Q)
Z ((O'h, Vvh)oj + (iwuh, Uh)O,T) — Z (ngT - oy, Uh)O,@T =0. (ZIOb)
TeT)(Q) TeTH(Q)

Here, the PWDG flux functions #;, and &), are given by

ylp = UdE io[Veul. Ee &) (2.11a)
E up —O(Lng - Vuy 4wy, — 5L g), E e &)’
&/l — %{VU},}E - a[”’JE’ E € gh(g) (2 11b>
T AV — (1-0) (L Vuy + nguy, — Lngg), E € &,(0) '

where ng is the exterior unit normal on E and o >0, >0, J € (0,1) are flux
parameters independent of /2, p, and w.

By choosing z;, = Vyj, in (2.10a), we can eliminate 6, from (2.10a), (2.10b) and
obtain the following primal variational formulation of the PWDG method: Find
uy, € Vy, such that for all v, € V}, it holds
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Z ((V”ha Von)o, 7 — @ (up, Uh)O,T)
Te7,(Q)
— Y ((wn =ty mar - Vop)g o + io(ner - 64, 01)g o) = O- (2.12)

Te7,(Q)

Moreover, using Green’s formula for the first term on the left-hand side in (2.12)
and observing (—A — w?luy|; =0, T € T,(Q), we are led to a formulation of the

PWDG method involving only integrals over edges E € &,(Q): Find u;, € V), such
that

an(up,vp) = ly(vp), vy € Vi, (2.13)

where the sesquilinear form ay(-,-) : ¥}, x ¥, — C and the functional 7, : V}, — C
are given by

an(un,vn) = Y ({un}gome - [Voulg)o g + ifo™" (g - [Vuy] g, e - [Voul ) g
Eeé,(Q)

— (g - {Vup} g, [vnlg)o g + ivo([un] g, [UIJE)O,E)

Z (1 = 6)(up,n - Vun)o g + i~ (ng - Vuy,ng - Vun)o. g

E&E(D)
—0(ng - Vuy, v4)g g + i(1 — 0o (un, vn) ) (2.14a)
Zh(vn) = Z (i6w (g, g - Von)y g + (1 =0)(9, 000, )- (2.14b)
E&a(D)

As has been shown in [11], the variational equation (2.13) admits a unique solu-
tion u;, € V). Moreover, if the solution u of (2.1a), (2.1b) satisfies u € H**1(Q),
k € N, and if the mesh width /& of the triangulation 7,(Q) satisfies wh <k
for some x > 0, then there exists a constant C > 0, independent of p and u,
but depending on x, such that the following a priori error estimate holds true
(cf. Theorem 3.14 in [11])

IR _[logp k=172
=l < Cortdiam(@p = (EL) il a0 (215)

where || - |41, o stands for the w-weighted Sobolev norm
TR T TREIAE k+1
lellesroa = (D™ la) " ve H(Q).

7=0

The global PWDG space V, is spanned by Np basis functions
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Vi = span(g ... oi™)),
. T
g0 = exp(ieo(cos(0j-1)ps). SN0 1)p10)) " < X), (2.16)

I<j<N, 1</ <p.
Then, u;, € V; can be written as
P .
=> we”, weC 1<j<Np. (2.17)
Further, setting y := (y1, ..., pr)T e C with y; := u;, 1 < j < Np, the PWDG
approximation (2.13) represents a complex linear algebraic system
A(0)y = b(0), (2.18)

where the matrlx A(0) = (ak/(ﬂ))]ivﬁl CNrNrand  the vector b(f) =

(b1(0), ... ,pr(H)) e C™? are given by

ak/(o) =ap (¢/<1/)(0)7 gﬂ](lk) (0)>7 1< kv / < Np,

o (2.19)
bi(0) == tu(p, "), 1<¢<Np.

3. Optimization of the plane wave directions

The a priori estimate (2.15) for the L?>-norm of the global discretization error
tells us how the error depends on the number p of plane wave directions, but
is does not provide any information on the appropriate choice of the directions
A1) pre = (€0S(O(j-1)psr)s SIN(O -1y p1r)) " 1<j<N, 1<¢<p, except that
they are supposed to satisfy assumption (2.8). In fact, since

V;, = span(exp(iod; - X), ..., exp(iody, - X)), (3.1)

the solution u;, € V), of (2.13) depends on 8 := (0, ..., HNP)T € K according to

p
Zuk/ exp(iod—1)pis - X)|7,, e € C. (32)
1721

||
Mz

=
Il

We attempt to choose @ € K such that a given continuously differentiable objective
functional J : 7}, x C™ — R is minimized. This can be formulated as the optimal
control problem

min _J(uy, 0), (3.3a)

u,€Vy,0eK
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subject to the PWDG constraint
ap (uh(G),vh(H)) = /h(vh(é’)), U;,(@) € Vh. (331‘))

The algebraic formulation of (3.3a), (3.3b) turns out to be

min_J(y,0), (3.42)
yeC™ 9eK
subject to the state equation
e(y,0) := A(@)y —b(0) = 0. (3.4b)

Remark 3.1. A particular choice of the objective functional J is
1 )2
I (un, 0) = 5 llun(8) — ullo,q, (3-5)

where u? e L>(Q) is a given objective functional. Introducing the Hermitian

matrix M(0) = (mk/(ﬁ))gizl e C"*™7 and the vector ¢(0) = (¢1(0), ..., cnp(0)) ’
according to
my(0) = ((p,(zk),q)}(f))oﬁg, 1 <k, /< Np, (6)
c/(0) = (ud,go,(l/))O.Q, 1 </ < Np, .
in algebraic form the objective functional reads as follows
J(3.0) = 3 (M(O)y.y> ~ Re((e(6). 7)) ()

We denote by G : K — C™ the control-to-state map which assigns to the control
0 € K the unique solution y € C? of the state equation (3.4b) and by J.oq : K — R
the reduced objective functional

Jeea(0) = T (G(6),6).

Then, the control-reduced formulation of the optimal control problem (3.4a),
(3.4b) reads as follows

min Jred(0). (3.8)

The existence of a solution follows by standard arguments from the theory of
constrained finite dimensional optimization problems (cf., e.g., [16]).



76 A. Agrawal and R. H. W. Hoppe

Theorem 3.2. The optimal control problem (3.4a), (3.4b) admits an optimal solu-
tion (y*,0%) e C x K.

Proof. Let {0(">}N, 0" € K, n € N, be a minimizing sequence, i.e., it holds

Jrea(0™) — min Jeq(0)  asn — oo. (3.9)
0eK

Obviously, the sequence {09(")}N is bounded and hence, there exist a subsequence
N’ C N and 8* € R? such that

0" — 0", N'sn— 0.

In view of the closedness of K, we have 8* € K. Moreover, due to the continuity
of both the control-to-state map G and of the reduced objective functional Jieq
we deduce

G(0") = G(07), Jwea(0") — Jrea(07) N 31— o0
Consequently, from (3.9) we have

Jred(a*) = rgnelllg Jred(a)a

and with y* := G(0") it follows that the pair (y*,0") € C™ x K is an optimal
solution of (3.4a), (3.4b). 0

Remark 3.3. Since the control-to-state map G is a non-convex function of the
control #, we do not have uniqueness of an optimal solution.

4. First order necessary optimality conditions

We will derive the first order necessary optimality conditions for the optimal con-
trol problem (3.4a), (3.4b) by the method of Lagrange multipliers which is justified
if the linear independence constraint qualification holds true [14], [16]. To this
end, we note that the bound constraints on the control can be expressed as the in-
equalities g(#) < 0, where the mapping g = (g, &) : RV — RM x R™ is defined
by means of

gl(H) = (éZ - él — Omaxs - - - éNp+l - éNp - emax)7

P . R (4.1)
g2(0) = (Hmin - (02 - 01); EERE) emin - (0Np+1 - 0N[)))~
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For a local minimum (y*,8*) € C™ x K of (3.4a), (3.4b) the active set is given by
A(0) = A1(07) U A2(0") where

A1(07) =={qe{l,....p} |0}, — 0] — Omax = O}, (4.2a)
A>(07) == {g e {1,.... p} | Oin — (0, — 0}) = 0}, (4.2b)

where 9;‘ is defined as in (2.7) with 0, replaced by 0, .

We refer to 1(0%) :={1,..., p}\A(0") as the inactive set. The linear indepen-
dence constraint qualification requires the linearization of (e, (g;) A0 (82) A2(0*))
at (y*,0") to be surjective.

Theorem 4.1. Ler p; :=card(4,(0%)), 1 <i<?2 and assume 1(0") #0. The
mapping

(Ve(y*,0%),V8) 4,0(0%), V& 4y0)(07)) : TV x R — C 5 R x RP

is surjective. In particular, for any (r,s;,s;) € CY7 x RPI x RP> there exists a
unique solution (5y,00) € C™? x R™? of the equation

(Ve(y*a0*)(53’;50)7Vgl,A,(()*)(a*)507 ng,Az(o*)(a*)M) = (r,81,%2).

Proof. For k € A41(0") we obviously have

-1, K=k
Vagiu(0) =< +1, kK'=k+1, (4.3)
0, otherwise
whereas for k € 4,(0")
+1, k'=k
Vg () =X —1, k'=k+1. (4.4)
0, otherwise

Since 1(0%) # 0, there exists g € {1,..., Np} such that ¢ € I(6*). We renumber
the controls according to 0; =0,1, §Z+p =0 + 21, 1 <k < Np, and set
(00), =0 for k € 1(6"). If A(0") =0, there is nothing to show. If A(0") # 0,
there exists

kmin == min{k € {2,..., Np} |k € A(0")}.
Moreover, in view of Np + 1 € I(0*), there also exists

kmax := min{k € {kmin+ 1,...,Np+ 1} |k € I(6")}.
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In view of (4.3), (4.4), (00),., kmin < k < kmax — 1, is the unique solution of a linear
algebraic system with a regular upper triangular matrix. For the computation of
(00), € A(0")\{kmin, - - - , kmax — 1} We proceed in the same way.

On the other hand, the equation Ve(y*,87)(dy,00) =r can be equivalently
written as

A(0)dy = Vy(b(0") — A(0")y" )00,
which has a unique solution dy € C7. O

Due to Theorem 4.1, the necessary optimality conditions can be derived by the
method of Lagrange multipliers.

Theorem 4.2. Assume that (y*,0%) € C™? x K is an optimal solution of (3.4a),
(3.4b). Then there exist an adjoint state p* € C? and a multiplier u* = (i, 5) €
RiN", = (ufy, .. ,,ui’pr)T, 1 <i<2, such that the state equation, the adjoint

state equation and the gradient equation

A(0)y* —b(0*) =0,
A0 + Jy(y*,07) =0,
r 0

Vo (y*,07) +Re((Vo(A(0°)y" —b(0%)),p")) + Vog,(0°) " u} + Vog,(07) 't

)
are satisfied as well as the complementarity conditions
9iq(07) <0, 17, >0, gi (0" )7, =0, 1<g<Np, 1<i<2.
Proof. We introduce the Lagrangian L : C™? x RM x C™ x Rin according to
L(y,0,p. ) == J(y,0) + Re(<e(y,0),p)) +£,(0) ", +2:(0) s

Setting x := (y,0,p) and x* := (y*,0",p*), the first order necessary optimality
conditions are given by

6L**_ 8L**_ GL**_

E(X M1 )_07 %(X M1 )_07 ap (X yH )_07 (453)
oL x a1 * Np .
6—(X M) (vi—u) <0, vieRS 1<i<2 (4.5b)
M

The state equation, the adjoint state equation, and the gradient equation result
from the third, first, and second equation in (4.5a), whereas the complementarity
conditions are a consequence of (4.5b). O
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5. Projected gradient method

The projected gradient method is based on the formulation of the gradient equa-
tion as the variational inequality

—VoJ (y*,0%) + Re((Vo(b(0*) — A(0*)y*),p*)) € dlx,
where 0l is the subdifferential of the indicator function of the constraint set K.
Projected gradient method
Step 1: Choose an initial control ) € K and a tolerance TOL > 0 and set n = 0.

Step 2.1: Set n=n+ 1 and compute y") € C* and p® e C? as the unique
solutions of the state equation

and of the adjoint state equation
AH(g("*1)>p(H) — —Jy(y<"), 0(,,,1)).
Step 2.2: Compute 8" € R? according to
o — gin=1) _ K(V(;J(y(">, 0('1—1)) + Re(<V9(A(0("_1))y(">) _ b(g(n—l)))’p(ﬂ)»7
where x > 0 is the Armijo line search parameter.
Step 2.3: Compute 8" as the projection of 8" onto the constraint set K.
Step 2.4: If n > 1 and
|J(y(n)70(n)) - J(y(l1_l),0(n71))| < TOL,

stop the algorithm. Otherwise, go to Step 2.1.

We will provide some details regarding the numerical realization of Step 2.2 in
case the objective functional J is chosen as in (3.5). For the update formula we
need to compute the following quantity:

VHJ(yv 0) + Re(<V0A(0)y - b(H),p>)

For the computation of VyJ(y, 8) we observe (3.7). Moreover, according to (3.4b)
the vector y = (y1,..., yap) T is the unique solution of

A(0)y = b(0),
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where the Np x Np matrix 4(0) and the Np vector b(@) are given by (2.19). We
note that for any two given basis functions ¢,(1k> and ¢,<f) either,

w(supp(gy”) A supp(g))) = 0

or,
(k) N T e 7.(Q
supp(¢;, ') nsupp(g, ') = T € T4(Q),

where u is the 2-D Lebesgue measure. Let Ty ,,1 < k,/ < Np, be defined as

)

r, =19 if u(supp(¢;”) A supp(gy)) = 0
" supp(gb,gk))r\supp(qﬁ,(f)), otherwise

and let 7,, 1 </ < Np be given by
1, == supp(dy ) € Tu(Q).

Hence, we can rewrite (3.6) as

mys(0) := J exp(iowdy, - x)exp(iod, - x)dx, 1 <k,/ < Np,
Th.r

c/(0) := J ugexp(iod, - x) dx, 1 </ < Np.
T,

In view of (??) we obtain
Np
Vo (y,0 Va( Z s ( yk)T/) - V(}(Rezckw)y_k)- (52)
k=1 k=1

Differentiating (5.1) with respect to 0; it follows that

Np

6% (% Z mkl(g).V/’)’_k)

1 * | o
"2 (nyy’J (iod; - x) exp(iod; - x) - exp(iod, - x) dx

',/

+ Z y/ﬁj (—iwd] - x)exp(iwd, - x) - exp(iod; - x) dx)

T
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1, -
5 (Yo7 | G} vyexplion; ) explid; ) dx
/=1 Y

Np -
+ Z )/_,-)T/J (id; - x) exp(icod; - x) - exp(iowd, - x) dx)
/=1 Tj.,

Np -
=Red. yf,v—/J (iood? - x) expliood; - x) - expliod, - x) dx, (5.3)
/=1 T,

where d; = (—sin(0;), cos(0))) . Moreover, we obtain
0 . e
8_0j (Rech(ﬂ)yk) = Re(yj JQ(—lwdj - X)ug exp(iod; - x) dx). (5.4)

k=1

On the other hand, for Re(Vy<4(0)y — b(0), p>) we have

Re <5?9 CAO)y — b(0)7p>) = Re(% Z (ar(0)y, — bk(a))p—k>
J Tk, l=1
_ 2, Dar(0) obe(0)\ _
o (k;1( 20; Y= 20; )Pk . (5.9)

We obtain the derivatives aa{ﬁ’g@ and abgf)(jg) by directly differentiating the formulas in
Y

(2.19).
Using (5.3)—(5.5) provides the update formula in Step 2.2 of the projected
gradient method.

6. Numerical results

We provide a documentation of numerical results illustrating the performance
of the optimization algorithm by studying the global discretization error u — uy,
in the L>-norm. Therefore, we consider two examples where either the exact
solution or a sufficiently accurate approximate solution is known and we choose
the objective functional (3.5) with u“ being given by the exact (approximate)
solution. We note that for problems where a desired state u¢ is not easily available
we may use any continuously differentiable objective functional (e.g., the acoustic
energy associated with the problem) as outlined in Sections 3 and 4.

Example 1. As in [10], [11] we consider the Helmholtz problem (2.1a), (2.1b) in
Q=(0,1) x (—=0.5,40.5) with @ = 10 and g in (2.1b) being chosen such that the
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exact solution u (in polar coordinates) is given by

u(r,p) = Je(wr)cos(Cp), <=0,

where J: stands for the Bessel function of the first kind and order . We note
that for & € N the solution is regular, whereas for ¢ ¢ N the solution satisfies
ue H'™7#(Q) for any ¢ > 0 and its derivatives have a singularity at the origin.
Figure 1 displays the exact solution for £ =1 (top right), £ =2/3 (bottom left),
and & = 3/2 (bottom right).

For ¢ =1, £=2/3, and & = 3/2 the PWDG method has been implemented
with respect to a geometrically conforming simplicial triangulation 77,(Q) consist-
ing of eight isosceles triangles (cf. Figure 1 (top left)). The parameters o, 5, and ¢
in the PWDG method (2.10a), (2.10b) are chosen either according to

a=f=0=05 (6.1)

as in the ultraweak variational formulation by Cessenat and Després [4] or by
means of

10p

_p-l -1 _
PP Chlog(p)

(6.2)

0.8 1

Figure 1. Example 1: The computational domain Q and the simplicial triangulation .77,(Q)
for the PWDG method (top left). The exact solution for ¢ = 1 (top right), £ = 2/3 (bottom
left), and & = 3/2 (bottom right).
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as suggested in [11]. For the optimization of the plane wave directions, the objec-
tive functional has been chosen as in (3.5) with the desired state u¢ given by the
exact solution. Moreover, we have chosen equidistributed directions with respect
to the triangles T' € 7,(Q), ie., d(j_1)p4s =ds, 1 </ < p, forall je{l,...,N}.
For the projected gradient method the initial distribution 6, has been chosen as
either uniform as in [11] or random as suggested by Cessenat and Després. The
state equation as well as the adjoint state equation in Step 2.1 have been solved
by Gaussian elimination. We note that the optimization problem has multiple
local minima and hence, starting at different initial distributions the algorithm
may terminate at different local minima.

For & = 1 Figure 2 and for & = 2/3 Figure 3 display the global discretization
error u — uy, in the L?-norm || - ||, o as a function of the number p of plane wave
basis functions. For the choice of the parameters o, f, and J according to (6.1),
the results for a uniform initial distribution 6, of the plane wave directions are
top left and for a random initial distribution 6, they are shown top right. On the
other hand, if the parameters o, 5, and J are chosen by means of (6.2), the results

E=1,uspe5=05

3 5 7 9 11 13 15 17 19 21 23 25 27
Number of plane wave basis functions.

£=1, a=p"'=5"'=10p/(o h log(p)

—+— Optimal Directions
—— Uniform Distribution

Figure 2. Example 1: The L*-error ||u — uy]|, o as a function of the number p of plane
wave basis functions for ¢ = 1: Parameter choice (6.1) and uniform initial distribution 6
(top left), parameter choice (6.1) and random initial distribution 6, (top right), parameter
choice (6.2) and uniform initial distribution 6, (bottom left), parameter choice (6.2) and

random initial distribution 8, (bottom right).
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52203, =505 £=203, azpe505

3 5 7 8 11 18 15 17 19 21 23 25 27 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of plane wave basis functions Number of plane wave basis functions

=213, a=f"'=5"'=10pi(0 h log(p)) £=213, a="'=5""=10p/(0 hlog(p))

—e— Optimal Directions
——— Random Distribution

5 7 9 11 13 15 17 19 21 28 25 7 5 7 9 11 13 15
Number of plane wave basis functions Number of plane wave b

Figure 3. Example 1: The L%-error |[u — ]|, o as a function of the number p of plane
wave basis functions for & = 2/3: Parameter choice (6.1) and uniform initial distribution
0 (top left), parameter choice (6.1) and random initial distribution 6, (top right), param-
eter choice (6.2) and uniform initial distribution 6, (bottom left), parameter choice (6.2)
and random initial distribution 6, (bottom right).

for a uniform initial distribution 6, are displayed bottom left, whereas for a
random initial distribution 6, they are shown bottom right. We see that both in
case of a regular solution (£ = 1) and of a singular solution (¢ = 2/3) the uniform
distribution of ) is optimal except for p = 3,5,7,9 where it is almost optimal (cf.
Figure 4 for ¢ =2/3 and p = 5). However, for a random initial distribution 6,
the computed optimal distribution yields a reduction in the L*-error |ju — us|y ¢
up to one order of magnitude. Figure 5 shows the randomly chosen initial distri-
bution and the computed optimal distribution for £ =1 and p = 7.

The (almost) optimality of the uniform distribution of the plane wave direc-
tions is probably due to the fact that the solution is symmetric (with respect to
the xj-axis). Moreover, we see that the difference between the two parameter
choices (6.1) and (6.2) is only marginal. The results for the case £ = 3/2 are very
similar and are thus omitted.

We note that the condition number of the matrix A(#) deteriorates with in-
creasing number p of plane wave basis functions so that roundoff errors may effect
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Optimal choice of directions for p=5 ‘Optimal choice of directions for p=5

— Optimal Distribution —= Optimal Distribution
3 = =3 Uniform Distribution i = == Uniform Distribution
08| f 08 f

L
04 06 08 1

01 05 08 P W s s o4 0z 0 o2
£=2/3, a=p""=5""=10p/(w h log(p))

02 [ 02
§=203, 0=p=5=0.5

Figure 4. Example 1: Uniform initial distribution @y of the plane wave directions (red
dotted line) and the computed optimal distribution (blue solid line) for & =2/3 and p = 5:
Parameter choice (6.1) left and parameter choice (6.2) right.

Optimal choice of directions for p=7 Optimal choice of directions for p=7

— Optimal Distribution ——=Optimal Distrioution
08 = = Random Distribution 08 = = > Random Distribution

- I
1 T 08 06 04 -02 0 0z 04 06 08 1
£=1,a=p""=5""=10p/(w h log(p))

Figure 5. Example 1: Randomly chosen initial distribution 6 of the plane wave directions
(red dotted line) and the computed optimal distribution (blue solid line) for & =1 and
p = 7: Parameter choice (6.1) left and parameter choice (6.2) right.

the convergence. For & =1 we observe such a behavior for p > 23 (cf. Figure 2),
whereas in the singular case & = 2/3 a slowdown of the convergence can already
be seen for p > 17 (cf. Figure 3).

Example 2. The second example deals with a screen problem which describes an
acoustic wave scattered at a sound-soft scatterer:

—Au—o’u=f inQ, (6.3a)
n-Vu+iou=g onlkg, (6.3b)
u=0 onI)p, (6.3c)
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The computational domain is given by Q := (—1,+1)*\(S; U S>) where

81 := conv((0,0), (=0.25,40.50), (—0.50, +-0.50)),
S = conv((0,0), (+0.25, —0.50), (+0.50, —0.50)).

Moreover, I'g = d(—1, +1)* and T'p := 8S; U 8S,. The right-hand sides f and g
are chosen according to f = 0 and

g = cos(wx>) + isin(wx»).

The exact solution u is not known explicitly. As a substitute for the exact solution
we have used an approximate solution u; computed by the adaptive Interior
Penalty Discontinuous Galerkin method from [13] with a sufficiently large number
of refinement steps. For w = 15, the approximate solution u is displayed in
Figure 6 (right).

The PWDG method has been implemented with respect to a geometrically
conforming simplicial triangulation .7,(Q2) shown in Figure 6 (left). The param-
eters «, ff, and 0 of the PWDG method have been chosen according to (6.1) and
(6.2). For the optimization, we have chosen u? in the objective functional as the
substitute solution u;. Moreover, for the projected gradient method the initial
distribution 6y of the plane wave directions has been chosen as a uniform
distribution. In Step 2.1 of the projected gradient method, the state equation and
the adjoint state equation have been solved numerically by GMRES [17].

In this example, we have compared uniform directions with optimal directions
in case of the same directions for each element of the triangulation (optimal direc-
tions I) and different directions per element (optimal directions II).

1 1 —
08 08 W ‘ % " v 4isi
06 06 . . .. ,
; e WY O
b N\
; 2 —. .05
04 04 t; - )‘ .
-06 06 : ‘
-08 -0. . ‘ 18
i o_jb S ,J 2

=1 -05 0 05 1 -1 -05 0 05 1

Figure 6. Example 2: The computational domain Q and the simplicial triangulation .7, (Q)
for the PWDG method (left; the sound-soft scatterer is shown in blue). The substitute
solution u; computed by the adaptive Interior Penalty Discontinuous Galerkin method
from [13] (right).
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Optimal ehoice of directions for p=3 Optimal choica of dirctions for =5

Figure 7. Example 2: Uniform initial distribution @y of the plane wave directions (red
dotted line) and the computed optimal distribution (blue solid line) for p =3 (top left),
p =5 (top right), p = 7 (bottom left), and p = 9 (bottom right). Parameter choice (6.1).

a=B=6=05 a=4"1=6"1=10p/(whlog(p))
10° 10°
——— uniform directions ——— uniform directions
L. PN optimal directions T .. optimal directions T
R AN optimal directions IT [ =~ optimal directions IT
~ - S~
S S
101 Tl 1071 Tae
L? error ’ L error | "
102 107
: : B : : B : B :
3 5 7 9 11 13 15 3 5 7 9 11 13 15
Number of plane wave basis functions per triangle Number of plane wave basis functions per triangle

Figure 8. Example 2: The L2-error |[u — ul|, o as a function of the number p of plane
wave basis functions per element: Uniformly distributed directions (blue broken line),
optimal directions I (red dotted line), and optimal directions II (red solid line). Parameter
choice (6.1) (left) and parameter choice (6.1) (right).
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In case of optimal directions I, Figure 7 shows the uniformly chosen initial dis-
tribution 6, and the computed optimal distribution of the plane wave directions
for p =3,5,7, and p =9 (from top left to bottom right). The dependence of the
L?-norm of the global discretization error [u — u||y o is shown in Figure 8 for
both optimal directions I and optimal directions II. Since in this example there
are no dominant global directions of propagation, the convergence is better for
different directions per element than for the same directions.
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