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Optimal stretching for lattice points under convex curves
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Abstract. Suppose we count the positive integer lattice points beneath a convex decreasing
curve in the first quadrant having equal intercepts. Then stretch in the coordinate direc-
tions so as to preserve the area under the curve, and again count lattice points. Which
choice of stretch factor will maximize the lattice point count? We show the optimal stretch
factor approaches 1 as the area approaches infinity. In particular, when 0 < p < 1, among
p-ellipses jsxjp þ js�1yjp ¼ rp with s > 0, the one enclosing the most first-quadrant lattice
points approaches a p-circle (s ¼ 1) as r ! l.

The case p ¼ 2 was established by Antunes and Freitas, with generalization to
1 < p < l by Laugesen and Liu. The behavior in the borderline case p ¼ 1 (lattice points
in right triangles) is quite di¤erent, as shown recently by Marshall and Steinerberger.
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1. Introduction

This article tackles a variant of the Gauss circle problem motivated by shape

optimization results for eigenvalues of the Laplacian, as explained in the next

section. The circle problem asks for good estimates on the number of integer

lattice points contained in a circle of radius r > 0. Gauss showed this lattice point

count equals the area of the circle plus an error of magnitude OðrÞ as r ! l. The

current best estimate, due to Huxley [17], improves the error bound to Oðryþ�Þ for
y ¼ 131=208, which is still quite far from the exponent y ¼ 1=2 conjectured by

Hardy [14].

One may count lattice points inside curves di¤erent from circles. For example,

one may count lattice points inside a p-circle, given by

xp þ yp ¼ rp:



For results with p > 2, and for more general convex curves, see the informative

survey by Ivić et al. [18], §3.1.

The variant in this paper is that we seek to maximize the number of lattice

points in the first quadrant with respect to families of curves enclosing the same

area.

Consider a convex decreasing curve in the first quadrant that intercepts the

horizontal and vertical axes. For example, fix 0 < p < 1 and consider the p-ellipse

ðsxÞp þ ðy=sÞp ¼ rp; ð1Þ

where r; s > 0. This p-ellipse is obtained by stretching the p-circle from Figure 1

in the coordinate directions by factors s and s�1 and then dilating by the scale

factor r. Note the p-ellipse has semi-axes rs and rs�1, and has area AðrÞ depending
only on the ‘‘radius’’ r, not on the stretch parameter s. Write Nðr; sÞ for the num-

ber of positive-integer lattice points lying below the curve, and for each fixed r,

denote by SðrÞ the set of s-values maximizing Nðr; sÞ. In other words, s a SðrÞ
maximizes the first-quadrant lattice point count among all p-ellipses having area

AðrÞ.
Our main theorem implies that these maximizing s-values converge to 1 as

r goes to infinity. That is, the p-ellipses that contain the most positive-integer

lattice points must have semi-axes of almost equal length, for large r, and thus

can be described as ‘‘asymptotically balanced’’. This result in Example 4.3 is

an application of Theorem 4.1, which handles much more general convex decreas-

ing curves.

For nonnegative-integer lattice points, meaning we include also the lattice

points on the axes, the problem is to minimize rather than maximize the number

Figure 1. The family of p-circles xp þ yp ¼ 1. The concave case 1 < p < l was treated
in [22]. The straight line case p ¼ 1 remains open [22]. [Added in proof: the p ¼ 1 case
has been resolved by Marshall and Steinerberger [25]]. Theorem 4.1 and Example 4.3 of
this paper handle the convex case 0 < p < 1.
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of enclosed lattice points. For that problem too we prove optimal curves are

asymptotically balanced.

A key step in the proof is to establish an explicit estimate on the number of

positive-integer lattice points under the graph of a convex decreasing function, in

Proposition 6.1. This estimate relies on a corresponding estimate for concave

functions in the work of Laugesen and Liu [22] and Liu’s thesis [23], who handled

the case 1 < p < l and generalizations by building on work of Krätzel [20]. (One

cannot directly use Huxley’s work [17], due to curvature singularities at the inter-

cept points.) Our proof starts by observing that the convex and concave prob-

lems are complementary, as one sees by enclosing the convex curve in a suitable

rectangle and regarding the lattice points above the curve as being lattice points

beneath the ‘‘upside down’’ concave curve.

2. Eigenvalues of the Laplacian, and open problems

In this expository section we connect lattice point counting results to shape

optimization problems on eigenvalues of the Laplacian. Open problems for eigen-

values arise naturally in this context.

Eigenvalues of the Laplacian. The asymptotic counting function maximization

problem was initiated by Antunes and Freitas [2], who solved the problem for

positive-integer lattice points inside standard ellipses. That is, they established

the case p ¼ 2 of the previous section. Their result was formulated in terms of

shape optimization for Laplace eigenvalues, as we proceed to explain.

For a bounded domain W � Rd , the eigenvalue problem for the Laplacian with

Dirichlet boundary conditions is:

�Du ¼ lu in W;

u ¼ 0 on qW;

�

where the eigenvalues form an increasing sequence

0 < l1ðWÞa l2ðWÞa l3ðWÞa � � � :

The relationship between the domain and its eigenvalues is complicated. A classi-

cal problem is to determine the domain having given volume that minimizes

the n-th eigenvalue. A ball minimizes the first eigenvalue, by the Faber–Krahn

inequality, and the union of two disjoint balls having the same radius minimizes

the second eigenvalue, by the Krahn–Szego inequality. Higher eigenvalues are

known to have quasi-open minimizing sets [8], [10], but the minimizing sets are

not known explicitly, and it is not known whether open minimizing sets exist. In

two dimensions, a disk is conjectured to minimize the third eigenvalue (while
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the disk definitely does not minimize the fifth or higher eigenvalues [7]). More

generally it is an open problem to determine whether a ball in d dimensions

minimizes the ðd þ 1Þ-st eigenvalue [15], p. 82. Minimizing domains have been

studied numerically by Oudet [23], Antunes and Freitas [1], and Antunes and

Oudet [4], [16], Chapter 11.

A challenging open problem is to determine the asymptotic behavior as n ! l
of the domain (or domains) minimizing the n-th eigenvalue. To gain insight, let us

write MðlÞ for the number of eigenvalues less than or equal to the parameter l,

and recall that the Weyl conjecture claims

MðlÞ ¼ odð2pÞ�d jWjld=2 � ð1=4Þod�1ð2pÞ1�d jqWjlðd�1Þ=2 þ oðlðd�1Þ=2Þ

where od is the volume of the unit ball in Rd . This asymptotic formula for the

counting function was verified by Ivrii [19] under a generic assumption for piece-

wise smooth domains, namely that the periodic billiards have measure zero.

The appearance of the perimeter in the second term of the Weyl formula might

suggest that the domain minimizing the n-th eigenvalue (or maximizing the count-

ing function MðlÞ), under our assumption of fixed volume, should converge to a

ball because the ball has minimal perimeter by the isoperimetric theorem. If so,

then the famous Pólya conjecture MðlÞaodð2pÞ�d jWjld=2 would follows from

work of Colbois and El Soufi [11], Corollary 2.2 on subadditivity of the sequence

of minimal eigenvalues.

The isoperimetric heuristic does not amount to a proof, though, since the order

of operations is wrong: our task is not to fix a domain and then let n ! l
(l ! l), but rather to minimize the eigenvalue over all domains for n fixed

(maximize the counting function for l fixed) and only then let n ! l (l ! l).

It is an open problem to determine whether the eigenvalue-minimizing domain

converges to a ball as n ! l. The problem is easier if the perimeter is fixed:

Bucur and Freitas [9] showed that eigenvalue minimizing domains do indeed

converge to a disk, in dimension 2, and see also the numerics by Antunes and

Freitas [3].

Antunes and Freitas [2] solved the problem in the class of rectangles under area

normalization, as follows. Let RðsÞ be the rectangle ð0; p=sÞ � ð0; spÞ, whose area
equals p2 for all s. For each n, choose a number sn > 0 such that RðsnÞ minimizes

the n-th Dirichlet eigenvalue of the Laplacian. That is, choose sn such that

ln
�
RðsnÞ

�
¼ min

s>0
ln
�
RðsÞ

�
:

Antunes and Freitas showed sn ! 1 as n ! l, meaning that the rectangles RðsnÞ
converge to a square. The analogous result for three-dimensional rectangular

boxes was later established by van den Berg and Gittins [6], and in four dimen-
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sions and higher by Gittins and Larson [13], with generalization by Marshall [24].

Once again, the problem is easier if the surface area is fixed, and in that case

Antunes and Freitas [3] showed that rectangular boxes which minimize the n-th

Dirichlet eigenvalue of the Laplacian must converge to a cube, in any dimension.

The eigenvalues of the Laplacian on a rectangle are closely connected to lattice

point counting: the eigenfunction u ¼ sinð jsxÞ sinðky=sÞ on the rectangle RðsÞ has
eigenvalue l ¼ ð jsÞ2 þ ðk=sÞ2, for j; k > 0, and this eigenvalue is less than or

equal to some number r2 if and only if the lattice point ð j; kÞ lies inside the ellipse
with semi-axes s�1 and s and radius r. Thus the result of Antunes and Freitas on

asymptotically minimizing the n-th eigenvalue among rectangles of given area is

essentially equivalent to asymptotically maximizing the number of first-quadrant

lattice points enclosed by ellipses of given area – which is how their proof

proceeds.

A conjecture on product domains. The results for rectangular boxes in higher

dimensions suggest one might consider product domains, as follows. Fix a

bounded domain W � Rd , and for s > 0 define a product domain

PðsÞ ¼ ðs�1=dWÞ � ðs1=dWÞ � R2d :

For each n, choose sn to minimize the n-th Dirichlet eigenvalue of the Laplacian

on the product domain. It is natural to ask whether sn ! 1 as n ! l, and our

results suggest this might be the case.

Observe that the eigenvalues of PðsÞ are given by s2=dljðWÞ þ s�2=dlkðWÞ for

j; k > 0. Without loss of generality, assume W has volume ð2pÞd=od . Then the

first-order Weyl approximation is lnðWÞP n2=d . Using this approximation, we

may approximate the eigenvalues of PðsÞ by s2=d j2=d þ s�2=dk2=d . That is, for

r > 0 the number of ‘‘approximate eigenvalues’’ less than r2=d is given by the

number of positive-integer lattice points inside the p-ellipse (1), with p ¼ 2=d.

If db 3 then p ¼ 2=d < 1, and so our Example 4.3 applies to the approximate

eigenvalues. Thus if sn were chosen to minimize the n-th ‘‘approximate eigen-

value’’ of PðsÞ, then sn would converge to 1 as n ! l. This observation suggests

the same might hold true for the sn-value minimizing the actual n-th eigenvalue

of the product domain. The evidence is hardly conclusive, of course, since the

approximate eigenvalue uses only the leading order term in the Weyl asymptotic.

The preceding argument does not apply in 4 dimensions: taking d ¼ 2 gives the

borderline case p ¼ 2=d ¼ 1, and for p ¼ 1 the lattice point maximizing value sn
does not seem to approach 1 as n ! l [22], Section 9. Thus one might expect the

conjecture on product domains to be hardest to prove in 4 dimensions.

More general domains. Among more general convex domains with just a little

regularity, Larson [21] has shown the ball asymptotically maximizes the Riesz
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means of the Laplace eigenvalues, for Riesz exponentsb 3=2 in all dimensions. If

the exponent could be lowered to 0 in this result, then the ball would asymptoti-

cally maximize the counting function of individual eigenvalues. Larson’s work

also proves that the cube is asymptotically optimal among rectangular boxes, for

the Riesz means, with analogous results for polytopes.

Freitas [12] has considered minimization of the sum of the first n eigenvalues,

which is equivalent to minimizing Riesz means with g ¼ 1. He determined the

asymptotic behavior of the minimal sum among domains with fixed volume.

Among domains with fixed perimeter, optimal domains converge to a ball.

Thus the current state of knowledge is that asymptotic optimality holds for the

individual eigenvalues if one restricts to rectangular boxes in any dimension, and

holds among more general convex domains and certain polytopes if one restricts

to weaker eigenvalue functionals, namely the Riesz means of exponentb 3=2.

3. Assumptions and definitions

By convention, the first quadrant is the open set fðx; yÞ : x; y > 0g. Take G to be

a convex, strictly decreasing curve in the first quadrant that intercepts the x- and

y-axes at x ¼ L and y ¼ L, as illustrated in Figure 2. Write AreaðGÞ for the area
enclosed by the curve G and the x- and y-axes.

Represent the curve as the graph of y ¼ f ðxÞ, so that f is a convex strictly

decreasing function for x a ½0;L�, and

L ¼ f ð0Þ > f ðxÞ > f ðLÞ ¼ 0 whenever x a ð0;LÞ:

Denote the inverse function of f ðxÞ by gðyÞ for y a ½0;L�. Clearly g is also convex

and strictly decreasing.

Figure 2. A convex decreasing curve G in the first quadrant, with intercepts at L. The
point ða; bÞ arises in Theorem 4.1.
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Compress the curve by a factor of s > 0 in the horizontal direction and stretch

it by the same factor in the vertical direction to obtain the curve

GðsÞ ¼ graph of sf ðsxÞ:

The area under GðsÞ equals the area under G. Then scale the curve by parameter

r > 0 to obtain:

rGðsÞ ¼ image of GðsÞ under the radial scaling ðx; yÞ 7! ðrx; ryÞ
¼ graph of rsf ðsx=rÞ:

Define the counting function for rGðsÞ by

Nðr; sÞ ¼ number of positive-integer lattice points lying inside or on rGðsÞ
¼afð j; kÞ a N�N : ka rsf ð js=rÞg:

For each r > 0, we consider the set

SðrÞ ¼ argmax
s>0

Nðr; sÞ

consisting of the s-values that maximize the number of first-quadrant lattice points

enclosed by the curve rGðsÞ. The set SðrÞ is well-defined because for each fixed r,

the counting function Nðr; sÞ equals zero whenever s is su‰ciently large or su‰-

ciently close to 0.

4. Results

The hypotheses in the next theorem are somewhat complicated. The corollary that

follows is simpler. Recall g is the inverse function of f , as illustrated in Figure 2.

Theorem 4.1 (Optimal convex curve is asymptotically balanced). Assume

ða; bÞ a G is a point in the first quadrant with a; b < L=2, such that f a C2½a;LÞ
with f 0 < 0 and f 00 > 0 on ½a;LÞ, and similarly g a C2½b;LÞ with g 0 < 0 and

g 00 > 0 on ½b;LÞ. Further suppose the interval ða;LÞ can be partitioned into finitely

many subintervals on which f 00 is monotonic, and similarly that ðb;LÞ can be

partitioned into subintervals on which g 00 is monotonic. Moreover, assume con-

stants a1; a2; b1; b2 > 0 and positive valued functions dðrÞ and �ðrÞ exist such that

as r ! l,

dðrÞ ¼ Oðr�2a1Þ; 1

f 00
�
L� dðrÞ

� ¼ Oðr1�4a2Þ;

�ðrÞ ¼ Oðr�2b1Þ; 1

g 00
�
L� �ðrÞ

� ¼ Oðr1�4b2Þ:
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Then the optimal stretch factor for maximizing Nðr; sÞ approaches 1 as r tends to

infinity, with

SðrÞ � ½1�Oðr�eÞ; 1þOðr�eÞ�

where the exponent is e ¼ min
�
1
6 ; a1; a2; b1; b2

�
. Further, the maximal lattice count

has asymptotic formula

max
s>0

Nðr; sÞ ¼ r2 AreaðGÞ � rLþOðr1�2eÞ:

The theorem is proved in Section 8. The C2-smoothness hypothesis could be

weakened to piecewise smoothness, as was done for concave curves in [22].

The theorem simplifies considerably when the second derivatives are positive

and monotonic all the way up to the endpoints:

Corollary 4.2. Assume ða; bÞ a G is a point in the first quadrant with a; b < L=2,

such that f a C2½a;L� with f 0 < 0, f 00 > 0 and f 00 monotonic, and g a C2½b;L�
with g 0 < 0, g 00 > 0 and g 00 monotonic.

Then the optimal stretch factor for maximizing Nðr; sÞ approaches 1 as r tends to

infinity, with

SðrÞ � ½1�Oðr�1=6Þ; 1þOðr�1=6Þ�;

and the maximal lattice count satisfies maxs>0 Nðr; sÞ ¼ r2 AreaðGÞ � rLþOðr2=3Þ.

The corollary follows by taking a1 ¼ b1 ¼ 1=2, a2 ¼ b2 ¼ 1=4, e ¼ 1=6 in the

theorem and noting that f 00ðLÞ > 0 and g 00ðLÞ > 0 by assumption.

The convergence exponent �1=6 in the Corollary can be improved slightly

with the help of Huxley’s lattice point counting methods; see the comments

after [22], Proposition 7. The best possible convergence exponent is presumably

�1=4þ e, if one believes Hardy’s conjecture for the Gauss circle problem.

Example 4.3 (Optimal p-ellipses for lattice point counting). Fix 0 < p < 1, and

consider the p-circle

G : jxjp þ jyjp ¼ 1;

which has intercepts at L ¼ 1. That is, the p-circle is the unit circle for the

lp-metric on the plane. Then the p-ellipse

rGðsÞ : jsxjp þ js�1yjpa rp
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has first-quadrant counting function

Nðr; sÞ ¼afð j; kÞ a N�N : ð jsÞp þ ðks�1Þpa rpg:

We will show that the p-ellipse containing the maximum number of positive-

integer lattice points must approach a p-circle in the limit as r ! l, with

SðrÞ � ½1�Oðr�eÞ; 1þOðr�eÞ�

where e ¼ min
�
1
6 ;

p

2

�
.

To verify that the p-circle satisfies the hypotheses of Theorem 4.1, we let a ¼
b ¼ 2�1=p, so that a < 1=2 ¼ L=2 and b < 1=2 ¼ L=2. Then for 0 < x < 1 we

have

f ðxÞ ¼ ð1� xpÞ1=p;

f 0ðxÞ ¼ �xp�1ð1� xpÞ�1þ1=p < 0;

f 00ðxÞ ¼ ð1� pÞxp�2ð1� xpÞ�2þ1=p > 0;

f 000ðxÞ ¼ ð1� pÞxp�3ð1� xpÞ�3þ1=p�ð1þ pÞxp þ p� 2
�
:

If 0 < pa 1=2 then f 000 < 0 on the interval ð0; 1Þ, and so f 00 is monotonic. If

1=2 < p < 1 then f 000 vanishes at exactly one point in the interval ða; 1Þ, namely

at a1 ¼ ½ð2� pÞ=ð1þ pÞ�1=p, and so f 00 is monotonic on the subintervals ða; a1Þ
and ða1; 1Þ. Further, we choose a1 ¼ a2 ¼ p=2 and let dðrÞ ¼ r�2a1 ¼ r�p for all

large r, and verify directly that

1

f 00
�
1� dðrÞ

� ¼ Oðr1�2pÞ ¼ Oðr1�4a2Þ:

The calculations are the same for g, and so the desired conclusion for p-ellipses

with 0 < p < 1 now follows from Theorem 4.1.

The case 1 < p < l was treated earlier by Laugesen and Liu [22], Example 5.

They raised the case p ¼ 1 as an interesting open problem [22], Section 9. Stated

informally, one asks: what happens as r ! l to the shape of the right triangle

that contains the most lattice points?*

Lattice points in the closed first quadrant. We consider also a similar problem

concerning the number Nðr; sÞ of lattice points in the closed first quadrant en-

closed by the curve rGðsÞ. For r > 0, define SðrÞ to be the set of minimum points

of the function s 7! Nðr; sÞ. (The maximization problem has no solution, since

one can enclose arbitrarily many points on the vertical axis by letting s ! l, or

on the horizontal axis by letting s ! 0.)

*Added in proof: this problem for p ¼ 1 has been solved by Marshall and Steinerberger [25].
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Under the same assumptions as Theorem 4.1, we will show this minimizing

set SðrÞ converges to f1g as r goes to infinity. To state this result precisely, let

Zþ ¼ f0; 1; 2; 3; . . .g and define the counting function

Nðr; sÞ ¼ number of nonnegative-integer lattice points lying inside or on rGðsÞ
¼afð j; kÞ a Zþ � Zþ : ka rsf ð js=rÞg:

For each r > 0, define the set

SðrÞ ¼ argmin
s>0

Nðr; sÞ

consisting of the s-values that minimize the number of closed first-quadrant lattice

points enclosed by the curve rGðsÞ.
Calligraphic letters N and S are used for the closed first quadrant problem,

whereas the ordinary letters N and S were used earlier in relation to the open first

quadrant.

Theorem 4.4 (Optimal convex curve is asymptotically balanced). Assume the

hypotheses of Theorem 4.1. Then the optimal stretch factor for minimizing Nðr; sÞ
approaches 1 as r tends to infinity, with

SðrÞ � ½1�Oðr�eÞ; 1þOðr�eÞ�:

Further, the minimal lattice count has asymptotic formula

min
s>0

Nðr; sÞ ¼ r2 AreaðGÞ þ rLþOðr1�2eÞ:

The theorem holds in particular when the second derivatives of f and g are

positive and monotonic all the way up to the endpoints, thus yielding a corollary

analogous to Corollary 4.2. Also, Theorem 4.4 applies in particular when the

curve G is a p-ellipse with 0 < p < 1, since we verified the hypotheses already in

Example 4.3.

Concave curves, such as p-ellipses with 1 < p < l, were handled earlier by

Laugesen and Liu [22]. The standard ellipse case (p ¼ 2) was done first by van

den Berg, Bucur, and Gittins [5], who used it to show that the rectangle of given

area maximizing the n-th eigenvalue of the Neumann Laplacian will converge to

a square as n ! l. Ellipsoids in all dimensions (p ¼ 2, db 2) were treated by

Gittins and Larson [13], with generalization to arbitrary convex domains by

Marshall [24].

5. Two-term upper bound on counting function

In order to control the stretch factor when proving our main results later in the

paper, we now develop a two-term upper bound on the lattice point counting
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function. The leading order term of the bound is simply the area inside the curve,

and thus is best possible, while the second term scales like the length of the curve

and so has the correct order of magnitude.

The curve G in the next proposition is the graph of y ¼ f ðxÞ, where f is con-

vex and strictly decreasing on ½0;L�, with f ðLÞ ¼ 0, f ð0Þ ¼ M. We do not assume

the horizontal intercept L and vertical intercept M are equal. We also do not need

di¤erentiability of f in the next result.

Proposition 5.1 (Two-term upper bound on counting function). The number

Nðr; sÞ of positive-integer lattice points lying inside rGðsÞ in the first quadrant

satisfies

Nðr; sÞa r2 AreaðGÞ � 1

2
f

L

2

� �
rs

whenever rb 2s=L.

Proof. It is enough to prove the case r ¼ s ¼ 1 for Lb 2, because then the general

case of the proposition follows by applying the special case to the curve rGðsÞ
(which has horizontal intercept rs�1L and defining function y ¼ rsf ðsx=rÞ).

Clearly Nð1; 1Þ equals the total area of the squares of sidelength 1 having

upper right vertices at positive integer lattice points inside the curve G. The union

of these squares is contained in G, since the curve is decreasing.

Consider the right triangles of width 1 formed by left-tangent lines on G, as

shown in Figure 3. The triangles have vertices
�
i � 1; f ðiÞ

�
;
�
i; f ðiÞ

�
;
�
i � 1; f ðiÞ�

f 0ði�Þ
�
, for i ¼ 1; . . . ; bLc. Clearly the triangles lie under the curve by concavity,

and lie outside the union of squares.

Figure 3. Positive integer lattice count Nð1; 1ÞaAreaðGÞ �AreaðtrianglesÞ, in proof of
Proposition 5.1.
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Hence

Nð1; 1ÞaAreaðGÞ �AreaðtrianglesÞ:

To complete the proof, we estimate as follows:

AreaðtrianglesÞ ¼ 1

2

XbLc
i¼1

j f 0ði�Þj

b

� 1
2

XbLc�1

i¼1

�
f ðiÞ � f ði þ 1Þ

�	
þ 1

2

�
f ðbLcÞ � f ðLÞ

�
by convexity

¼ 1

2

�
f ð1Þ � f ðLÞ

�
b

1

2
f ðL=2Þ

since L=2b 1 and f ðLÞ ¼ 0. r

6. Two-term counting asymptotics with explicit remainder

What matters in the following proposition is that the terms on the right side of

the estimate in part (b) can be shown later to have order less than OðrÞ, and thus

can be treated as remainder terms. Also, it matters that the s-dependence in the

estimate can be seen explicitly.

In the proposition, the curve G is the graph of y ¼ f ðxÞ where f is strictly

decreasing on ½0;L�, with f ðLÞ ¼ 0, f ð0Þ ¼ M, and g is the inverse function of

f . The horizontal intercept L and vertical intercept M need not be equal, in this

result.

Proposition 6.1 (Two-term counting estimate). Assume ða; bÞ a G is a point in the

first quadrant such that f a C2½a;LÞ with f 0 < 0 and f 00 > 0 on ½a;LÞ, and similarly

g a C2½b;MÞ with g 0 < 0 and g 00 > 0 on ½b;MÞ. Further suppose there is a par-

tition a ¼ a0 < a1 < � � � < am ¼ L such that f 00 is monotonic over each subinterval

ðai; aiþ1Þ, and a partition b ¼ b0 < b1 < � � � < bn ¼ M such that g 00 is monotonic

over each subinterval ðbi; biþ1Þ.
(a) Assume the curve G does not pass through any integer lattice points. Suppose

a < bLc and b < bMc, and let 0 < d < bLc � a and 0 < � < bMc � b. Then

the number N of positive-integer lattice points inside G in the first quadrant

satisfies:
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jN �AreaðGÞ þ ðLþMÞ=2j

a 6
� ðL

a

f 00ðxÞ1=3 dxþ
ðM
b

g 00ðyÞ1=3 dy
	

þ 175
1

f 00ðL� dÞ1=2
þ 1

g 00ðM � �Þ1=2

 !

þ 525
�Xm�1

i¼0

1

f 00ðaiÞ1=2
þ
Xn�1

i¼0

1

g 00ðbiÞ
1=2

	

þ 1

4

�Xm�1

i¼0

j f 0ðaiÞj þ
Xn�1

i¼0

jg 0ðbiÞj
	

þ 1

2
ðdþ �Þ þ ðmþ nÞ þ 5þ L

M
þM

L
:

(b) Suppose a < L=2 and b < M=2, and let d : ð0;lÞ ! ð0;L=2� aÞ and

� : ð0;lÞ ! ð0;M=2� bÞ be functions. The number Nðr; sÞ of positive-

integer lattice points lying inside rGðsÞ in the first quadrant satisfies ( for all

r; s > 0 such that rs�1Lb 1 and rsMb 1):

jNðr; sÞ � r2 AreaðGÞ þ rðs�1Lþ sMÞ=2j

a 6r2=3
� ðL

a

f 00ðxÞ1=3 dxþ
ðM
b

g 00ðyÞ1=3 dy
	

þ 175r1=2
s�3=2

f 00
�
L� dðrÞ

�1=2 þ s3=2

g 00
�
M � �ðrÞ

�1=2
 !

þ 525r1=2
�Xm�1

i¼0

s�3=2

f 00ðaiÞ1=2
þ
Xn�1

i¼0

s3=2

g 00ðbiÞ
1=2

	

þ 1

4

�Xm�1

i¼0

s2j f 0ðaiÞj þ
Xn�1

i¼0

s�2jg 0ðbiÞj
	

þ 1

2
r
�
s�1dðrÞ þ s�ðrÞ

�
þ ðmþ nÞ þ 5þ s�2 L

M
þ s2

M

L
:

Notice the integral of ð f 00Þ1=3 in the Proposition is finite, because it is bounded

by a constant times

� ðL
a

f 00ðxÞ dx
	1=3

¼
�
f 0ðL�Þ � f 0ðaÞ

�1=3
a
�
�f 0ðaÞ

�1=3
< l:

The integral of ðg 00Þ1=3 is similarly finite.
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Proof. Part (a). In what follows, remember L and M are not integers since G is

assumed not to pass through any integer lattice points.

The idea is to count lattice points in the ‘‘complementary region’’ lying above

the convex curve G and inside the rectangle ½0; bLc� � ½0; bMc�, because then one

may invoke known estimates for a region with concave boundary, e.g. [22],

Proposition 12. The complementary region is shown in Figure 4. Its width and

height are

~LL ¼ bLc � gðbMcÞ; ~MM ¼ bMc � f ðbLcÞ;

and we define strictly decreasing functions F : ½0; ~LL� ! ½0; ~MM� and G : ½0; ~MM� !
½0; ~LL� by

F ðxÞ ¼ bMc � f ðbLc � xÞ; GðyÞ ¼ bLc � gðbMc � yÞ:

Notice F and G are inverses, with y ¼ FðxÞ if and only if x ¼ GðyÞ.
Write ~GG for the graph of F (or G), so that ~GG decreases from its y-intercept at

ð0; ~MMÞ to its x-intercept at ð~LL; 0Þ. Define ~aa ¼ bLc � a and ~bb ¼ bMc � b. Then
~aa > 0 because we assumed a < bLc. Applying f to both sides of this inequality

gives b > f ðbLcÞ ¼ bMc � ~MM, and so ~bb < ~MM. Similarly, we find ~bb > 0 and
~aa < ~LL. Also, 0 < d < ~aa and 0 < � < ~bb by the hypotheses in Part (a).

Note ð~aa; ~bbÞ a ~GG with F ð~aaÞ ¼ ~bb. Clearly F a C2½0; ~aa� with F 0 < 0 and F 00 < 0

on ½0; ~aa�, and similarly G a C2½0; ~bb� with G 0 < 0 and G 00 < 0 on ½0; ~bb�. Further,

there is a partition 0 ¼ ~aa0 < ~aa1 < � � � < ~aal ¼ ~aa such that F 00 is monotonic on

each subinterval ð~aai; ~aaiþ1Þ. This partition may be chosen so that lam and ~aai ¼
bLc � al�i for i ¼ 1; 2; . . . ; l. Likewise, there is a partition 0 ¼ ~bb0 <

~bb1 < � � � <
~bbl ¼ ~bb such that G 00 is monotonic on each subinterval ð ~bbi; ~bbiþ1Þ. This partition

may be chosen so that la n and ~bbi ¼ bMc � bl�i for i ¼ 1; 2; . . . ; l.

Figure 4. The convex decreasing curve G, and its complementary curve ~GG, which is concave
decreasing with respect to an origin at the point ðbLc; bMcÞ.
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Let ~NN be the number of positive-integer lattice points bounded by ~GG. Then by

[22], Proposition 12(a) applied to the concave decreasing curve ~GG, we have

j ~NN �Areað~GGÞ þ ð~LLþ ~MMÞ=2j

a 6
� ð~aa

0

jF 00ðxÞj1=3 dxþ
ð ~bb

0

jG 00ðyÞj1=3 dy
	
þ 175

1

jF 00ðdÞj1=2
þ 1

jG 00ð�Þj1=2

 !

þ 350
�Xl

i¼1

1

jF 00ð~aaiÞj1=2
þ
Xl
i¼1

1

jG 00ð ~bbiÞj
1=2

	
þ 1

4

�Xl

i¼1

jF 0ð~aaiÞj þ
Xl
i¼1

jG 0ð ~bbiÞj
	

þ ðdþ �Þ=2þ ðl þ lÞ þ 1:

Counting positive-integer lattice points in the rectangle ½0; bLc� � ½0; bMc�
gives

bLc bMc ¼ N þ ~NN þ b~LLc þ b ~MMc � 1:

(Both N and ~NN include in their count any positive-integer lattice points lying

on the curve G. Such double-counting is avoided, though, because the curve is

assumed to contain no such lattice points.) The area of the rectangle can be

decomposed as

bLc bMc ¼ AreaðGÞ þAreað~GGÞ �AreaðULÞ �AreaðUMÞ

where UL is the region bounded by the curve G, the x-axis, and the line x ¼ bLc,
and UM is the region bounded by G, the y-axis and the line y ¼ bMc. After

equating the last two displayed equations, we conclude

jN �AreaðGÞ þ ðLþMÞ=2þ ~NN �Areað~GGÞ þ ð~LLþ ~MMÞ=2j

a
LþM

2
þ

~LLþ ~MM

2
� b~LLc � b ~MMc










þ 1þAreaðULÞ þAreaðUMÞ

a
bLc � ~LL

2
þ bMc � ~MM

2










þ 4þAreaðULÞ þAreaðUMÞ:

By convexity, UL is contained in a right triangle of width L� bLca 1 and

height f ðbLcÞaM=L. Similarly, UM is contained in a right triangle of height

M � bMca 1 and width gðbMcÞaL=M. Hence,

AreaðULÞ þAreaðUMÞa 1

2

L

M
þM

L

� �
:
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Also bLc � ~LL ¼ gðbMcÞaL=M and bMc � ~MM ¼ f ðbLcÞaM=L. Combining

these results, we conclude

jN �AreaðGÞ þ ðLþMÞ=2ja j ~NN �Areað~GGÞ þ ð~LLþ ~MMÞ=2j þ 4þ L

M
þM

L
:

To complete the proof from the above estimates, note that

ð~aa
0

jF 00ðxÞj1=3 dxþ
ð ~bb

0

jG 00ðyÞj1=3 dya
ðL
a

f 00ðxÞ1=3 dxþ
ðM
b

g 00ðyÞ1=3 dy

Xl

i¼1

1

jF 00ð~aaiÞj1=2
þ
Xl
i¼1

1

jG 00ð~bbiÞj
1=2

a
Xm�1

i¼0

1

f 00ðaiÞ1=2
þ
Xn�1

i¼0

1

g 00ðbiÞ
1=2

Xl

i¼1

jF 0ð~aaiÞj þ
Xl
i¼1

jG 0ð~bbiÞja
Xm�1

i¼0

j f 0ðaiÞj þ
Xn�1

i¼0

jg 0ðbiÞj

and

1

jF 00ðdÞj1=2
þ 1

jG 00ð�Þj1=2

a
1

f 00ðL� dÞ1=2
þ 1

g 00ðM � �Þ1=2
þ
Xm�1

i¼0

1

f 00ðaiÞ1=2
þ
Xn�1

i¼0

1

g 00ðbiÞ
1=2

;

where the final inequality relies on the monotonicity assumptions on f and g.

Part (b). Apply Part (a) to the curve rGðsÞ by replacing L;M; f ðxÞ; gðyÞ; a; b; d
and � with rs�1L; rsM; rsf ðsx=rÞ; rs�1gðs�1y=rÞ; rs�1a; rsb; rs�1dðrÞ and rs�ðrÞ re-

spectively; we check the needed hypotheses for Part (a) as follows. The hypothesis

‘‘a < bLc’’ is satisfied because

rs�1a < rs�1L=2a brs�1Lc;

where we used the assumption a < L=2 and the fact that t=2 < btc when tb 1.

Similarly, the hypothesis ‘‘dþ a < bLc’’ in Part (a) is satisfied because

rs�1dðrÞ þ rs�1a < rs�1L=2a brs�1Lc:

Hence from Part (a) we obtain the conclusion of Part (b) provided the curve rGðsÞ
does not pass through any integer lattice points.

Now drop the restriction on rGðsÞ not passing through lattice points. Notice

the counting function Nðr; sÞ is increasing in the r-variable, since the curve GðsÞ
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is decreasing. Fix the r and s values, and modify the functions dð�Þ and �ð�Þ to

be continuous at r. For all su‰ciently small h > 0 we have Nðrþ h; sÞ ¼ Nðr; sÞ,
because the r-variable would have to be increased by some positive amount in

order for the curve rGðsÞ to meet any new lattice points. Since no lattice points lie

on the curve ðrþ hÞGðsÞ, the conclusion of Part (b) applies to that curve. Hence

by continuity as h ! 0, the conclusion of Part (b) holds also for rGðsÞ. r

7. Elementary bounds on the optimal stretch factors

We develop some r-dependent bounds on the optimal stretch factors. Later, in the

proof of Theorem 4.1, we will show the stretch factors in fact converge to 1.

Lemma 7.1 (r-dependent bound on optimal stretch factors). If

r2b
1

max
G

xy

then

SðrÞ � ½ðrMÞ�1; rL�:

In this lemma the horizontal intercept L and vertical intercept M of the curve are

allowed to di¤er in value.

Proof. Fix r, then let ðx0; y0Þ a G be a point maximizing the product xy, and

choose s0 ¼ rx0. Then the curve rGðs0Þ passes through the point

�
1; rs0 f ðs0=rÞ

�
¼ ð1; r2x0y0Þ:

By assumption r2b 1=x0y0, and so the curve rGðs0Þ encloses the point ð1; 1Þ.
Hence the maximum of the counting function s 7! Nðr; sÞ is greater than zero.

We will use that fact to constrain the s-values where the maximum can be

attained.

The curve rGðsÞ has x-intercept at rs�1L, which is less than 1 if s > rL and so

in that case the curve encloses no positive-integer lattice points. Similarly if

s < ðrMÞ�1, then rGðsÞ has height less than 1 and contains no lattice points in

the first quadrant. The integer-valued function s 7! Nðr; sÞ is clearly bounded,

and we saw in the first part of the proof that it is positive for some choice of

s0. Thus Nðr; sÞ attains its positive maximum at some s-value between ðrMÞ�1

and rL. r
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Lemma 7.2 (Improved r-dependent bound on optimal stretch factors). A constant

C exists, depending only on the curve G, such that if rbC then

SðrÞ � 2ðrMÞ�1;
1

2
rL

� �
:

Proof. Let C ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8=Lm1

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=Mm2

p
Þ where

m1 ¼ minf f ðx=2Þ � f ðxÞ : L=2axaLg;
m2 ¼ minfgðy=2Þ � gðyÞ : M=2a yaMg:

Choosing x ¼ L implies

ðL=2Þm1a ðL=2Þ f ðL=2Þa max
G

xy;

and so C2b 4=maxG xy.

Fix rbC. Then SðrÞ � ½ðrMÞ�1; rL� by Lemma 7.1. To show SðrÞ is con-

tained in a smaller interval, we will show s B SðrÞ when s a
�
1
2 rL; rL

�
. So suppose

in what follows that

L

2
<

s

r
aL:

We will prove Nðr; sÞ < Nðr; s=2Þ, which implies s is not a maximizer for the

counting function and so s B SðrÞ.
By counting lattice points ð j; kÞ with j ¼ 1 and j ¼ 2, we find

Nðr; s=2Þb bðrs=2Þ f ðs=2rÞc þ bðrs=2Þ f ð2s=2rÞc
> ðrs=2Þ f ðs=2rÞ þ ðrs=2Þ f ðs=rÞ � 2

b ðrs=2Þm1 þ rsf ðs=rÞ � 2 by taking x ¼ s=r in the definition of m1

> rsf ðs=rÞb brsf ðs=rÞc

since

ðrs=2Þm1 >
1

4
r2Lm1b

1

4
C2Lm1b 2:

Also, counting lattice points ð j; kÞ with j ¼ 1 shows that brsf ðs=rÞc ¼ Nðr; sÞ
(lattice points with jb 2 cannot lie beneath the curve rGðsÞ because 2s=r > L).

We conclude Nðr; s=2Þ > Nðr; sÞ, as we wished to show.
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An analogous argument proves that s B SðrÞ when s a ½ðrMÞ�1; 2ðrMÞ�1Þ, that
is, when s�1 a

�
1
2 rM; rM

�
. r

8. Proof of Theorem 4.1

We apply the three step method of Laugesen and Liu [22], which in turn was

inspired by the method of Antunes and Freitas [2] for the case where G is a quarter

circle. Remember the intercepts of G are equal in this section (L ¼ M).

First we estimate the remainder terms in Proposition 6.1(b), which by the

hypotheses of Theorem 4.1 satisfy

jNðr; sÞ � r2 AreaðGÞ þ rðs�1Lþ sLÞ=2j

aOðr2=3Þ þ s�3=2Oðr1�2a2Þ þ s3=2Oðr1�2b2Þ þ ðs�3=2 þ s3=2ÞOðr1=2Þ

þ ðs2 þ s�2ÞOð1Þ þ s�1Oðr1�2a1Þ þ sOðr1�2b1Þ þOð1Þ ð2Þ

whenever rbmaxðs=L; s�1=LÞ. Here the implied constants depend only on the

curve G and not on s.

Next we show SðrÞ is bounded above and away from 0. Applying (2) with

s ¼ 1 gives that

r2 AreaðGÞ � cr=2aNðr; 1Þ

for all large r, where the constant c > 0 depends only on the curve G. Suppose r is

large enough that this estimate holds, and also that r exceeds the constant C in

Lemma 7.2. Let s a SðrÞ. Then rb 2s=L by Lemma 7.2, and so Proposition 5.1

(which uses convexity of the curve G) applies to give

Nðr; sÞa r2 AreaðGÞ � f ðL=2Þrs=2:

Naturally Nðr; 1ÞaNðr; sÞ, because s a SðrÞ is a maximizing value. Thus com-

bining the preceding inequalities shows that sa c=f ðL=2Þ, and so the set SðrÞ is

bounded above for all large r. Interchanging the roles of the horizontal and verti-

cal axes, we similarly find s�1 is bounded, and hence SðrÞ is bounded away from 0

for all large r.

Lastly we show SðrÞ approaches f1g as r ! l. Let s a SðrÞ, so that by above,

s and s�1 are bounded above for all large r. Then the right side of (2) has the form

Oðr1�2eÞ, with the implied constant being independent of s; recall the exponent e

was defined in Theorem 4.1. Since rb 2maxðs=L; s�1=LÞ by Lemma 7.2, we see

from (2) that

109Lattice points under convex curves



Nðr; sÞa r2 AreaðGÞ � rðs�1Lþ sLÞ=2þOðr1�2eÞ;

Nðr; 1Þb r2 AreaðGÞ � rL�Oðr1�2eÞ;

as r ! l. Using again that Nðr; 1ÞaNðr; sÞ, we deduce

ðs�1 þ sÞ=2a 1þOðr�2eÞ: ð3Þ

Hence s ¼ 1þOðr�eÞ by Lemma 8.1 below, which proves the first claim in the

theorem. For the second claim, when s a SðrÞ we have

Nðr; sÞ ¼ r2 AreaðGÞ � rLþOðr1�2eÞ

by (2), using also that 1a ðsþ s�1Þ=2a 1þOðr�2eÞ by (3).

Lemma 8.1 (An elementary comparison used above).

sþ s�1
a 2þ t ¼) js� 1ja 3

ffiffi
t

p

whenever s > 0 and 0 < t < 1.

Proof. We have ðs1=2 � s�1=2Þ2 ¼ sþ s�1 � 2a t, which implies js1=2 � s�1=2ja
t1=2. The number 1 lies between s1=2 and s�1=2, and so js1=2 � 1ja t1=2, which

means 1� t1=2a s1=2a 1þ t1=2. Now square both sides and use t < t1=2 (since

t < 1). r

9. Proof of Theorem 4.4

First we need a two-term bound on the counting function in the closed first

quadrant. Assume f is convex and strictly decreasing on ½0;L�, with f ð0Þ ¼ M,

f ðLÞ ¼ 0. Then we have the following analogue of Proposition 5.1.

Proposition 9.1 (Two-term lower bound on counting function). The number of

nonnegative-integer lattice points lying inside rGðsÞ in the closed first quadrant

satisfies

Nðr; sÞb r2 AreaðGÞ þ 1

2
Mrs; r; s > 0:

Proof. We need only prove the special case where r ¼ s ¼ 1, because applying

that case to the curve rGðsÞ (which has vertical intercept Mrs) yields the general

case of the proposition.
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Clearly Nð1; 1Þ equals the total area of the squares of sidelength 1 having

lower left vertices at nonnegative integer lattice points inside the curve G. The

union of these squares contains G, since the curve is decreasing.

Consider the right triangles lying above chords of G, as shown in Figure 5.

That is, for i ¼ 1; . . . ; bLc we take the triangle with vertices
�
i � 1; f ði � 1Þ

�
;�

i; f ðiÞ
�
;
�
i; f ði � 1Þ

�
, and the final triangle has vertices at

�
bLc; f ðbLcÞ

�
; ðdLe; 0Þ;�

dLe; f ðbLcÞ
�
.

These triangles all lie above G, by concavity, and lie inside the collection of

squares of sidelength 1. Hence

Nð1; 1ÞbAreaðGÞ þAreaðtrianglesÞ ¼ AreaðGÞ þ 1

2
M: r

Proof of Theorem 4.4. Recall the intercepts of G are equal in this theorem

(L ¼ M). Hence the number of lattice points lying on the axes and inside rGðsÞ
is

bLr=sc þ bLrsc þ 1 ¼ Lr=sþ Lrsþ rðr; sÞ

where the error satisfies jrðr; sÞja 1. Thus Nðr; sÞ and Nðr; sÞ (which, respec-

tively, include and exclude the count of points on the axes) are connected by the

formula

Nðr; sÞ ¼ Nðr; sÞ þ rðs�1Lþ sLÞ þ rðr; sÞ:

Thus by estimate (2) from the proof of Theorem 4.1 we have the asymptotic

estimate

Figure 5. Nonnegative integer lattice count Nð1; 1ÞbAreaðGÞ þAreaðtrianglesÞ, in proof
of Proposition 9.1.

111Lattice points under convex curves



jNðr; sÞ � r2 AreaðGÞ � rðs�1Lþ sLÞ=2j

aOðr2=3Þ þ s�3=2Oðr1�2a2Þ þ s3=2Oðr1�2b2Þ þ ðs�3=2 þ s3=2ÞOðr1=2Þ

þ ðs2 þ s�2ÞOð1Þ þ s�1Oðr1�2a1Þ þ sOðr1�2b1Þ þOð1Þ ð4Þ

whenever rbmaxðs=L; s�1=LÞ.
Next we show that SðrÞ is bounded above and bounded below away from 0.

Applying (4) with s ¼ 1 establishes that

r2 AreaðGÞ þ cr=2bNðr; 1Þ ð5Þ

for all large r, where the constant c > 0 depends only on the curve G. Suppose r is

large enough that this estimate holds. Let s a SðrÞ. Then Proposition 9.1 applies

to give

Nðr; sÞb r2 AreaðGÞ þ Lrs=2:

Since s is a minimizer for the counting function Nðr; �Þ we must have

Nðr; 1ÞbNðr; sÞ, and so the inequalities above imply that sa c=L. In other

words, the set SðrÞ is bounded above for all large r. Swapping the roles of the

horizontal and vertical axes, we find by the same reasoning that s�1 is bounded

above, and hence the set SðrÞ is bounded below away from 0, for all large r.

Finally, we show SðrÞ approaches f1g as r ! l. Let s a SðrÞ, so that s and

s�1 are bounded above by the previous step in the proof, provided r is large. Then

the right side of estimate (4) is bounded by Oðr1�2eÞ, with the implied constant

being independent of s and depending only on the curve G. From two applications

of estimate (4) we deduce

Nðr; sÞb r2 AreaðGÞ þ rðs�1Lþ sLÞ=2�Oðr1�2eÞ;

Nðr; 1Þa r2 AreaðGÞ þ rLþOðr1�2eÞ;

as r ! l. Recalling that Nðr; 1ÞbNðr; sÞ because s is a minimizer, we deduce

ðs�1 þ sÞ=2a 1þOðr�2eÞ

and so s ¼ 1þOðr�eÞ as r ! l, by Lemma 8.1. Also, estimate (4) implies for

s a SðrÞ that

Nðr; sÞ ¼ r2 AreaðGÞ þ rLþOðr�2eÞ;

where we used that ðs�1 þ sÞ=2 ¼ 1þOðr1�2eÞ by above.
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