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Abstract. In [11] the evolution of hypersurfaces in Rnþ1 with normal speed equal to a
power k > 1 of the mean curvature is considered and the level set solution u of the flow is
obtained as the C 0-limit of a sequence u e of smooth functions solving the regularized level
set equations. We prove a rate for this convergence.
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1. Introduction and main result

The mean curvature flow, cf. e.g. [4] and [7], evolves hypersurfaces in the direction

of their normal with normal speed equal to the mean curvature. During the last

thirty years many related extrinsic curvature flows have been analyzed; they di¤er

mainly in the prescribed normal velocity and the ambient space, in which the evo-

lution takes place; to name only a few of them cf. e.g. the inverse mean curvature

flow [8], the Gaussian curvature flow [1] and the inverse mean curvature flow in

a Lorentzian manifold [5]. In the first example [8] the flow is used to prove the

Riemannian Penrose inequality, in the second example [1] the flow models the

changing shape of a tumbling stone subjected to collisions from all directions

with uniform frequency and the third example [5] implies that future ends of

certain cosmological spacetimes can be foliated by the leaves of an inverse mean

curvature flow and as a consequence also by hypersurfaces with constant mean

curvature.

Schulze [10] considers the evolution of hypersurfaces in Rnþ1 in the direction of

their normal, for which the normal speed is given by a power k > 1 of the mean



curvature. In [10], [12] it is shown that this flow shrinks – similar to the mean cur-

vature flow – a convex, embedded and closed initial hypersurface to a point and

becomes spherical in the limit under a certain pinching condition for the principle

curvatures of the initial hypersurface. In a further paper [11] Schulze uses a level

set formulation of this flow to prove certain isoperimetric inequalities. The level

set solution in [11] is obtained as the limit of a family of solutions of regularized

equations.

The level set formulation is powerful since it can handle topological changes

of the flow, i.e. in the case of non-convex initial hypersurfaces with positive mean

curvature the parametric flow [10] might develop a singularity but the level set

flow [11] continues to exist.

In [3] Deckelnick proves a rate of convergence for the approximation of the

level set solution of mean curvature flow (existence of a solution is a classical re-

sult by Evans and Spruck [4]) by using a finite di¤erence scheme; for the approxi-

mation he uses the solution of the regularized level set equation as an intermediate

step and divides the error estimate correspondingly into the approximation error

between the level set solution and the solution of the regularized level set equation

and the error for the finite di¤erence approximation of the regularized level set

equation. Deckelnick’s estimate of the error between the level set solution and

the solution of the regularized level set equation is extended in [9] to certain cases

of type 0 < k < 1; concerning the existence of a solution for the level set equation

in these cases we refer to the references in [9].

The goal of our paper is to prove a rate of convergence for the solutions of the

regularized equations in [11].

We introduce our setting more precisely. Let M be a smooth n-dimensional

compact manifold without boundary, k > 1 and x0 : M ! Rnþ1 a smooth embed-

ding such that x0ðMÞ has positive mean curvature, then there exist a small T > 0

and a smooth mapping

x : ½0;TÞ �M ! Rnþ1 ð1Þ

with

xð0; �Þ ¼ x0

_xxðt; xÞ ¼ �Hkn:
ð2Þ

Here, H and n denote the mean curvature and the outer normal of xðt; �ÞðMÞ at
xðt; xÞ respectively, cf. [11], Section 1. Furthermore, ‘smooth’ stands here and

below for Cl.

We call this a power mean curvature flow (PMCF).

We give a level set formulation of PMCF. Let W � Rnþ1 be open, connected

and bounded having smooth boundary qW with positive mean curvature. We call
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the level sets Gt ¼ fx a W : uðxÞ ¼ tg of the continuous function 0a u a C0ðWÞ a
level set PMCF, if u is a viscosity solution of

div
Du

jDuj

� �
¼ � 1

jDuj1=k

ujqW ¼ 0:

ð3Þ

Note, that in equation (3) the nonlinearity coming from the exponent k > 1 a¤ects

only lower order (spatial) derivatives of the level set function which would be

di¤erent in case of a time-dependent level set formulation as in [3].

If u is smooth in a neighborhood of x a W with non vanishing gradient and

satisfies there (3), then the level set fy a W : uðyÞ ¼ uðxÞg moves locally at x

according to (2).

Using elliptic regularization of level set PMCF we obtain the equation

div
Du effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ jDuej2
q

0
@

1
A¼ �ðe2 þ jDuej2Þ�1=2k in W

ue ¼ 0 on qW;

ð4Þ

which has unique smooth solutions ue for su‰ciently small e > 0; moreover, there

is c0 > 0 such that

kuek
C 1ðWÞ a c0 ð5Þ

and (for a subsequence)

ue ! u a C0;1ðWÞ ð6Þ

in C0ðWÞ. Note, that in view of (5) and the uniform convergence in (6) u is

lipschitz continuous with lipschitz constant c0. We call u a weak solution of (3),

which is unique for na 6.

All the above facts are proved in [11], Section 4.

The limit function u satisfies (3) in the viscosity sense, cf. Lemma 2.4. We

formulate our main result.

Theorem 1.1. For every l > 2k there is a positive constant c ¼ cðl; k;WÞ so that

ku� uek
C 0ðWÞa ce1=l: ð7Þ

From interpolation we immediately obtain the following corollary.
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Corollary 1.2. For every 0 < Y < 1 and l > 2k there is a positive constant

c ¼ cðl; k;Y;WÞ so that

ku� uek
C 0;YðWÞa ceð1=lÞð1�YÞ: ð8Þ

In the case k ¼ 1 which means mean curvature flow we can realize in Theorem

1.1 every power of e which lies in
�
0; 12
�
. This is in accordance with the corre-

sponding rate in Deckelnick’s paper [3], Theorem 1.2 and Mitake’s paper [9],

Theorem 1 for the time dependent level set regularization.

In the remaining part of the paper we prove Theorem 1.1. We remark that we

use the summation convention to sum over repeated indices from 1 to nþ 1 with-

out indicating this explicitly. Partial derivatives of a function u ¼ uðxÞ, x a Rnþ1,

are denoted by Diu, DiDju, Du, etc., and for a function j ¼ jðx; yÞ, x; y a Rnþ1 by

Dxij, DxiDx jj, Dxj, etc. with obvious meanings.

We would like to thank Guy Barles for valuable hints.

2. Proof of Theorem 1.1

We state the definition of a viscosity solution of (3) by adapting the corresponding

definitions in [4], Sections 2.2 and 2.3 and [2], Section 2. From (3) we obtain that

FðuÞ :¼ �jDuj1=k�1 dij �
DiuDju

jDuj2

 !
DiDju ¼ 1: ð9Þ

and from (4) that

FeðueÞ :¼ �ðjDuej2 þ e2Þ1=2k�1=2
dij �

Diu
eDju

e

jDuej2 þ e2

 !
DiDju

e ¼ 1: ð10Þ

The second order ‘semijets’ are defined as follows, cf. [2], Section 2.

Definition 2.1. Let u a C0ðWÞ and x̂x a W, then we define

J
2;þ
W uðx̂xÞ ¼

�
ðp;XÞ a Rnþ1 � Sðnþ 1Þ : uðxÞa uðx̂xÞ þ 3p; x� x̂x4

þ 1

2
3Xðx� x̂xÞ; x� x̂x4þ oðjx� x̂xj2Þ as x ! x̂x

�
ð11Þ

and for x a W

J 2;þ
W uðxÞ ¼ fðp;XÞ a Rnþ1 � Sðnþ 1Þ : there are xk a W; and

ðpk;XkÞ a J
2;þ
W uðxkÞ; so that ðxk; pk;XkÞ ! ðx; p;XÞg; ð12Þ
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where SðlÞ, l a N, denotes the set of symmetric l � l matrices. Furthermore, we

set J 2;�
W uðx̂xÞ ¼ �J 2;þ

W ð�uÞðx̂xÞ and J 2;�
W uðxÞ ¼ �J 2;þ

W ð�uÞðxÞ where we use the

notation

�ðA� BÞ ¼ fð�p;�XÞ : ðp;XÞ a A� Bg ð13Þ

for subsets A � Rnþ1, B � Sðnþ 1Þ.

Now, we can state the definition of a viscosity solution.

Definition 2.2. (i) A continuous function u : W ! R is a viscosity subsolution of

(3), if for all ðh;XÞ a J
2;þ
W ðuÞðxÞ, x a W, there holds

�jhj1=k�1 dij �
hihj

jhj2

 !
Xij a 1; ð14Þ

if hA 0 and

�ðdij � ~hhi~hhjÞXij a 0 ð15Þ

for some ~hh with j~hhja 1, if h ¼ 0.

(ii) A continuous function u : W ! R is a viscosity supersolution of (3), if for

all ðh;XÞ a J
2;�
W ðuÞðxÞ, x a W, there holds

�jhj1=k�1 dij �
hihj

jDhj2

 !
Xij b 1; ð16Þ

if hA 0 and

�ðdij � ~hhi~hhjÞXij b 0 ð17Þ

for some ~hh with j~hhja 1, if h ¼ 0.

(iii) A function u, which is supersolution and subsolution of (3) is a viscosity

solution of (3).

Remark 2.3. A simple inspection shows that we could have replaced J
2;þ
W ðuÞðxÞ

in the preceding definition by J
2;þ
W ðuÞðxÞ and J

2;�
W ðuÞðxÞ by J

2;�
W ðuÞðxÞ.

Lemma 2.4. The function u in (6) is a viscosity solution of (3).

Proof. The claim follows analogously to the argumentation in [4], Section 4.3.

r
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The strategy for the proof of Theorem 1.1 is to apply the maximum prin-

ciple for semicontinuous functions, cf. [2], Theorem 3.2, to a suitable auxiliary

function which leads to an estimate for ue � u, cf. Theorem 2.5. In a further step

the obtained rate will be calculated more explicitly. In order to define the aux-

iliary function we need some constants, which will be specified in the following.

Let

g > 1þ k ð18Þ

and a; s > 0 be small so that

b1ða; sÞ > b2ða; sÞ; ð19Þ

where

b1ða; sÞ :¼
2� sþ a

�
2� 1

k

�
g
�
2� 1

k

�
þ 1

k
� 1

; b2ða; sÞ :¼
aþ ks

g� k � 1
ð20Þ

and choose

0 < r <
a

g
: ð21Þ

Theorem 2.5. There is c ¼ cðk;WÞ > 0 such that

kue � uk
C 0ðWÞa ceminðr; sÞ ð22Þ

for all e > 0.

Our first goal is to prove Theorem 2.5 by adapting the proof of [3], Theorem

1.2. For e > 0 we define we : W�W ! R by

weðx; yÞ :¼ muðxÞ � ueðyÞ � e�a

g
jx� yjg; x; y a W; ð23Þ

where

m ¼ mðeÞ ¼ ð1� esÞk: ð24Þ

We use the abbreviation

jðx; yÞ :¼ e�a

g
jx� yjg: ð25Þ
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Let x̂x; ŷy a W such that

weðx̂x; ŷyÞ ¼ sup
W�W

w�: ð26Þ

Lemma 2.6. There holds x̂x a qW or ŷy a qW.

Proof. We assume x̂x; ŷy a W. From the maximum principle for semicontinuous

function which is introduced in [2], Section 3, cf. especially [2], Theorem 3.2, we

deduce that for every r > 0 there are X ;Y a Sðnþ 1Þ such that�
Dxjðx̂x; ŷyÞ;X

�
a J

2;þ
W ðmuÞðx̂xÞ b

�
Dyjðx̂x; ŷyÞ;Y

�
a J

2;þ
W ð�ueÞð ŷyÞ ð27Þ

and

� 1

r
þ kAk

� �
I a

X 0

0 Y

� �
aAþ rA2; ð28Þ

where A :¼ D2jðx̂x; ŷyÞ. We calculate

Dxjðx̂x; ŷyÞ ¼ e�ajxjg�2
x ¼ �Dyjðx̂x; ŷyÞ; x ¼ x̂x� ŷy; ð29Þ

and

A ¼ B �B

�B B

� �
; B ¼ e�ajxjg�4�ðg� 2Þxn xþ jxj2I

�
: ð30Þ

Using

FðmuÞ ¼ m1=k; Feð�ueÞ ¼ �1; ð31Þ

we conclude from (27) that

� dij �
DxijDx jj

jDxjj2

 !
Xij am1=kjDxjj1�1=k at ðx̂x; ŷyÞ ð32Þ

if Dxjðx̂x; ŷyÞA 0 and

�ðdij � hihjÞXij a 0 ð33Þ

for some h a Rn with jhja 1 if Dxjðx̂x; ŷyÞ ¼ 0; furthermore, there holds

� dij �
DyijDy jj

jDyjj2 þ e2

 !
Yij a�ðjDyjj2 þ e2Þ1=2�1=2k at ðx̂x; ŷyÞ: ð34Þ
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From (28) we get for all z a Rn

z tðX þ YÞz ¼ ðz t; z tÞ X 0

0 Y

� �
z

z

� �

a ðz t; z tÞ B �B

�B B

� �
þ 2r

B2 �B2

�B2 B2

� �� �
z

z

� �

¼ 0; ð35Þ

i.e.

X þ Y a 0; ð36Þ

and

x tYx ¼ ð0; x tÞ X 0

0 Y

� �
0

x

� �

a x tBxþ 2rx tB2x

a ðg� 1Þe�ajxjg þ 2rx tB2x: ð37Þ

Case x̂xA ŷy: We add the inequalities (32) and (34) and get

LHS :¼ � dij �
DxijDx jj

jDxjj2

 !
Xij � dij �

DyijDy jj

jDyjj2 þ e2

 !
Yij

a ðm1=k � 1ÞjDxjj1�1=k: ð38Þ

We estimate LHS from below

LHS ¼ � dij �
DxijDx jj

jDxjj2

 !
ðXij þ YijÞ

� e2
DxijDx jj

jDxjj2ðjDyjj2 þ e2Þ
Yij

b� e2x tYx

jxj2ðjxj2g�2e�2a þ e2Þ

b
�ðg� 1Þe2�ajxjg � 2e2rx tB2x

jxj2ðjxj2g�2
e�2a þ e2Þ

ð39Þ
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where we used (36) and (37). Combining (38) with (39), letting r ! 0 and apply-

ing the relations (24) and (29) yield

�ðg� 1Þe2�ajxjg�2

jxj2g�2e�2a þ e2
a�es�að1�1=kÞjxjðg�1Þð1�1=kÞ: ð40Þ

We multiply this inequality by the denominator of the left-hand side and deduce

two inequalities

�ðg� 1Þe2�ajxjg�2
a�es�að3�1=kÞjxjðg�1Þð1�1=kÞþ2g�2

�ðg� 1Þe2�ajxjg�2
a�esþ2�að1�1=kÞjxjðg�1Þð1�1=kÞ;

ð41Þ

which lead to

ðg� 1Þe2�sþað2�1=kÞ
b jxjgð2�1=kÞ�1þ1=k

ðg� 1Þke�a�ks
b jxj�gþkþ1:

ð42Þ

Accounting for (18) we have

jxja ðg� 1Þ1=ðgð2�1=kÞ�1þ1=kÞeð2�sþað2�1=kÞÞ=ðgð2�1=kÞþ1=k�1Þ ¼: c1e
b1ða; sÞ

jxjb ðg� 1Þk=ð�gþkþ1ÞeðaþksÞ=ðg�k�1Þ ¼: c2e
b2ða; sÞ:

ð43Þ

In view of (19) we get a contradiction for small e > 0.

Case x̂x ¼ ŷy: Due to g > 2 and (30) we have B ¼ 0, so that a calculation as in

(37) (now with h instead of x) shows

h tYha 0: ð44Þ

Hence, adding (33) to (34) and having (36) in mind we get

e1�1=k
a ðdij � hihjÞXij þ dijYij

a ðdij � hihjÞðXij þ YijÞ þ h tYh

a 0; ð45Þ

which is a contradiction. r

Lemma 2.7. There is c4 > 0 such that

weðx̂x; ŷyÞa c4e
r: ð46Þ

123Regularized level set power mean curvature flow



Proof. In view of Lemma 2.6 we have w.l.o.g. that ŷy a qW. (Otherwise, the suc-

ceeding argument will work analogously where now (47) holds with m omitted.)

Hence we can write

weðx̂x; ŷyÞ ¼ muðx̂xÞ � muð ŷyÞ � e�a

g
jx̂x� ŷyjg: ð47Þ

In case jx̂x� ŷyja er we get using the lipschitz continuity of u, cf. (6) and the suc-

ceeding sentence,

weðx̂x; ŷyÞamc0jx̂x� ŷyjamc0e
r; ð48Þ

which proves the lemma.

The remaining case jx̂x� ŷyj > er is not available for su‰ciently small e > 0, for

we estimate

weðx̂x; ŷyÞa 2mc0 �
erg�a

g
! �l; e ! 0: ð49Þ

r

Now, collecting facts we finish the proof of Theorem 2.5. Let x a W arbitrary.

Then

uðxÞ � ueðxÞ ¼ muðxÞ � ueðxÞ þ ð1� mÞuðxÞ
¼ weðx; xÞ þ ð1� mÞuðxÞ
a c4e

r þ c0e
s

a c5e
minðr; sÞ; ð50Þ

with a positive constant c5. Interchanging the roles of u and ue we see, that there is

a positive constant c6 with

juðxÞ � ueðxÞja c6e
minðr; sÞ: ð51Þ

This proves Theorem 2.5. It remains to prove Theorem 1.1 which will be

done by rewriting the right-hand side of the estimate in Theorem 2.5. Since (19)

‘improves’ for decreasing s we choose s ¼ a
g
and assume equality in (19). We

multiply the resulting equation by g and get

2� sþ a
�
2� 1

k

�
2� 1

k
þ

1
k
�1

g

¼ aþ sk

1� kþ1
g

: ð52Þ
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Now, we multiply with the denominator of the left-hand side and sort by a and s

on each side which leads to

2� sþ a 2� 1

k

� �
¼ a

2� 1
k

1� kþ1
g

þ s

1
k
� 1þ k 2� 1

k
þ

1
k
�1

g

� 	
1� kþ1

g

ð53Þ

and after rearranging terms to

2 ¼ s

1
k
� kþ1

g
þ k 2� 1

k
þ

1
k
�1

g

� 	
þ
�
2� 1

k

�
ðk þ 1Þ

1� kþ1
g

: ð54Þ

We may let g tend to infinity without changing the value of s (by adapting a

correspondingly). Hence the right-hand side of (54) converges to 4ks as g ! l
and Theorem 1.1 follows.
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