
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 74, Fasc. 3, 2017, 201–212 6 European Mathematical Society

DOI 10.4171/PM/2002

Finding intermediate subgroups

Alexander Hulpke

(Communicated by João Araújo and Peter J. Cameron)

Abstract. This article describes a practical approach for determining the lattice of sub-
groups U < V < G between given subgroups U and G, provided the total number of such
subgroups is not too large. It builds on existing functionality for element conjugacy, double
cosets and maximal subgroups.

Mathematics Subject Classification (primary; secondary): 20B40; 20D30, 68W30

Keywords: Algorithm, interval, subgroups, lattice

1. Introduction

The question of determining the subgroups of a given finite group (possibly up

to conjugacy) has been of interest since the earliest days of computational group

theory [Neu60] with current algorithms [Hul99], [CCH01], [Hul13] being able to

work easily for groups of order several million. A fundamental di‰culty however

is presented if the group has a large number of subgroups, overwhelming available

storage.

This limitation indicates the need for more specific algorithms that determine

only part of the subgroup lattice of a group. Beyond specific subgroups (such as

Sylow- or Hall-), the main result in this direction is that of maximal subgroups

[EH01], [CH04]. Such a calculation can be iterated to yield subgroups of small

index [CHSS05].

(The case of minimal subgroups is simply that of conjugacy classes of elements

of prime order and thus is solved.)

In this paper we will consider the related question of intermediate subgroups,

that is given a group G and a subgroup U aG, we aim to determine all subgroups

U aV aG (or, in some cases, one if it exists), as well as inclusions amongst these

subgroups. In some situations, for example if U pG, or if U is cyclic of small

prime order, this amounts to determining a significant part of a subgroup lattice

of (a factor of) G and most likely the best approach will be simply to calculate all

subgroups and then to filter for the desired candidates. We thus shall implicitly

assume that we are in a situation in which the number of intermediate subgroups

is small.

Such functionality has numerous applications, in some cases requiring all inter-

mediate subgroups, in others only one. To name just a few of them:

• Birkho¤ ’s question on the possibility of representing finite lattices as intervals

in congruence lattices has been of long standing interest in universal algebra,

starting with [GS63]. Subsequently, [PP80] reduced the problem to that of

realizing a finite lattice as interval in a finite subgroup lattice, prompting

significant investigation of this question interest [Pálf95], [Wat96], [Sha03],

[Asc08]. With no positive answer for even small lattices – Figure 1 depicts

the smallest lattice that is not know to occur as interval in a finite subgroup

lattice – researchers have tried to gain insight by trying experimentally to re-

alize particular cases on the computer [DeM12]. This requires an algorithm

for intermediate subgroups.

• When representing a transversal of right cosets in permutation groups, the

standard approach of reduction to stabilizers [DM88] can, but does not have

to, reduce the storage requirements. An example of such a situation is the

transversal of a (cyclic) 11-Sylow subgroup U aS11. This subgroup is tran-

sitive and any proper subgroup trivial, thus transition to a stabilizer would

require handling every group element at some point.

Instead, utilizing the intermediate subgroup M11 reduces storage re-

quirements from the index 3628800 of U down to 5040þ 720 ¼ 5760 coset

representatives.

• Double cosets, in particular in permutation groups, are a basic tool of

combinatorial enumeration as they describe how a group orbit splits up

under reduction to a subgroup. The standard approach [Lau82], [Sch90]

utilizes a chain of intermediate subgroups, reducing iteratively the calcula-

tion of AnG=B to A1nG=B for A < A1 and action of B on cosets of A.

Figure 1. The smallest open case for the lattice representation problem

202 A. Hulpke

Knowledge of intermediate subgroups roughly logarithmizes the cost of

calculations.

• For infinite matrix groups, proving a subgroup to be of finite index of a sub-

group (such as in [LR11]) often reduces to a coset enumeration. For huge

indices this is infeasible for memory reasons. If the expected index has been

calculated [DFH17] through a subgroup U < Q in a suitable finite quotient

Q of the group, an intermediate subgroup U < V < Q can be used to first

rewrite the presentation to (the pre-image of) V , thus opening the possibility

for a smaller index coset enumeration.

• The following observation however indicates that the determination of inter-

mediate subgroups should be expected to be hard in general: When comput-

ing stabilizers under group actions, often a small number of Schreier gen-

erators (which – by the birthday paradox – should arise after enumerating

roughly the square root of the orbit length) will generate the full stabilizer,

but this is only proven after enumerating a significant part (typically 1=p,

where p is the smallest prime divisor of the stabilizer index) of the orbit,

thus establishing that the stabilizer indeed cannot be larger.

Knowledge of intermediate subgroups would allow verification of this

fact, thus establishing the stabilizer with less e¤ort by showing that no sub-

group above the presumptive stabilizer in fact stabilizes.

Now assume that GbU are given, and we want to enumerate the subgroups

G > V > U . A basic approach follows from the observation that these subgroups

correspond to block systems for the action of G on the cosets of U . If ½G : U � is
small (in practice not more than a few hundred), it is possible to determine the

permutation representation on the cosets explicitly. One then can utilize a block-

finding algorithm [BS92] as a tool for finding all intermediate subgroups. This

however becomes impractical if the index gets larger, as the examples below

indicate.

2. A maximal subgroups based approach

Instead, we shall rely on existing algorithms for maximal subgroups [CH04],

[EH01] to find (conjugates of) subgroups lying below G and above U .

(An alternative dual approach would be to utilize minimal supergroups, but an

algorithm for these does not yet exist.)

A second tool will be routines to determine element centralizers and test for

element conjugacy.

Finally, the approach itself involves the calculation of double cosets. When

using this routine as a tool as part of a double coset computation (as suggested

203Finding intermediate subgroups

in the introduction) there thus is a priori the potential of an infinite recursion.

This will be in general avoided by the fact that the required double coset calcula-

tions involve strictly smaller subgroups; however in a general purpose routine this

needs to be checked for.

This approach produces a new algorithm IntermediateSubgroupsðG;UÞ,
that takes as input two groups GbU and returns as output a list of the inter-

mediate subgroups G > V > U , as well as the maximality inclusions amongst all

subgroups GbV bU .

The main tool for this calculation will be a further new algorithm:

EmbeddingConjugatesðG;A;BÞ (which we shall describe later) takes as argu-

ments a group G and B;AaG and returns a list of the G-conjugates of A contain-

ing B, that is the subgroups Ag > B for g a G, together with the respective conju-

gating element g.

2.1. Intermediate subgroups algorithm. The algorithm takes as input the groups

GbU and returns a list S of intermediate subgroups (including G), as well as a

list I of maximality inclusion relations amongst these subgroups,

1. Initialize S :¼ ½G�; let I ¼ ½ �.
2. While there is a subgroup T a S that has not been processed, perform the

following steps for T , otherwise end and return S and I .

3. If ½T : U � is prime, record U < T as a maximality relation in I , mark T as pro-

cessed, and go back to Step 2.

4. Determine a list M of T-representatives of the maximal subgroups of T whose

order is a multiple of jU j.
5. For each subgroup W a M, let VW ¼ EmbeddingConjugatesðT ;W ;UÞ (that

is the T-conjugates of W containing U). Add every subgroup X a VW to S

(unless it is already in the list), and add the maximality relations X < T to I .

6. If all sets VW were empty, add the maximality relation U < T to I .

7. Mark T as processed, and go back to Step 2.

If only one intermediate subgroup (or a maximality test) is required, the calcu-

lation can stop in Step 5 once a single subgroup X a V has been found.

Proof. To see the correctness of this algorithm we notice that the only subgroups

added to S are intermediate, and that a maximality relation is only recorded if a

subgroup is contained maximally in another. The algorithm thus returns a list of

intermediate subgroups and valid maximality relations.

To show completeness of the lists returned, consider an intermediate subgroup

U < V < G. If V is maximal in G it will be found as maximal subgroup of T ¼ G

in Step 5.

204 A. Hulpke

Otherwise there will be subgroups V < W < G in which V is contained

maximally. By induction over the index in G we may assume that these subgroups

are included in S. Then V is obtained as a subgroup in VW in Step 5, and for

each such subgroup W the maximality inclusion is recorded in I .

The same argument shows that any maximality relation amongst the sub-

groups with be recorded in I .

We note a few places of possible improvements:

In Step 4, we note that if G is a permutation group, we can furthermore restrict

M to those subgroups whose orbit lengths on the permutation domain can be par-

titioned by those of U . This gives a significant speedup in case of ‘‘generic’’ larger

groups such as Sn.

In the course of the calculation several subgroups in S may have been ob-

tained as conjugates of the same group. In this situation the maximal sub-

group calculation in Step 4 can transfer the list M of (representatives of) maxi-

mal subgroup representative from one subgroup to another (as appropriate

conjugates).

The cost of this algorithm is roughly proportional to the number of inter-

mediate subgroups, as every subgroup gets processed in the same way. While it

would be possible to carry partial information about maximal subgroups through

the iteration, this will not change the asymptotic behavior.

The implicit assumption of few intermediate subgroups thus makes this ap-

proach feasible. As the examples in Section 3 show, the method is feasible also

in practice.

2.2. Embedded conjugates. To describe the required subroutine, we consider

first the following, related, problem: Given a group A and two subgroups

A;BaG, we are seeking to find all conjugates BgaA (that is representatives

up to A-conjugacy thereof), and for each conjugate subgroup Bg a conjugating

elements g.

If the G-orbit of B, that is ½G : NGðBÞ� is small, we can simply determine this

orbit up to A-conjugacy, parameterized by double cosets NGðBÞnG=A, and test

which conjugates of B lie in A.

If G is a permutation group, it also might be possible to use a backtrack

search, similar to that of a normalizer calculation [Leo97], [The97], to find ele-

ments that conjugate B into A. Since the groups are of di¤erent order, however,

existing refinements would not be available, and the search therefore could easily

degenerate into testing all double cosets as just described. We thus have not inves-

tigated such an approach further.

For all other cases, we use an approach that is motivated by the generic iso-

morphism search routine [HEO05], §9.3.1, [Hul96], V.5, reducing conjugation of

subgroups to conjugation of elements:

205Finding intermediate subgroups

Suppose that B ¼ 3b1; b2; . . . ; bk4. Any element g conjugating B into A must

(this is necessary and su‰cient) map all of the bi to elements of A and these images

must lie in conjugacy classes of A.

This yields the following algorithm, whose input is a k-element generating

sequence of B, together with the groups G and A.

At the start we precompute for each index i a list Ai of those A-conjugacy

classes C � AB bG
i . We can do this based on a list of conjugacy classes of A and

explicit element conjugacy tests.

If AB bG
i is empty for any i, we know that B cannot be conjugated

into A.

In the case of a large A and small B it is often possible to select generators fbig
with particular properties, say of prime order, which allows to limit the conjugacy

classes of A which are required, in the example of prime order it would be the

classes intersecting a Sylow subgroup.

We now describe the main part of the algorithm, which is a recursive depth

first routine SearchðC; i; gÞ that takes as parameters an index i, a conjugating

element g a G such that bg
j a A for all j < i, and a subgroup C ¼ CGðbg

1 ; b
g
2 ; . . . ;

b
g
i�1ÞaG.

This routine is called once as SearchðG; 1; 1GÞ. It collects the result pairs

ðBg; gÞ in a global list B that is initialized to an empty list at the start.

The SearchðC; i; gÞ routine then proceeds as follows:

1. If i > k (that is all generators are mapped already) store ðBg; gÞ in B, and

return.

2. Otherwise, let x ¼ b
g
i and set D ¼ CBA.

3. For every class Y a Ai, let fyjgj be a set of representatives of the D-classes that

partition Y . These representatives can be obtained by conjugating a fixed rep-

resentative y a Y with representatives of the double cosets CAðyÞnA=D.

4. For every representative yj , test whether there is d a D such that xd ¼ yj. If so,

call recursively SearchðCCðyjÞ; i þ 1; g � dÞ.
5. Iterate until all yj for all classes Y a Ai have been tested. Afterwards

return.

If C (and thus D) is small in Step 3, the number of double cosets could be

large. In this case it could be worth to instead consider C-conjugates of x, up to

D-conjugacy (parameterized by the double cosets CCðxÞnC=D) and test which

conjugates lie in A.

Lemma 2.1. When the call to SearchðG; 1; 1GÞ returns, the list B contains pairs

ðBg; gÞ such that BgaA and every conjugate BhaA will be A-conjugate to a sub-

group Bg that arises in B.

206 A. Hulpke

Proof. We first observe that whenever SearchðC; i; gÞ is called, we have that

b
g
j a A for every j < i. Thus the only results ðBg; gÞ stored in Step 1 satisfy that

b
g
j a A for every j, that is BgaA as required.

We also note that at stage i of the calculation a recursive call for level i þ 1 is

done with a first argument centralizing b
g
i .

Thus at every stage of the calculation we have that CaCGðbg
j Þ for j < i, and

therefore the conjugating element g is only modified by a factor in CGðbg
1 ; . . . ;

b
g
i�iÞ. Thus the images bg

j for j < i remain fixed in stage i.

Now assume that BhaA for some element h a G. Then bh
i a A for all i. Thus

there exists c1 a A such that bhc1
1 is the chosen representative of one of the classes

in A1.

We similarly can define elements ci, i > 1 in the following way: Let D ¼
T

j<i CAðbhc1...ci�1

j Þ and let fyjg be a set of representatives of the D classes of ele-

ments of A, then define ci such that ðbhc1...ci�1

j Þci ¼ yj is one of the chosen

representatives. (Clearly we must have that yj will lie in one of the classes

in Ai.)

This shows (choosing the yj in Step 3 as representatives) that for all i there

exists ci a A such that

ðbh
i Þ

c1c2...ck ¼ ðbh
i Þ

ci ...ck ¼ b
g
i

for one of the conjugating elements g given in B. In particular ðBhÞc1c2...ck ¼ Bg

with c1c2 . . . ck a A, proving the claim.

To find all conjugates of B within A we finally form the A-orbits of the sub-

groups in B. Note that we do not guarantee that the subgroups on B are not

conjugate (or even di¤erent). In such a case there must be elements of A that nor-

malize an embedded subgroup BgaA and induce automorphisms. The potential

for this happening can be checked for a priori by ½NGðBÞ : CGðBÞ�.
In studying the algorithm, the reader will notice that the inclusion BgaA is

simply a consequence of the fact that
S

Ai � A. We thus could replace A with a

larger subgroup L, normalizing A such as L ¼ NGðAÞ, by initializing the classes

Ai with the L-classes within A that intersect with bG
i and assigning D ¼ CBL in

Step 2.

A call to SearchðG; 1; 1GÞ the produces a list of subgroups, such that every

conjugate BgaA is L-conjugate to one of the subgroups in the list. Conjugacy

tests then can be used to obtain representatives of the L-classes.

2.3. Embedding conjugates. We now consider the dual problem of determining

conjugates Ag of a subgroup AaG that contain a given subgroup. This will be

implemented by the routine EmbeddingConjugatesðG;A;BÞ that has been re-

ferred to already above.

207Finding intermediate subgroups

We have that Ag�1
bB if and only if BgaA. This duality can be translated

to double cosets, where the double cosets NGðAÞnG=NGðBÞ are given as sets of

inverses of the double cosets NGðBÞnG=NGðAÞ. Thus inverting representatives

for one set of double cosets yields representatives for the other.

The double cosets NGðAÞnG=NGðBÞ correspond to NGðBÞ-orbits on the

G-conjugates of A; the double cosets NGðBÞnG=NGðAÞ to NGðAÞ orbits on con-

jugates of B. Together this shows:

Lemma 2.2. Let fgigi be a set of elements such that the set groups Bgi contains

representatives of the NGðAÞ-classes of conjugates BgaA. Then the set of sub-

groups Ag�1
i contains representatives of the NGðBÞ-orbits of conjugates Ag > B.

A set of such elements gi satisfying the former condition was obtained in the

previous section. This gives the following algorithm EmbeddingConjugatesðG;
A;BÞ:
1. Let L ¼ NGðAÞ.
2. Select a generating set fb1; . . . ; bkg of B. For each i let Ai be a list of the

L-conjugacy classes that partition AB bG
i .

3. Set B ¼ ½ � and call SearchðG; 1; 1GÞ.
4. Let C ¼ fAg�1 j ðBg; gÞ a Bg.
5. Return the union of the NGðBÞ orbits of the elements of C.

It would be easy to also keep track of conjugating elements for the subgroups

in C.

3. Examples

The algorithm, as described, has been implemented by the author in GAP [GAP16]

and will be available as part of the 4.9 release (through significantly improved per-

formance of the operation IntermediateSubgroups).

We indicate the performance of the algorithm in a number of examples, in par-

ticular in comparison to the old, block-based, method discussed at the end of the

first section. The examples have been chosen primarily for being easily reproduc-

ible (without a need to list explicit generators) cases of non-maximal subgroups

with a moderate number of intermediate subgroups.

While the algorithm per se does not make assumptions about the way the

group is represented, most of the examples were chosen as permutation groups

as for these groups the practically usable implementations in GAP of the underly-

ing routines, in particular element conjugacy and double cosets, perform more

smoothly than for matrix groups.

208 A. Hulpke

For polycyclic groups the number of intermediate subgroups in general larger.

In the following examples, the notation Sylp indicates a p-Sylow subgroup.

If a subgroup is given by a structure this implies that there is a unique such

subgroup up to automorphisms. If there are two such subgroups the di¤erent

cases will be distinguished asa1 anda2.

a counts the number of proper intermediate subgroups (i.e. excluding G

and U). t is the runtime in seconds on a 3.7 GHz 2013 MacPro with ample

memory.

When maximal subgroups of simple groups were required, all examples uti-

lized a lookup, such a calculation thus did not contribute significantly to the over-

all runtime.

Table 1 shows comparative timings to the old (block-based) algorithm. The

timings indicate that for indices larger than a few hundred the new method is

universally superior to the old one, while for smaller indices the naive block-based

approach works faster. We have not examined examples with indices smaller than

hundred, as these often involve maximal subgroups or factor groups of signifi-

cantly smaller order.

The solvable groups given in the last lines are maximal subgroups of Fi22,

respectively Co1, given by a pc presentation.

Table 2 gives examples for some cases of significantly larger index for which

the old algorithm would not terminate within reasonable time, thus only timings

for the new method are given.

As expected, the timings show that the cost is dominated by the number of sub-

groups to be found rather than permutation degree.

As an illustration of use, consider the case of a 2-Sylow subgroup of Co3. The

GAP calculation:

G U Index a tOld tNew

S6 1 24325 1453 2:6 2:8
A7 2 22325�7 156 52 0:8
S5 o S2 Syl5 2732 58 5:7 2
HS S7 255211 3 1:4 1:9
HS Solv1152 22537�11 2 6 2:2
PSL4ð3Þ A6ða1Þ 243413 1 2:3 1
PSL4ð3Þ A6ða2Þ 243413 17 28 4
Sp6ð2Þ PSL3ð2Þða1Þ 26335 6 2 1
Sp6ð2Þ PSL3ð2Þða2Þ 26335 9 4:5 3:1
31þ6:23þ4:32:2 Syl3 28 19 0:2 1:5
31þ6:23þ4:32:2 Syl2 39 37 231 191
33þ4:2ðS4�S4Þ Syl2 39 15 254 1:3
33þ4:2ðS4�S4Þ Syl3 27 30 0:2 5

Table 1. Comparison between old and new method

209Finding intermediate subgroups

gap> g:=SimpleGroup("Co3");;s:=SylowSubgroup(g,2);
<permutation group of size 1024 with 10 generators>
gap> int:=IntermediateSubgroups(g,s);
rec(inclusions := [[0, 1], [0, 2], [0, 3], [0, 4], [1, 7],

[1, 8], [1, 10], [2, 5], [2, 10], [3, 5], [3, 6], [3, 7],
[4, 6], [4, 8], [5, 9], [5, 12], [6, 9], [6, 11], [7, 11],
[7, 12], [8, 11], [9, 13], [10, 12], [11, 13], [12, 13]],

subgroups := [<permutation group of size 3072 with 9 generators>,
[... a list of 12 subgroups]

gap> List(int.subgroups,Size);
[3072,3072,3072,3072,9216,9216,21504,21504,27648,46080,

322560,2903040]

returns the subgroups lying between s and g, numbered 1 to 12, as well as a list of

maximal inclusion relations that is depicted in Figure 2.

G Degree U Index a t

S11 11 11 : 5 2734527�11 4 0:5
S10 � S10 20 A10ðdiagÞ 2934527 5 8
HS 100 Syl7 29325311 41 9
HS 100 Syl3 29537�11 249 12
HS 100 ðSyl2Þ

0 2332537�11 57 6
S24 24 24 : 8 21639547311213�17�19�23 409 297
S25 25 C5 � C5 222310547311213�17�19�23 2734 418
S25 25 C25 222310547311213�17�19�23 127 129
Co3 276 Syl2 37537�11�23 12 316
Co3 276 Syl7 210375311�23 396 310
L5ð7Þ 2801 Syl2801 211355271019 1 168
L8ð2Þ 255 Syl127 22835527217�31 8 100
L8ð2Þ 255 Syl7 228355217�31�127 14074 3305

Table 2. Larger example calculations

1

10

12

11

13

2 3 4

5 6

87

9

01024

3072

9216

21504

27648
46080
322560

2903040

Co3

Figure 2. Intermediate subgroups between
Co3 and a 2-Sylow subgroup.

210 A. Hulpke

Acknowledgments. The author’s work has been supported in part by Simons’

Foundation Collaboration Grant 244502.

References

[Asc08] Michael Aschbacher. On intervals in subgroup lattices of finite groups. J. Amer.

Math. Soc., 21(3):809–830, 2008.

[BS92] Robert Beals and Ákos Seress. Structure forest and composition factors for
small base groups in nearly linear time. In Proceedings of the 24th ACM Sympo-

sium on Theory of Computing, pages 116–125. ACM Press, 1992.

[CCH01] John Cannon, Bruce Cox, and Derek Holt. Computing the subgroup lattice of a
permutation group. J. Symbolic Comput., 31(1/2):149–161, 2001.

[CH04] John Cannon and Derek Holt. Computing maximal subgroups of finite groups.
J. Symbolic Comput., 37(5):589–609, 2004.

[CHSS05] John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel. Com-
puting subgroups of bounded index in a finite group. J. Symbolic Comput.,
40(2):1013–1022, 2005.

[DeM12] Willian J. DeMeo. Congruence Lattices of Finite Algebras. PhD thesis, The Uni-
versity of Hawai’i at Mānoa, 2012.

[DFH17] A. S. Detinko, D. L. Flannery, and A. Hulpke. Zariski density and computing
in arithmetic groups. Math. Comp., accepted 2017.
https://doi.org/10.1090/mcom/3236.

[DM88] John D. Dixon and Abdul Majeed. Coset representatives for permutation
groups. Portugal. Math., 45(1):61–68, 1988.

[EH01] Bettina Eick and Alexander Hulpke. Computing the maximal subgroups of a
permutation group I. In William M. Kantor and Ákos Seress, editors, Proceed-
ings of the International Conference at The Ohio State University, June 15–19,

1999, volume 8 of Ohio State University Mathematical Research Institute Publi-

cations, pages 155–168, Berlin, 2001. de Gruyter.

[GAP16] The GAP Group, http://www.gap-system.org. GAP – Groups, Algorithms, and

Programming, Version 4.8.6, 2016.

[GS63] G. Grätzer and E. T. Schmidt. Characterizations of congruence lattices of
abstract algebras. Acta Sci. Math. (Szeged), 24:34–59, 1963.

[HEO05] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computa-

tional Group Theory. Discrete Mathematics and its Applications. Chapman &
Hall/CRC, Boca Raton, FL, 2005.

[Hul96] Alexander Hulpke. Konstruktion transitiver Permutationsgruppen. PhD thesis,
Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 1996.

[Hul99] Alexander Hulpke. Computing subgroups invariant under a set of automor-
phisms. J. Symbolic Comput., 27(4):415–427, 1999. (ID jsco.1998.0260).

211Finding intermediate subgroups

https://doi.org/10.1090/mcom/3236
http://www.gap-system.org

[Hul13] Alexander Hulpke. Calculation of the subgroups of a trivial-fitting group. In
ISSAC 2013 – Proceedings of the 38th International Symposium on Symbolic

and Algebraic Computation, pages 205–210. ACM, New York, 2013.

[Lau82] Reinhard Laue. Computing double coset representatives for the generation of
solvable groups. In Jacques Calmet, editor, EUROCAM ’82, volume 144 of
Lecture Notes in Computer Science. Springer, 1982.

[Leo97] Je¤rey S. Leon. Partitions, refinements, and permutation group computation.
In Larry Finkelstein and William M. Kantor, editors, Proceedings of the 2nd

DIMACS Workshop held at Rutgers University, New Brunswick, NJ, June

7–10, 1995, volume 28 of DIMACS: Series in Discrete Mathematics and Theo-

retical Computer Science, pages 123–158. American Mathematical Society,
Providence, RI, 1997.

[LR11] D. D. Long and A. W. Reid. Small subgroups of SLð3;ZÞ. Exp. Math.,
20(4):412–425, 2011.

[Neu60] Joachim Neubüser. Untersuchungen des Untergruppenverbandes endlicher
Gruppen auf einer programmgesteuerten elektronischen Dualmaschine. Numer.

Math., 2:280–292, 1960.

[Pálf95] P. P. Pálfy. Intervals in subgroup lattices of finite groups. In C. M. Campbell,
T. C. Hurley, E. F. Robertson, S. J. Tobin, and J. J. Ward, editors, Groups ’93
Galway/St Andrews, volume 212 of London Mathematical Society Lecture Note

Series, pages 482–494. Cambridge University Press, 1995.

[PP80] Péter Pál Pálfy and Pavel Pudlák. Congruence lattices of finite algebras and
intervals in subgroup lattices of finite groups. Algebra Universalis, 11(1):22–27,
1980.

[Sch90] Bernd Schmalz. Verwendung von Untergruppenleitern zur Bestimmung von
Doppelnebenklassen. Bayreuth. Math. Schr., 31:109–143, 1990.

[Sha03] John Shareshian. Topology of order complexes of intervals in subgroup lattices.
J. Algebra, 268(2):677–686, 2003.

[The97] Heiko Theißen. Eine Methode zur Normalisatorberechnung in Permutations-

gruppen mit Anwendungen in der Konstruktion primitiver Gruppen. Dissertation,
Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 1997.

[Wat96] Yasuo Watatani. Lattices of intermediate subfactors. J. Funct. Anal., 140(2):
312–334, 1996.

Received June 5, 2017; revision received September 26, 2017

A. Hulpke, Department of Mathematics, Colorado State University, 1874 Campus
Delivery, Fort Collins, CO 80523, USA

E-mail: hulpke@colostate.edu

212 A. Hulpke

	mkAsc08
	mkBS92
	mkCCH01
	mkCH04
	mkCHSS05
	mkDFH17
	mkDM88
	mkDeM12
	mkEH01
	mkGAP16
	mkGS63
	mkHEO05
	mkHul96
	mkHul99
	mkHul13
	mkLR11
	mkLau82
	mkLeo97
	mkNeu60
	mkPP80
	mkPa´lf95
	mkSch90
	mkSha03
	mkThe97
	mkWat96

