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Abstract. In [2] we used three controls for a system of two coupled parabolic equations.
We defined three functionals to be minimized and a hierarchy on the controls obtaining
from the optimality condition a system of six coupled equations. In order to prove the
null controllability, by means of the leader control acting only on the first equation, we
give a proof of a Carleman inequality (Proposition 6.4) that in fact is incorrect. In this
corrigendum we slightly modify the followers functionals given by (3) page 118 [2] in such
a way that for the corresponding hierarchic system a correct Carleman inequality can be
proved. This modification allows to introduce a coefficient a;; # 0 (a;; was zero in [2]).
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1. Formulation of the problem

Let Q be an open and bounded domain of R" with boundary 6Q of class C? and
o be an open and nonempty subset of Q. Given T > 0, we consider the following
system of coupled parabolic PDEs with leader control localized in w and follower
controls localized in wy,w; C Q with w; nw = (). More precisely

Yo —Ayr +anyr +apny: = hy, + Ul)(wl + Uzlwz inQ=Qx(0,7),
V2 —AyaH+anyr +any =0 in Q=Qx(0,T), (1)
yi(x,0) = ij(x) nQ, »=0nX=0Qx(0,T), =12,

where a; = a;(x, 1) € L*(Q) and y) e L*(Q) are prescribed.
We assume that we have a hierarchy in our wishes and we will describe the
Stackelberg-Nash strategy for system (1). Let ¢; C Q be an open subset, represent-
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ing the observation domain of the followers, which are localized arbitrarily in Q.
Define the followers functionals

o . .
I o) =2 [[ =yl v P
0y%x(0,T)

+ﬁ“ WP dxd, i=1,2, 2)
2 w;x(0,T)
and the main functional
1 2
J(h) == || dx dt, (3)
2 wx(0,7)

where o;,; >0 are constants and y) = (y{ , »5,)" are given functions in
L (wiq % (0,7)),i=1,2. o

The main goal is to choose / such that the following general objective (of null
controllability) is achieved

y(-, T;h,0',0*) =0 inQ. 4)

The second priority is the following. Given the functions y{ 4 and yé 2 We
want to choose the controls v’ such that throughout the interval 7 € (0, T)
y(x, t;h, 0", v?) “do not deviate much” from yh(x, 1),
in the observability domain w; 4, i = 1,2. (5)
To achieve simultaneously (4) and (5) for a fixed leader control /, find controls

(¢',°) that depend on / and the corresponding state solution y = y(h, 3!, %) of
equation (1) satisfying the Nash equilibrium related to (J;,J), that is,

Ji(h,0',0%) = min Jy (h,0', %), (6)

Jo(h, ', 5%) = min Jo(h, 5", 0?). (7)

v2

In [2] we prove that given & € L?(w x (0, T)), the pair (5',9%) is a Nash equilib-
rium of problem (6)—(7) if and only if

i I .
v’:—;p{)(wf, i=1,2, (8)

1

where (y, p) is solution of the coupled system



Corrigendum and addendum 163

Yie— Ay +anyr +any: = hy, — ,,%Pll)(wl - iplzxwz in Q,

V2. —Aya+anyr +any, =0 in Q,
=P ApiFanpi +anpy = %y — i a)xe, in Q, 9)
—py; — Apy +anpi +anp; = w(y2 — ¥3 e, in 0,

yi(0) =y, p)(T) =0, yj=p/=00nZ% i;j=12.

In [2], in order to prove the null controllability of system (11) we introduced
the adjoint system to (11) and presented Proposition 6.4, a Carleman inequality,
which proof is incorrect.

In fact, the proof is correct until equation (36). At this point we implicitly
assume that p; < p» +4. However, after equation (39), in order to eliminate the
local term in ¢@,, we took p, + 4 < p;. This obviously cannot be done, so the proof
is not valid and with the same assumptions, we don’t think the result is correct.

2. Solution

In this corrigendum we present a new functional for the followers in such a way
that the proof of the Carleman inequality can be obtained.

We will modify slightly (2) by adding a weighted norm in the functional mini-
mized by the followers controls. That is, given a(x, ¢) as in Proposition 6.4 in [2]
we take a new weight o, = max,cqa(x,1). For p,(t) > e**/?, fixed we take the
follower weighted functionals

o . .
Ji(h,v',v?) 25” 1= vl + |2 = i P dxdt
Gax0,1)

+ﬁ“ P2 |Fdxdr,  i=1,2, (10)
2 w;x(0,T)

and conserve the main functional as in [2]. With this new functionals the pair
(01, 02) is a Nash equilibrium if

1 .
Ei:__p;zpia i:1727
Hi

and p]?, Yj, i, j = 1,2 are solution of the system:

Y= Ay tany +anyr = hy, — ﬂl‘p;zpll)(an - tﬂ?zplzlwz in 0,

V21— Ay +asyr +any, =0 in O,
—pi; — A +anp) +anpy = (v — ¥y e, in Q, (11)
—p5, — Aps +anpl +anps = w(y2 — ¥3 e, in Q,

yi(0) =y}, p)(T) =0, yj=p/=00nZ% i;=12.
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Theorem 2.1 in [2] now reads as follows:

Theorem 2.1. Assume that O; o # O and that u; for i = 1,2, are sufficiently
large. If

ap =>ayp>0 or —ay=>ay>0 in(Oinw)x(0,T), (12)

there exists a positive function p = p(t) blowing up at t = T such that if

jj p2|y;d|zci)cciz<—i—oo7 i,j=1,2,
04x(0,T) ’

then for any y° € L2(Q)? there exists a control h € L* (w % (0,T)) such that the
solution of (11) satisfies

That is, there exists a Stackelberg-Nash strategy (h,',v%) for the functionals given
by (3) and (10), with h subject to y;(T) = y»(T) = 0.

Remark 2.2. Observe that we eliminate the assumption of Theorem 2.1 in [2]
where we assume aj, = 0.

For the proof of Theorem 2.1, we need to prove an appropriate observability
estimate, that can be obtained following exactly the proof in [2] but introducing
the weight p2. That is, we prove a Carleman inequality for the “reduced” adjoint
system to (11) (see [2] (23), p. 125). That is we will consider system:

=01, — Apy +ang, +ane, =Yy, in Q,
=02, — Apy + ang; + anp; = oy, in Q,
Uy — A+ any + an, = —p;z(‘:—:xwl —I—;—z)(w)gol inQ, (13)
‘pz,t — Ay, +anpy +any, =0 in Q,

9/(T) = £, ¥,(0)=0inQ, ¢;=y;=00n%, =12,

We recall the definitions in [2]:
I(m,z) == “ e 2% (sy)" 2 |Vz|? dx dt + “ e 2% (sp)"|z| P dxdr  (14)
0 0

and

CZ%(I’}’Z,Z) = ‘[Jj 0.7) eizm(sy)mv‘dedt? y(t) = l(T _ Z) !
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where

oo (x)

1) = (T —1)

for (x,1) € Q,

is the classical function used in Carleman estimates (see e.g. [3] and [2]).
Proposition 6.4 in [2] is now:

Proposition 2.3. Suppose that (12) holds and that Uy nw # 0.  Then, for an
adequate selection of parameters d; and p; € R, for i = 1,2, there exist a function
a9 € C2(Q) and positive constants C and o such that, for every (fi, f3) € [L2(Q)]?,
the solution to system (13) satisfies

I(di,0,) + 1(dr, 05) + 1(p1, 1) +1(p2,¥5)

< CJJ €_2W(Sj/)2p2_d2+12|gol|2 dxdt, (15)
wx(0,7T)
Vs> 52 = o2 (T + T7 + T7 max{ max a3/,
J=1

12/ di=(d=3)) 1 12/ (= (pi=3))
 max[llagl; gz 1})-
i#]
Proof. Define
O:=0;nw,

and since O # 0, there exists a non-empty open set (/) CC (. Let oy and o be
the functions associated to # = (y provided by Lemma 6.2 in [2]. The proof of
Proposition 6.4 in [2] until equation (33) is correct, that is, we have that,

I(dhgol) +I(d27(p2) +I(plalpl> +I(p27‘p2)
2 2
< Cg(zg(no(clj,(gf)—I—Zﬁ/”@o(pj,lﬁj)), Vs > s5.
J=1 J=1

with C; and o> two new positive constants only depending on Q, Oy, d;, p;, «; and
llajj|| .. To this point we have choosen

dy — 3 < py, dy—3<d <d +3, dr — 3 < po, pr—3< pr<p+3.

Proceeding exactly as in [2], that is, doing local energy estimates, we can elim-
inate from the right hand side the local terms in y/; and ,, obtaining,

I(dy,p1) + I(d2, 05) + 1(p1,Yy) + 1(p2, ¥r2)
2
<C» Zi(J9), Vs=s. (16)

j=1
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with J, = max{p; +4,2p; — p»}, Jo =max{p,+4,p1,2p» — p1} and 0Oy CC
O cc 0. We can take J, =pi+4and J, = p, +4.

Now, we want to eliminate the local terms corresponding to ¢, in the right-
hand side of (16). Given a set @ CC (0 CC w, we consider a function n € C*(RY)
verifying: 0 < < 1in RY, = 11in @, suppn C w and

An
7

Vi

e L*(Q) and

We set u = e 2%(sy)”™. Recall that the coefficient ay, satisfies (12) and, for
simplicity, assume that ay; > ap in @ x (0, 7). We multiply the equation satisfied
by ¢, in system (13) by ung, and integrate in Q. We obtain

a0 Ls(pr+4,0,) < ”Q unas|p,|* = ”Q(%,f + Ay — anpy)ung,

JJ Yixe,unps = ZK (17)

We proceed to estimate each of the terms K;. This is,

Kl =[[| e ng v
9

J ()" ) g ],

<e jQ ef2soc(sy)dz—4|¢27t|2 NP JJQ 872‘va(sy)d2

| 2

%)

+ G, ” ¢ () k12 2
wx(0,7)

Ko = jQ 20, Ay

=| J Al (s7)"™ o) gy dxd],
o

<& J —250( )a' _4|A(02|2 + Cz:3 JJ ZAa(Sy)zpz—dz+12|¢l|2
wx(0,T)

m” () 2|Vl + C U ¢ 2% () P12 |2
0 x(0,T)

I I = | I TP IR
0 wx(0,T)
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The estimate of K3 is straightforward. For Ky we get

)

K =[] e gy ava

SEJ"[ e4.m(sy)2pz+8;7¢2|2dxd[+ljj |lp1|2dxdl.
21, 2o

2pr—dh+8

Observe that given & > 0 for s large enough e=2%(sy) < &, therefore we

obtain
K| < g” e*z‘wsy)dzmwzﬁdxdz+§“ |2 dx .
0 0

Putting all together, and choosing appropriate constants ¢;, i = 1,...,6, we obtain
from (16) and (17)

I(dh(pl) +1(6127(p2) JrI(pla‘/jl) +I(p27l//2)

< c” e~ 2% () 220210 12 dxd + C“ Wy |*dxdr.  (18)
®x(0,T) 19

To eliminate the last term in the right hand side of the previous equation, we
obtain energy estimates for the third and fourth equation in system (13), more
precisely

o ol -
JJQ(WMZ * |l//2|2)dxdt = C(,u_l2+_22> JJQ lp1p, 2|2dxdt,

1 M

0‘12 O‘% 2sat| |2
< C(—2+—2> JJ e |(ﬂ1| dx dt.
LT 5] 0

Since e~ >*" < ¢72* and provided that y; are large enough, we can put the above
estimate in (18) and absorb the remaining term into the left hand side. Therefore
the proof is complete. O

With the new Carleman estimate (15), we can obtain an observability in-
equality that implies Theorem 2.1 following the same procedure as in [2].

Remark 2.4. Tt is possible to modify the proof of the observability inequality (not
the Carleman one) in such a way that instead of p? in (10), a new weight going to
zero as t — T but not as t — 0 modifies the functional. Since our mistake was on
the Carleman inequality, we don’t propose this alternative. This possibility uses a
Carleman inequality with local terms in ¢, and ;. Then, a modification on the
weight, as in [2], page 132, leads to the observability inequality.
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