Corrigendum to "Positive integers divisible by the product of their nonzero digits", *Portugaliae Math.* 64 (2007), 1: 75–85

Jean-Marie De Koninck and Florian Luca

Abstract. In this paper, we correct a numerical error from [1].

Mathematics Subject Classification (primary; secondary): 11N25; 11A63

Keywords: Divisibility, applications of sieve methods

Let $\mathcal{N}_0(x)$ be the set of positive integers $n \le x$ divisible by the product of their base 10 nonzero digits and let $\mathcal{N}(x)$ be the set of all $n \le x$ divisible by the product of their digits. Theorem 1 in [1] states that inequalities

$$x^{.495} < \# \mathcal{N}_0(x) < x^{.654}$$
 and $x^{.122} < \# \mathcal{N}(x) < x^{.618}$

hold for $x > x_0$. Recently, Tomohiro Yamada pointed out to us that there is a flaw in the proof of the above upper bounds. Indeed, on Page 81, Line -2, the formula of δ versus β should be

$$\delta = 1/\log 10 - \beta(1/\log 10 + 1/\log 2)$$

instead of

$$\delta = 1 - \beta(1/\log 10 + 1/\log 2).$$

Inserting this formula for δ into the equation at Lines -2 and -1 of Page 81, we get $\beta=0.0999683\ldots$, leading to $\#\mathcal{N}_0(x)\leq x^{0.901}$ for $x>x_0$. A similar mistake (with a similar correction) appears on Page 82, Lines -5, -4 and -3 of Section 2. Inserting the correct value of δ into the equation relating β and δ at this paragraph we get $\beta=0.137991\ldots$, leading to $\#\mathcal{N}(x)\leq x^{0.863}$.

Acknowledgments. We thank Tomohiro Yamada for alerting us to the flaw mentioned above. The second author is grateful to the Max Planck Institute (Bonn) for hospitality during the writing of this paper.

Reference

[1] J.-M. De Koninck and F. Luca, 'Positive integers divisible by the product of their non-zero digits', Portugaliae Math. **64** (2007), 75–85.

Received May 15, 2017

J.-M. De Koninck, Département de Mathématiques et de Statistique, Université Laval, Québec G1V 0A6, Canada

E-mail: Jean-Marie.DeKoninck@mat.ulaval.ca

F. Luca, School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa

E-mail: Florian.Luca@wits.ac.za