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Abstract. Recently Peter Keevash solved asymptotically the existence question for Steiner
systems by showing that Sðt; k; nÞ exists whenever the necessary divisibility conditions on
the parameters are satisfied and n is su‰ciently large in terms of k and t. The purpose
of this paper is to make a conjecture which if true would be a significant extension of
Keevash’s theorem, and to give some theoretical and computational evidence for the
conjecture.

We phrase the conjecture in terms of the notions (which we define here) of synchroniza-
tion and separation for association schemes. These definitions are based on those for per-
mutation groups which grow out of the theory of synchronization in finite automata. In
this theory, two classes of permutation groups (called synchronizing and separating) lying
between primitive and 2-homogeneous are defined. A big open question is how the permu-
tation group induced by Sn on k-subsets of f1; . . . ; ng fits in this hierarchy; our conjecture
would give a solution to this problem for n large in terms of k. We prove the conjecture in
the case k ¼ 4: our result asserts that Sn acting on 4-sets is separating for nb 10 (it fails to
be synchronizing for n ¼ 9).
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1. The definitions

The concepts of synchronization and separation were defined for permutation

groups about ten years ago (see [1]). We outline the definitions here and extend

them to association schemes.

A (finite-state deterministic) automaton is a machine which can be in one

of a finite set W of internal states. On reading a letter from the alphabet as-

sociated with the automaton, it undergoes a change of state. If the machine

reads a word (a finite sequence of letters), the corresponding state changes are

composed.



An automaton can also be regarded as a directed graph whose arcs are labelled

with the letters in the alphabet, having the property that there is a unique arc with

each label leaving any vertex. (Loops and multiple arcs are allowed.) Alterna-

tively, it can be regarded as a transformation semigroup on the set W with a

distinguished set of generators (the transformations which correspond to single

letters).

An automaton is said to be synchronizing if there is a word in its alphabet

(called a reset word ) such that, after reading this word, the automaton is in a

known state, regardless of its starting state. In the semigroup interpretation, an

automaton is synchronizing if the semigroup contains a transformation of rank 1

(one whose image consists of a single element).

Clearly it is not possible for a permutation group to be synchronizing if

jWj > 1, since any composition of permutations is a permutation. So we abuse

terminology and say that a permutation group G on W is synchronizing if, for

any transformation a of W which is not a permutation, the semigroup 3G; a4 is a

synchronizing semigroup. (In other words, the automaton whose transitions are

generators of G together with an arbitrary non-permutation is synchronizing.)

There is a combinatorial characterisation as follows. A G-transversal for a

partition P of W is a set A, all of whose images under G are transversals for P.

Now the group G is non-synchronizing if there is a nontrivial partition for which

all images of some set A are G-transversals. (The trivial partitions are the parti-

tion into singletons and the partition with a single part.)

This can also be formulated in terms of simple graphs (loopless and without

multiple edges). The clique number of a graph is the number of vertices in a largest

complete subgraph, and the chromatic number is the least number of colours re-

quired to colour the vertices so that the ends of any edge receive di¤erent colours.

An endomorphism of a graph is a transformation on the vertex set of the graph

which maps edges to edges. The endomorphisms of a graph G form a transforma-

tion semigroup EndðGÞ. The following theorem can be found in [1].

Theorem 1.1.

(a) A transformation semigroup S is non-synchronizing if and only if there exists a

non-null graph G such that SaEndðGÞ and the clique number and chromatic

number of G are equal.

(b) A permutation group G is non-synchronizing if and only if there exists a graph

G, neither null nor complete, such that GaAutðGÞ and the clique number and

chromatic number of G are equal.

In terms of the previous characterisation, the partition of W is given by a col-

ouring of G with the minimum number of colours, and a G-transversal is a clique

with size equal to this number.
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A related concept is also defined in [1]. A transitive permutation group G on W

is non-separating if there exist subsets A and B of W with jAj; jBj > 1 such that

jAgBBj ¼ 1 for all g a G (this entails jAj � jBj ¼ jWj); it is separating otherwise.

Again, it is known that a permutation group G is non-separating if and only if

there is a graph G, neither null nor complete, such that the product of its clique

number and its coclique number (the size of the largest coclique) is jWj, and with

GaAutðGÞ. (In the definition, we take A and B to be a clique and a coclique of

maximum size.)

It is easy to see that a separating group is synchronizing. (If G is transitive and

non-synchronizing, take P to be a nontrivial partition and A a G-transversal for P;

then jAgBBj ¼ 1 and jAj � jBj ¼ jWj for every part B of P.) The converse is false,

but examples are not easy to come by.

The following theorems are proved in [1].

Theorem 1.2. Let nb 5, and let G be the permutation group induced by the sym-

metric group Sn on the set of 2-element subsets of f1; . . . ; ng. Then the following are

equivalent:

(a) G is synchronizing;

(b) G is separating;

(c) n is odd.

Theorem 1.3. Let nb 7, and let G be the permutation group induced by the sym-

metric group Sn on the set of 3-element subsets of f1; . . . ; ng. Then the following are

equivalent:

(a) G is synchronizing;

(b) G is separating;

(c) n is congruent to 2, 4 or 5 ðmod 6Þ and n > 8.

The aim of this paper is to extend these results to larger values of k; we achieve

a complete result for k ¼ 4 (using methods based on the work of Delsarte on

association schemes, which will hopefully extend to larger values of k) and a con-

jecture about the situation when n is su‰ciently large in terms of k.

2. Steiner systems and the main conjecture

An association scheme is a collection fA0; . . . ;Asg of symmetric zero-one matrices,

with A0 ¼ I , whose sum is the all-1 matrix, and having the property that the linear

span (over the real numbers) of the matrices is an algebra (closed under matrix

multiplication), called the Bose–Mesner algebra of the scheme. See [2], [7] for fur-
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ther details. (Note that Delsarte uses a slightly more general definition, but his

important examples fit the definition given here.)

Given an association scheme as above, each matrix Ai for i > 0 is the adja-

cency matrix of a graph, as indeed are the sums of some of these matrices. For

I J f1; . . . ; sg, we denote by GI the graph whose adjacency matrix is
P

i A I Ai.

Such a graph will be called non-trivial if it is neither complete nor null, that is, if

I A j and I A f1; . . . ; sg. Note that the complement of the graph GI is Gf1;...; sgnI .
An important property of graphs in an association scheme is that, in any such

graph, the product of the clique number and the coclique number is at most the

number of vertices. (They share this property with vertex-transitive graphs; nei-

ther class of graphs includes the other.)

Adapting the definitions from permutation group theory given above, we say

that an association scheme is non-synchronizing if there is a non-trivial graph in

the scheme with clique number equal to chromatic number, and is synchronizing

otherwise; moreover, the scheme is non-separating if there is a non-trivial graph

in the scheme such that the product of its clique number and its coclique number

is equal to the number of vertices, and is separating otherwise.

In this paper we are concerned with the Johnson scheme. This is the asso-

ciation scheme Jðn; kÞ whose vertices are the k-element subsets of an n-element

set (without loss of generality f1; . . . ; ng); for each i with 0a ia k, we take the

matrix with rows and columns indexed by the vertices, having ðA;BÞ entry 1 if

jABBj ¼ i, and 0 otherwise. It is convenient to change the order of the indices

by calling this matrix Ak�i. Then A0 is the identity matrix, and the other matrices

in the scheme are A1; . . . ;Ak. For I J f1; . . . ; kg, we let AI ¼
P

i A I Ai, and let GI

be the graph with adjacency matrix AI .

While this numbering seems a little odd, our notation is chosen to agree with

that of Delsarte [7], who considered this scheme in detail and gave the eigen-

values of the matrices in the scheme in terms of Eberlein polynomials, as we will

discuss.

Two particular cases will be very important, so we introduce a di¤erent nota-

tion for them:

• Dtðn; kÞ ¼ Gfk�tþ1;...;kgðn; kÞ, the graph in which two k-sets are joined if they

intersect in fewer than t points;

• Ftðn; kÞ ¼ Gf1;...;k�tgðn; kÞ, the complement of Dtðn; kÞ, in which two k-sets

are joined if they intersect in at least t points.

A Steiner system Sðt; k; nÞ, for 0 < t < k < n, is a collection B of k-subsets

of f1; . . . ; ng with the property that any t-subset of f1; . . . ; ng is contained in a

unique member of B. It is well-known that, for 0a ia t� 1, the number of

members of B containing an i-subset of f1; . . . ; ng is n�i
t�i

� �
= k�i

t�i

� �
, independent

of the choice of i-set. Thus necessary conditions for the existence of Sðt; k; nÞ
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are that

k � i

t� i

� �
divides

n� i

t� i

� �
for 0a ia t� 1:

We refer to these as the divisibility conditions. In a remarkable recent result,

Keevash [15] showed:

Theorem 2.1. There exists a function F such that, if nbFðt; kÞ and the divisibility

conditions are satisfied, then a Steiner system Sðt; k; nÞ exists.

The connection with what went before is that the set of blocks of a Steiner

system Sðt; k; nÞ is a clique in the graph Dtðn; kÞ, of size n
t

� �
= k

t

� �
. Moreover, there

is a coclique in this graph of size n�t
k�t

� �
, consisting of all the k-sets containing a

fixed t-set. (We say that such a cocloque is of EKR type, after the theorem of

Erdős, Ko and Rado, asserting that they are the largest cocliques provided that n

is su‰ciently large.)

Moreover, it is easily checked that

n� t

k � t

� �
� n

t

� ��
k

t

� �
¼ n

k

� �
:

So, if a Steiner system Sðt; k; nÞ exists, then the product of the clique number and

coclique number in Dtðn; kÞ is equal to the number of vertices, and the Johnson

scheme Jðn; kÞ is non-separating.
Our main conjecture is that, asymptotically, the converse holds:

Conjecture 2.2. There is a function G such that, if nbGðkÞ and the Johnson

scheme Jðn; kÞ is non-separating, then there exists a Steiner system Sðt; k; nÞ for

some t with 0 < t < k.

Putting this conjecture together with Keevash’s theorem, we can re-formulate

it as follows:

Conjecture 2.3. There is a function H such that, if nbHðkÞ, then the Johnson

scheme is non-separating if and only if the divisibility conditions for Sðt; k; nÞ are

satisfied for some t with 0 < t < k.

What about synchronization? We first observe that, for su‰ciently large n, the

graph Dtðk; nÞ cannot have clique number equal to chromatic number. First we

note the exact bound in the Erdős–Ko–Rado theorem, proved by Wilson [22]:

Theorem 2.4. Suppose that n > ðtþ 1Þðk � tþ 1Þ. Then a coclique in the graph

Dtðn; kÞ has size at most n�t
k�t

� �
, with equality if and only if it is of EKR type.
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Theorem 2.5. For t < k, there is no partition of the set of k-subsets of an n-set into

cocliques of EKR type in the graph Dtðn; kÞ.

Proof. First we note that, if kb 2t, then any two t-sets are contained in some

k-set; so sets of EKR type intersect. So we may assume that k < 2t.

A set S of EKR type consists of all the k-sets containing a fixed t-set T , which

we call its kernel; we denote S by SðTÞ. Now, if T1 and T2 are t-sets with

jT1BT2jb 2t� k, then jT1AT2ja k, and so SðT1ÞBSðT2ÞA j. So, in a family

of pairwise disjoint sets of EKR type, the kernels are t-sets which intersect in at

most 2t� k � 1 points.

The number of kernels in such a collection is at most n
2t�k

� �
= t

2t�k

� �
; so we are

done if we can show that

n

t

� ��
k

t

� �
>

n

2t� k

� ��
t

2t� k

� �
:

For this, it is enough to show that the following claims are true:

(i)
n

2t� k

� �
t!ðn� 2tþ kÞ!

k!ðn� tÞ! ¼ n

t

� �
t

2t� k

� ��
k

t

� �
;

(ii)
�
t!ðn� 2tþ kÞ!

�
=
�
k!ðn� tÞ!

�
> 1.

For (i), we have

n

t

� �
t

2t� k

� ��
k

t

� �
¼ n!

ðn� 2tþ kÞ!ð2t� kÞ!
t!ðn� 2tþ kÞ!

k!ðn� tÞ!

¼ n

2t� k

� �
t!ðn� 2tþ kÞ!

k!ðn� tÞ! :

For (ii),

t!ðn� 2tþ kÞ!
k!ðn� tÞ! ¼

ðn� 2tþ kÞðn� 2tþ k � 1Þ . . .
�
n� 2tþ k � ðk � tÞ þ 1

�
kðk � 1Þ . . .

�
k � ðk � tÞ þ 1

�

And since n� 2tþ k > k for nb 2k we have that

t!ðn� 2tþ kÞ!
k!ðn� tÞ! > 1: r

We also have to consider the possibility that the complementary graph Ftðn; kÞ
has clique number equal to chromatic number.

The existence of cliques of size n�t
k�t

� �
in Ftðn; kÞ shows that the size of a cocli-

que in this graph is at most n
t

� �
= k

t

� �
, a fact that is easily proved directly; equality
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holds if and only if the coclique is a Steiner system. So the graph has clique num-

ber equal to chromatic number if and only if the set of k-subsets of an n-set can

be partitioned into block sets of Steiner systems Sðt; k; nÞ. A collection of Steiner

systems which partitions the set of all k-subsets is a large set. In view of this, we

further conjecture the following:

Conjecture 2.6. There is a function L such that, if nbLðkÞ, then the Johnson

scheme Jðn; kÞ is non-synchronizing if and only if there exists a large set of Steiner

triple systems Sðt; k; nÞ for some t with 0 < t < k.

Much less is known about the existence of large sets. The main results are the

following:

(a) For t ¼ 1, an Sðt; k; nÞ is simply a partition of f1; . . . ; ng into sets of size k,

which exists if and only if k divides n. A theorem of Baranyai [3] shows that

a large set of such partitions exists whenever k divides n.

(b) For t ¼ 2, k ¼ 3, Kirkman [16] showed that a Sð2; 3; nÞ exists if and only

if nC 1 or 3 ðmod6Þ. The smallest example is the Fano plane with n ¼ 7.

Cayley [6] showed that there does not exist a large set of Fano planes; indeed,

there do not exist more than two pairwise disjoint Fano planes. However,

Lu and Teirlinck [21] showed that, for all ‘‘admissible’’ n greater than 7, a

large set of Steiner triple systems exists.

(c) Kolotoğlu and Magliveras [17] have constructued large sets of projective

planes of orders 3 and 4 (that is, Sð2; 4; 13Þ and Sð2; 5; 21Þ).

It may be that large sets of Sðt; k; nÞ exist whenever the divisibility conditions

are satisfied and n is su‰ciently large. If so, then our conjecture above would

imply that, for n su‰ciently large in terms of k, the Johnson scheme Jðn; kÞ is

synchronizing if and only if it is separating. However, we are not su‰ciently con-

fident to conjecture this!

3. Small examples

An association scheme is non-separating if there is a graph in the scheme for

which the product of the clique and coclique numbers is equal to the number of

vertices. Given such a situation, there are two ways that synchronization can

fail: either there is a partition of the vertices into cocliques of maximal size, so

that the clique number and chromatic number are equal, or there is a partition

into cliques of maximal size, so that this equality holds in the complementary

graph.
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As we saw in the preceding section, if n > ðtþ 1Þðk � tþ 1Þ, then Dtðn; kÞ
cannot have clique number equal to chromatic number, since the maximum-size

cocliques are of EKR type; and complement Ftðn; kÞ has clique number equal to

chromatic number if and only if there is a large set of Steiner systems Sðt; k; nÞ.
For smaller n, non-synchronization can arise in one of two ways: either be-

cause there are other large cocliques in Dtðn; kÞ, or because one of the other graphs
GI ðn; kÞ in the association scheme has clique number equal to chromatic number.

Here are five examples. In all but one (the case n ¼ 9, k ¼ 4) it is the first of

these two ways which occurs.

The case kF 3, nF 7. In this case, for t ¼ 2, a clique is the block set of the

Sð2; 3; 7Þ, the Fano plane. Since it is a projective plane, any two lines meet in a

point, so it is a clique in the graph Gf2gð3; 7Þ. As well as cocliques of EKR type

(all 3-sets containing a given two points), there are cocliques of size 5 defined as

follows: let L be a line of the Fano plane, and take L together with the four

3-sets disjoint from it. Furthermore, the seven such sets obtained by performing

this construction for each line of the Fano plane partition the 35 sets of size 3 into

seven cocliques of size 5. So this graph has clique number equal to chromatic

number.

The case kF 3, nF 8. Again a Fano plane gives us a 7-clique in the graph

Gf2gð3; 8Þ. Now the eight 3-sets consisting of a line L, three sets each comprising

two points of L and the point outside the Fano plane, and the four sets consisting

of three of the four points of the Fano plane outside L, form a coclique; doing this

for the seven lines we obtain a partition of the 56 sets of size 3 into seven cocliques

of size 8, so this graph has clique number equal to chromatic number. Another

way of viewing this is to observe that the Fano plane has an extension to a

Sð3; 4; 8Þ whose blocks fall into 7 parallel classes with two blocks in each; the eight

3-sets contained in a block of a parallel class form a coclique, and we obtain seven

such sets, one for each parallel class.

The case kF 4, nF 9. The Steiner system Sð3; 4; 8Þ has 14 blocks, any two meet-

ing in 0 or 2 points. We can construct a set of 9 subsets of size 4, any two meeting

in 1 or 3 points, as follows: partition f1; . . . ; 9g into three sets of size 3, arranged

around a circle; now take the 4-subsets consisting of one part and a single point of

the next (in the cyclic order).

Breach and Street [4] showed that the 126 4-subsets of a 9-set can be parti-

tioned into a so-called overlarge set of nine Steiner systems Sð3; 4; 8Þ (each omit-

ting a point); indeed, this can be done in just two non-isomorphic ways, each

admitting a 2-transitive group. This gives a colouring of the graph Gf1;3gð4; 9Þ
corresponding to intersections 1 and 3. (Their proof was computational; a more

geometric proof involving triality was given by Cameron and Praeger [5].)
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The case kF 5, nF 11. An example similar to the first is obtained using the

Steiner system Sð4; 5; 11Þ, any two of whose blocks intersect in 1, 2 or 3 points.

Thus the blocks form a 66-clique in the graph Gf2;3;4gð11; 5Þ. A block together

with the six 5-sets disjoint from it form a coclique of size 7, and the 66 sets

obtained in this way form a colouring of the graph.

The case kF 5, nF 12. Again the blocks of Sð4; 5; 11Þ form a 66-clique in

Gf2;3;4gð12; 5Þ. The Steiner system has an extension to a Sð5; 6; 12Þ whose blocks

come in 66 parallel classes with two disjoint blocks in each, and the twelve 5-sets

contained in a block of a fixed parallel class form a coclique.

4. The case I F {1,k}

In this section, we deal with the case I ¼ f1; kg (or the complement I ¼ f2; . . . ;
k � 1g) of Conjecture 2.2, and show that these cannot occur if n is su‰ciently

large. In other words, taking account of the indexing used in the Johnson scheme,

we show the following.

Theorem 4.1. There is a function f such that, if nb f ðkÞ, and S and T are fam-

ilies of k-subsets of f1; . . . ; ng with the property that S is f0; k � 1g-intersecting
(that is, any two of its members intersect in 0 or k � 1 points) and T is f1; . . . ;
k � 2g-intersecting, then jSj � jT j < n

k

� �
.

Proof. The proof proceeds in three steps.

Step 1. jSja n.

To see this, consider first a ðk � 1Þ-intersecting family U of k-sets. It is easy to

see that there are just two possibilities:

(a) all members of U contain a fixed ðk � 1Þ-set;
(b) all members of U are contained in a fixed ðk þ 1Þ-set.

Next we claim that the relationPon S defined by APB if A ¼ B or jABBj ¼
k � 1 is an equivalence relation. It is clearly reflexive and symmetric, so suppose

that APB and BPC. Then jAABj ¼ jBACj ¼ k þ 1, and so jABCjb k � 2,

whence jABCj ¼ k � 1 as required.

Now if two members of S belong to distinct equivalence classes, they are

disjoint. So the support of S (the set of points lying in some element of S) is the

union of the supports of the equivalence classes, which are pairwise disjoint. We

have seen that the number of sets in each equivalence class does not exceed the

cardinality of its support; so the same holds for S, and the claimed inequality

follows.
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For the next step, we note that T is an intersecting family. We split the proof

into two subcases.

Step 2. If the intersection of the sets in T is non-empty, then jT ja n�1
k�2

� �
=ðk � 1Þ.

For let x be the unique point in the intersection. Then

T ¼
�
fxgAB : B a T 0�;

where T 0 is a f0; . . . ; k � 3g-intersecting family of ðk � 1Þ-subsets of f1; . . . ; ngn
fxg; in other words, a partial Sðk � 2; k � 1; n� 1Þ. So jT j ¼ jT 0ja n�1

k�2

� �
=

ðk � 1Þ, the right-hand side being the number of blocks in a hypothetical Steiner

system with these parameters.

Step 3. If the intersection of the sets in T is empty, then jT ja n�1
k�1

� �
� n�k�1

k�1

� �
þ 1.

Since T is an intersecting family, this is just the conclusion of the Hilton–

Milner theorem [14].

Conclusion of the proof. We have

n

k

� �
¼ jSj � jT ja

n n�1
k�2

� �
=ðk � 1Þ if 7TA j;

n
�

n�1
k�1

� �
� n�k�1

k�1

� �
þ 1

	
if 7T ¼ j:

8<
:

But in each case, for fixed k, the left-hand side of the inequality is a polynomial of

degree k in n, whereas the right-hand side is a polynomial of degree k � 1; thus the

inequality holds for only finitely many values of n. r

We remark that, in fact, we know of no examples meeting the bound for this

case with n > 2k. So as well as extending these techniques to other cases, the

problem of deciding whether the bound is always strict remains.

In the next section we use the fact proved in the first part of the above proof:

Corollary 4.2. For kb 3 and n > 2k, a f0; k � 1g-intersecting family of k-subsets

of f1; . . . ; ng has size at most n.

Indeed, it is not too hard to find the precise upper bound; but we do not

require this.

5. The case kF 4

5.1. Background. To handle the case k ¼ 4, we use the results of Delsarte [7]

on association schemes. We begin with a brief introduction to this material, but

we also refer to [11], Chapter 6 where some of the computations that we omit are

done in detail.
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Suppose that the matrices A0; . . . ;Ak�1 (with A0 ¼ I ) span the Bose–Mesner

algebra of an association scheme on v points. Since this algebra is a commutative

algebra of real symmetric matrices, the matrices are simultaneously diagonalis-

able: that is, there are idempotent matrices E0; . . . ;Ek�1 spanning the same alge-

bra, with E0 ¼ J=v, where J is the all-1 matrix. Thus, for some coe‰cients PkðiÞ
and QkðiÞ, we have

Aj ¼
Xk�1

i¼0

PjðiÞEi;

Ej ¼ v�1
Xk�1

i¼0

QjðiÞAi:

Here the numbers PjðiÞ for i ¼ 0; . . . ; k � 1 are the eigenvalues of Aj. The ma-

trices with ði; jÞ entry PjðiÞ and QjðiÞ are called the matrix of eigenvalues and

dual matrix of eigenvalues of the scheme.

Delsarte used these matrices to provide bounds on the clique and coclique

numbers of graphs in an association scheme:

Theorem 5.1 ([7], Theorem 5.9; see also [11]). LetA be an association scheme on v

vertices and let G be the union of some of the graphs in the scheme. If C is a clique

and S is a coclique in G, then jCj � jSja v. If equality holds and x and y are the

respective characteristic vectors of C and S, then ðxEjx
>ÞðyEjy

>Þ ¼ 0 for all j > 0.

In the above notation, the inner distribution a of C is the vector where

ai ¼ xAix
>=jCj for each i a f0; . . . ; dg (and A has d classes). Now if Q is the

dual matrix of eigenvalues of A, then

ðaQÞj ¼
v

jCj xEjx
>

for all jb 0. This vector is sometimes known as the MacWilliams transform of C.

The degree set of a subset X of the vertices of G is the set of nonzero indices i

for which the i-th coordinate of its inner distribution is nonzero. The dual degree

set of X is the set of nonzero indices j for which the j-th coordinate of its Mac-

Williams transform is nonzero. Two subsets X and Y of the vertices of G are

design-orthogonal if their dual degree sets are disjoint. Similarly, X and Y are

code-orthogonal if their degree sets are disjoint.

Corollary 5.2. Suppose a clique C and coclique S meet the bound; jCj � jSj ¼ v.

Then the Schur product of the MacWilliams transforms of C and S equals

ðv; 0; . . . ; 0Þ.
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Corollary 5.3. Suppose G is a graph from an association scheme A on v vertices,

and suppose aðGÞoðGÞ ¼ v. Then oðGÞ ¼ 1� degðGÞ=t, where t is the smallest

eigenvalue of G, and in particular, t divides degðGÞ.

Proof. Let t be the smallest eigenvalue of G. By the result of Lovász [19],

aðGÞa v
1�degðGÞ=t . So since aðGÞoðGÞ ¼ v, we have vaoðGÞv=ð1� degðGÞ=tÞ

and hence 1� degðGÞ=taoðGÞ; that is, we obtain equality oðGÞ ¼ 1� degðGÞ=t.
r

We can find a simple expression for the eigenvalues of the Johnson scheme

from Section 4.2.1 of Delsarte’s PhD thesis. The analogue of the Krawchouk

polynomials of the Hamming scheme to the Johnson scheme are the Eberlein poly-

nomials, or dual Hahn polynomials. Given an integer 0a ja k, we define the

Eberlein polynomial EjðxÞ in the indeterminate x, as follows:

EjðxÞ :¼
Xj

t¼0

ð�1Þ j�t k � t

j � t

� �
k � x

t

� �
n� k þ t� x

t

� �
:

The ði; jÞ-entry of the matrix of eigenvalues of P will be denoted PjðiÞ. Now The-

orem 4.6 of Delsarte [7] asserts:

Theorem 5.4. The matrix P of eigenvalues and the dual matrix of eigenvalues Q

of the Johnson scheme Jðn; kÞ are given by

PjðiÞ ¼ EjðiÞ; Qið jÞ ¼
n
i

� �
� n

i�1

� �
k
j

� 	
n�k
j

� 	 EjðiÞ;

for i; j ¼ 0; 1; . . . ; k.

5.2. The main result.

Theorem 5.5. Let nb 10 and I a ff1; 3; 4g; f1; 3g; f1; 4g; f1; 2; 4gg, and let D :¼
Gðn; 4; IÞ. Then oðDÞaðDÞ < jVDj ¼ n

4

� �
.

Proof. A straight-forward calculation shows that the matrix P of eigenvalues, and

the dual matrix Q, of the Johnson scheme Jðn; 4Þ are

P ¼

1 4ðn� 4Þ 3ðn� 5Þðn� 4Þ 2
3 ðn� 6Þðn� 5Þðn� 4Þ 1

24 ðn� 7Þðn� 6Þðn� 5Þðn� 4Þ
1 3n� 16 3

2 ðn� 8Þðn� 5Þ 1
6 ðn� 16Þðn� 6Þðn� 5Þ � 1

6 ðn� 7Þðn� 6Þðn� 5Þ
1 2ðn� 7Þ 1

2

�
ðn� 21Þnþ 92

�
�ðn� 9Þðn� 6Þ 1

2 ðn� 7Þðn� 6Þ
1 n� 10 �3ðn� 8Þ 3n� 22 7� n

1 �4 6 �4 1

0
BBBBB@

1
CCCCCA
;
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Q ¼

1 n� 1 1
2 ðn� 3Þn 1

6 ðn� 5Þðn� 1Þn 1
24 ðn� 7Þðn� 2Þðn� 1Þn

1 1
4 ð3n� 7Þ � 3

n�4
ðn�7Þðn�3Þn

4ðn�4Þ
ðn�10Þðn�5Þðn�1Þn

24ðn�4Þ � ðn�7Þðn�2Þðn�1Þn
24ðn�4Þ

1
ðn�8Þðn�1Þ

2ðn�4Þ
ðn�3Þnððn�21Þnþ92Þ

12ðn�5Þðn�4Þ � ðn�8Þðn�1Þn
6ðn�4Þ

ðn�7Þðn�2Þðn�1Þn
12ðn�5Þðn�4Þ

1
ðn�16Þðn�1Þ

4ðn�4Þ � 3ðn�9Þðn�3Þn
4ðn�5Þðn�4Þ

ðn�1Þnð3n�22Þ
4ðn�6Þðn�4Þ � ðn�7Þðn�2Þðn�1Þn

4ðn�6Þðn�5Þðn�4Þ

1 � 4ðn�1Þ
n�4

6ðn�3Þn
ðn�5Þðn�4Þ � 4ðn�1Þn

ðn�6Þðn�4Þ
ðn�2Þðn�1Þn

ðn�6Þðn�5Þðn�4Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Case I F {1, 3, 4}: The complement D of D is a graph of an association scheme (be-

cause it is Gðn; 4; f2gÞ. Consider the third column of P. The eigenvalues of D are

3ðn� 5Þðn� 4Þ; 3
2
ðn� 8Þðn� 5Þ; 1

2
ðn2 � 21nþ 92Þ; 24� 3n; 6:

The degree of D is the first eigenvalue 3ðn� 5Þðn� 4Þ. Most of the time, the

fourth eigenvalue 24� 3n is the smallest eigenvalue, certainly when nb 11, when

it is less than the third eigenvalue. So let us assume that nb 11. By Corollary 5.3,

24� 3n divides 3ðn� 5Þðn� 4Þ, and hence 8� n divides ðn� 5Þðn� 4Þ. So by

elementary number theory, we have n a f11; 12; 14; 20g.
The cases n ¼ 9; 10; 11; 12; 14; 20 can be settled each in turn. First, for n ¼ 9,

the minimum eigenvalue of D is �8, and the degree is 65. So by Corollary 5.3,

oðDÞaðDÞ < n
4

� �
. For the remaining cases, we can calculate oðDÞ with GAP/

GRAPE [10], [20]1 and compare it to 1� degðDÞ=t, where t is the smallest eigen-

value.

n oðDÞ 1� degðDÞ=t

10 5 11

11 6 15

12 9 15

14 13 16

20 13 21

We find that oðDÞ is never equal to 1� degðDÞ=t and so by Corollary 5.3,

oðDÞaðDÞ < n
4

� �
.

Case I F {1, 2, 4}: This time, the complement graph D is Gðn; 4; f3gÞ. The eigen-

values of D are

2

3
ðn� 6Þðn� 5Þðn� 4Þ; 1

6
ðn� 16Þðn� 6Þðn� 5Þ;�ðn� 9Þðn� 6Þ; 3n� 22;�4

For nb 13, the third eigenvalue of D is the smallest in the spectrum of D. So by

Corollary 5.3, n� 9 divides 2
3 ðn� 5Þðn� 4Þ and hence n a f13; 14; 17; 19; 29; 49g

1The share package GRAPE for the computer algebra system GAP contains an e‰cient clique finder.
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(by basic elementary number theory). For n a f9; 11g, the smallest eigenvalue

of D does not divide the degree. Thus by Corollary 5.3, we are left with n a
f10; 12; 13; 14; 17; 19; 29; 49g to check. The cases n ¼ 10; 12; 13; 14; 17; 19; 29; 49

can be settled each in turn with the computer algebra system GAP/GRAPE:

n oðDÞ 1� degðDÞ=t

10 2 5

12 3 9

13 3 13

14 3 13

17 4 14

19 4 15

29 7 21

49 12 34

Case I F {1, 3}: Let Q be the dual matrix of eigenvalues. The second column of

Q is

c ¼ n� 1

4ðn� 4Þ
�
4ðn� 4Þ; 3n� 16; 2ðn� 8Þ; n� 16;�16

�
:

Let u ¼ ð1; a; 0; x� a� 1; 0Þ and v ¼ ð1; 0; b; 0; y� b� 1Þ such that a; bb 0,

x� a� 1; y� b� 1b 0 and xy ¼ n
4

� �
. So u and v are the inner distributions of

an arbitrary clique and coclique of GI , respectively, attaining the clique-coclique

bound. The second entries of uQ and vQ are

ðuQÞ1 ¼ uc> ¼ n� 1

4ðn� 4Þ
�
ð2aþ xþ 3Þn� 16x

�

ðvQÞ1 ¼ vc> ¼ n� 1

4ðn� 4Þ 2
�
ðbþ 2Þn� 8y

�
:

By Corollary 5.2, the product of these quantities is zero, which gives us two

scenarios: x ¼ n 2aþ3
16�n

or y ¼ n 1
8 ðbþ 2Þ. We will consider the former, with the

additional assumption that xy ¼ n
4

� �
. This then yields an expression for y:

y ¼ �ðn� 16Þðn� 3Þðn� 2Þðn� 1Þ
48aþ 72

:

Now a; yb 0, which implies that na 16. So we will assume for the moment that

nb 16. Therefore,

x ¼ ðn� 3Þðn� 2Þðn� 1Þ
3ðbþ 2Þ ; y ¼ 1

8
ðbþ 2Þn:
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We now consider the two equations ðuQÞ2ðvQÞ2 ¼ 0 and ðuQÞ4ðvQÞ4 ¼ 0, with the

above values of x and y substituted in:

�
bðn� 10Þ þ 6ðn� 4Þ

��
aðbþ 2Þðn� 8Þ þ bð2n� 13Þ

� ðn� 4Þ
�
ðn� 10Þnþ 7

��
¼ 0

aðbþ 2Þðn� 8Þ þ 18ðn� 4Þ � bðn2 � 12nþ 38Þ ¼ 0:

The second equation gives us a value for a, which we can substitute into the first

equation. This results in the following equation:

ðn� 5Þ
�
bðn� 10Þ þ 6ðn� 4Þ

�
ðb� nþ 4Þ ¼ 0:

However, nA 5 and bðn� 10Þ þ 6ðn� 4ÞA 0 (as bb 0 and n > 10), so it follows

that b ¼ n� 4 and hence

x ¼ ðn� 3Þðn� 1Þ
3

; y ¼ 1

8
ðn� 2Þn:

Now suppose we have a f1; 3g-clique S of size x ¼ ðn� 1Þðn� 3Þ=3. Consider the

members of S containing a point p, with p removed from each. This is a family of

3-sets of an ðn� 1Þ-set, any two intersecting in 0 or 2 elements. By Corollary 4.2,

we know that there are at most n� 1 of them. Now the standard double count

gives

jSja nðn� 1Þ=4:

But this is smaller than ðn� 1Þðn� 3Þ=3 so long as n is at least 16. This leaves the

cases 10a na 16 to be considered (since we have excluded n ¼ 9).

n oðGI Þ aðGI Þ

10 9 14

11 9 14

12 9 15

13 9 15

13 13 15

14 13 21

15 13 21

16 13 28

Case I F {1, 4}: In this case, Theorem 4.1 shows that the result holds for su‰-

ciently large n; indeed, the proof there works for nb 46. However, the intervening

values are far too large for computation, so we use the Q-matrix methods.
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Let u ¼ ð1; a; 0; 0; x� a� 1Þ and v ¼ ð1; 0; b; y� b� 1; 0Þ such that a; bb 0,

x� a� 1; y� b� 1b 0 and xy ¼ n
4

� �
. So u and v are the inner distributions of

an arbitrary clique and coclique of GI , respectively, attaining the clique-coclique

bound. The second coordinates of uQ and vQ are

ðuQÞ1 ¼ uc> ¼ ðn� 1Þ
4ðn� 4Þ

�
ð3aþ 4Þn� 16x

�
;

ðvQÞ1 ¼ vc> ¼ ðn� 1Þ
4ðn� 4Þ

�
ðbþ yþ 3Þn� 16y

�
:

By Corollary 5.2, the product of these quantities is zero, which gives us two

scenarios:

(i) x ¼ n 3aþ4
16 , or

(ii) y ¼ n bþ3
16�n

.

Since yb 0, Case (ii) does not arise if we assume nb 17, which we will for now.

So suppose we have Case (i). If we now consider the equation ðuQÞ2ðvQÞ2 ¼ 0, we

have �
ðn� 1Þ

�
aðn� 11Þ þ 2ðn� 8Þ

�
þ 24x

�
�
�
ðn� 1Þ

�
bðn� 11Þ þ 6n� 39

�
� 9ðn� 9Þy

�
¼ 0: ð1Þ

Assuming (i), that is x ¼ nð3aþ 4Þ=16, Equation (1) becomes
�
2ðaþ 2Þn� 11a� 16

��
ðn� 1Þ

�
bðn� 11Þ þ 6n� 39

�
� 9ðn� 9Þy

�
¼ 0: ð2Þ

However, if the first term is zero, then a ¼ ð16� 4nÞ=ð2n� 11Þ which is negative

for nb 6; a contradiction. Therefore, the second term in Equation (2) is zero. In

other words, we have an expression for b in terms of n and y:

b ¼ �6n2 þ 9nyþ 45n� 81y� 39

ðn� 11Þðn� 1Þ :

If we now consider the equation ðuQÞ3ðvQÞ3 ¼ 0, upon substitution of our value

for b, we obtain an equation relating a, y and n:

�
aðn2 � 18nþ 68Þ þ 4ðn� 8Þðn� 4Þ

�
ð2n4 � 34n3 � 9n2y

þ 181n2 þ 123ny� 335n� 426yþ 186Þ ¼ 0: ð3Þ

Having the first term in Equation (3) equal to zero leads to a contradiction, since

in this case we would have

a ¼ � 4ðn2 � 12nþ 32Þ
n2 � 18nþ 68

228 M. Aljohani, J. Bamberg and P. J. Cameron



which is negative for nb 13. So let us now assume nb 13. Then the second term

in Equation (3) is zero, which gives us an expression for y in terms of n (and we

also obtain an expression for x):

x ¼ nðn� 3Þð3n2 � 41nþ 142Þ
8ð2n2 � 28nþ 93Þ ;

y ¼ ðn� 1Þðn� 2Þð2n2 � 28nþ 93Þ
9n2 � 123nþ 426

:

However, xa n (Corollary 4.2), which implies that na 8; a contradiction.

This leaves us now to consider by computer the cases where 9a na 16. In

each case, we see that the clique number and coclique number have a product

that does not attain n
4

� �
.

n oðGI Þ aðGI Þ

9 6 12

10 10 15

11 10 15

12 10 15

13 10 15

14 11 15

15 15 15

16 15 15 r

Corollary 5.6. For k ¼ 4, Conjectures 2.2 and 2.3 hold for nb 10.

This follows from the main theorem together with well-known results of

Hanani on the existence of Steiner systems Sðt; 4; nÞ [12], [13]. Note that n ¼ 9 is

a genuine exception, as we saw in Section 3.

We conclude that, if nb 10, then the permutation group induced by Sn on

4-sets fails to be separating if and only if one of the following holds:

• nC 0 ðmod 4Þ (so that Sð1; 4; nÞ exists),

• nC 1 or 4 ðmod 12Þ (so that Sð2; 4; nÞ exists),

• nC 2 or 4 ðmod 6Þ (so that Sð3; 4; nÞ exists);

summarising, nC 0; 1; 2; 4; 8; 10 ðmod 12Þ. What about synchronization? Wil-

son’s theorem [22] ensures that maximal cocliques are of EKR type, so G is non-

synchronizing if and only if a large set of Steiner systems exists. Baranyai’s theo-

rem [3] ensures that G is not synchronizing if nC 0 ðmod 4Þ, but existence of large
sets of Steiner systems in the other cases is unresolved (except for t ¼ 2, n ¼ 13,

[17]).
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In particular, the existence of a Steiner system Sð3; 4; 10Þ shows that the sym-

metric group S10 acting on 4-sets is non-separating. However, it is synchronizing.

Our above results show that synchronization could only fail if there were a large

set of seven pairwise disjoint Sð3; 4; 10Þ systems. However, Kramer and Mesner

[18] showed that there cannot be more than five such systems.

Thus, for k ¼ 4, synchronization and separation fail to be equivalent for Sn on

k-sets, unlike the cases k ¼ 2 and k ¼ 3 described earlier.

6. Projective planes

The constructions in Section 3 involved the fact that, in certain Steiner systems,

certain cardinalities of block intersection do not occur. There are relatively few

examples of such systems: the only ones known are projective planes, Sð3; 4; 8Þ,
Sð4; 5; 11Þ, Sð5; 6; 12Þ, Sð3; 6; 22Þ, Sð4; 7; 23Þ and Sð5; 8; 24Þ.

A projective plane of order q is a Steiner system Sð2; qþ 1; q2 þ qþ 1Þ for

some integer q > 1. Projective planes of all prime power orders exist, and none

are known for other orders.

A projective plane has the property that any two of its blocks meet in a point.

Hence it is a clique in either of the graphs Gf>k�2gðn; kÞ or Gk�1ðn; kÞ, with

k ¼ qþ 1 and n ¼ q2 þ qþ 1. In the first of these graphs, cocliques of maximum

cardinality are of EKR type, and we have

q2 þ q� 1

q� 1

� �
� ðq2 þ qþ 1Þ ¼ q2 þ qþ 1

qþ 1

� �
;

so non-separation holds for this graph: these sets (all k-sets containing two given

points) also show non-separation for G1ðn; kÞ. Also, by Theorem 2.5, we cannot

partition the k-sets into subsets of EKR type.

In the case q ¼ 2, in our example above, we observed that there were other

cocliques, so that the possibility of a colouring with q2 þ qþ 1 colours cannot be

ruled out; and indeed we saw that such a colouring exists.

Conjecture 6.1. For q > 2, a coclique of maximum size in the graph Gqðq2 þ qþ 1;

qþ 1Þ must consist of all the ðqþ 1Þ-sets containing two given points; so the chro-

matic number of this graph is strictly larger than q2 þ qþ 1.

A simple computation shows that the conjecture is true for q ¼ 3 and for

q ¼ 4.

On the other hand, the truth of this conjecture would probably not give an

infinite family of examples which are synchronizing but not separating. Maglive-

ras conjectured that large sets of projective planes of any order q > 2 exist; the

existence is shown for q ¼ 3 and q ¼ 4 in [17].

230 M. Aljohani, J. Bamberg and P. J. Cameron



7. Conclusion

The computations with rational functions in Section 5 were performed with Math-

ematica [23]; computations of clique number in special cases were done with GAP

and its package GRAPE, as already noted.

The techniques we used to prove the separation conjecture for k ¼ 4 are ame-

nable to the use of traditional computer algebra systems such as Mathematica,

and it should be possible to settle several more values of k.

In the arguments for I ¼ f1; 3g and I ¼ f1; 4g, we saw that the sizes of a clique

and a coclique whose product is equal to the number of vertices can be determined

from the Q-matrix of the association scheme. Is this true in general? (It does hold

for two-class association schemes, that is, strongly regular graphs.)

The synchronization question is likely to be harder; general results on the

existence or nonexistence of large sets of Steiner systems are likely to require a sig-

nificant new idea, and even particular cases involve quite large computations with

GAP or more specialised software. Perhaps new techniques in hypergraph decom-

position will help.

There seems plenty of scope for extending these results to other primitive asso-

ciation schemes.
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