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Abstract. By a monohedral spherical tiling we mean a decomposition of the sphere
by geodesic congruent polygons. Here, making use of GeoGebra, a well known free
interactive mathematics software, we show how to generate new classes of monohedral
non-convex triangular and new non-convex pentagonal spherical tilings, changing the
side gluing rules of the regular spherical tetrahedral tiling, by means of a local action
of particular subgroups of spherical isometries. In both cases each face has p as area
measure.

In relation to the new class of pentagonal tilings, we describe some of their properties
and show the existence, in a special case, of an associated dihedral triangular spherical til-
ing, that is, a tiling composed by two sets of congruent triangles.

These classes of spherical tilings have emerged as a result of an interative construction
process, only possible by the use of newly produced GeoGebra tools and the dynamic inter-
action capabilities of this software.
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1. Introduction

In this paper our main result is the description of the combinatorial and geometric

characterisation of a new one-parameter class of edge-to-edge spherical tilings,

denoted by PðC;rÞr A ½0;p�, expanding the knowledge of monohedral spherical tilings

by triangles and pentagons, that is, tilings of the sphere in which all spherical faces

are congruent among them. This one-parameter class emerged as a result of an

iterative construction process, starting from a particular subset of S2 and particu-

lar sets of spherical isometries ruling the gluing side rules of the new constructed

tilings (for details, see Section 4), making use of new produced GeoGebra tools

and the dynamic interaction capabilities of this software.



There are many tools to work with spherical geometry in an interactive way,

as Sphaerica [8], Spherical Easel [1], and Povray [5]. However, for our purposes

we need to work with more flexible tools and commands, in particular, we need

to obtain in real time the orbit of a set of spherical points under the action of a

(sub)group of spherical isometries. For that, GeoGebra [10] seems the best option

for two crucial reasons: the widespread use of GeoGebra and the possibility of in-

teraction with geometrical and algebraic representations simultaneously. In fact,

GeoGebra has several geometrical representations in 2 and 3 dimensions allow-

ing the interaction with spherical points in a diversity of ways. Besides, the alge-

braic capabilities of GeoGebra allow the study and the induction of some geomet-

rical properties which may be visualized in real time. Among its many features,

GeoGebra allows the creation of new tools and commands, dealing with se-

quences of various geometric and algebraic objects and using logical and heuristic

procedures, it allows, to certify some properties of these same objects, for example,

to be congruent with each other. [7].

A systematic study of spherical tilings started with D. Sommerville [11] who

has stablished part of the classification of spherical tilings by isosceles triangles

having analysed a very particular case by scalene triangles [6], p. 467. H. Davies,

in 1967, presents an incomplete classification of triangular monohedral tilings of

the sphere [4] omitting many details which were fixed latter on.

Tilings of the sphere by right triangles were obtained by Yukako Ueno and

Yoshio Agaoka in 1996 [14]. Later, in 2002, the same authors [15] obtain the

complete classification of monohedral edge-to-edge triangular spherical tilings.

It should be noted that triangular spherical folding tilings were studied by Ana

Breda [2] and their classification was obtained in 1992, these being a subset of

the triangular monohedral spherical tilings .

The regular dodecahedral spherical tiling is a well known tiling of the sphere

by twelve regular pentagonal spherical polygons. More recently, all edge-to-edge

tilings of the sphere by 12 congruent convex pentagons it has been classified by

Honghao, Shi and Yan [9].

The classification of spherical tilings by triangles is not yet completed. In fact,

little is known when the condition of being monohedral or edge-to-edge is dropped

out. A systematic study to enumerate and classify all spherical tilings is far from

being complete.

In the next Section 2, we begin by presenting a construction process of mono-

hedral spherical tilings of area p, this process depends on a spherical set locally

under the action of a subgroup of spherical isometries. We will end up with

two classes. In Section 3 we will describe the immersion of the class, TðC;rÞ, of
monohedral spherical tilings by four triangles, followed, in Section 4, by the

description of the finding of PðC;rÞ, a class of monohedral spherical tiling by non-

convex pentagons of area p. Finally, in Section 5, we present our conclusions
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about the use of GeoGebra in the present work, as well as our proposals for

upcoming research.

From now on, all the tilings in consideration are edge-to-edge, unless stated

otherwise.

2. A class of monohedral tilings of the sphere of area p

Let S2 be the sphere centred in O ¼ ð0; 0; 0Þ and radius 1, c a great circle of S2,

and A and B two distinct points in c such that dAOBAOB ¼ arcsin
�
1
3

�
þ 1

2 p. Chose one

point C a S2 such that ½ABC� defines an equilateral triangle with angles 2p
3 . Let

Q, R and S be the midpoints of the spherical segments
_
AB,

_
BC and

_
CA, respec-

tively. Let P a
_
QC such that dQOPQOP ¼ r, r a ½0; p�. Let C ¼ fX a S2 : X a

_
PS4X

a
_
PR4X a

_
PQg. In order to obtain a spherical tiling, we use GeoGebra, apply-

ing spherical isometries to the set C (Fig. 1(a)). All the isometries that will be

applied to C fix the points A, B, C, Q, S, R. In the case illustrated in Figure 1(b),

only the point P will be a vertex of the tiling and the points Q and R will be mid-

points of edges of the tiling. In case of Figure 1(c), the points Q, R will be vertices

of the tiling and S will be the midpoint of an edge of the tiling. Since the points Q,

P, R are midpoints of the spherical equilateral triangle ABC of angles 2p
3 , we have:

_
QS ¼ _

SR ¼ _
RQ ¼ p

2
;

_
PS ¼ _

PR

dABCABC ¼ dBCABCA ¼ dCABCAB ¼ 2p

3
; dBSQBSQ ¼ dSQBSQB ¼ dQRAQRA ¼ dAQRAQR ¼ p

4
:

The lengths of the arcs in C (arcs emerging from P) and the angles around P are

defined in function of r, using the spherical relations for triangles. Accordingly,

Figure 1. (a) Representation of the set C. (b) monohedral triangular spherical tiling,
TðC;p=10Þ. (c) monohedral pentagons spherical tiling, PðC;p=10Þ.
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we have:

_
PQ ¼ r;

_
PR ¼ _

PS ¼ arccos

ffiffiffi
2

p

2
sinðrÞ

 !
;

dQPSQPS ¼ dQPRQPR ¼ arccos
�cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðrÞ2

q
0B@

1CA;

dPRAPRA ¼ dPSBPSB ¼ p

4
þ arccos

ffiffiffi
2

p
cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosðrÞ2
q

0B@
1CA:

In order to obtain the two classes of monohedral spherical tilings, TðC;rÞ and
PðC;rÞ, respectively by triangles and pentagons, see Figure 1, we consider the rota-

tions RðP;rÞ, about the axis OP, of angle r, r a ½0; p�, and two sets of spherical iso-

metries I1 and I2 defined bellow.

Let be I1 ¼ fRðQ;pÞ;RðS;pÞ;RðR;pÞg and I2 ¼ fRðS;pÞ;RðC;2p=3Þg.
For each value of r a ½0; p�, the action of I1 on C defines a class of spherical

monohedral triangular tilings denoted by TðC;rÞ.
On the other hand, for each value of r a ½0; p�, we may construct a new class of

monohedral tilings by non-convex pentagons denoted by PðC;rÞ.
In this case the four tiles of PðC;rÞ are obtained using I2 and applying the pro-

cedure indicated bellow, see Figure 1 (c).

Let

1. C0 ¼ C;

2. C1 ¼ RðS;pÞðCÞ;
3. C2 ¼ RðC;2p=3ÞðC1Þ;
4. C3 ¼ RðS;pÞðC2Þ.

Then, PðC;rÞ ¼
S3

i¼0 C i.

Let us see how GeoGebra had been used to generate the class of tilings TðC;yÞ,
y a ½0; 2p� and acted as support for some of the results presented here.

The first geometric construction was done starting from a point P in
_
QC and

joinning P to the middle points of
_
AC and

_
BC, giving rise to C. Applying to C

each one of the isometries in I1, a spherical configuration emerges.

The code used for visualizing, for each value of y, this configuration is shown

in Table 1.

If the obtained configuration is a spherical tiling, the CAS view is then used to

obtain the algebraic expressions of the measures of: the arcs lengths; the angles

surrounding each vertex and the coordinates of the vertices. Note that in the

GeoGebra CAS view we do have all the vector and matrix operations needed to
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obtain the results presented in Sections 3 and 4. Sometimes, we feel the need to

use auxiliary applications and construct some macros. This was the case for the

determination of the rotation matrices.

3. A class of monohedral spherical tilings by four triangles

The elements of TðC;rÞ are four congruent spherical triangles, but it should be

pointed out that, for r > p
2 the tiles are not convex spherical polygons. The convex

case was already described by several other authors, see for instance Brooks and

Strantzen [3]. However, the non-convex case, TðC;rÞ, r a p
2 ; p
� �

as far as we know,

is not mentioned in the literature. We only find a brief reference to TðC; dAOC Þ by
Gaiane in [12], [13].

The construction of TðC;rÞ, r a �0; p½n p
2

� �
is a family of four congruent triangles,

all the vertices have the same valence surrounded by angles ða; a; 2p� aÞ, whit
aðrÞ ¼ arccos

�cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosðrÞ2

p
� 	

.

The tiling TðC;arcsinð
ffiffi
6

p
=3ÞÞ correspond to the tetrahedral spherical tilling. For

some values of r r ¼ 0; p2 ; p
� �

we have spherical tilings by lunes (see Figure 2).

Note that allowing r > p would lead to some arcs of C crossing others, revealing

other types of spherical pattern.

Objects 3D View CAS View

Parameter y ¼ Sliderð0; 2*pi; 2*pi=100Þ —

Points C ¼
�
�1=3;�sqrtð2=9Þ; sqrtð2=3Þ

�
Q ¼

�
sqrtð3Þ=3; sqrtð2=3Þ; 0

�
S ¼

��
�sqrtð3Þ

�
=3; sqrtð2=3Þ=2; sqrtð2Þ=2

�
R ¼

�
sqrtð3Þ=3;

�
�sqrtð2=3Þ

�
=2; sqrtð2Þ=2

�
P ¼

�
cosðyÞ*sqrtð3Þ=3; cosðyÞ*sqrtð2=3Þ; sinðyÞ

�
Correspond one vector to each vertex

vC :¼ C

vQ : ¼ Q

vS :¼ S

vR :¼ R

vP :¼
�
cosðrÞ*sqrtð3Þ=3; cosðrÞ*sqrtð2=3Þ; sinðrÞ

�
Arcs PQ ¼ CircularArc

�
ð0; 0; 0Þ;P;Q;Plane

�
ð0; 0; 0Þ;P;Q

��
PS ¼ CircularArc

�
ð0; 0; 0Þ;P;S;Plane

�
ð0; 0; 0Þ;P;S

��
PQ ¼ CircularArc

�
ð0; 0; 0Þ;P;R;Plane

�
ð0; 0; 0Þ;P;R

�� arccosðvP*vQÞ
arccosðvP*vSÞ
arccosðvP*vRÞ

Cell Ce ¼ fPQ;PS;PRg —

RðQ; pÞ I1Ce1 ¼ Rotate
�
Ce; pi;Ray

�
ð0; 0; 0Þ;Q

��
—

RðS; pÞ I1Ce2 ¼ Rotate
�
Ce; pi;Ray

�
ð0; 0; 0Þ; S

��
For example, defining the rotation matrix,

MSpi :¼

� 1
3 �

ffiffi
2

p

3 �
ffiffi
6

p

3

�
ffiffi
2

p

3 � 2
3 0

�
ffiffi
6

p

3
1ffiffi
3

p 0

0BBBB@
1CCCCA

applying the vector associated to a point,

MSpi*vP

and defining the image of a point.

P 00 ¼ ð0; 0; 0Þ þMSpi*vP

RðR; pÞ I1Ce3 ¼ Rotate
�
Ce; pi;Ray

�
ð0; 0; 0Þ;R

��
—

Table 1. GeoGebra commands to construct TðC; rÞ in 3D view and CAS view.
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4. A class of monohedral spherical tiling by four spherical pentagons of area p

Let us, now, present the details of the class of spherical monohedral tilings by four

non-convex pentagons.

The procedure given previously applied to C, already defined, is illustrated in

Figure 3. Observe that S and S 0 are antipodal points.
Let us summarise some of the geometric features of PðC;rÞ ¼

S3
i¼0 C i.

Figure 2. Representation of TðC; 0Þ, TðC; arcsinð
ffiffiffiffiffi
ð6Þ

p
=3ÞÞ, TðC;p=2Þ, TðC; dAOC Þ, TðC; ð7=5ÞdAOC Þ, TðC;pÞ.

Figure 3. Geometric features of PðC; rÞ
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Since we know how PðC;rÞ was built we may determine the coordinates of all

its vertices. In fact,

P

ffiffiffi
3

p

3
cosðrÞ;

ffiffiffi
6

p

3
cosðrÞ; sinðrÞ

 !
; Q

ffiffiffi
3

p

3
;

ffiffiffi
6

p

3
; 0

 !
;

R

ffiffiffi
3

p

3
;�

ffiffiffi
6

p

6
;

ffiffiffi
2

p

2

 !
; S �

ffiffiffi
3

p

3
;

ffiffiffi
6

p

6
;

ffiffiffi
2

p

2

 !
:

The I2 isometries, namely, RðS;pÞ and RðC;2p=3Þ, may be defined, respectively,

by the matrices:

R1 ¼
� 1

3 �
ffiffi
2

p

3 �
ffiffi
6

p

3

�
ffiffi
2

p

3 � 2
3 0

�
ffiffi
6

p

3
1ffiffi
3

p 0

0BBB@
1CCCA; R2 ¼

� 1
3 �

ffiffi
2

p

3 �
ffiffi
6

p

3

2
ffiffi
2

p

3 � 1
6 �

ffiffi
3

p

6

0 �
ffiffi
3

p

2
1
2

0BBB@
1CCCA:

Consequently, the coordinates of the vertices of PðC;rÞ are:

a) for the ones depending on r:

V
r
2 ¼ �

ffiffiffi
3

p

3
cosðrÞ �

ffiffiffi
6

p

3
sinðrÞ;�

ffiffiffi
6

p

3
cosðrÞ þ

ffiffiffi
3

p

3
sinðrÞ; 0

 !
;

V
r
4 ¼

ffiffiffi
3

p

3
cosðrÞ;�

ffiffiffi
6

p

6
cosðrÞ �

ffiffiffi
3

p

2
sinðrÞ;

ffiffiffi
2

p

2
cosðrÞ � 1

2
sinðrÞ

 !
;

V
r
7 ¼ �

ffiffiffi
3

p

3
cosðrÞ þ

ffiffiffi
6

p

3
sinðrÞ;

ffiffiffi
6

p

6
cosðrÞ þ

ffiffiffi
3

p

6
sinðrÞ;�

ffiffiffi
2

p

2
cosðrÞ � 1

2
sinðrÞ

 !
;

b) for the others:

V3 ¼ �
ffiffiffi
3

p

3
;�

ffiffiffi
2

3

r
; 0

 !
;

V8 ¼ �
ffiffiffi
3

p

3
;

ffiffiffi
6

p

6
;�

ffiffiffi
2

p

2

 !
:

A planar representation of the tiling PðC;rÞ, is shown in Figure 4. Accordingly,

we have,

2a1 þ a2 ¼ 2p and a3 þ a4 ¼ 2p;

where a1ðrÞ ¼ arccos
�cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosðrÞ2

p
� 	

, a3ðrÞ ¼ 3p
4 þ arccos

ffiffi
2

p
cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þcosðrÞ2
p
� 	

.
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The obtained configuration, see Figure 4, defines a monohedral tiling of the

sphere by four non convex pentagons if the points V r
4 , S

0, V r
7 belong to a same

great circle. Obverve that the isometry RðS;pÞ sends the point S, correspond-

ing to the midpoint of
_

V
r
1 V

r
2 , to itself. Besides, V r

4 S
0


!
nS 0V r

7




!
¼
� ffiffi

3
p

3 cosðrÞ þffiffi
6

p

6 sinðrÞ;
ffiffi
6

p

3 cosðrÞ
�
�

ffiffi
3

p

6 sinðrÞ
�
; 12 sinðrÞ

�
, and so, we may conclude that

_
V

r
4 V

r
7

is an edge of the tiling PðC;rÞ.
The points Vi, i a f1; . . . ; 8g, are then vertices of four non-convex congruent

spherical pentagons, each one of area p, whose length edges are ðb; a; 2a; b; aÞ
with b ¼ r and a ¼ arccos

ffiffi
2

p

2 sinðrÞ
� �

, see Table 2.

The case of PðC;rÞ with r ¼ arccos � 1ffiffi
3

p
� �

corresponds to the tetrahedral spher-

ical tiling and the cases corresponding to r a f0; pg are lunes.

For each r a �0; p½n 1
2 arccos � 1

3

� �� �
, PðC;rÞ is a monohedral tiling wih four

non-convex pentagonal faces and eight vertices, six of them of valence 3 sur-

rounded by angles ða1; a1; a2Þ being the other two of valence 2, surrounded by

angles ða3; a4Þ.
If r ¼ arccos � 1ffiffi

3
p

� �
the tiling PðC;rÞ defines a known dihedral tiling of the

sphere by eight spherical right triangles.

5. Conclusions and future works

In this work, we present classes of monohedral tilings of the sphere obtained with

the aid of GeoGebra. The use of special tools created in GeoGebra, for the study

Figure 4. Planar representation of tiling PðC; rÞ
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of spherical tilings, have proved to be quite useful for the search of new ones. In

future works we intend to generalise the strategy described here, to be apllied to

more generic cells, hoping to give a contribution to the current knowledge on

this subject.
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