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Abstract. Within classical propositional logic, assigning probabilities to formulas is shown
to be equivalent to assigning probabilities to valuations by means of stochastic valuations.
A stochastic valuation is a stochastic process, that is a family of random variables one for
each propositional symbol. With stochastic valuations we are able to cope with a count-
ably infinite set of propositional symbols. A notion of probabilistic entailment enjoying
desirable properties of logical consequence is defined and shown to collapse into the classi-
cal entailment when the propositional language is left unchanged. Motivated by this result,
a decidable conservative enrichment of propositional logic is proposed by giving the appro-
priate semantics to a new language construct that allows the constraining of the probability
of a formula. A sound and weakly complete axiomatization is provided using the decid-
ability of the theory of real closed ordered fields.
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1. Introduction

Starting as far back as [36] and [8] (see also [18] for a modern view of Boole’s con-
tributions to logic and probability), adding probability features to logic has been a
recurrent research topic.

The introduction of probabilities in formal logic is quite challenging since
there is the need to accommodate the continuous nature of probabilities within
the discrete setting of symbolic reasoning. It is also interesting from the practical
point of view since probabilistic reasoning is relevant in many fields. Several ways
to combine probabilities and logic have been considered. One can assign proba-
bilities either to formulas or to models. One can either keep the original language
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unchanged by introducing probabilities only at the meta-level or change the lan-
guage in order to internalize probabilistic assertions.

For seminal examples of assigning probabilities to formulas while leaving the
formal language unchanged see [2], [19], [20], [30]. Under this approach, a notion
of probabilistic entailment is proposed defined by relating the probabilities of the
hypotheses and the probability of the conclusion.

The approach of assigning probabilities to models was first explored in [7]
and subsequently revisited by several authors, all of them choosing to change the
original language in order to be able to express probabilistic assertions. Two tech-
niques were considered when endowing models with probabilities.

The “endogenous” technique adopted by most authors consists of enriching
each model of the original logic with a probability measure on some components.
For instance, in modal-like logic this approach was followed for Kripke structures
by assigning probabilities to worlds [7], [12], [14], [40] or to the pairs in the acces-
sibility relation [43], [44]. This technique has been quite pervasive in probabilistic
versions of logics for reasoning about computer programs involving random oper-
ations, for example in [9], [16], [22]. It was also used in [1], [11], [24], [25], [27],
[31], [37] for probabilizing predicate logic by assigning probabilities to the individ-
uals in the domain.

The “exogenous’ technique consists of assigning a probability to each model of
the original logic or to a class of models of the original logic [1], [3], [10], [15], [21],
[23], [29], [30], [34], [39]. A similar technique was used in [28] for assigning ampli-
tudes to models in order to set-up a logic for reasoning about quantum systems.

The existence of so diverse proposals of incorporating probability into formal
logic raises the problem of expressivity namely, for instance, if nesting probability
operators will be more expressive. The negative answer is given in [5]. Addition-
ally, expressing probabilistic reasoning under contradiction has been investigated
in the context of logics of formal inconsistency (see [6], [33]).

In this paper, within the setting of propositional logic, we propose in Section
3 the novel notion of stochastic valuation and its main properties. A stochastic
valuation is a stochastic process, that is a family of random variables one for
each propositional symbol. This notion allows us to deal with the case where the
set of propositional symbols is countably infinite which was not considered before.
We discuss the probabilistic halting problem and the meeting problem for illustrat-
ing the need for a countably infinite set of propositional symbols. The section
ends with the proof of the equivalence of assigning probabilities to formulas and
assigning probabilities to valuations.

First, leaving the language unchanged, in Section 4 we analyze a notion of
probabilistic entailment enjoying the usual properties of a logical consequence.
The section ends with the proof of the collapse of the probabilistic entailment
into classical entailment.
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Second, since almost nothing is gained by probabilizing formulas or models
while keeping the language unchanged, we propose in Section 5 a small enrich-
ment (PPL) of propositional logic by providing the appropriate stochastic-
valuation semantics to a new language constructor that allows (without nesting)
the constraining of the probability of a formula. At the end of Section 5, capital-
izing on the decidability of the theory of real closed ordered fields, we present an
axiomatization of PPL. This axiomatization is shown to be sound and weakly
complete in Section 6. Moreover, we prove in Section 7 that PPL is a decidable
conservative extension of classical propositional logic. The paper ends with an
assessment of what was achieved and a brief discussion of possible future work
in Section 8.

2. Assigning probabilities to formulas

Throughout the paper, L is the propositional language generated by the set B =
{B; : j € N} of propositional symbols using the connectives 1 and D. The other
connectives, as well as tt (verum) and ff (falsum), are introduced as abbreviations
as usual. Recall that a (classical) valuationisamap v : B — {0,1}. Weuse v I o
for stating that valuation v satisfies formula o and A F; « for stating that the set
of formulas A entails formula o, that is v Ik, « whenever v I, 6 for every J € A.
Recall that according to Adams [2], a probability assignment is a map P: L — R
satisfying the following principles:

Pl 0 < P(a) < 1;

P2 if k; o then P(o) = 1;

P3 if o k; f then P(a) < P(f);

P4 if k; —(f Aa) then P(f v a) = P(f) + P(a).

The value P(¢) € P(L) is the probability assigned by P to ¢.
Proposition 2.1. Let o € L. Then, P(—a) = 1 — P(x).
Proof. Observe that, by P4,
P(av (ma)) = P(a) + P(—)
since F, (A (7)) Moreover, by P2,
Pav (o) =1

because k; o v (mo). Hence, P(—a) = 1 — P(a). O
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We now show that the set of principles can be simplified.

Proposition 2.2. The principles P1-P4 are not independent. That is, P3 follows
from P1, P2, P4,

Proof. We start by showing that:
(%) If o ke f then P(f) = P(av ((mo) AB)).
Indeed, assume that o k. . Then,

ke f= (v ((Da) AB)).

Hence,
(1) ke (B v (2 v ((72) A B))
and
ke BV ((av () £ ).
Moreover,
ke 1((78) A (v () A )))-
Thus, by P4,

P((B) v (2 v ((m2) AB))) = P(=B) + P(av ((a) AB)).

Observe that, by P2 applied to (t),

P((EB) v (av ((ma) Ap))) = 1.

Hence,
1 =P(p) +Pav ((ha) AB)).

From Proposition 2.1, we have

P(p) =1 P().
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Therefore, we can conclude that

P(B) = P(av ((mo) AB)).

Returning to the main proof, observe that

Fe (A ((mo) AB)).

Then, using P4, we get
(%) Plov (7o) A B)) = Plar) + P((m2) A ).
So, from (+) and (x+), we can conclude that
if o k, 8 then P(B) = P(2) + P((12) A ).
On the other hand, by PI,
P((—a) A f) = 0.

Hence, if o F; ff then P(x) < P(f). O

3. Stochastic valuations

Towards endowing propositional logic with a probabilistic semantics, we intro-
duce here the notion of stochastic valuation and show that it induces a probability
assignment to formulas that fulfils the principles postulated in [2]. We also show
that each probability assignment to formulas fulfilling those principles induces a
unique stochastic valuation that recovers the original assignment. These results
allow us to conclude that the choice of assigning probabilities either to valuations
or to formulas is immaterial. In the subsequent sections of this paper we stick to
the approach of assigning probabilities to valuations using stochastic valuations.

Given A4 € g, B, we say that an A-valuation is a map v: 4 — {0,1} (given a
set S, we denote the collection of its subsets by @S, the collection of its non-empty
subsets by oS, the collection of its finite subsets by 5,S and the collection of its
non-empty finite subsets by g, S). We use v Ik, o for stating that valuation v sat-
isfies formula « and A F; « for stating that the set of formulas A entails formula «,
that is v Ik, o whenever v Ik 0 for every 0 € A.

When defining a probabilistic semantics, one might be tempted to look at
probabilistic valuations as random variables taking values on the set of all classi-
cal valuations. However, it turns out that it is much better to look at them as
stochastic processes as follows.
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A stochastic valuation is a family
V:{VB/ Bj EB}

of discrete random variables defined over the same probability space (Q, 7, u)
and taking values in {0, 1} (that is, each V3, is a Bernoulli random variable). The
elements of Q are called outcomes, # C pQ is the o-field of events, i : # — [0, 1]
is a probability measure and each Vp : Q — {0, 1} is a measurable map (that is,
such that (VB])fl(S) € F for every S C {0,1}).

In other words, V' is a stochastic process, that is a family of random variables
over the same probability space indexed by the countably infinite set B of propo-
sitional symbols. For further details on the notion of stochastic process see, for
instance, [4].

For the purposes of this paper it is convenient to identify each valuation v
with the subset {B, : v(B;) = 1} of B. Accordingly, restriction is achieved by inter-
section: given a subset 4 of B, v|, = v A.

Moreover, it becomes handy to assume that each random variable V3, takes
values in {0, {B;}} with 0 standing for 0 and {B;} for I.

Then, given a non-empty finite subset 4 = {B;,,...,B;,} of Band U C A4, we
write

Prob(V, = U)

for the (joint) probability (given by V'), where U is {#; : j € {Ji,...,j,} and @; is
{B;} if B; € U and 0 otherwise}.

,u(VAfl(l_])) =u{weQ:Viw)=TU})

= Iu(ﬁ{a) eQ: (VB/k)(CO) =Un {Bjk}})
k=1

— u(Y7,) " (U A {B,))).
k=1

Hence, Prob(V, = U) is the probability of each B, € U being true and each
Bj, € A\U being false. In particular, Prob(V = {B;}) is the probability (given
by V) of B; being true while Prob(¥ = 0) is the probability (given by V') of B;
being false.

Observe that no independence assumption is made on Vg, for k =1,...,n.
Therefore, it may be the case that

n

p(V'(O) # [1((78,) (U~ {By})

k=1
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meaning that the random variables B; , ..., B; are not independent. That is, it is
not always the case that

n
Prob(V, = U) = [ [ Prob(Vs, = U~ {B.}).
=1

We consider a simple example of dependence between random variables in the
stochastic valuation. Let ({wy, w2, @3, w4}, p{w1, @2, w3, w4}, 1) be a probability
space where

N —

po) =5, wen) =0, uen) =5, ulos)=

and Vg : Q — {B;} be such that

V,(w01) = Vg, (02) = Vi, (w3) = {B1} and  V (w4) =0

and
Ve,(01) = Vg, (2) = Vp,(w3) =0 and Vg, (w4) = {Ba}.
Then,
il{o € {on,0n03,00): Vo () = {B1I1) = 2.
p({w € {w1, w2, w3, w4} : Vp,(w) = {B>}}) :é
and
u({o € {or, 01,w3,04} : Vip, gy (@) = {{B1},{B2}}}) =0
and so

PI’Ob( V{BI‘BZ} = {Bl,Bz}) # PI’Ob(VBl = {Bl}) X Prob( VBz = {Bz})

Therefore, random variables V3 and Vg, are not independent. On the other hand,
let ({1, w2, w3, 4}, p{w1, w2, w3, w4}, 1t) be a probability space where

1
,u(cq,-):z, forj=1....,4
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and Vg, : Q — o{B;}, j = 1,2, be such that

Ve (01) = Vg, (w3) = {B1} and  V (w2) = Vg ,(w4) =0

and
Vs, ((,()1) = Vs, (w2) = {BZ} and Vs, (603) = Vp, (w4) = 0.
Then,
1({o € {o1,w,w3,04} : Vg () = {B1}}) = %,
1({w e {o1, 02,03, 04} : Vp,(0) = {B2}}) :%
and
({0 & {00,050} : Vi, y(0) = (1B {B}1) = 5.
Moreover,

PrOb(V{Bl,Bz} =u v 17!2) = PI’Ob( Ve, = I/_ll) X Prob( Ve, = 17[2)

for every i) € p{B;} and i, € p{B,}. Therefore, random variables ¥ and V3,
are independent.
Each stochastic valuation ' induces the family

{U|—> PI’Ob(VA = U) Y [07 H}AegjﬁB

of finite-dimensional (joint probability) distributions that we may call family of
finite-dimensional probabilistic valuations which is consistent in the sense that the
following marginal condition holds:

Prob(Vy =U')= Y Prob(Vy=U) VAepBVA € A VU €pd'.
UCA
Und'=U'

Assume that 4 = {B;, B, B/}, A' = {B;, B} and U’ = {B;}. Then, the mar-
ginal condition states that

Prob(Vy = {B,}) = Prob(V, = {B;, B;}) + Prob(V, = {B;}).
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Conversely, given a consistent system of finite-dimensional distributions (in
our case, finite-dimensional probabilistic valuations), the Kolmogorov existence
theorem (see Section 36 of [4]) guarantees the existence of a unique stochastic
process (in our case, a unique stochastic valuation) that induces those finite-
dimensional distributions. Thus, in our case, the Kolmogorov existence theorem
states that there is a unique countably infinite family {Vp : B; € B} of discrete
random variables defined on a probability space (Q, 7, u) induced by the given
consistent family

{U +— Prob(V,;="U) : p4d — [0, 1]}Ae@;3
of finite-dimensional probabilistic valuations.

This theorem will be frequently used in the paper. Its availability well justifies
our claim that it is much better to probabilize valuations using stochastic pro-
cesses, namely when the set of propositional symbols in not finite (see the example
in Subsection 5.4).

3.1. Stochastic valuations versus probability assignments. Given o € L, let B,
be the set of propositional symbols occurring in o and [«] be the set {vn B, :
v Ik o} of the restrictions to B, of the valuations that satisfy o.

With these notions and notation at hand we are ready to compute the proba-
bility that a stochastic valuation assigns to a formula.

Given o € L and a stochastic valuation V', the probability of o under V is com-
puted as follows:

Proby (o) = Z Prob(¥p, = U).
Uel«]

That is, the probability of « under V" is the sum of the probabilities of the restric-
tions to B, of the classical valuations that satisfy «. These probabilities are pro-
vided by the finite-dimensional probabilistic valuation

U — Prob(Vg, = U) : pB, — [0, 1]

induced by V' on B,.

The probabilities that a stochastic valuation assigns to formulas fulfil the prin-
ciples postulated by Adams (in [2]) as we now proceed to show. First, we intro-
duce some notation and prove a few auxiliary results.

Given U C A4 C B, we use the abbreviation

gi for (N B)~( A\ —B).

BieU BieA\U
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Clearly, this formula identifies the A4-valuation that makes each B; in U true and
each B; not in U false. Observe that, for each such U and 4, the set

{vnd:vi¢Y}

is the singleton {U}. Note also that the set B, v of propositional symbols occur-
ring in ¢f{ coincides with A.

Proposition 3.1. Let Uy, U, C A C B be such that U, # U,. Then
ke ( ,51]] A ¢:1]2)

Proof. Let v be a valuation. Assume, by contradiction, that v Ik, j]‘ and
v ke ¢jjz. Without loss of generality, let B; be a symbol in U; but not in Us.
Then, v Ik, B; and v Ik, —1B; which is a contradiction. O

Proposition 3.2. Let A C B. Then

ke V44

ucA
Proof. Let v be a valuation. Then, it is straightforward that v Ik, ¢, O

Proposition 3.3. Let U' C A’ C AC B Then

Fe ( V ¢/[1]> E¢A’/'

UCA
UnA'=U"

Proof. Let v be a valuation.

(—) Assume that

v ( ¢Y).

UcA4
UnA'=U’

Then, v Ik, ¢} for some U C A such that UnA’'=U'. Let Bje U
Then, B;e Un A’ and so v Ik, B; since v Ik, ¢§. Let B; € A’\U'. Then,
Bj¢ Un A’ and so B; ¢ U. Hence, v |f, B; since v Ik ¢ . Thus, v I ¢,

«—) Assume that v Ik, U'. Observe that v ke ¢°°4. Moreover, vn A C A and
A A
(vnA)nAd' =vnA = U'sincev Ik, 47 . 0

The next result shows that probabilities do not change when adding new prop-
ositional symbols.
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Proposition 3.4. Let 6, ¢ be formulas and V' a stochastic valuation. Then

Prob(Vg,us, = U) = Z Prob(Vp, = U").
Ue{vn(BsuBy)wlkd} U’ e{vnBs:wlo}

Proof. Observe that:

Prob(Vg, = U’)
U’ e{vnBs:wlkd}

= Z Z Prob(VBWB‘ﬁ = U) (*)
U'e{vnBswlio} UCBsUB,
UnBy=U’

= > Prob(V3,us, = U)
UQB,;UB,/,
UnBse{vnBswlkd}
= Z PI’Ob( VB,;UB¢ = U) (**)
Ue {vﬂ(BgUB¢,):UIFC(5}
where () follows by the marginal condition and (xx) is proved now. Indeed

UCBsuByjand UnBse{vnBs:vio} iff Ue{vn(BsuBy):vld}

since:

(—) Assume that U C Bsu By and UnBs e {vnB;s:vld}. Let v be such
that UnBs=vnBs; and v ;0. Let v/ be such that v/ N Bs = v Bs
and v'n(B;uBy)=U. Then, v' Ikc6. Therefore, U e {vn (Bsu By):
v Ik 0}

(«) Assume that U e {vn (B;uBy):vlico}. Let v be such that U=wvn
(BsuBy) and vlco. Thus, UC BsuBy.  Moreover UnBs=uvn
(BsuBy)nBs =vnBs. Hence U Bs e {vnB;:vlo}. O

Proposition 3.5. Given a formula o and a stochastic valuation V,

Fe oo implies  Proby (o) = 1.

Proof. Assume k; . Then,

[e] = pB,.

Indeed it is immediate that [«] C pB,. For the other direction, let U C B,. Pick
a valuation v such that vn B, = U. Then, U € [«] since v Ik a.
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Hence

Proby (o) = Z Prob(Vs, = U) Z Prob(V; U)=1

Uelo] UCB,
and so Proby (o). ([l

With these results in hand we are ready to show that every stochastic valuation
assigns probabilities to formulas fulfilling Adams’ principles.

Theorem 3.6. Let V be a stochastic valuation. Then, V = Proby is a probability
assignment.

Proof. Indeed, all the properties of probability assignments are satisfied:

P1 Direct from the fact that Vp, is a probability distribution for every o.

P2 Follows immediately from Proposition 3.5.

P4 Assume that F; —1(ff A ). Then, there is no valuation v such that v Ik, f and
v Ik a. Hence,

Proby(fvo)= > Prob(Vs,us, = U)

Ue[pva]

= Z PI’Ob(VBﬁUBX = U)
Ue{vn(BpuB,)wikfiv o}

= Z PI’Ob( VB/}qu = U)
Ue{vn(BguB,):wlf or vl a}

= Z Prob( VB/;UB% = U)
Ue{vn(BguB,)wikfi}
+ > Prob( V3,5, = U)

Ue{vn(BpuBy,):wlca}
= > Prob(V, = U)
Ue{vnBgwikf}
+ Z Prob(Vs, = U) (%)
Ue{vnB,wiko}
= Y Prob(Vs, =U)+ Y _ Prob(Vs, = U)
Uelf] Uelo]
= Proby () 4 Proby ()

where (x) follows by Proposition 3.4. Observe that Proby also satisfies P3 due
to Proposition 2.2. O
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We now show the converse result: each probability assignment induces a sto-
chastic valuation giving back the original assignment. To this end, we first spell-
out the family of finite-dimensional probabilistic valuations induced by a proba-
bility assignment and show that it fulfils the marginal condition. Afterwards, the
envisaged stochastic valuation is obtained using Kolmogorov’s existence theorem.

Given a probability assignment P, let

77P = {775 =Uwr P((b/ll/) tpAd — [07 1}}AegﬁB'

fin

Proposition 3.7. Let P be a probability assignment. There exists a unique stochas-
tic valuation

P
such that Prob(Py = U) = P(¢{).

Proof. (1) Each 5% is a finite-dimensional probabilistic valuation:

(a) n5(U) €[0,1]. Follows immediately from PI.
(b) Yycani(U) = 1. Indeed:

Yo niU) =" P(i)

UcA UcA
=P(\ ¢1) ()
UucA4
=1 ()

where (x) follows from Proposition 3.1 and P4 and (xx) follows from Propo-
sition 3.2 and P2.

(c) Additivity is trivial since we are dealing with a measure over a finite set of
outcomes.

(2) The family #? fulfils the marginal condition. Assume that 4’ C A and
U’ C A'. Then,

Yo oniU)y= Y Pg5)

Uc4 uc4
UnA'=U' UnA'=U'
=P(\/ ¢) (1)
UCA
UnA'=U"
=P($Y) (1)

=nh (U
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where () follows from Proposition 3.1 and P4 and (f) follows from Proposition
3.3 and Proposition 2.2.

Hence, using Kolmogorov’s existence theorem, there exists a unique stochastic
valuation having these finite-dimensional distributions. Let P be this stochastic
valuation. N

We now proceed to show that P induces back the original probability as-
signment P and, conversely, that a stochastic valuation V" induces the probability
assignment ¥ that gives back the original 7. To this end, we need the following
auxiliary result.

Proposition 3.8. Let U' C A’ C A C Band f a formula in L. Then

ke ( \/ ¢g)sﬂ.

Ue{vnBswlkf}

Proof. Let v be a valuation.

(—) Assume that

vk ( \/ ¢;;).

Ue{vnBgwlf}
Let U € {vn Bg : v It f} be such that
v ke ¢B‘; )

Then, there is v’ such that U = v’ n By and v’ Ik, f. Hence

vk gy (1).

We now show that v’ N Bg = v Bpg. Let B; € v’ n Bg. Then, v Ik, B; by ()
and so B; € vn Bp. For the other direction let B; € v Bg. By (1), Bj € v'.
Hence B; € v’ N Bg.

Therefore,
U=uvn B/;
and so v Ik .
) Assume that v’ I, . Observe that v’ Ik, v'nBy, Then, v "By e {vn By :
By B B
v Ik, B} and so the thesis follows. O

Theorem 3.9. Let V' be a stochastic valuation and P a probability assignment.
Then,

I;': V. and }C’:P.
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Proof. Let A € p; Band U C A. Observe that we have:

Prob(V, = U) = V(4Y)
= Proby (¢}

= Z Prob(VB(éU =U")
vrels!] !

= Prob(VBw =U)
A
= Prob(V4 = U).

Therefore, the stochastic valuations ¥ and ¥ have the same finite-dimensional
probabilistic valuations and, so, by the Kolmogorov’s existence theorem, they are
equivalent.

Moreover, let f € L. Then:

P(p) = Probp(f) = Y Prob(Py, = U)

Uelp]
= > Pgy)
UE{U(\B/;ZU”’C/}}
=P\ dp) (+)
UG{UF\B/f:U”'CIB}
= P(p) (%)
where () follows from Proposition 3.1 and P4 and (xx) is a consequence of Prop-
osition 3.8 and P3. |

In short, there is a strict Galois connection between stochastic valuations
and probability assignments to (classical) formulas. Therefore, we can freely
choose to assign probabilities to formulas or to valuations. In the remainder
of this paper we adopt the latter approach, using stochastic valuations for the
purpose.

4. Probabilistic entailment

In this section, we compare the entailment in CPL (classical propositional logic
with valuations as semantics) with the probabilistic entailment that we are able to
define in svPL (a variant of CPL with the same language but adopting stochastic
valuations as semantics). The key result of this section is the collapse of the prob-
abilistic entailment into the classical entailment.
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It is possible to define in svPL a family F! of probabilistic entailments depend-
ing on the minimal probability p required from the hypotheses in order to obtain
the conclusion with at least probability ¢. To this end, we first define satisfaction
by a stochastic valuation of a formula with a minimal probability p.

Let 7 be a stochastic valuation, « € L and p € [0,1]. We say that o« is
p-satisfied by V', written

Vb, o

whenever Proby () > p. That is, a formula is p-satisfied by ¥ whenever its prob-
ability under V is at least p.

Given Au {a} C L and p,q € [0, 1], one would say that A pg-entails ¢, written
here

-y
A F) o,
whenever, for every stochastic valuation V/,
if V' I+, 0 for every 6 € A then V' I, a.

That is, if the probability under V" of each hypothesis is at least p then the proba-
bility under V of the conclusion is at least g. This notion is a particular case of the
one proposed in [19] (pages 196 and 197) and also in [20]' by considering that
a=--=a,=|[p,1]and a = [g,1].

However, we find this definition wanting since EZ does not enjoy the following
desirable property:

51,52 FZ!X iﬂé1/\52 IZZ o.
Indeed, for instance,

B A(—By) EVE

1/2
while
G174
By, mBy Fily
'The set {Jy,...,d,} entails o with respect to aj,...,a,, a C [0,1] (all of them non-empty sets) if for

all probability models M
if Py(01) €ay,...,Pyu(d,) € a, then Py () € a,

where P (p) is the probability given by M to ¢.
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The former holds vacuously because [B; A (—B;)] = 0. Concerning the latter,
observe that it is easy to find a stochastic valuation V" such that Proby(B)) =
Prob(—B)) :% and note that every stochastic valuation assigns probability zero
to ff since [ff] = 0.

In order to overcome this difficulty, we propose to use the following notion of
probabilistic entailment where, as usual, for any finite set @ of formulas, we write
/\ @ for the conjunction of the formulas in @, with /\ § standing for t.

Let Au{a} C L and p,q € (0, 1] such that p > q. We say that A pg-entails a,
written

A IEZ o,
whenever there is a finite subset ® of A such that, for every stochastic valuation V/,
if V1, /\ @ then V I, o
Clearly,

AFlo iff 30 € oA \ D FY o
Thus, when A is a singleton or the empty set the two definitions coincide.

Note that the requirement ¢ > 0 is well justified because Fg is trivial. Indeed,
every formula is p0-entailed by any set of hypotheses since Proby- (o) > 0 for every
stochastic valuation ¥ and formula o.

Observe also that the requirement p > ¢ is essential since otherwise the
induced pg-entailment operator

AHAFg:{(XEL:AFgo{}:pL—)pL
would not be extensive. Indeed, for instance,
By })4 B1.

It is straightforward to verify that the pg-entailment operator is extensive if
p = ¢, as well as monotonic for arbitrary p and ¢. On the other hand, it is not
clear from the definition if it is idempotent. In fact, each pg-entailment operator
is indeed idempotent but the proof is not trivial. Idempotence is not used on
the way to the collapsing theorem at the end of this section. Moreover, it follows
immediately from that theorem. Therefore, we refrain from attempting at this
point to prove the idempotence of each pg-entailment operator. Observe also
that it follows directly from its definition that each operator is compact.

The aim now is to compare the probabilistic entailments of svPL with the
entailment of CPL.



284 A. Sernadas, J. Rasga and C. Sernadas

To this end, we need to explain how a classical valuation canonically induces

a stochastic valuation. Observe that it was proved in [19] that a classical valua-

tion can be seen as a probability assignment with target set {0, 1} and vice-versa.

Herein, we make explicit the map v — V'?. Given a valuation v, consider the fam-
ily of maps

n"=A{ny:pAd—[0, 1]}Aep+3

fin

where each map is as follows:

1 U=vn4d
v U —
14(U) { 0 otherwise.

Proposition 4.1. Given a valuation v, 5" is a consistent family of finite dimensional
probability valuations.

Proof. Since it is straightforward to check that each x% is a probability mea-
sure over A, we focus on showing that #" fulfils the marginal condition. Let
AepiB A € ptAand U’ € pA’. Then, consider two cases:

fin
(i) vnA’=U'. Observe that vNnAC A and vnAdnA’'=vnA" =U'. Note

that

ny(U) =ngplvnd)=1
On the other hand, (v A4) C Aissuch that vn AN A’ =vn A’. Thus,
ny(vnd)=1.
Take U C A such that U # (vnA) and Un A’ =vn A’. Then,
n4(U) =0.

Therefore,

S iU =1=n (V).

UcA
Und'=U’

(i) vnA"#U’. Then,vnAnA =vn A # U’ and so

S ni(U) = 0=nu(U")

UcCA
UnA'=U’

since #%(U) = 0 for every U. 0
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Therefore, using Kolmogorov’s existence theorem, there exists a unique sto-
chastic valuation V¥ inducing the finite-dimensional probability valuations in 7".
We say that V7 is the stochastic valuation induced by v. Observe that

Prob(V) = U) =n4(U)

for each 4 € p B and U C A. The next result establishes the envisaged relation-

ship between satisfaction by a valuation and satisfaction by its induced stochastic
valuation.
Proposition 4.2. Given a formula o € L, a valuation v and p € (0, 1]
vikgo iff VU Ik, o
Proof. (—) Assume that v Ik, . Then
vn B, € [d]

by definition of [«]. Hence,

Proby«(2) = Y Prob(Vy = U) =Prob(Vy =vnB,) =12 p,
Uelo]

by definition of V. So, V" I, o.
(<) Assume that V" Ik, a. Then, Proby.(x) > p. Hence,

Z Prob(Vyz = U) = p>0.
Uelo]

Note that Prob(Vy =vn B,) =1 and Prob(Vy = U) =0, for every U # vn B,.
Therefore, v N B, € [a]. Thus, v Ik o. O

We now proceed with the investigation of the relationship between the proba-
bilistic entailment and the classical entailment. To this end, we need the following
auxiliary result.

Proposition 4.3. Given formulas 6 and o with 6 kc o and p,q € (0, 1] with p > q,

if Vi,othenV i, o

for every stochastic valuation V.
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Proof. Let V be a stochastic valuation such that V' It, 6. Hence,
Proby (6) > p.
So, since Proby is a probability assignment, then by Proposition 2.2,
Proby (o) > Proby (d) > p > ¢.
Thus, V' I, a. O

The next result shows that each probabilistic entailment (for p, ¢ € (0, 1]) col-
lapses into the classical entailment. So every probabilistic assertion written with
the language L can be proved in propositional logic.

Theorem 4.4. Given a set of formulas A, a formula o. and p,q € (0,1] with p > ¢,
Akco iff Ak]oa

Proof. (—) Assume that A k «, and let @ be a finite subset of A such that @ F; o.
Hence, /\ ® k. o. Thus, by Proposition 4.3, if V' I, /\ ® then V' I, o, for every
stochastic valuation V. Therefore, by definition, A F? o.

(¢-) Assume that A F o, and let @ be a finite subset of A such that, for every
stochastic valuation V,

if V' Ik, A\ @ then V I, a.

Let v be a valuation such that v Ik, 0 for each 6 € A. Then, v Ik A@. Observe
that p > 0. Then, V" I, /\(I), by Proposition 4.2. So, V'V Ik, o because A |=1‘§ o.
Thus, again by Proposition 4.2, v Ik, o since ¢ > 0. O

Moreover, we say that A g-entails o, written
Ao

ift Akfo for every pe(0,1]. Observe that K& is extensive, monotonic and
idempotent. It is immediate that:

AEoo  iff AES o

In conclusion, it is not possible to get a reasonable definition of probabilistic
entailment (not collapsing into classical entailment) by enriching only the seman-
tics of the classical propositional logic and keeping the same set of formulas. It is
necessary to extend the language with probabilistic constructs.
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5. Probabilistic propositional logic

The objective of this section is to define an enrichment of CPL that captures the
probabilistic nature of the semantics provided by stochastic valuations. The idea
is to add as little as possible to the propositional language L. It turns out that
adding a symbolic construct allowing the constraining of the probability of a for-
mula is enough.

Before proceeding with the presentation of the envisaged probabilistic prop-
ositional logic (PPL), we need to adopt some notation concerning the first-order
theory of real closed ordered fields (RCOF), having in mind the use of its terms
for denoting probabilities and other quantities.

Recall that the first-order signature of RCOF contains the constants 0 and 1,
the unary function symbol —, the binary function symbols + and X, and the
binary predicate symbols = and <. We take the set X = Xy u X, where Xy =
{xx: ke N} and X, = {x,:a € L}, as the set of variables. In the sequel, by
Trcor we mean the set of terms in RCOF that do not use variables in X;. As
we shall see, the variables in X, become handy in the proposed axiomatization
of PPL, for representing within the language of RCOF the probability of o.

We write t; < 1, for () < 1) v (1) = 1), 111, for t; X t, and " for

IX - X1,
—_——

n times

Furthermore, we also use the abbreviations for any given m € N and n € N:
emfor 1+4+---+1 ;
——
addition of m units
e m~! for the unique z such that m x z = 1;

s n.

o " form-
m
The last two abbreviations might be extended to other terms, but we need them
only for numerals. For the sake of simplicity, we do not notationally distinguish
between a natural number and the corresponding numeral.

In order to avoid confusion with the other notions of satisfaction used herein,
we adopt Ik, for denoting satisfaction in first-order logic (over the language of
RCOF).

The fact that the theory RCOF is decidable (see [41]) is put to good use in the
axiomatization of PPL (in this section) and, further on (in Section 7), for proving
the decidability of PPL. Furthermore, every model of RCOF satisfies the theorems
and only the theorems of RCOF (Corollary 3.3.16 in [26]). We take advantage of
this result in the semantics of PPL by adopting the field R of the real numbers as
the model of RCOF.
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5.1. Language. The language Lpp_ of the propositional probability logic PPL is
inductively defined as follows:

® (0@ p e Lpp. where o € L, p € Tgoor and @ € {=, <};

® ¢, D ¢, € Lpp. whenever ¢, ¢, € Lpp.
Propositional abbreviations can be introduced as usual. For instance,
—pforpD (ftt<1)

and similarly for A, v and =. Comparison abbreviations also become handy. For
instance,

Jau<p for(fa=p)v([a<p) and Jao=p for—(fu<p).

5.2. Semantics. Given a term ¢ and an assignment p : X — R, we write ™ for
the denotation of term ¢ in R for p. When ¢ does not contain variables we may use
t® for the denotation of 7 in R.

Let V' be a stochastic valuation and p an assignment. Satisfaction of formulas
by V' and p is inductively defined as follows:

® Vp I [o@ p whenever Proby () @ p™;
® Vp Ik ¢y D g, whenever Vp ¥ ¢y or Vp IF ¢,.

We may omit the reference to the assignment p whenever the formula does not
include variables.

Let I' C Lpp. and ¢ € Lpp.. We say that I entails ¢, written I F ¢, whenever,
for every stochastic valuation V' and assignment p, if Vp I y for each y € I then
Vp I+ p. As expected, ¢ is said to be valid when F ¢.

Observe that entailment in PPL is not compact. Let « € L. We start by show-
ing that in the real closed ordered field R

1
(1) {focg Line N*} Fla=0.
Let V' be a stochastic valuation such that

Proby (o) < —, foreveryne N¥.

!
n

Assume, by contradiction, that Proby () # 0. Then, because

1 1
P < —: Nt 3= < — N*
{ roby (o) < LiNeE } {n = Broby (a) ne },
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we would have that m is an upper bound of N. But N is not bounded from
above taking into account that R has the least upper bound property. Therefore,
(t) is true. However, for every k > 1, we have

{Iagnl:njef\ﬁ,lsjgk})*fa—o-

J
Hence, PPL cannot be complete in the presence of hypotheses.

5.3. Calculus. The PPL calculus combines propositional reasoning with RCOF
reasoning. We intend to use the RCOF reasoning to a minimum, namely to prove
assertions like

(Jou @y pra--- A [ox @ pr) D [ okt @y Prs-

To this end, we represent in RCOF the probability [« of each propositional
formula o by variable x, and impose conditions on that variable that effect the
properties of the probability.

Recall that the probability of a formula « is the sum of the probabilities of the
B,-valuations that satisfy the formula and that there is a disjunctive normal form
of o where each disjunct can be seen as identifying a B,-valuation that satisfies the
formula. Hence, for calculating the probability of « it is enough to sum the prob-
abilities of each such disjunct.

As we proceed to explain, we collect these conditions in a formula of RCOF.
We say that A = {o11,. .., %1y e vy Okly - -5 Ok, b C L 18 an adequate set of DNF-
conjuncts for {ay, ..., 0} C L whenever

(1) B, =---=B,, =B, U---UB, = By;
(2) each aj, is a conjunction of literals;

(3) ke (s Aoyyr) for 1 <7 # 4" < my;

4) koo =\/", 0, foreach j=1,... k.

Lk

Observe that clauses 2 and 4 ensure that \/,"| o, is a disjunctive normal form of
o;. Moreover, clause 3 guarantees that there are no redundant disjuncts in the dis-
Jjunctive normal form of each o;. Given such an adequate set A of DNF-conjuncts
for oy, ..., 0y, we use the abbreviation

QO{],...J{k
011 5oy Ol

,,,,,

for the RCOF formula

(A 0£x¢g\sl)/\(z xﬁvA:I) (ﬂ(xa, ZX%,/)>

UCBA UCBA
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Recall that each propositional formula ¢ gA identifies the Bj-valuation that assigns
true to the propositional symbols in U and assigns false to the propositional sym-
bols in B\ U. Hence,

0<X¢u <1

imposes that the probability of each Ba-valuation should be in the interval [0, 1]
and

Zx¢b =1

UCBa

imposes in RCOF that the sum of the probabilities of all Bx-valuations is 1. The
conjunct

mj

g E xa//
/=1

imposes that the probability of o; is the sum of the probabilities of the valuations
that satisfy the formula.

The calculus for PPL is an extension of the classical propositional calculus con-
taining the following axioms and rules:

T —
®

provided that ¢ is a tautological formula;

RR
(Jou @y pra--- A Jor @ pi) D [ otrs1 @gyy Prs

provided that there is an adequate set

{001, ooy Oy e L)1 - - O Uy

of DNF-conjuncts for {y,. .., o} such that

v<( Ll ey Bt 1

O11yeeey O‘k+lmk+l

.>»

\( @; 71)) (s et i)

is a theorem of RCOF,;

mp 2 01 O Py
%)

Axioms TT and rule MP extend the propositional reasoning to formulas in
Lpp . Axioms RR import to PPL all we need from RCOF. It is worthwhile to refer
that the metatheorem of deduction holds for PPL.
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1 [(aDt)=1 RR
2 [t=1 RR
3 (Jeot)y=)o((Jt=DD((JxDt)=1)a([tt=1))) TT
4 (Jt=Do((Jaot)y=1)A(ft=1)) MP 1, 3
5 (Jaot)y=1)a(ftt=1) MP 2, 4
6 ((Jeot)y=1)a(ft=1))D(Ja<]) RR
7 [a<1 MP 5, 6

Figure 1. + [a < 1.

5.4. Examples. Consider the derivation in Figure 1 for establishing that
Fla<l

holds for arbitrary o € L. The use of RR axioms can be involved. We explain
their use only for obtaining [tt =1 (step 2 of the derivation). Assume that tt is
an abbreviation of By v (—B;). Then the following formula is in RCOF:

V(0 5 2 (u=1)
where O} 5 is

O0<xp <DA(0<xp <1)
AN
Xp, + X-p, = 1
AN

Xt = XB, + X-B,,

and, so, [tt =1 is obtained by RR.
Next, let us see how we can express and derive (binary) additivity, i.e., how we
can establish that

Jo=xi1,  [pf=x3 [@ap)=x3tF [(avf)=x1+x2—x3 (BA)

holds for arbitrary «,f € L. In fact, let
® o be «;
® o, be f5;

e o3 be a A f and each a3, a common disjunct in the disjunctive normal form
of o and oy;

® o4 be o v f and each oy, a disjunct in the disjunctive normal form of «; and o,
with no repetitions.
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[(BiA(0By)) = xi HYP
2 [(BinB) =x; HYP
([(BiA(mB) =x1) D ((J(BiAB)) =x2) D
((J(BiA(mB2)) = x1) A ([(B1 A By) = x3))) TT
4 (J(BiABy)=x3) D
((J(Bia(mBy)) =x1) A([(BiAB) =x;)) MP1,3
([(BiA(mB2)) = x1) A ([(B1 A By) = x2) MP 2, 4
6 ((j(Bl A (—|B2)) =X ) A (f(Bl ABy) = xz)) )
(_[B] = X1 + X2 RR
7 jBlle—i—xz MP 5, 6

Figure 2. [(Bi A (By)) =x1, [(BiABy) =x2 F [ By = X1 + x2.

Then, the formula

3
V(@2 A Aoy = 3)) 3 (g = 31 + 32— )
j:

is a theorem of RCOF. Then, by RR we have

F(fao=xiAa[B=x2n [(anf)=x3) D [(avp) =x1+x2— x3.

Hence, (BA) follows by applying MP.

The marginal condition is also expressible and derivable. For instance, let
A={By,By}, A’ ={B;} and U’ = {B;}. We present in Figure 2 a derivation
for showing that

j(B] A (ﬁBz)) = Xi, I(Bl /\Bz) =x3 F jB] = X1 + X2

holds.
The next example shows how modus ponens for classical formulas is lifted to
PPL formulas. Observe that

foq:l, LfouDouzll—fcgzl
holds, as can be seen in Figure 3. Therefore, the rule

Jor D=1

mp Jn=1
J‘rxzzl

1s admissible in the PPL calculus.
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1 f(o) =1 HYP
2 flyDw) =1 HYP
3 (J)=1) 2 ((Jlu Dx)=1) D

((Jlar) =1) A (J(oy D o2) =1))) TT
4 (Jlroom)=1)D ((Jr) =1)A(f(1 D) =1)) MP1,3
5 (Jl)=1)A(f(e1 Do) =1) MP 2, 4
6 (J)=1)Aa(JltnaDo)=1))D(Jer=1) RR
7 [oy=1 MP 5, 6

Figure 3. [oy =1, [oy Doa=1F [ =1.

In the same vein it is easy to show that the rule

TT* provided that k; o

Jau=1
is also admissible in the PPL calculus. Just observe that
{¢£lzi U C Bot}

is an adequate set of DNF-conjuncts for o, since « is a tautology. Then, it is im-
mediate to conclude that ([tt=1) D (|« = 1) is an RR axiom and, so, [o = 11is
derived from MP.

Oblivious transfer protocol. As a further illustration of the expressive power of
PPL, we want to specify what is envisaged with an Oblivious Transfer Protocol
(OTP) by expressing the assumed state before and the required state after a run
of the protocol. To this end, it becomes handy to use the abbreviation

afor [a=1

to which we will return in Section 7 for establishing a conservative embedding of
CPL in PPL.

Simplifying from [35], an OTP is a protocol to be followed by two agents (say
John and Mary) so that John sends a bit to Mary, but remains oblivious as to if
the bit reached Mary or not, while these two alternatives are equiprobable. Rabin
proposed a protocol for solving a more general problem (a message with several
bits is to be obliviously sent by John to Mary). The existence of such oblivious
transfer protocols is quite significant because by building upon them one can solve
other types of cryptographic problems.

The state that is assumed before the run of the protocol and the state required
after the run can be specified using the following propositional symbols (each with
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the indicated intended meaning):

JBO  (John holds bit 0)

JB1  (John holds bit 1)

MBO  (Mary holds bit 0)

MB1  (Mary holds bit 1)
JKMBO  (John knows that Mary holds bit 0)
JKMB1  (John knows that Mary holds bit 1).

Indeed, the assumed initial state can be specified by the conjunction of the follow-
ing PPL formulas:
JBOvJB1  (John holds bit 1 or holds bit 0)
(—MBO) A (mMB1)  (Mary does not hold bit 1 or bit 0),

and the envisaged final state by the conjunction of the following PPL formulas:

JBOvJB1  (John holds bit 1 or holds bit 0)
(mJKMBO) A (JKMB1)  (John does not know
what, if anything, Mary holds)
MBO D JBO  (If Mary holds bit 0 then so does John)
MB1 D JB1  (If Mary holds bit 1 then so does John)

1 1
J(MBO v MB1) = 3 (Mary holds a bit with probability 5).

It is also necessary to impose the relevant epistemic requirements:
JKMBO D MBO and JKMB1 D MB1.

This example shows the practical interest of developing a probabilistic epistemic
dynamic logic as an enrichment of PPL, endeavour that we leave for future work.
Observe that in the previous example we only needed a finite number of proposi-
tional symbols. But a key novelty of PPL is the possibility of working with a
countably infinite set of propositional symbols. This capability of PPL adds a lot
to its expressive power.

Halting problem. As an illustration, consider the encoding in PPL of the halting
problem (as originally introduced in [42]):

Does Turing machine 7 halt on input ;?
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In this case we need the following propositional symbols (with the indicated
intended meaning):

Hjx  (Machine 7 halts on input j in k steps)  for each i, j,k € N
Hji (Machine 7 halts on input ) for each i, j € N.

Using this countably infinite set of propositional symbols, consider the PPL theory
with the following set of proper axioms:

Axy = {Hljlt D H,‘j 21, ),k € N}
V)
{Hjjx : machine 7 halts on input j in k steps}.

It is straightforward to establish the following fact about this theory for each
i,jeN:

(i) Axy FH; iff  (ii) machine i halts on input j.

Indeed, it is easy to present a derivation for obtaining (i) from (ii). On the other
hand, obtaining (ii) from (i) requires the (strong) soundness of the calculus of PPL,
the first result in Section 6. Observe that Axy is decidable as required of a set
of axioms. However, (Axy)" is undecidable (since otherwise, thanks to the fact
above, the halting problem would also be decidable). So, this example shows
that, in PPL, I'" may be undecidable even when I' is assumed to be decidable.
But " is decidable, the last result of Section 7.

The probabilistic capabilities of PPL would be needed for developing a similar
theory for probabilistic Turing machines. To this end, we may take

{[Hyje =x1 D [Hy =x1:4,j,k e N}
U

{[Hix = p : machine i halts on input j in k steps with probability p®}
as the set of proper axioms.

Meeting problem. Consider the meeting problem M as presented in [13]. The
problem involves two persons travelling independently on Z beginning at the
same time at point 0. Each traveller at a position s can either move to position
s — 1 or to position s+ 1 with probability 1. Observe that the probability of a
traveller to return to zero in an odd number of steps is zero. On the other hand,
the probability of returning in 0 steps is 1, in two steps is % since it can either go
0—1—0o0r0——1—0 and in 4 steps is 3 since it can follow the steps

0—-1-2—-1-00—--1--2—--1-0,0—-1—-0—-1—-0,0—1—
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0—--1—-00—--1—-0—-1—0and 0— -1 —0— —1— 0. That is, each
traveller behaves according to a random walk on the integer number line Z. It is
possible to prove that the probability of returning to point 0 in 2k steps is greater
than or equal to ﬁ (see [13]) and the probability of returning to point 0 in 2k + 1
steps is 0.

The objective is to prove that the travellers will meet again at point 0 in the
future with probability one. In this case, we need the following propositional sym-
bols (with the indicated intended meaning):

T

e variable that takes value 1

when traveller j returns to point 0 in the (s + 1)-th step

A, variable that takes value 1
if both travellers reach point 0 in the s-th step

B,.1 variable that takes value 1
if both travellers reach point 0 in the (s + 1)-th step,
without a previous meeting at point 0

C, variable that takes value 1
if up to and including the s-th step,
the travellers have not met at point 0

for each s € N and j = 1,2. Using this countably infinite set of propositional sym-
bols and an auxiliary propositional symbol By, consider the PPL theory with the
following set Axy of proper axioms:

(Ax0)  [T4,, =0 keN,j=1,2
((jBlzxxx)/\(jBlzﬁ))DfTékZX keN* j=1,2
(Ax1)  ([TIAT?=x)=(T! x [T?=x) seNT
(Ax2) [A;AC,=0 seN
(AX3) J‘AO =1
(Ax4) ((IAS_,- =x1)A([B; :xz))
O ([AAB; =X x x2) seNT, 0<i<s
as well as
(Ax5)  (BiAB)) i<j
(Ax6) Cyv \/B; se Nt
i=1

(Ax7) A, = (TIAT?) seN*.
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The objective is to show that

> B =1

seN™

In order to simplify the presentation, we assume without loss of generality in the
rest of this example, that the probability constructor [ - can occur in RCOF terms
and moreover that relational assertions can contain RCOF terms at both sides. So,
assume by contradiction, that there is a rational number p € (0, 1) such that for
every s € Nt

() F iJBjSI_F
=1

The first step is to show that
s s—1 s—i
(i) + (ZjA,) = <Z(J"Ai x (st,-))).
i=1 i=0 =1
In fact, by axiom (AxS5), (Ax6) and the PPL consequence (BA), we have

(t) F [A = (ZIA[ABj) + (JA;AC;), foreachi=1,...,s.

Jj=1

By RCOF substitution of equals, from (Ax4) and (}) we can conclude that

(1) ij,-:(iin_,ij,)HjAMCS), foreachi=1,...,s.
=

Similarly, by (Ax2) and (f) we have

() FJA = (zl:fAi_j X fBj>, foreachi=1,...,s.
=

Furthermore RCOF reasoning over (1) leads to
s—1

1 [Xx;inz;(fAiX(?;fBi)>v

which concludes the first step.
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We now show that, for any s € N7,

N

. 1
(i) F ZIA; <;.

i=1

In fact, from (i), (1) and (RR),

Fﬁ;jAfS(l—p)(l+§fAi>.

On the other hand,

a iJAfS(l—p)(lJriin—fAs).

Thus,
FpijA,»s(lp)@P)fAs
and so
- pifAi <(1-p).
Hence,

F pZS:J‘Al < 1,
i—1

concluding (ii).
The third step is to show that

2k+1 1

2% k k
1 1 1
(iil) ZfAf2127 and ZIAiZZZ?
i1 i1 i1 i1
In fact, observe that, by (Ax0), (Ax1) and (Ax7) we have
1
F Ay > 4—j and  F [Ay 1 =0

allowing us to conclude the third step.
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Let / be greater than 2%/7. Then,

Then, (ii) and (iii) allows us to conclude that

2/ 1 2/ 1
FZJA,‘Z; and FZJA,<;
i—1 =1

which is a contradiction.

Notwithstanding their simplicity, the examples above should be enough to
assess the power of PPL for describing probabilistic systems and reasoning about
them.

6. Soundness and weak completeness

In this section we show that the calculus for PPL is (strongly) sound and weakly
complete. Observe that strong completeness is obviously out of question since
the PPL entailment is not compact (as mentioned in Section 5).

Theorem 6.1. The logic PPL is sound.

Proof. The rules are sound. We only check that axiom RR is sound since the
proof of the others is straightforward.

(RR) is sound. Let ¥ be a stochastic valuation and p an assignment over R.
Assume that

Vp I+ [o; @ pj foreach j=1,... k

and that the formula

k
v(( Ax @; p)) O (Xoss @pery Pk+1))

is in RCOF. Let p’ be an assignment over R such that,
p'(xy,) = Proby ()
and p’(x) = p(x) for every x € Xy. Then,

k
! O yeeey Lt 1 .
Rp™ o Oy O Ly A /\l(xo‘j @/ p/)'
j:
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Therefore,

Rp' o Xup,, @joy1 i1

Hence, p'(xy,,) @) p,inl and so Proby (ox+1) @iy pfﬁl. Therefore Vp IF
J 1 @peiy Prsr- O

We now proceed towards the weak completeness of the calculus. We start by
proving an important lemma showing that we can move back and forth between
satisfaction of RCOF formulas expressing probabilistic reasoning and satisfaction
of PPL formulas.

Proposition 6.2. Let ¢ be a formula of PPL and oy, . .., o be the propositional for-
mulas such that [ o; @, p; occurs in ¢ for each j=1,... k. Moreover, let A =
{011, -+, O, } be an adequate set of DNF-conjuncts for {o,...,ouc}. Let p be an

assignment over R.  Assume that
O yevey O
Rp Iro Q“llla--u,;kmk'
Then, there is a stochastic valuation V such that
Vp kg iff Rp Ik W

where  is the RCOF formula obtained from ¢ by substituting x, @, p for each PPL
Jormula [o @ p.

Proof. Let A € psnBand i, : pA4 — [0, 1] be such that

1
n4(U) VN Z p(x(/)l?;\/)'

U'CBy
U'nA=UnBa

) <1 since Rp I, Q2% . We start by showing that 7,

011 eees ke,

Note that 0 < p(x¢u/
B
is a finite-dimensional probability distribution. Observe that

1
Z”A(U):ZW > P(X,,;gA’)

Uc4 UcA U'CB
U'nA=UnBy
1
=gEmr Y. 2 Py
UCA  U'CB
U'nA=UnNBy

=1
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since

DOEED DR CTRED DD DD DR LD

UC4  U'CBx UiCA\Br U2CA 0 Br U'CBa
U'nA=UnBx U'nA=U,

Z Z ¢L’ (*)

U[CA\BA U'CBp

= Z 1 ()
U, CA\Ba

PN

where (x) follows from the fact that there is a bijection from
{(U’, Uz) U CBy\, U NnA=U,, U, C AﬁBA} to {U’ U C BA}

and (xx) holds because Rp Ik, jl‘l';;;jf;km

Now we prove that {174}, 5 satisfies the marginal condition. Let 4 C 4,
A’ C Band U C A. Then,

1
”A(U) :z\A\BA\ Z p(X¢£;\’)

U'CBy
U'nA=UnNBx
1 1 ,
- L HlNB )
T 2l4NBA| 2|A\BA|2 ! Z p(x%)
U'CBy
U'nA=UnBy
1
[A\By | ,
214"\BA| zlA\BAl2 ! Z Z P(X¢gA) (%)
u'cA’ U'CBa

U"nA=U U'nA'=U"NBx

1
- Z 2[A"\By| Z p(X¢§;\/)

U'cA’ U'CBa

U"nA=U U'nA'=U"nBx
"
= E n4(U")
u'c4a’
U"nA=U

where (%) holds since:

2 4"\Ba| Z /’(xqjg\’)

U'CBA
U'nA=UnNBy

= > > P(Xs0)

U"CA'\By  U'CB,
U'nA=UnNBy
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DOID DI DENE (++)

UWQA\BA v'cA’ U'CB,
U"nA=U U'nA'=U"NBx

= 2\l Z Z /)(X¢U’)

B
UHQA/ U,QBA A
U"nA=U U'nA'=U"nBx

and where (xx) holds since there is a bijection f from

{(U" U"): U" C A\B\,U' C B\,U' "4 =1UnBxp}

to
{(W" W' W' : W" C A\Bx, W" C A',
W"'nA=UW A" = W"ABx, W C Bp}
such that
fU"U)=(U"nd,Uu (U " n(A\A)) v (U n(4"\A4)),U").
Indeed,

(a) f(U”,U’)is in the range of f:
(i) W" C A\Ba. Note that W" = U" n A. Hence, W" C A. Moreover,
since U"” C B\B then W' C B\Bj.

(i) W” C A'. Note that W" =Uu (U" " (A4'\A4)) u (U' n(4"\A)) and
that UC AC A', U" A (A'\A) C A" and U’ ~ (A'\A) C A'.

(iii) W”nA4=U. Itis sufficient to note that W" = U u (U” " (4'\A4)) U
(U'n(4'\A4)) and that UnA=U, U'n(A"\A)nA=0 and U'n
(A"\A)n A =0.

(iv) W' nA'=W"nBy. It is sufficient to note that W’ =Uu (U"n
(A"\A)) U (U' " (A'"\A)) and that UnByx =U'n A4, U"n(4"\4)n
By=0and U' n(A'\A)n By =U"n(A'"\A4). So, W' nBx=U"nA’
=W'nA'.

(v) W’ C Ba. Immediate since U’ C Bj.

(b) fisinjective. Assume that (U, U]) = f(U), U;). Then U/ = U;. More-
over, U'nA = Uy n A4 and

Uu (U n(A\A4)) U (U n(A4"\A4)) =Uu (U n(4"\A4)) v (Uyn(4"\A4)).

Observe that U/ n (4'\A) n U =@ and U/ N (4'"\A) n U/ n(A"\A4) = 0 for
i=1,2. Hence, U'n(A'\4) = Uy n(4"\A4). So
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U'=U/nA

= U]~ (AU ()

= (U 0 d) U (U] 0 (4\4))

= (U nA)u (U) n(4"\4))

— Uy

(c) f issurjective. Let (W W" W’) be in the range of f. Take
U// — W/// U ((W//\A)\BA), U/ — W,.

(i) (U",U’) is in the domain of f:

— U" C 4"\By. Note that U" = W" U (W"\A)\Bp), W" C A C 4’
and W" C B\Ba. So, W" C A’\Ba. On the other hand,
(W'\A)\Bx C A" since W" C A" and (W"\A)\Bx C B\BA. So,
U" C A'\By.

— U’ C B,. Immediate since W' C Bj.

— U nA=Un By. Observe that

UnBy=W'"'nBxnA)
=W nA"nA)
=W' nA)
=U'nA.
Qi) £(U", U= (W" W" W'). Indeed:
- U"nA =MW", In fact
U'nd=(W"0U ((W'\A)\Ba)) nA)

=(W"nA)u ((W"\A)\Br) N 4))

_ WN/ ﬂA)

— W/”.

~ Uu (U"n(A"\A))u (U n(4"\4)) = W". In fact
Uu (U"n(4"\A4))u (U n(4\4))
= UG ((W" 0 (WNA)\BA)) A (A\4) U (W' 1 (4\4))
= UO((WNAN\BA) A (A\A) U (W' 2 (4'\4))
= Uu ((W'\A)\Bx) U (W'~ Ba)\A)
= Uu(W'\A)
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= (W' A A) U (W\A)
=W

Hence, using Kolmogorov’s existence theorem, there exists a unique stochastic

valuation V" having these finite-dimensional distributions.
Finally, we show, by induction on the structure of ¢, that

Vpikg iff Rp Ik .
Base: ¢is [ @; p;. Observe first that:

Proby (o) = Z Prob(V3, = U)
Uelo]

= Z Prob(V5, = U) (%)
Ue{vnBy,vlca}
= > s (0nBa)
v B, vl oy
- Z p(x¢l~mBA)
vABp, vl B
= > ) (%)
/=1,...,m;
= p(xy) (%)
where (%) holds by Proposition 3.4, («x) holds since {o, .. ., oy, } 18 an adequate
set of DNF-conjuncts for {ay,...,a}, and (s**) holds since Rp Ity ;‘;;;::ffmk.

Then,

(<) Assume that Rp Ik, x,, @; p;. Then p(x,,) @; ijp. So, Proby(a) @, ij/’.

Hence, Vp Ik ¢.

(—) Assume that ¥p I+ [o; @; p;. Then Proby (o) @, ijp. Thus, p(x,,) @; p]Rp

and so Rp Ik, V.
Step: ¢ is ¢; D ¢,. Then
Rp ko ) Dy

iff

Rp Wo ¥y or Rp Ik,
iff IH

Vpl¥ @ or Vp it ¢,
iff

Vp Ik ¢
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where ; and \, are formulas obtained from ¢, and ¢,, respectively, by replacing
each formula [o @ p by x, @ p. O

Observe that 7 4, as defined in the proof of the result above, gives values to val-
uations over the propositional symbols in 4. We give two illustrations of # ,(U).

(i) Assume that A = {By, B>, B3}, B, = {Bi,B3,Bs} and U = {B,}. Then,

1 1
U)== X, v) == (px + p(x (8
10) =3 3 plg) =3 plg )+ ol
U'nA=0
1
= 2 (p(x(ﬂBl)/\(ﬂBz)/\(_‘th)) + p(x(_\Bl)/\(_\B3)AB4))'

Observe that U is the valuation that gives 1 to B, and 0 to B;, B; and B4. The
probability of U is one half the value of p(x(-p,)r(-a,))-

(i) Assume that 4 = {By, By, B3, B4}, BA = {B;, B3} and U = {By, B,}. Then,

1 1 1
n (V) = 4 Z p(x(/ng) = Zp(x‘ﬁﬁzil)) = Zp(xBl/\(ﬁB3))'
U'CBp
U'nA={B\}

Note that U is the valuation that gives 1 to By, B, and 0 to Bs, By. The prob-
ability of U is a quarter the value of p(x, 1(-5,))-

Proposition 6.3. Let 9 € Lpp. Then, there is \y € Lpp. such that

and \y is in disjunctive normal form. Moreover, if ¢ is consistent then there is a con-
Junction of literals in \y that is also consistent.

Theorem 6.4. The logic PPL is weakly complete.

Proof. Let ¢ € Lpp.. Assume that }f ¢. We proceed to show that f ¢. First
observe that —1p must be consistent in the sense that —¢p }f ff because otherwise
from —¢p one would be able to derive every formula, including in particular,
—p F ¢. Hence, by the metatheorem of deduction  (—¢) D ¢. Observing that
F (k) D @) D ¢, because ((mp) D @) is a tautological formula, then by MP we
would have F ¢ contradicting the hypothesis. By Proposition 6.3,

Fg) =\ n,

meM
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where each disjunct is a conjunction of literals. Since —1¢ is consistent, at least one
of the disjuncts must also be consistent. Let 7, be one such consistent disjunct. In
order to show that ¢ ¢ it is enough to show that —¢ is satisfiable. Hence, it is
enough to show that there is one satisfiable disjunct. Indeed, 7, is satisfiable.
Towards a contradiction, assume that there are no V' and p such that Vp I+ 5,
holds. Let #,, be of the form

fal @, p1) fka @y pr)-
Let
{001y ey Oy e ey Okly e e vy Ok } C L
be an adequate set of DNF-conjuncts for {,...,a} C L. Then, by Proposition

6.2, there would not exist p and such that
k
Rp tho Q7% A (/\ (o @; 1))
j=1
Hence, we would have
k
V(( 0(11 .... %Amk A /\1 Xay @] pj ) ) € RCOF.
j=
Then, by RR, we would establish
M b ff

in contradiction with the consistency of #,,. ]

7. Conservativeness and decidability

In this section we start by working towards showing that PPL is a conservative
extension of classical propositional logic.

Given o € L, we denote by «* the PPL formula [« =1. Moreover, given
A C L, we denote by A* the set {0" : J € A}.

Proposition 7.1. Letting A {a} C L, if A+, o then A* + o™,

Proof. Just observe that if «p, ..., ®, is a derivation sequence of « = a, from A in
CPL, then, making good use of TT* and MP* (the admissible rules established in
Subsection 5.4), af, ..., is a derivation sequence of o* from A* in PPL. O
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Theorem 7.2. Let Au{a} C L. Then
A" Ea™  iff Ak o

Proof. (—) Assume that A™ F o*. Let v be a (classical) valuation such that v Ik &
for every 0 € A. Then, by Proposition 4.2, Proby.(d) > 1 for every € A. Hence,
VUi [6=1foreveryd € A. Thus, V' I [« =1 and, so, Proby:(x) = 1. There-
fore, using the same proposition, v Ik o.

(«) Assume that A k. o. Then, thanks to the previous proposition, A* I o*
and, so, by Theorem 6.1, A* F a*. O

We now concentrate on the decidability of the PPL validity problem. For this
purpose we assume given the following two algorithms. Let .&/pNp be an algo-
rithm that receives a propositional formula « and a set of propositional symbols
A D B,, and returns a set {f5,...,[,,} of conjunctions of literals such that each
By, = A, pyv---vp, is a disjunctive normal form of o and f; f; = f; for 1 <
i # j < m. Furthermore, let .«/gcor be an algorithm for deciding the validity of
sentences in RCOF.

The procedure in Figure 4 receives a PPL formula and returns true whenever
the formula is valid and false otherwise. Indeed, the following theorem establishes
that the execution of .oZpp, always terminates and does so with the correct output.

Theorem 7.3. The procedure </ppy is an algorithm. Moreover, o/pp is correct.

Proof. 1t is straightforward to verify that the execution of .oZpp| always terminate,
returning either true or false, so we focus on correctness:

(i) We start by showing that if .Zpp () is true then ¢ is a valid formula of PPL.
Let ¢ be a formula of PPL. Assume that .«Zpp. () is true. Then,

&/RCOF(V( s %S )

011 5eey Olhermy

Input: formula ¢ of PPL.
(1) Let B, := {B; : B; € B and B, occurs in ¢};
2) Let {a1,..., o} :={o: [a @ p occurs in ¢};
3) Let i be the formula obtained from ¢ by replacing each formula [« @ p by x, @ p;
4) Foreach j=1,... k:
(a) Let {o1,...,%m } = DNE(%; By);
(5) Return Zrcor (V (0% 5 y)).

011 5ees ke,

(
(
(

Figure 4. Algorithm .o/ppy .
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is true. Let 7 be a stochastic valuation and p an assignment. Let p’ be an
assignment over R such that,

p'(x,) = Proby(a)
and p’(x) = p(x) for every x € Xy. We now show that

Rp ”—fo O] yeeny O

L1 gy Oy,

Recall that Proby is an Adams’ probability assignment (Theorem 3.6). Hence,
Prob) satisfies Adams’ postulates. Therefore:

Rp' o /\ O < x4 <1
UCB, i

since p'(x,v ) = ProbV(¢gw ) and using postulate P1. Moreover,
(2

Rp’ IHo Z Xpt =1

UCB,

by postulates P2 and P4 since

o\ ¢,

UCB,

by Proposition 3.2, and using the fact that p (X¢L ) = Proby(¢B ) and
ke (o, noyp) forevery j=1,... . kand 1 </ # /' < m, Finally,

kr ﬂ‘lj
/\(XV-/ = § :x%‘/)'
J=1 /=1

since

PI’ObV(OCj) = Proby( O(j{)
1</<m;

by postulate P3, and since, by postulate P4

mj

PI’ObV( OCJ/ Z PI’ObV OC]/

1</<m;
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Hence, Rp’ Ik o, - Moreover

R o V(Q5%, D W)

011 eees ey

and so Rp’ Ik .
We now show, by induction on the structure of ¢, that

Rp' oy iff Vp Ik o.
Base: ¢is [0 @ p. Then

Ry o x, @ p iff p'(x,) @ p®™" iff Proby(2) @ p™ iff Vp v [o¢ @ p.
Step: ¢ is ¢; D ¢,. Then

Rp' o by D ¥,
iff
Rp" o 1 or Rp' 1o 5
iff IH
Vp ¥ g or Vp Ik g
iff
Vp kg

where ; and y, are formulas obtained from ¢, and ¢,, respectively, by
replacing each formula [« @ p by x, @ p. Therefore, F ¢.

We now show that if .oZpp () is false then ¢ is not a valid formula of PPL.
By contraposition, assume that F 9. We prove that, for every assignment p
over R,

Rp I V(Q1% 5.

011 55 Lk,

Assume that
Rp ko Q7% -

Let V' be the stochastic valuation induced by p as defined in Proposition 6.2.
Then, Vp I+ ¢ since F ¢ and, so, by the same proposition, Rp I, .
Therefore,

J?{RCOF(V< O]y Ol ) ‘/j))

0(117"'73(/(111/(

returns true and so does .o/pp (). O
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8. Concluding remarks

Always within the setting of propositional logic we looked at ways of introducing
probabilistic reasoning into logic. First, towards assigning probabilities to valua-
tions we proposed to look at a random valuation as a stochastic process indexed
by the set of propositional symbols. This novel notion (of stochastic valuation as
we called it) allow us to be able to work with a countably infinite set of proposi-
tional symbols (we illustrate the relevance of this cardinality in the probabilistic
halting problem as well as in the meeting problem). Moreover, it has the advan-
tage of allowing the use of Kolmogorov’s existence theorem for moving from the
finite-dimensional probability distributions to the distribution in the underlying
probability space. In particular, the existence theorem was quite useful in estab-
lishing the equivalence between Adams’ probability assignments to formulas and
stochastic valuations. Afterwards, we investigated a notion of probabilistic en-
tailment in the scenario of leaving the propositional language unchanged. This
notion turned out to be identical to classical entailment. Since it seems that not
so much is gained by introducing probabilities without changing the language,
we decided to set-up a small enrichment (PPL) of classical propositional logic by
adding a language construct, inspired by [15], [23], [29], that allows the constrain-
ing (without nesting) of the probability of a formula. The resulting extension of
classical propositional logic was shown to be rich enough for setting-up interesting
theories and easy to axiomatize by relying on the decidable theory of real closed
ordered fields (RCOF). In due course, we proved that the extension is conservative
and still decidable.

Concerning future work, it seems worthwhile to investigate other meta-
properties of PPL, starting with bounding the complexity of its decision problem.
We expect this complexity to be much lower than the complexity of RCOF theo-
remhood, since we only need to recognize RCOF theorems of a very simple clausal
form. Strong completeness of the PPL axiomatization was out of question because
the semantics over R led to a non-compact entailment. Relaxing the semantics by
allowing any model of RCOF may open the door to establishing strong complete-
ness. Clearly, one should start by investigating whether Kolmogorov existence
theorem can be carried over to every RCOF model. We would like to explore fur-
ther definitions of probabilistic entailment namely involving the selection of a par-
ticular stochastic valuation using some criterion like, for example, the maximum
Shannon entropy or others as discussed in [32]. The relevance of abduction in
probabilistic reasoning was recognized in [17]. We would like to compute the re-
quired probability of the conjunction of the relevant hypotheses in order to ensure
an envisaged probability for the conclusion. We expect to be able to find inspira-
tion in the calculus presented in [38], given its abductive nature, towards develop-
ing an abduction calculus for PPL.
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