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Abstract. Within classical propositional logic, assigning probabilities to formulas is shown
to be equivalent to assigning probabilities to valuations by means of stochastic valuations.
A stochastic valuation is a stochastic process, that is a family of random variables one for
each propositional symbol. With stochastic valuations we are able to cope with a count-
ably infinite set of propositional symbols. A notion of probabilistic entailment enjoying
desirable properties of logical consequence is defined and shown to collapse into the classi-
cal entailment when the propositional language is left unchanged. Motivated by this result,
a decidable conservative enrichment of propositional logic is proposed by giving the appro-
priate semantics to a new language construct that allows the constraining of the probability
of a formula. A sound and weakly complete axiomatization is provided using the decid-
ability of the theory of real closed ordered fields.

Mathematics Subject Classification: 03B48, 60G05

Keywords: Probabilistic propositional logic, stochastic valuation, probabilistic entailment,
decidability

1. Introduction

Starting as far back as [36] and [8] (see also [18] for a modern view of Boole’s con-

tributions to logic and probability), adding probability features to logic has been a

recurrent research topic.

The introduction of probabilities in formal logic is quite challenging since

there is the need to accommodate the continuous nature of probabilities within

the discrete setting of symbolic reasoning. It is also interesting from the practical

point of view since probabilistic reasoning is relevant in many fields. Several ways

to combine probabilities and logic have been considered. One can assign proba-

bilities either to formulas or to models. One can either keep the original language
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unchanged by introducing probabilities only at the meta-level or change the lan-

guage in order to internalize probabilistic assertions.

For seminal examples of assigning probabilities to formulas while leaving the

formal language unchanged see [2], [19], [20], [30]. Under this approach, a notion

of probabilistic entailment is proposed defined by relating the probabilities of the

hypotheses and the probability of the conclusion.

The approach of assigning probabilities to models was first explored in [7]

and subsequently revisited by several authors, all of them choosing to change the

original language in order to be able to express probabilistic assertions. Two tech-

niques were considered when endowing models with probabilities.

The ‘‘endogenous’’ technique adopted by most authors consists of enriching

each model of the original logic with a probability measure on some components.

For instance, in modal-like logic this approach was followed for Kripke structures

by assigning probabilities to worlds [7], [12], [14], [40] or to the pairs in the acces-

sibility relation [43], [44]. This technique has been quite pervasive in probabilistic

versions of logics for reasoning about computer programs involving random oper-

ations, for example in [9], [16], [22]. It was also used in [1], [11], [24], [25], [27],

[31], [37] for probabilizing predicate logic by assigning probabilities to the individ-

uals in the domain.

The ‘‘exogenous’’ technique consists of assigning a probability to each model of

the original logic or to a class of models of the original logic [1], [3], [10], [15], [21],

[23], [29], [30], [34], [39]. A similar technique was used in [28] for assigning ampli-

tudes to models in order to set-up a logic for reasoning about quantum systems.

The existence of so diverse proposals of incorporating probability into formal

logic raises the problem of expressivity namely, for instance, if nesting probability

operators will be more expressive. The negative answer is given in [5]. Addition-

ally, expressing probabilistic reasoning under contradiction has been investigated

in the context of logics of formal inconsistency (see [6], [33]).

In this paper, within the setting of propositional logic, we propose in Section

3 the novel notion of stochastic valuation and its main properties. A stochastic

valuation is a stochastic process, that is a family of random variables one for

each propositional symbol. This notion allows us to deal with the case where the

set of propositional symbols is countably infinite which was not considered before.

We discuss the probabilistic halting problem and the meeting problem for illustrat-

ing the need for a countably infinite set of propositional symbols. The section

ends with the proof of the equivalence of assigning probabilities to formulas and

assigning probabilities to valuations.

First, leaving the language unchanged, in Section 4 we analyze a notion of

probabilistic entailment enjoying the usual properties of a logical consequence.

The section ends with the proof of the collapse of the probabilistic entailment

into classical entailment.
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Second, since almost nothing is gained by probabilizing formulas or models

while keeping the language unchanged, we propose in Section 5 a small enrich-

ment (PPL) of propositional logic by providing the appropriate stochastic-

valuation semantics to a new language constructor that allows (without nesting)

the constraining of the probability of a formula. At the end of Section 5, capital-

izing on the decidability of the theory of real closed ordered fields, we present an

axiomatization of PPL. This axiomatization is shown to be sound and weakly

complete in Section 6. Moreover, we prove in Section 7 that PPL is a decidable

conservative extension of classical propositional logic. The paper ends with an

assessment of what was achieved and a brief discussion of possible future work

in Section 8.

2. Assigning probabilities to formulas

Throughout the paper, L is the propositional language generated by the set B ¼
fBj : j a Ng of propositional symbols using the connectives s and �. The other

connectives, as well as tt (verum) and ff (falsum), are introduced as abbreviations

as usual. Recall that a (classical) valuation is a map v : B! f0; 1g. We use vIc a

for stating that valuation v satisfies formula a and D hc a for stating that the set

of formulas D entails formula a, that is vIc a whenever vIc d for every d a D.

Recall that according to Adams [2], a probability assignment is a map P : L! R

satisfying the following principles:

P1 0aPðaÞa 1;

P2 if hc a then PðaÞ ¼ 1;

P3 if a hc b then PðaÞaPðbÞ;
P4 if hc sðbbaÞ then Pðb4aÞ ¼ PðbÞ þ PðaÞ.

The value PðjÞ a PðLÞ is the probability assigned by P to j.

Proposition 2.1. Let a a L. Then, PðsaÞ ¼ 1� PðaÞ.

Proof. Observe that, by P4,

P
�
a4ðsaÞ

�
¼ PðaÞ þ PðsaÞ

since hc s
�
abðsaÞ

�
. Moreover, by P2,

P
�
a4ðsaÞ

�
¼ 1

because hc a4ðsaÞ. Hence, PðsaÞ ¼ 1� PðaÞ. r
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We now show that the set of principles can be simplified.

Proposition 2.2. The principles P1–P4 are not independent. That is, P3 follows

from P1, P2, P4.

Proof. We start by showing that:

ð�Þ If a hc b then PðbÞ ¼ P
�
a4

�
ðsaÞbb

��
:

Indeed, assume that a hc b. Then,

hc bC
�
a4

�
ðsaÞbb

��
:

Hence,

ðyÞ hc ðsbÞ4
�
a4

�
ðsaÞbb

��

and

hc b4
�
s

�
a4

�
ðsaÞbb

���
:

Moreover,

hc s
�
ðsbÞb

�
a4

�
ðsaÞbb

���
:

Thus, by P4,

P
�
ðsbÞ4

�
a4

�
ðsaÞbb

���
¼ PðsbÞ þ P

�
a4

�
ðsaÞbb

��
:

Observe that, by P2 applied to ðyÞ,

P
�
ðsbÞ4

�
a4

�
ðsaÞbb

���
¼ 1:

Hence,

1 ¼ PðsbÞ þ P
�
a4

�
ðsaÞbb

��
:

From Proposition 2.1, we have

PðsbÞ ¼ 1� PðbÞ:
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Therefore, we can conclude that

PðbÞ ¼ P
�
a4

�
ðsaÞbb

��
:

Returning to the main proof, observe that

hc s
�
ab

�
ðsaÞbb

��
:

Then, using P4, we get

ð��Þ P
�
a4

�
ðsaÞbb

��
¼ PðaÞ þ P

�
ðsaÞbb

�
:

So, from ð�Þ and ð��Þ, we can conclude that

if a hc b then PðbÞ ¼ PðaÞ þ P
�
ðsaÞbb

�
:

On the other hand, by P1,

P
�
ðsaÞbb

�
b 0:

Hence, if a hc b then PðaÞaPðbÞ. r

3. Stochastic valuations

Towards endowing propositional logic with a probabilistic semantics, we intro-

duce here the notion of stochastic valuation and show that it induces a probability

assignment to formulas that fulfils the principles postulated in [2]. We also show

that each probability assignment to formulas fulfilling those principles induces a

unique stochastic valuation that recovers the original assignment. These results

allow us to conclude that the choice of assigning probabilities either to valuations

or to formulas is immaterial. In the subsequent sections of this paper we stick to

the approach of assigning probabilities to valuations using stochastic valuations.

Given A a }þfinB, we say that an A-valuation is a map v : A! f0; 1g (given a

set S, we denote the collection of its subsets by }S, the collection of its non-empty

subsets by }þS, the collection of its finite subsets by }finS and the collection of its

non-empty finite subsets by }þfinS). We use vIc a for stating that valuation v sat-

isfies formula a and D hc a for stating that the set of formulas D entails formula a,

that is vIc a whenever vIc d for every d a D.

When defining a probabilistic semantics, one might be tempted to look at

probabilistic valuations as random variables taking values on the set of all classi-

cal valuations. However, it turns out that it is much better to look at them as

stochastic processes as follows.
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A stochastic valuation is a family

V ¼ fVBj
: Bj a Bg

of discrete random variables defined over the same probability space ðW;F; mÞ
and taking values in f0; 1g (that is, each VBj

is a Bernoulli random variable). The

elements of W are called outcomes, F � }W is the s-field of events, m : F! ½0; 1�
is a probability measure and each VBj

: W! f0; 1g is a measurable map (that is,

such that ðVBj
Þ�1ðSÞ a F for every S � f0; 1g).

In other words, V is a stochastic process, that is a family of random variables

over the same probability space indexed by the countably infinite set B of propo-

sitional symbols. For further details on the notion of stochastic process see, for

instance, [4].

For the purposes of this paper it is convenient to identify each valuation v

with the subset fBj : vðBjÞ ¼ 1g of B. Accordingly, restriction is achieved by inter-

section: given a subset A of B, vjA ¼ vBA.

Moreover, it becomes handy to assume that each random variable VBj
takes

values in fj; fBjgg with j standing for 0 and fBjg for 1.
Then, given a non-empty finite subset A ¼ fBj1 ; . . . ;Bjng of B and U � A, we

write

ProbðVA ¼ UÞ

for the ( joint) probability (given by V ), where U is fuj : j a f j1; . . . ; jng and uj is

fBjg if Bj a U and j otherwiseg.

m
�
V�1A ðUÞ

�
¼ m

�
fo a W : VAðoÞ ¼ Ug

�
¼ m

�\n
k¼1
fo a W : ðVBjk

ÞðoÞ ¼ U B fBjkgg
�

¼ m
�\n
k¼1
ðVBjk

Þ�1ðU B fBjkgÞ
�
:

Hence, ProbðVA ¼ UÞ is the probability of each Bjk a U being true and each

Bjk a AnU being false. In particular, ProbðVBj
¼ fBjgÞ is the probability (given

by V ) of Bj being true while ProbðVBj
¼ jÞ is the probability (given by V ) of Bj

being false.

Observe that no independence assumption is made on VBjk
for k ¼ 1; . . . ; n.

Therefore, it may be the case that

m
�
V�1A ðUÞ

�
A

Yn
k¼1

m
�
ðVBjk

Þ�1ðU B fBjkgÞ
�
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meaning that the random variables Bj1 ; . . . ;Bjn are not independent. That is, it is

not always the case that

ProbðVA ¼ UÞ ¼
Yn
k¼1

ProbðVBjk
¼ U B fBjkgÞ:

We consider a simple example of dependence between random variables in the

stochastic valuation. Let ðfo1;o2;o3;o4g; }fo1;o2;o3;o4g; mÞ be a probability

space where

mðo1Þ ¼
1

2
; mðo2Þ ¼ 0; mðo3Þ ¼

1

3
; mðo4Þ ¼

1

6

and VBj
: W! }fBjg be such that

VB1
ðo1Þ ¼ VB1

ðo2Þ ¼ VB1
ðo3Þ ¼ fB1g and VB1

ðo4Þ ¼ j

and

VB2
ðo1Þ ¼ VB2

ðo2Þ ¼ VB2
ðo3Þ ¼ j and VB2

ðo4Þ ¼ fB2g:

Then,

m
�
fo a fo1;o2;o3;o4g : VB1

ðoÞ ¼ fB1gg
�
¼ 5

6
;

m
�
fo a fo1;o2;o3;o4g : VB2

ðoÞ ¼ fB2gg
�
¼ 1

6

and

m
�
fo a fo1;o2;o3;o4g : VfB1;B2gðoÞ ¼ ffB1g; fB2ggg

�
¼ 0

and so

ProbðVfB1;B2g ¼ fB1;B2gÞAProbðVB1
¼ fB1gÞ � ProbðVB2

¼ fB2gÞ:

Therefore, random variables VB1
and VB2

are not independent. On the other hand,

let ðfo1;o2;o3;o4g; }fo1;o2;o3;o4g; mÞ be a probability space where

mðojÞ ¼
1

4
; for j ¼ 1: . . . ; 4
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and VBj
: W! }fBjg, j ¼ 1; 2, be such that

VB1
ðo1Þ ¼ VB1

ðo3Þ ¼ fB1g and VB1
ðo2Þ ¼ VB1

ðo4Þ ¼ j

and

VB2
ðo1Þ ¼ VB2

ðo2Þ ¼ fB2g and VB2
ðo3Þ ¼ VB2

ðo4Þ ¼ j:

Then,

m
�
fo a fo1;o2;o3;o4g : VB1

ðoÞ ¼ fB1gg
�
¼ 1

2
;

m
�
fo a fo1;o2;o3;o4g : VB2

ðoÞ ¼ fB2gg
�
¼ 1

2

and

m
�
fo a fo1;o2;o3;o4g : VfB1;B2gðoÞ ¼ ffB1g; fB2ggg

�
¼ 1

4
:

Moreover,

ProbðVfB1;B2g ¼ u1A u2Þ ¼ ProbðVB1
¼ u1Þ � ProbðVB2

¼ u2Þ

for every u1 a }fB1g and u2 a }fB2g. Therefore, random variables VB1
and VB2

are independent.

Each stochastic valuation V induces the family

fU 7! ProbðVA ¼ UÞ : }A! ½0; 1�gA A}þ
fin
B

of finite-dimensional ( joint probability) distributions that we may call family of

finite-dimensional probabilistic valuations which is consistent in the sense that the

following marginal condition holds:

ProbðVA 0 ¼ U 0Þ ¼
X
U�A

UBA 0¼U 0

ProbðVA ¼ UÞ EA a }þfinB EA 0 a }þA EU 0 a }A 0:

Assume that A ¼ fBj ;Bk;Blg, A 0 ¼ fBj;Bkg and U 0 ¼ fBjg. Then, the mar-

ginal condition states that

ProbðVA 0 ¼ fBjgÞ ¼ ProbðVA ¼ fBj;BlgÞ þ ProbðVA ¼ fBjgÞ:
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Conversely, given a consistent system of finite-dimensional distributions (in

our case, finite-dimensional probabilistic valuations), the Kolmogorov existence

theorem (see Section 36 of [4]) guarantees the existence of a unique stochastic

process (in our case, a unique stochastic valuation) that induces those finite-

dimensional distributions. Thus, in our case, the Kolmogorov existence theorem

states that there is a unique countably infinite family fVBj
: Bj a Bg of discrete

random variables defined on a probability space ðW;F; mÞ induced by the given

consistent family

fU 7! ProbðVA ¼ UÞ : }A! ½0; 1�gA A}þ
fin
B

of finite-dimensional probabilistic valuations.

This theorem will be frequently used in the paper. Its availability well justifies

our claim that it is much better to probabilize valuations using stochastic pro-

cesses, namely when the set of propositional symbols in not finite (see the example

in Subsection 5.4).

3.1. Stochastic valuations versus probability assignments. Given a a L, let Ba

be the set of propositional symbols occurring in a and 7a8 be the set fvBBa :

vIc ag of the restrictions to Ba of the valuations that satisfy a.

With these notions and notation at hand we are ready to compute the proba-

bility that a stochastic valuation assigns to a formula.

Given a a L and a stochastic valuation V , the probability of a under V is com-

puted as follows:

ProbV ðaÞ ¼
X

U A 7a8

ProbðVBa
¼ UÞ:

That is, the probability of a under V is the sum of the probabilities of the restric-

tions to Ba of the classical valuations that satisfy a. These probabilities are pro-

vided by the finite-dimensional probabilistic valuation

U 7! ProbðVBa
¼ UÞ : }Ba ! ½0; 1�

induced by V on Ba.

The probabilities that a stochastic valuation assigns to formulas fulfil the prin-

ciples postulated by Adams (in [2]) as we now proceed to show. First, we intro-

duce some notation and prove a few auxiliary results.

Given U � A � B, we use the abbreviation

fU
A for

�
5

Bj AU

Bj

�
b

�
5

Bj AAnU
sBj

�
:
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Clearly, this formula identifies the A-valuation that makes each Bj in U true and

each Bj not in U false. Observe that, for each such U and A, the set

fvBA : vIc f
U
A g

is the singleton fUg. Note also that the set BfU
A
of propositional symbols occur-

ring in fU
A coincides with A.

Proposition 3.1. Let U1;U2 � A � B be such that U1AU2. Then

hc sðfU1

A bfU2

A Þ

Proof. Let v be a valuation. Assume, by contradiction, that vIc f
U1

A and

vIc f
U2

A . Without loss of generality, let Bj be a symbol in U1 but not in U2.

Then, vIc Bj and vIc sBj which is a contradiction. r

Proposition 3.2. Let A � B. Then

hc 4
U�A

fU
A :

Proof. Let v be a valuation. Then, it is straightforward that vIc f
vBA
A . r

Proposition 3.3. Let U 0 � A 0 � A � B. Then

hc
�

4
U�A

UBA 0¼U 0

fU
A

�
CfU 0

A 0 :

Proof. Let v be a valuation.

ð!Þ Assume that

vIc

�
4
U�A

UBA 0¼U 0

fU
A

�
:

Then, vIc f
U
A for some U � A such that U BA 0 ¼ U 0. Let Bj a U 0.

Then, Bj a U BA 0 and so vIc Bj since vIc f
U
A . Let Bj a A 0nU 0. Then,

Bj B U BA 0 and so Bj B U . Hence, v 6Ic Bj since vIc f
U
A . Thus, vIc f

U 0

A 0 .

ð Þ Assume that vIc f
U 0

A 0 . Observe that vIc f
vBA
A . Moreover, vBA � A and

ðvBAÞBA 0 ¼ vBA 0 ¼ U 0 since vIc f
U 0

A 0 . r

The next result shows that probabilities do not change when adding new prop-

ositional symbols.
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Proposition 3.4. Let d, f be formulas and V a stochastic valuation. Then

X
U A fvBðBdABfÞ:vIc dg

ProbðVBdABf
¼ UÞ ¼

X
U 0 A fvBBd:vIc dg

ProbðVBd
¼ U 0Þ:

Proof. Observe that:

X
U 0 A fvBBd:vIc dg

ProbðVBd
¼ U 0Þ

¼
X

U 0 A fvBBd:vIc dg

X
U�BdABf

UBBd¼U 0

ProbðVBdABf
¼ UÞ ð�Þ

¼
X

U�BdABf

UBBd A fvBBd:vIc dg

ProbðVBdABf
¼ UÞ

¼
X

U A fvBðBdABfÞ:vIc dg
ProbðVBdABf

¼ UÞ ð��Þ

where ð�Þ follows by the marginal condition and ð��Þ is proved now. Indeed

U � BdABf and U BBd a fvBBd : vIc dg i¤ U a fvB ðBdABfÞ : vIc dg

since:

ð!Þ Assume that U � BdABf and U BBd a fvBBd : vIc dg. Let v be such

that U BBd ¼ vBBd and vIc d. Let v 0 be such that v 0BBd ¼ vBBd

and v 0B ðBdABfÞ ¼ U . Then, v 0Ic d. Therefore, U a fvB ðBdABfÞ :
vIc dg.

ð Þ Assume that U a fvB ðBdABfÞ : vIc dg. Let v be such that U ¼ vB
ðBdABfÞ and vIc d. Thus, U � BdABf. Moreover U BBd ¼ vB
ðBdABfÞBBd ¼ vBBd. Hence U BBd a fvBBd : vIc dg. r

Proposition 3.5. Given a formula a and a stochastic valuation V,

hc a implies ProbV ðaÞ ¼ 1:

Proof. Assume hc a. Then,

7a8 ¼ }Ba:

Indeed it is immediate that 7a8 � }Ba. For the other direction, let U � Ba. Pick

a valuation v such that vBBa ¼ U . Then, U a 7a8 since vIc a.
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Hence

ProbV ðaÞ ¼
X

U A 7a8

ProbðVBa
¼ UÞ ¼

X
U�Ba

ProbðVBa
¼ UÞ ¼ 1

and so ProbV ðaÞ. r

With these results in hand we are ready to show that every stochastic valuation

assigns probabilities to formulas fulfilling Adams’ principles.

Theorem 3.6. Let V be a stochastic valuation. Then, V̂V ¼ ProbV is a probability

assignment.

Proof. Indeed, all the properties of probability assignments are satisfied:

P1 Direct from the fact that VBa
is a probability distribution for every a.

P2 Follows immediately from Proposition 3.5.

P4 Assume that hc sðbbaÞ. Then, there is no valuation v such that vIc b and

vIc a. Hence,

ProbV ðb4aÞ ¼
X

U A 7b4a8

ProbðVBbABa
¼ UÞ

¼
X

U A fvBðBbABaÞ:vIc b4ag
ProbðVBbABa

¼ UÞ

¼
X

U A fvBðBbABaÞ:vIc b or vIc ag
ProbðVBbABa

¼ UÞ

¼
X

U A fvBðBbABaÞ:vIc bg
ProbðVBbABa

¼ UÞ

þ
X

U A fvBðBbABaÞ:vIc ag
ProbðVBbABa

¼ UÞ

¼
X

U A fvBBb :vIc bg
ProbðVBb

¼ UÞ

þ
X

U A fvBBa:vIc ag
ProbðVBa

¼ UÞ ð�Þ

¼
X

U A 7b8

ProbðVBb
¼ UÞ þ

X
U A 7a8

ProbðVBa
¼ UÞ

¼ ProbV ðbÞ þ ProbV ðaÞ

where ð�Þ follows by Proposition 3.4. Observe that ProbV also satisfies P3 due

to Proposition 2.2. r
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We now show the converse result: each probability assignment induces a sto-

chastic valuation giving back the original assignment. To this end, we first spell-

out the family of finite-dimensional probabilistic valuations induced by a proba-

bility assignment and show that it fulfils the marginal condition. Afterwards, the

envisaged stochastic valuation is obtained using Kolmogorov’s existence theorem.

Given a probability assignment P, let

hP ¼ fhP
A ¼ U 7! PðfU

A Þ : }A! ½0; 1�gA A}þ
fin
B:

Proposition 3.7. Let P be a probability assignment. There exists a unique stochas-

tic valuation

�PP

such that Probð �PPA ¼ UÞ ¼ PðfU
A Þ:

Proof. (1) Each hP
A is a finite-dimensional probabilistic valuation:

(a) hP
AðUÞ a ½0; 1�. Follows immediately from P1.

(b)
P

U�A hP
AðUÞ ¼ 1. Indeed:

X
U�A

hP
AðUÞ ¼

X
U�A

PðfU
A Þ

¼ P
�
4
U�A

fU
A

�
ð�Þ

¼ 1 ð��Þ

where ð�Þ follows from Proposition 3.1 and P4 and ð��Þ follows from Propo-

sition 3.2 and P2.

(c) Additivity is trivial since we are dealing with a measure over a finite set of

outcomes.

(2) The family hP fulfils the marginal condition. Assume that A 0 � A and

U 0 � A 0. Then, X
U�A

UBA 0¼U 0

hP
AðUÞ ¼

X
U�A

UBA 0¼U 0

PðfU
A Þ

¼ P
�

4
U�A

UBA 0¼U 0

fU
A

�
ðyÞ

¼ PðfU 0

A 0 Þ ðzÞ

¼ hP
A 0 ðU 0Þ
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where ðyÞ follows from Proposition 3.1 and P4 and ðzÞ follows from Proposition

3.3 and Proposition 2.2.

Hence, using Kolmogorov’s existence theorem, there exists a unique stochastic

valuation having these finite-dimensional distributions. Let �PP be this stochastic

valuation. r

We now proceed to show that �PP induces back the original probability as-

signment P and, conversely, that a stochastic valuation V induces the probability

assignment V̂V that gives back the original V . To this end, we need the following

auxiliary result.

Proposition 3.8. Let U 0 � A 0 � A � B and b a formula in L. Then

hc
�

4
U A fvBBb :vIc bg

fU
Bb

�
C b:

Proof. Let v be a valuation.

ð!Þ Assume that

vIc

�
4

U A fvBBb :vIc bg
fU
Bb

�
:

Let U a fvBBb : vIc bg be such that

vIc f
U
Bb
:

Then, there is v 0 such that U ¼ v 0BBb and v 0Ic b. Hence

vIc f
v 0BBb

Bb
ðyÞ:

We now show that v 0BBb ¼ vBBb. Let Bj a v 0BBb. Then, vIc Bj by ðyÞ
and so Bj a vBBb. For the other direction let Bj a vBBb. By ðyÞ, Bj a v 0.
Hence Bj a v 0BBb.

Therefore,

U ¼ vBBb

and so vIc b.

ð Þ Assume that v 0Ic b. Observe that v 0Ic f
v 0BBb

Bb
. Then, v 0BBb a fvBBb :

vIc bg and so the thesis follows. r

Theorem 3.9. Let V be a stochastic valuation and P a probability assignment.

Then,

�̂
VV̂VV ¼ V and �̂PP�PP ¼ P:
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Proof. Let A a }þfinB and U � A. Observe that we have:

Probð �̂VV̂VVA ¼ UÞ ¼ V̂VðfU
A Þ

¼ ProbV ðfU
A Þ

¼
X

U 0 A 7fU
A 8

ProbðVB
fU
A

¼ U 0Þ

¼ ProbðVB
fU
A

¼ UÞ

¼ ProbðVA ¼ UÞ:

Therefore, the stochastic valuations �̂
VV̂VV and V have the same finite-dimensional

probabilistic valuations and, so, by the Kolmogorov’s existence theorem, they are

equivalent.

Moreover, let b a L. Then:

�̂PP�PPðbÞ ¼ Prob �PPðbÞ ¼
X

U A 7b8

Probð �PPBb
¼ UÞ

¼
X

U A fvBBb :vIc bg
PðfU

Bb
Þ

¼ P
�

4
U A fvBBb :vIc bg

fU
Bb

�
ð�Þ

¼ PðbÞ ð��Þ

where ð�Þ follows from Proposition 3.1 and P4 and ð��Þ is a consequence of Prop-

osition 3.8 and P3. r

In short, there is a strict Galois connection between stochastic valuations

and probability assignments to (classical) formulas. Therefore, we can freely

choose to assign probabilities to formulas or to valuations. In the remainder

of this paper we adopt the latter approach, using stochastic valuations for the

purpose.

4. Probabilistic entailment

In this section, we compare the entailment in CPL (classical propositional logic

with valuations as semantics) with the probabilistic entailment that we are able to

define in svPL (a variant of CPL with the same language but adopting stochastic

valuations as semantics). The key result of this section is the collapse of the prob-

abilistic entailment into the classical entailment.
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It is possible to define in svPL a family hqp of probabilistic entailments depend-

ing on the minimal probability p required from the hypotheses in order to obtain

the conclusion with at least probability q. To this end, we first define satisfaction

by a stochastic valuation of a formula with a minimal probability p.

Let V be a stochastic valuation, a a L and p a ½0; 1�. We say that a is

p-satisfied by V , written

V Ip a;

whenever ProbV ðaÞb p. That is, a formula is p-satisfied by V whenever its prob-

ability under V is at least p.

Given DA fag � L and p; q a ½0; 1�, one would say that D pq-entails a, written

here

D €hhqp a;

whenever, for every stochastic valuation V ,

if V Ip d for every d a D then V Iq a:

That is, if the probability under V of each hypothesis is at least p then the proba-

bility under V of the conclusion is at least q. This notion is a particular case of the

one proposed in [19] (pages 196 and 197) and also in [20]1 by considering that

a1 ¼ � � � ¼ an ¼ ½p; 1� and a ¼ ½q; 1�.
However, we find this definition wanting since €hhqp does not enjoy the following

desirable property:

d1; d2 €hhqp a i¤ d1bd2 €hhqp a:

Indeed, for instance,

B1bðsB1Þ €hh1=41=2 ff

while

B1;sB1 6 €hh1=41=2 ff:

1The set fd1; . . . ; dng entails a with respect to a1; . . . ; an, a � ½0; 1� (all of them non-empty sets) if for
all probability models M

if PMðd1Þ a a1; . . . ;PMðdnÞ a an then PMðaÞ a a;

where PMðjÞ is the probability given by M to j.
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The former holds vacuously because 7B1bðsB1Þ8 ¼ j. Concerning the latter,

observe that it is easy to find a stochastic valuation V such that ProbV ðB1Þ ¼
ProbðsB1Þ ¼ 1

2 and note that every stochastic valuation assigns probability zero

to ff since 7ff8 ¼ j.
In order to overcome this di‰culty, we propose to use the following notion of

probabilistic entailment where, as usual, for any finite set F of formulas, we write

5F for the conjunction of the formulas in F, with 5 j standing for tt.

Let DA fag � L and p; q a ð0; 1� such that pb q. We say that D pq-entails a,

written

D hqp a;

whenever there is a finite subset F of D such that, for every stochastic valuation V ,

if V Ip 5F then V Iq a:

Clearly,

D hqp a i¤ bF a }finD : 5F €hhqp a:

Thus, when D is a singleton or the empty set the two definitions coincide.

Note that the requirement q > 0 is well justified because h0p is trivial. Indeed,

every formula is p0-entailed by any set of hypotheses since ProbV ðaÞb 0 for every

stochastic valuation V and formula a.

Observe also that the requirement pb q is essential since otherwise the

induced pq-entailment operator

D 7! Dh
q
p ¼ fa a L : D hqp ag : }L! }L

would not be extensive. Indeed, for instance,

B1 6h3=41=4 B1:

It is straightforward to verify that the pq-entailment operator is extensive if

pb q, as well as monotonic for arbitrary p and q. On the other hand, it is not

clear from the definition if it is idempotent. In fact, each pq-entailment operator

is indeed idempotent but the proof is not trivial. Idempotence is not used on

the way to the collapsing theorem at the end of this section. Moreover, it follows

immediately from that theorem. Therefore, we refrain from attempting at this

point to prove the idempotence of each pq-entailment operator. Observe also

that it follows directly from its definition that each operator is compact.

The aim now is to compare the probabilistic entailments of svPL with the

entailment of CPL.
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To this end, we need to explain how a classical valuation canonically induces

a stochastic valuation. Observe that it was proved in [19] that a classical valua-

tion can be seen as a probability assignment with target set f0; 1g and vice-versa.

Herein, we make explicit the map v 7! V v. Given a valuation v, consider the fam-

ily of maps

hv ¼ fhv
A : }A! ½0; 1�gA A}þ

fin
B

where each map is as follows:

hv
AðUÞ ¼

1 U ¼ vBA

0 otherwise.

�

Proposition 4.1. Given a valuation v, hv is a consistent family of finite dimensional

probability valuations.

Proof. Since it is straightforward to check that each hv
A is a probability mea-

sure over A, we focus on showing that hv fulfils the marginal condition. Let

A a }þfinB, A
0 a }þA and U 0 a }A 0. Then, consider two cases:

(i) vBA 0 ¼ U 0. Observe that vBA � A and vBABA 0 ¼ vBA 0 ¼ U 0. Note

that

hA 0 ðU 0Þ ¼ hA 0 ðvBA 0Þ ¼ 1:

On the other hand, ðvBAÞ � A is such that vBABA 0 ¼ vBA 0. Thus,

hv
AðvBAÞ ¼ 1:

Take U � A such that U A ðvBAÞ and U BA 0 ¼ vBA 0. Then,

hv
AðUÞ ¼ 0:

Therefore,

X
U�A

UBA 0¼U 0

hv
AðUÞ ¼ 1 ¼ hA 0 ðU 0Þ:

(ii) vBA 0AU 0. Then, vBABA 0 ¼ vBA 0AU 0 and so

X
U�A

UBA 0¼U 0

hv
AðUÞ ¼ 0 ¼ hA 0 ðU 0Þ

since hv
AðUÞ ¼ 0 for every U . r
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Therefore, using Kolmogorov’s existence theorem, there exists a unique sto-

chastic valuation V v inducing the finite-dimensional probability valuations in hv.

We say that V v is the stochastic valuation induced by v. Observe that

ProbðV v
A ¼ UÞ ¼ hv

AðUÞ

for each A a }þfinB and U � A. The next result establishes the envisaged relation-

ship between satisfaction by a valuation and satisfaction by its induced stochastic

valuation.

Proposition 4.2. Given a formula a a L, a valuation v and p a ð0; 1�

vIc a i¤ V v Ip a:

Proof. ð!Þ Assume that vIc a. Then

vBBa a 7a8

by definition of 7a8. Hence,

ProbV vðaÞ ¼
X

U A 7a8

ProbðV v
Ba
¼ UÞ ¼ ProbðV v

Ba
¼ vBBaÞ ¼ 1b p;

by definition of V v. So, V v Ip a.

ð Þ Assume that V v Ip a. Then, ProbV vðaÞb p. Hence,

X
U A 7a8

ProbðV v
Ba
¼ UÞb p > 0:

Note that ProbðV v
Ba
¼ vBBaÞ ¼ 1 and ProbðV v

Ba
¼ UÞ ¼ 0, for every U A vBBa.

Therefore, vBBa a 7a8. Thus, vIc a. r

We now proceed with the investigation of the relationship between the proba-

bilistic entailment and the classical entailment. To this end, we need the following

auxiliary result.

Proposition 4.3. Given formulas d and a with d hc a and p; q a ð0; 1� with pb q,

if V Ip d then V Iq a

for every stochastic valuation V.
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Proof. Let V be a stochastic valuation such that V Ip d. Hence,

ProbV ðdÞb p:

So, since ProbV is a probability assignment, then by Proposition 2.2,

ProbV ðaÞbProbV ðdÞb pb q:

Thus, V Iq a. r

The next result shows that each probabilistic entailment (for p; q a ð0; 1�) col-
lapses into the classical entailment. So every probabilistic assertion written with

the language L can be proved in propositional logic.

Theorem 4.4. Given a set of formulas D, a formula a and p; q a ð0; 1� with pb q,

D hc a i¤ D hqp a:

Proof. ð!Þ Assume that D hc a, and let F be a finite subset of D such that F hc a.
Hence, 5F hc a. Thus, by Proposition 4.3, if V Ip 5F then V Iq a, for every

stochastic valuation V . Therefore, by definition, D hqp a.
ð Þ Assume that D hqp a, and let F be a finite subset of D such that, for every

stochastic valuation V ,

if V Ip 5F then V Iq a:

Let v be a valuation such that vIc d for each d a D. Then, vIc 5F. Observe

that p > 0. Then, V v Ip 5F, by Proposition 4.2. So, V v Iq a because D hqp a.
Thus, again by Proposition 4.2, vIc a since q > 0. r

Moreover, we say that D g-entails a, written

D hg a

if D hqp a for every p a ð0; 1�. Observe that hg is extensive, monotonic and

idempotent. It is immediate that:

D hc a i¤ D hg a:

In conclusion, it is not possible to get a reasonable definition of probabilistic

entailment (not collapsing into classical entailment) by enriching only the seman-

tics of the classical propositional logic and keeping the same set of formulas. It is

necessary to extend the language with probabilistic constructs.

286 A. Sernadas, J. Rasga and C. Sernadas



5. Probabilistic propositional logic

The objective of this section is to define an enrichment of CPL that captures the

probabilistic nature of the semantics provided by stochastic valuations. The idea

is to add as little as possible to the propositional language L. It turns out that

adding a symbolic construct allowing the constraining of the probability of a for-

mula is enough.

Before proceeding with the presentation of the envisaged probabilistic prop-

ositional logic (PPL), we need to adopt some notation concerning the first-order

theory of real closed ordered fields (RCOF), having in mind the use of its terms

for denoting probabilities and other quantities.

Recall that the first-order signature of RCOF contains the constants 0 and 1,

the unary function symbol �, the binary function symbols þ and �, and the

binary predicate symbols ¼ and <. We take the set X ¼ XNAXL, where XN ¼
fxk : k a Ng and XL ¼ fxa : a a Lg, as the set of variables. In the sequel, by

TRCOF we mean the set of terms in RCOF that do not use variables in XL. As

we shall see, the variables in XL become handy in the proposed axiomatization

of PPL, for representing within the language of RCOF the probability of a.

We write t1a t2 for ðt1 < t2Þ4ðt1 ¼ t2Þ, t1t2 for t1 � t2 and tn for

t� � � � � t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

:

Furthermore, we also use the abbreviations for any given m a Nþ and n a N:

• m for 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
addition of m units

;

• m�1 for the unique z such that m� z ¼ 1;

•
n

m
for m�1 � n.

The last two abbreviations might be extended to other terms, but we need them

only for numerals. For the sake of simplicity, we do not notationally distinguish

between a natural number and the corresponding numeral.

In order to avoid confusion with the other notions of satisfaction used herein,

we adoptIfo for denoting satisfaction in first-order logic (over the language of

RCOF).

The fact that the theory RCOF is decidable (see [41]) is put to good use in the

axiomatization of PPL (in this section) and, further on (in Section 7), for proving

the decidability of PPL. Furthermore, every model of RCOF satisfies the theorems

and only the theorems of RCOF (Corollary 3.3.16 in [26]). We take advantage of

this result in the semantics of PPL by adopting the field R of the real numbers as

the model of RCOF.
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5.1. Language. The language LPPL of the propositional probability logic PPL is

inductively defined as follows:

•
Ð
a @ p a LPPL where a a L, p a TRCOF and @ a f¼; <g;

• j1 � j2 a LPPL whenever j1; j2 a LPPL.

Propositional abbreviations can be introduced as usual. For instance,

sj for j � ð
Ð
tt < 1Þ

and similarly forb,4andC. Comparison abbreviations also become handy. For

instance,

Ð
aa p for ð

Ð
a ¼ pÞ4ð

Ð
a < pÞ and

Ð
ab p for sð

Ð
a < pÞ:

5.2. Semantics. Given a term t and an assignment r : X ! R, we write tRr for

the denotation of term t in R for r. When t does not contain variables we may use

tR for the denotation of t in R.

Let V be a stochastic valuation and r an assignment. Satisfaction of formulas

by V and r is inductively defined as follows:

• VrI
Ð
a @ p whenever ProbV ðaÞ @ pRr;

• VrI j1 � j2 whenever Vr 6I j1 or VrI j2.

We may omit the reference to the assignment r whenever the formula does not

include variables.

Let G � LPPL and j a LPPL. We say that G entails j, written G h j, whenever,

for every stochastic valuation V and assignment r, if VrI g for each g a G then

VrI j. As expected, j is said to be valid when h j.

Observe that entailment in PPL is not compact. Let a a L. We start by show-

ing that in the real closed ordered field R

ðyÞ
Ð
aa

1

n
: n a Nþ

� �
h
Ð
a ¼ 0:

Let V be a stochastic valuation such that

ProbV ðaÞa
1

n
; for every n a Nþ:

Assume, by contradiction, that ProbV ðaÞA 0. Then, because

ProbV ðaÞa
1

n
: n a Nþ

� �
¼ na

1

ProbV ðaÞ
: n a Nþ

� �
;
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we would have that 1
ProbV ðaÞ is an upper bound of N. But N is not bounded from

above taking into account that R has the least upper bound property. Therefore,

ðyÞ is true. However, for every kb 1, we have

Ð
aa

1

nj
: nj a Nþ; 1a ja k

� �
6h

Ð
a ¼ 0:

Hence, PPL cannot be complete in the presence of hypotheses.

5.3. Calculus. The PPL calculus combines propositional reasoning with RCOF

reasoning. We intend to use the RCOF reasoning to a minimum, namely to prove

assertions like

ð
Ð
a1 @1 p1b� � �b

Ð
ak @k pkÞ �

Ð
akþ1 @kþ1 pkþ1:

To this end, we represent in RCOF the probability
Ð
a of each propositional

formula a by variable xa and impose conditions on that variable that e¤ect the

properties of the probability.

Recall that the probability of a formula a is the sum of the probabilities of the

Ba-valuations that satisfy the formula and that there is a disjunctive normal form

of a where each disjunct can be seen as identifying a Ba-valuation that satisfies the

formula. Hence, for calculating the probability of a it is enough to sum the prob-

abilities of each such disjunct.

As we proceed to explain, we collect these conditions in a formula of RCOF.

We say that L ¼ fa11; . . . ; a1m1
; . . . ; ak1; . . . ; akmk

g � L is an adequate set of DNF-

conjuncts for fa1; . . . ; akg � L whenever

(1) Ba11 ¼ � � � ¼ Bakmk
¼ Ba1 A � � �ABak ¼ BL;

(2) each ajl is a conjunction of literals;

(3) hc sðajlbajl 0 Þ for 1a lA l 0amj;

(4) hc aj C4mj

l¼1 ajl for each j ¼ 1; . . . ; k.

Observe that clauses 2 and 4 ensure that 4mj

l¼1 ajl is a disjunctive normal form of

aj. Moreover, clause 3 guarantees that there are no redundant disjuncts in the dis-

junctive normal form of each aj. Given such an adequate set L of DNF-conjuncts

for a1; . . . ; ak, we use the abbreviation

Qa1;...;ak
a11;...;akmk

for the RCOF formula

�
5

U�BL

0axfU
BL

a 1
�
b

� X
U�BL

xfU
BL

¼ 1
�
b

�
5
k

j¼1

�
xaj ¼

Xmj

l¼1
xajl

�	
:
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Recall that each propositional formula fU
BL

identifies the BL-valuation that assigns

true to the propositional symbols in U and assigns false to the propositional sym-

bols in BLnU . Hence,

0axfU
BL

a 1

imposes that the probability of each BL-valuation should be in the interval ½0; 1�
and

X
U�BL

xfU
BL

¼ 1

imposes in RCOF that the sum of the probabilities of all BL-valuations is 1. The

conjunct

xaj ¼
Xmj

l¼1
xajl

imposes that the probability of aj is the sum of the probabilities of the valuations

that satisfy the formula.

The calculus for PPL is an extension of the classical propositional calculus con-

taining the following axioms and rules:

TT
j

provided that j is a tautological formula;

RR ð
Ð
a1 @1 p1b� � �b

Ð
ak @k pkÞ �

Ð
akþ1 @kþ1 pkþ1

provided that there is an adequate set

fa11; . . . ; a1m1
; . . . ; aðkþ1Þ1; . . . ; aðkþ1Þmkþ1g

of DNF-conjuncts for fa1; . . . ; akþ1g such that

E
��

Qa1;...;akþ1
a11;...;akþ1mkþ1

b5
k

j¼1
ðxaj @j pjÞ

�
� ðxakþ1 @kþ1 pkþ1Þ

�

is a theorem of RCOF;

MP
j1 j1 � j2

j2
.

Axioms TT and rule MP extend the propositional reasoning to formulas in

LPPL. Axioms RR import to PPL all we need from RCOF. It is worthwhile to refer

that the metatheorem of deduction holds for PPL.
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5.4. Examples. Consider the derivation in Figure 1 for establishing that

i
Ð
aa 1

holds for arbitrary a a L. The use of RR axioms can be involved. We explain

their use only for obtaining
Ð
tt ¼ 1 (step 2 of the derivation). Assume that tt is

an abbreviation of B14ðsB1Þ. Then the following formula is in RCOF:

E
�
Q tt

B1;sB1
� ðxtt ¼ 1Þ

�
where Q tt

B1;sB1
is

ð0a xB1
a 1Þbð0a x

sB1
a 1Þ

b
xB1
þ x

sB1
¼ 1

b
xtt ¼ xB1

þ x
sB1

;

and, so,
Ð
tt ¼ 1 is obtained by RR.

Next, let us see how we can express and derive (binary) additivity, i.e., how we

can establish that

Ð
a ¼ x1;

Ð
b ¼ x2;

Ð
ðabbÞ ¼ x3 i

Ð
ða4bÞ ¼ x1 þ x2 � x3 ðBAÞ

holds for arbitrary a; b a L. In fact, let

• a1 be a;

• a2 be b;

• a3 be abb and each a3l a common disjunct in the disjunctive normal form

of a1 and a2;

• a4 be a4b and each a4l a disjunct in the disjunctive normal form of a1 and a2
with no repetitions.

1
Ð
ða � ttÞ ¼ 1 RR

2
Ð
tt ¼ 1 RR

3
�Ð
ða � ttÞ ¼ 1

�
�

�
ð
Ð
tt ¼ 1Þ �

��Ð
ða � ttÞ ¼ 1

�
bð

Ð
tt ¼ 1Þ

��
TT

4 ð
Ð
tt ¼ 1Þ �

��Ð
ða � ttÞ ¼ 1

�
bð

Ð
tt ¼ 1Þ

�
MP 1, 3

5
�Ð
ða � ttÞ ¼ 1

�
bð

Ð
tt ¼ 1Þ MP 2, 4

6
��Ð
ða � ttÞ ¼ 1

�
bð

Ð
tt ¼ 1Þ

�
� ð

Ð
aa 1Þ RR

7
Ð
aa 1 MP 5, 6

Figure 1. i
Ð
aa 1.

291On probability and logic



Then, the formula

E
��

Qa1;...;a4
a11;...;a4m4

b5
3

j¼1
ðxaj ¼ xjÞ

�
� ðxa4 ¼ x1 þ x2 � x3Þ

�

is a theorem of RCOF. Then, by RR we have

i
�Ð

a ¼ x1b
Ð
b ¼ x2b

Ð
ðabbÞ ¼ x3

�
�

Ð
ða4bÞ ¼ x1 þ x2 � x3:

Hence, (BA) follows by applying MP.

The marginal condition is also expressible and derivable. For instance, let

A ¼ fB1;B2g, A 0 ¼ fB1g and U 0 ¼ fB1g. We present in Figure 2 a derivation

for showing that

Ð �
B1bðsB2Þ

�
¼ x1;

Ð
ðB1bB2Þ ¼ x2 i

Ð
B1 ¼ x1 þ x2

holds.

The next example shows how modus ponens for classical formulas is lifted to

PPL formulas. Observe that

Ð
a1 ¼ 1;

Ð
a1 � a2 ¼ 1 i

Ð
a2 ¼ 1

holds, as can be seen in Figure 3. Therefore, the rule

MP�
Ð
a1 ¼ 1

Ð
a1 � a2 ¼ 1Ð

a2 ¼ 1

is admissible in the PPL calculus.

1
Ð �
B1bðsB2Þ

�
¼ x1 HYP

2
Ð
ðB1bB2Þ ¼ x2 HYP

3
�Ð �

B1bðsB2Þ
�
¼ x1

�
�

��Ð
ðB1bB2Þ ¼ x2

�
���Ð �

B1bðsB2Þ
�
¼ x1

�
b
�Ð
ðB1bB2Þ ¼ x2

���
TT

4
�Ð
ðB1bB2Þ ¼ x2

�
���Ð �

B1bðsB2Þ
�
¼ x1

�
b
�Ð
ðB1bB2Þ ¼ x2

��
MP 1, 3

5
�Ð �

B1bðsB2Þ
�
¼ x1

�
b

�Ð
ðB1bB2Þ ¼ x2

�
MP 2, 4

6
��Ð �

B1bðsB2Þ
�
¼ x1

�
b
�Ð
ðB1bB2Þ ¼ x2

��
�

ð
Ð
B1 ¼ x1 þ x2Þ RR

7
Ð
B1 ¼ x1 þ x2 MP 5, 6

Figure 2.
Ð �
B1bðsB2Þ

�
¼ x1,

Ð
ðB1bB2Þ ¼ x2 i

Ð
B1 ¼ x1 þ x2.
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In the same vein it is easy to show that the rule

TT� Ð
a ¼ 1

provided that hc a

is also admissible in the PPL calculus. Just observe that

ffU
Ba

: U � Bag

is an adequate set of DNF-conjuncts for a, since a is a tautology. Then, it is im-

mediate to conclude that ð
Ð
tt ¼ 1Þ � ð

Ð
a ¼ 1Þ is an RR axiom and, so,

Ð
a ¼ 1 is

derived from MP.

Oblivious transfer protocol. As a further illustration of the expressive power of

PPL, we want to specify what is envisaged with an Oblivious Transfer Protocol

(OTP) by expressing the assumed state before and the required state after a run

of the protocol. To this end, it becomes handy to use the abbreviation

a for
Ð
a ¼ 1

to which we will return in Section 7 for establishing a conservative embedding of

CPL in PPL.

Simplifying from [35], an OTP is a protocol to be followed by two agents (say

John and Mary) so that John sends a bit to Mary, but remains oblivious as to if

the bit reached Mary or not, while these two alternatives are equiprobable. Rabin

proposed a protocol for solving a more general problem (a message with several

bits is to be obliviously sent by John to Mary). The existence of such oblivious

transfer protocols is quite significant because by building upon them one can solve

other types of cryptographic problems.

The state that is assumed before the run of the protocol and the state required

after the run can be specified using the following propositional symbols (each with

1
Ð
ða1Þ ¼ 1 HYP

2
Ð
ða1 � a2Þ ¼ 1 HYP

3
�Ð
ða1Þ ¼ 1

�
�

��Ð
ða1 � a2Þ ¼ 1

�
���Ð

ða1Þ ¼ 1
�
b

�Ð
ða1 � a2Þ ¼ 1

���
TT

4
�Ð
ða1 � a2Þ ¼ 1

�
�

��Ð
ða1Þ ¼ 1

�
b

�Ð
ða1 � a2Þ ¼ 1

��
MP 1, 3

5
�Ð
ða1Þ ¼ 1

�
b

�Ð
ða1 � a2Þ ¼ 1

�
MP 2, 4

6
��Ð
ða1Þ ¼ 1

�
b

�Ð
ða1 � a2Þ ¼ 1

��
� ð

Ð
a2 ¼ 1Þ RR

7
Ð
a2 ¼ 1 MP 5, 6

Figure 3.
Ð
a1 ¼ 1,

Ð
a1 � a2 ¼ 1 i

Ð
a2 ¼ 1.
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the indicated intended meaning):

JB0 ðJohn holds bit 0Þ
JB1 ðJohn holds bit 1Þ
MB0 ðMary holds bit 0Þ
MB1 ðMary holds bit 1Þ

JKMB0 ðJohn knows that Mary holds bit 0Þ
JKMB1 ðJohn knows that Mary holds bit 1Þ:

Indeed, the assumed initial state can be specified by the conjunction of the follow-

ing PPL formulas:

JB04JB1 ðJohn holds bit 1 or holds bit 0Þ
ðsMB0ÞbðsMB1Þ ðMary does not hold bit 1 or bit 0Þ;

and the envisaged final state by the conjunction of the following PPL formulas:

JB04JB1 ðJohn holds bit 1 or holds bit 0Þ
ðsJKMB0ÞbðsJKMB1Þ ðJohn does not know

what; if anything; Mary holdsÞ
MB0 � JB0 ðIf Mary holds bit 0 then so does JohnÞ
MB1 � JB1 ðIf Mary holds bit 1 then so does JohnÞ

Ð
ðMB04MB1Þ ¼ 1

2
ðMary holds a bit with probability

1

2
Þ:

It is also necessary to impose the relevant epistemic requirements:

JKMB0 � MB0 and JKMB1 � MB1:

This example shows the practical interest of developing a probabilistic epistemic

dynamic logic as an enrichment of PPL, endeavour that we leave for future work.

Observe that in the previous example we only needed a finite number of proposi-

tional symbols. But a key novelty of PPL is the possibility of working with a

countably infinite set of propositional symbols. This capability of PPL adds a lot

to its expressive power.

Halting problem. As an illustration, consider the encoding in PPL of the halting

problem (as originally introduced in [42]):

Does Turing machine i halt on input j?
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In this case we need the following propositional symbols (with the indicated

intended meaning):

Hijk ðMachine i halts on input j in k stepsÞ for each i; j; k a N

Hij ðMachine i halts on input jÞ for each i; j a N:

Using this countably infinite set of propositional symbols, consider the PPL theory

with the following set of proper axioms:

AxH ¼ fHijk � Hij : i; j; k a Ng
A

fHijk : machine i halts on input j in k stepsg:

It is straightforward to establish the following fact about this theory for each

i; j a N:

ðiÞ AxH i Hij i¤ ðiiÞ machine i halts on input j:

Indeed, it is easy to present a derivation for obtaining (i) from (ii). On the other

hand, obtaining (ii) from (i) requires the (strong) soundness of the calculus of PPL,

the first result in Section 6. Observe that AxH is decidable as required of a set

of axioms. However, ðAxHÞi is undecidable (since otherwise, thanks to the fact

above, the halting problem would also be decidable). So, this example shows

that, in PPL, Gi may be undecidable even when G is assumed to be decidable.

But ji is decidable, the last result of Section 7.

The probabilistic capabilities of PPL would be needed for developing a similar

theory for probabilistic Turing machines. To this end, we may take

f
Ð
Hijk ¼ x1 �

Ð
Hij bx1 : i; j; k a Ng
A

f
Ð
Hijk ¼ p : machine i halts on input j in k steps with probability pRg

as the set of proper axioms.

Meeting problem. Consider the meeting problem M as presented in [13]. The

problem involves two persons travelling independently on Z beginning at the

same time at point 0. Each traveller at a position s can either move to position

s� 1 or to position sþ 1 with probability 1
2 . Observe that the probability of a

traveller to return to zero in an odd number of steps is zero. On the other hand,

the probability of returning in 0 steps is 1, in two steps is 1
2 since it can either go

0! 1! 0 or 0! �1! 0 and in 4 steps is 3
8 since it can follow the steps

0! 1! 2! 1! 0, 0! �1! �2! �1! 0, 0! 1! 0! 1! 0, 0! 1!
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0! �1! 0, 0! �1! 0! 1! 0 and 0! �1! 0! �1! 0. That is, each

traveller behaves according to a random walk on the integer number line Z. It is

possible to prove that the probability of returning to point 0 in 2k steps is greater

than or equal to 1ffiffiffiffi
4k
p (see [13]) and the probability of returning to point 0 in 2k þ 1

steps is 0.

The objective is to prove that the travellers will meet again at point 0 in the

future with probability one. In this case, we need the following propositional sym-

bols (with the indicated intended meaning):

T
j
sþ1 variable that takes value 1

when traveller j returns to point 0 in the ðsþ 1Þ-th step

As variable that takes value 1
if both travellers reach point 0 in the s-th step

Bsþ1 variable that takes value 1
if both travellers reach point 0 in the ðsþ 1Þ-th step;
without a previous meeting at point 0

Cs variable that takes value 1
if up to and including the s-th step;
the travellers have not met at point 0

for each s a N and j ¼ 1; 2. Using this countably infinite set of propositional sym-

bols and an auxiliary propositional symbol B1, consider the PPL theory with the

following set AxM of proper axioms:

ðAx0Þ
Ð
T
j
2kþ1 ¼ 0 k a N; j ¼ 1; 2�
ð
Ð
B1 ¼ x� xÞb

�Ð
B1 ¼ 1

4k

��
�

Ð
T
j
2k bx k a Nþ; j ¼ 1; 2

ðAx1Þ ð
Ð
T1
sbT2

s ¼ xÞC ð
Ð
T1
s �

Ð
T2
s ¼ xÞ s a Nþ

ðAx2Þ
Ð
AsbCs ¼ 0 s a N

ðAx3Þ
Ð
A0 ¼ 1

ðAx4Þ
�
ð
Ð
As�i ¼ x1Þbð

Ð
Bi ¼ x2Þ

�
� ð

Ð
AsbBi ¼ x1 � x2Þ s a Nþ; 0 < ia s

as well as

ðAx5Þ sðBibBjÞ i < j

sðBibCjÞ ia j

ðAx6Þ Cs44
s

i¼1
Bi s a Nþ

ðAx7Þ AsC ðT1
sbT2

s Þ s a Nþ:
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The objective is to show that

X
s ANþ

Ð
Bs ¼ 1:

In order to simplify the presentation, we assume without loss of generality in the

rest of this example, that the probability constructor
Ð
� can occur in RCOF terms

and moreover that relational assertions can contain RCOF terms at both sides. So,

assume by contradiction, that there is a rational number p a ð0; 1Þ such that for

every s a Nþ

ðyÞ i
Xs

j¼1

Ð
Bj a 1� p:

The first step is to show that

ðiÞ i
�Xs

i¼1

Ð
Ai

�
¼

�Xs�1
i¼0

�Ð
Ai �

�Xs�i
j¼1

Ð
Bj

�		
:

In fact, by axiom (Ax5), (Ax6) and the PPL consequence (BA), we have

ðyÞ i
Ð
Ai ¼

�Xi

j¼1

Ð
AibBj

�
þ ð

Ð
AibCiÞ; for each i ¼ 1; . . . ; s:

By RCOF substitution of equals, from (Ax4) and ðyÞ we can conclude that

ðzÞ i
Ð
Ai ¼

�Xi

j¼1

Ð
Ai�j �

Ð
Bj

�
þ ð

Ð
AsbCsÞ; for each i ¼ 1; . . . ; s:

Similarly, by (Ax2) and ðzÞ we have

ðyyÞ i
Ð
Ai ¼

�Xi

j¼1

Ð
Ai�j �

Ð
Bj

�
; for each i ¼ 1; . . . ; s:

Furthermore RCOF reasoning over ðyyÞ leads to

i
Xs

i¼1

Ð
Ai ¼

Xs�1
i¼0

�Ð
Ai �

�Xs�i
j¼1

Ð
Bj

�	
;

which concludes the first step.
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We now show that, for any s a Nþ,

ðiiÞ i
Xs

i¼1

Ð
Ai <

1

p
:

In fact, from (i), ðyÞ and (RR),

i
Xs

i¼1

Ð
Ai a ð1� pÞ

�
1þ

Xs�1
i¼1

Ð
Ai

�
:

On the other hand,

i
Xs

i¼1

Ð
Ai a ð1� pÞ

�
1þ

Xs

i¼1

Ð
Ai �

Ð
As

�
:

Thus,

i p
Xs

i¼1

Ð
Ai a ð1� pÞ � ð1� pÞ

Ð
As

and so

i p
Xs

i¼1

Ð
Ai a ð1� pÞ:

Hence,

i p
Xs

i¼1

Ð
Ai < 1;

concluding (ii).

The third step is to show that

ðiiiÞ i
X2k
i¼1

Ð
Ai b

1

4

Xk
i¼1

1

i
and i

X2kþ1
i¼1

Ð
Ai b

1

4

Xk
i¼1

1

i
:

In fact, observe that, by (Ax0), (Ax1) and (Ax7) we have

i
Ð
A2j b

1

4j
and i

Ð
A2jþ1 ¼ 0

allowing us to conclude the third step.
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Let l be greater than 28=p. Then,

i
1

4

Xl

i¼1

1

i
b

1

p
:

Then, (ii) and (iii) allows us to conclude that

i
X2l
i¼1

Ð
Ai b

1

p
and i

X2l
i¼1

Ð
Ai <

1

p

which is a contradiction.

Notwithstanding their simplicity, the examples above should be enough to

assess the power of PPL for describing probabilistic systems and reasoning about

them.

6. Soundness and weak completeness

In this section we show that the calculus for PPL is (strongly) sound and weakly

complete. Observe that strong completeness is obviously out of question since

the PPL entailment is not compact (as mentioned in Section 5).

Theorem 6.1. The logic PPL is sound.

Proof. The rules are sound. We only check that axiom RR is sound since the

proof of the others is straightforward.

ðRRÞ is sound. Let V be a stochastic valuation and r an assignment over R.

Assume that

VrI
Ð
aj @j pj for each j ¼ 1; . . . ; k

and that the formula

E
��

Qa1;...;akþ1
a11;...;akþ1mkþ1

b5
k

j¼1
ðxaj @j pjÞ

�
� ðxakþ1 @kþ1 pkþ1Þ

�

is in RCOF. Let r 0 be an assignment over R such that,

r 0ðxaÞ ¼ ProbV ðaÞ

and r 0ðxÞ ¼ rðxÞ for every x a XN. Then,

Rr 0Ifo Q
a1;...;akþ1
a11;...;akþ1mkþ1

b5
k

j¼1
ðxaj @j pjÞ:
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Therefore,

Rr 0Ifo xakþ1 @kþ1 pkþ1

Hence, r 0ðxakþ1Þ @kþ1 p
Rr 0

kþ1 and so ProbV ðakþ1Þ @kþ1 p
Rr
kþ1. Therefore VrIÐ

akþ1 @kþ1 pkþ1. r

We now proceed towards the weak completeness of the calculus. We start by

proving an important lemma showing that we can move back and forth between

satisfaction of RCOF formulas expressing probabilistic reasoning and satisfaction

of PPL formulas.

Proposition 6.2. Let j be a formula of PPL and a1; . . . ; ak be the propositional for-

mulas such that
Ð
aj @j pj occurs in j for each j ¼ 1; . . . ; k. Moreover, let L ¼

fa11; . . . ; akmk
g be an adequate set of DNF-conjuncts for fa1; . . . ; akg. Let r be an

assignment over R. Assume that

RrIfo Q
a1;...;ak
a11;...;akmk

:

Then, there is a stochastic valuation V such that

VrI j i¤ RrIfo c

where c is the RCOF formula obtained from j by substituting xa @ p for each PPL

formula
Ð
a @ p.

Proof. Let A a }finB and hA : }A! ½0; 1� be such that

hAðUÞ ¼
1

2jAnBLj

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ:

Note that 0a rðx
fU 0
BL

Þa 1 since RrIfo Q
a1;...;ak
a11;...;akmk

. We start by showing that hA
is a finite-dimensional probability distribution. Observe that

X
U�A

hAðUÞ ¼
X
U�A

1

2jAnBLj

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ

¼ 1

2jAnBLj

X
U�A

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ

¼ 1
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since X
U�A

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ ¼
X

U1�AnBL

X
U2�AB BL

X
U 0�BL

U 0BA¼U2

rðx
fU 0
BL

Þ

¼
X

U1�AnBL

X
U 0�BL

rðx
fU 0
BL

Þ ð�Þ

¼
X

U1�AnBL

1 ð��Þ

¼ 2jAnBLj

where ð�Þ follows from the fact that there is a bijection from

fðU 0;U2Þ : U 0 � BL;U
0BA ¼ U2;U2 � ABBLg to fU 0 : U 0 � BLg

and ð��Þ holds because RrIfo Q
a1;...;ak
a11;...;akmk

.

Now we prove that fhAgA A}finB
satisfies the marginal condition. Let A � A 0,

A 0 � B and U � A. Then,

hAðUÞ ¼
1

2jAnBLj

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ

¼ 1

2jA 0nBLj
1

2jAnBLj
2jA

0nBLj
X

U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ

¼ 1

2jA 0nBLj
1

2jAnBLj
2jAnBLj

X
U 00�A 0

U 00BA¼U

X
U 0�BL

U 0BA 0¼U 00BBL

rðx
fU 0
BL

Þ ð�Þ

¼
X

U 00�A 0
U 00BA¼U

1

2jA 0nBLj

X
U 0�BL

U 0BA 0¼U 00BBL

rðx
fU 0
BL

Þ

¼
X

U 00�A 0
U 00BA¼U

hA 0 ðU 00Þ

where ð�Þ holds since:

2jA
0nBLj

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ

¼
X

U 00�A 0nBL

X
U 0�BL

U 0BA¼UBBL

rðx
fU 0
BL

Þ
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¼
X

U 000�AnBL

X
U 00�A 0

U 00BA¼U

X
U 0�BL

U 0BA 0¼U 00BBL

rðx
fU 0
BL

Þ ð��Þ

¼ 2jAnBLj
X

U 00�A 0
U 00BA¼U

X
U 0�BL

U 0BA 0¼U 00BBL

rðx
fU 0
BL

Þ

and where ð��Þ holds since there is a bijection f from

fðU 00;U 0Þ : U 00 � A 0nBL;U
0 � BL;U

0BA ¼ U BBLg

to

fðW 000;W 00;W 0Þ : W 000 � AnBL;W
00 � A 0;

W 00BA ¼ U ;W 0BA 0 ¼W 00BBL;W
0 � BLg

such that

f ðU 00;U 0Þ ¼
�
U 00BA;U A

�
U 00B ðA 0nAÞ

�
A
�
U 0B ðA 0nAÞ

�
;U 0

�
:

Indeed,

(a) f ðU 00;U 0Þ is in the range of f :

(i) W 000 � AnBL. Note that W 000 ¼ U 00BA. Hence, W 000 � A. Moreover,

since U 00 � BnBL then W 000 � BnBL.

(ii) W 00 � A 0. Note that W 00 ¼ U A
�
U 00B ðA 0nAÞ

�
A
�
U 0B ðA 0nAÞ

�
and

that U � A � A 0, U 00B ðA 0nAÞ � A 0 and U 0B ðA 0nAÞ � A 0.
(iii) W 00BA ¼ U . It is su‰cient to note that W 00 ¼ U A

�
U 00B ðA 0nAÞ

�
A�

U 0B ðA 0nAÞ
�
and that U BA ¼ U , U 00B ðA 0nAÞBA ¼ j and U 0B

ðA 0nAÞBA ¼ j.
(iv) W 0BA 0 ¼W 00BBL. It is su‰cient to note that W 00 ¼ U A

�
U 00B

ðA 0nAÞ
�
A
�
U 0B ðA 0nAÞ

�
and that U BBL ¼ U 0BA, U 00B ðA 0nAÞB

BL ¼ j and U 0B ðA 0nAÞBBL ¼ U 0B ðA 0nAÞ. So, W 00BBL ¼ U 0BA 0

¼W 0BA 0.
(v) W 0 � BL. Immediate since U 0 � BL.

(b) f is injective. Assume that f ðU 001 ;U 01Þ ¼ f ðU 002 ;U 02Þ. Then U 01 ¼ U 02. More-

over, U 001 BA ¼ U 002 BA and

UA
�
U 001 B ðA 0nAÞ

�
A
�
U 01B ðA 0nAÞ

�
¼ UA

�
U 002 B ðA 0nAÞ

�
A
�
U 02B ðA 0nAÞ

�
:

Observe that U 00i B ðA 0nAÞBU ¼ j and U 00i B ðA 0nAÞBU 0i B ðA 0nAÞ ¼ j for

i ¼ 1; 2. Hence, U 001 B ðA 0nAÞ ¼ U 002 B ðA 0nAÞ. So
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U 001 ¼ U 001 BA 0

¼ U 001 B
�
AA ðA 0nAÞ

�
¼ ðU 001 BAÞA

�
U 001 B ðA 0nAÞ

�
¼ ðU 002 BAÞA

�
U 002 B ðA 0nAÞ

�
¼ U 002 :

(c) f is surjective. Let ðW 000;W 00;W 0Þ be in the range of f . Take

U 00 ¼W 000A
�
ðW 00nAÞnBL

�
; U 0 ¼W 0:

(i) ðU 00;U 0Þ is in the domain of f :

– U 00 � A 0nBL. Note that U 00 ¼W 000A
�
ðW 00nAÞnBL

�
, W 000 � A � A 0

and W 000 � BnBL. So, W 000 � A 0nBL. On the other hand,

ðW 00nAÞnBL � A 0 since W 00 � A 0 and ðW 00nAÞnBL � BnBL. So,

U 00 � A 0nBL.

– U 0 � BL. Immediate since W 0 � BL.

– U 0BA ¼ U BBL. Observe that

U BBL ¼W 00BBLBAÞ
¼W 0BA 0BAÞ
¼W 0BAÞ
¼ U 0BA:

(ii) f ðU 00;U 0Þ ¼ ðW 000;W 00;W 0Þ. Indeed:

– U 00BA ¼W 000. In fact

U 00BA ¼
�
W 000A

�
ðW 00nAÞnBL

��
BA

�
¼ ðW 000BAÞA

��
ðW 00nAÞnBL

�
BA

��
¼W 000BAÞ
¼W 000:

– U A
�
U 00B ðA 0nAÞ

�
A
�
U 0B ðA 0nAÞ

�
¼W 00. In fact

U A
�
U 00B ðA 0nAÞ

�
A
�
U 0B ðA 0nAÞ

�
¼ U A

��
W 000A

�
ðW 00nAÞnBL

��
B ðA 0nAÞ

�
A
�
W 0B ðA 0nAÞ

�
¼ U A

��
ðW 00nAÞnBL

�
B ðA 0nAÞ

�
A
�
W 0B ðA 0nAÞ

�
¼ U A

�
ðW 00nAÞnBL

�
A
�
ðW 00BBLÞnA

�
¼ U A ðW 00nAÞ
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¼ ðW 00BAÞA ðW 00nAÞ
¼W 00:

Hence, using Kolmogorov’s existence theorem, there exists a unique stochastic

valuation V having these finite-dimensional distributions.

Finally, we show, by induction on the structure of j, that

VrI j i¤ RrIfo c:

Base: j is
Ð
aj @j pj. Observe first that:

ProbV ðajÞ ¼
X

U A 7a8

ProbðVBaj
¼ UÞ

¼
X

U A fvBBL; vIc ajg
ProbðVBL

¼ UÞ ð�Þ

¼
X

vBBL; vIc aj

hBL
ðvBBLÞ

¼
X

vBBL; vIc aj

rðx
f
vBBL
BL

Þ

¼
X

l¼1;...;mj

rðxajlÞ ð��Þ

¼ rðxaj Þ ð���Þ

where ð�Þ holds by Proposition 3.4, ð��Þ holds since fa11; . . . ; akmk
g is an adequate

set of DNF-conjuncts for fa1; . . . ; akg, and ð���Þ holds since RrIfo Q
a1;...;ak
a11;...;akmk

.

Then,

ð Þ Assume that RrIfo xaj @j pj. Then rðxaj Þ @j p
Rr
j . So, ProbV ðajÞ @j p

Rr
j .

Hence, VrI j.

ð!Þ Assume that VrI
Ð
aj @j pj. Then ProbV ðajÞ @j p

Rr
j . Thus, rðxaj Þ @j p

Rr
j

and so RrIfo c.

Step: j is j1 � j2. Then

RrIfo c1 � c2

i¤

Rr 6Ifo c1 or RrIfo c2

i¤ IH

Vr 6I j1 or VrI j2

i¤

VrI j
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where c1 and c2 are formulas obtained from j1 and j2, respectively, by replacing

each formula
Ð
a @ p by xa @ p. r

Observe that hA, as defined in the proof of the result above, gives values to val-

uations over the propositional symbols in A. We give two illustrations of hAðUÞ.
(i) Assume that A ¼ fB1;B2;B3g, BL ¼ fB1;B3;B4g and U ¼ fB2g. Then,

hAðUÞ ¼
1

2

X
U 0�BL

U 0BA¼j

rðx
fU 0
BL

Þ ¼ 1

2

�
rðx

fj
BL

Þ þ rðx
f
fB4g
BL

Þ
�

¼ 1

2

�
rðxðsB1ÞbðsB3ÞbðsB4ÞÞ þ rðxðsB1ÞbðsB3ÞbB4

Þ
�
:

Observe that U is the valuation that gives 1 to B2 and 0 to B1, B3 and B4. The

probability of U is one half the value of rðxðsB1ÞbðsB3ÞÞ.
(ii) Assume that A ¼ fB1;B2;B3;B4g, BL ¼ fB1;B3g and U ¼ fB1;B2g. Then,

hAðUÞ ¼
1

4

X
U 0�BL

U 0BA¼fB1g

rðx
fU 0
BL

Þ ¼ 1

4
rðx

f
fB1g
BL

Þ ¼ 1

4
rðxB1bðsB3ÞÞ:

Note that U is the valuation that gives 1 to B1, B2 and 0 to B3, B4. The prob-

ability of U is a quarter the value of rðxB1bðsB3ÞÞ.

Proposition 6.3. Let j a LPPL. Then, there is c a LPPL such that

i jCc

and c is in disjunctive normal form. Moreover, if j is consistent then there is a con-

junction of literals in c that is also consistent.

Theorem 6.4. The logic PPL is weakly complete.

Proof. Let j a LPPL. Assume that 6i j. We proceed to show that 6h j. First

observe that sj must be consistent in the sense that sj 6i ff because otherwise

from sj one would be able to derive every formula, including in particular,

sj i j. Hence, by the metatheorem of deduction i ðsjÞ � j. Observing that

i
�
ðsjÞ � j

�
� j, because

�
ðsjÞ � j

�
is a tautological formula, then by MP we

would have i j contradicting the hypothesis. By Proposition 6.3,

i ðsjÞC 4
m AM

hm

305On probability and logic



where each disjunct is a conjunction of literals. Since sj is consistent, at least one

of the disjuncts must also be consistent. Let hm be one such consistent disjunct. In

order to show that 6h j it is enough to show that sj is satisfiable. Hence, it is

enough to show that there is one satisfiable disjunct. Indeed, hm is satisfiable.

Towards a contradiction, assume that there are no V and r such that VrI hm
holds. Let hm be of the form

ð
Ð
a1 @1 p1Þb� � �bð

Ð
ak @k pkÞ:

Let

fa11; . . . ; a1m1
; . . . ; ak1; . . . ; akmk

g � L

be an adequate set of DNF-conjuncts for fa1; . . . ; akg � L. Then, by Proposition

6.2, there would not exist r and such that

RrIfo Q
a1;...;ak
a11;...;akmk

b
�
5
k

j¼1
ðxaj @j pjÞ

�
:

Hence, we would have

E
��
Qa1;...;ak

a11;...;akmk
b5

k

j¼1
ðxaj @j pjÞ

�
� ff

�
a RCOF:

Then, by RR, we would establish

hm i ff

in contradiction with the consistency of hm. r

7. Conservativeness and decidability

In this section we start by working towards showing that PPL is a conservative

extension of classical propositional logic.

Given a a L, we denote by a� the PPL formula
Ð
a ¼ 1. Moreover, given

D � L, we denote by D� the set fd� : d a Dg.

Proposition 7.1. Letting DA fag � L, if D ic a then D� i a�.

Proof. Just observe that if a1; . . . ; an is a derivation sequence of a ¼ an from D in

CPL, then, making good use of TT� and MP� (the admissible rules established in

Subsection 5.4), a�1 ; . . . ; a
�
n is a derivation sequence of a� from D� in PPL. r

306 A. Sernadas, J. Rasga and C. Sernadas



Theorem 7.2. Let DA fag � L. Then

D� h a� i¤ D hc a:

Proof. ð!Þ Assume that D� h a�. Let v be a (classical) valuation such that vIc d

for every d a D. Then, by Proposition 4.2, ProbV vðdÞb 1 for every d a D. Hence,

V v I
Ð
d ¼ 1 for every d a D. Thus, V v I

Ð
a ¼ 1 and, so, ProbV vðaÞ ¼ 1. There-

fore, using the same proposition, vIc a.

ð Þ Assume that D hc a. Then, thanks to the previous proposition, D� i a�

and, so, by Theorem 6.1, D� h a�. r

We now concentrate on the decidability of the PPL validity problem. For this

purpose we assume given the following two algorithms. Let ADNF be an algo-

rithm that receives a propositional formula a and a set of propositional symbols

A 	 Ba, and returns a set fb1; . . . ; bmg of conjunctions of literals such that each

Bbi ¼ A, b14� � �4bm is a disjunctive normal form of a and 6hc bi C bj for 1a

iA jam. Furthermore, let ARCOF be an algorithm for deciding the validity of

sentences in RCOF.

The procedure in Figure 4 receives a PPL formula and returns true whenever

the formula is valid and false otherwise. Indeed, the following theorem establishes

that the execution of APPL always terminates and does so with the correct output.

Theorem 7.3. The procedure APPL is an algorithm. Moreover, APPL is correct.

Proof. It is straightforward to verify that the execution of APPL always terminate,

returning either true or false, so we focus on correctness:

(i) We start by showing that if APPLðjÞ is true then j is a valid formula of PPL.

Let j be a formula of PPL. Assume that APPLðjÞ is true. Then,

ARCOF

�
EðQa1;...;ak

a11;...;akmk
� cÞ

�

Input: formula j of PPL.

(1) Let Bj :¼ fBj : Bj a B and Bj occurs in jg;
(2) Let fa1; . . . ; akg :¼ fa :

Ð
a @ p occurs in jg;

(3) Let c be the formula obtained from j by replacing each formula
Ð
a @ p by xa @ p;

(4) For each j ¼ 1; . . . ; k:

(a) Let faj1; . . . ; ajmj
g :¼ADNFðaj ;BjÞ;

(5) Return ARCOF

�
EðQa1;...; ak

a11;...; akmk
� cÞ

�
.

Figure 4. Algorithm APPL.
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is true. Let V be a stochastic valuation and r an assignment. Let r 0 be an

assignment over R such that,

r 0ðxaÞ ¼ ProbV ðaÞ

and r 0ðxÞ ¼ rðxÞ for every x a XN. We now show that

Rr 0Ifo Q
a1;...;ak
a11;...;akmk

:

Recall that ProbV is an Adams’ probability assignment (Theorem 3.6). Hence,

ProbV satisfies Adams’ postulates. Therefore:

Rr 0Ifo 5
U�Bj

0a xfU
Bj
a 1

since r 0ðxfU
Bj
Þ ¼ ProbV ðfU

Bj
Þ and using postulate P1. Moreover,

Rr 0Ifo

X
U�Bj

xfU
Bj
¼ 1

by postulates P2 and P4 since

hc 4
U�Bj

fU
Bj

by Proposition 3.2, and using the fact that r 0ðxfU
Bj
Þ ¼ ProbV ðfU

Bj
Þ and

hc sðajlbajl 0 Þ for every j ¼ 1; . . . ; k and 1a lA l 0amj. Finally,

5
k 0

j¼1

�
xaj ¼

Xmj

l¼1
xajl

�
:

since

ProbV ðajÞ ¼ ProbV
�

4
1alamj

ajl
�

by postulate P3, and since, by postulate P4

ProbV
�

4
1alamj

ajl
�
¼

Xmj

l¼1
ProbV ðajlÞ:
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Hence, Rr 0Ifo Q
a1;...;ak
a11;...;akmk

. Moreover

RIfo EðQa1;...;ak
a11;...;akmk

� cÞ

and so Rr 0Ifo c.

We now show, by induction on the structure of j, that

Rr 0Ifo c i¤ VrI j:

Base: j is
Ð
a @ p. Then

Rr 0Ifo xa @ p i¤ r 0ðxaÞ @ pRr 0 i¤ ProbV ðaÞ @ pRr i¤ VrI
Ð
a @ p:

Step: j is j1 � j2. Then

Rr 0Ifo c1 � c2

i¤

Rr 0 6Ifo c1 or Rr
0Ifo c2

i¤ IH

Vr 6I j1 or VrI j2

i¤

VrI j

where c1 and c2 are formulas obtained from j1 and j2, respectively, by

replacing each formula
Ð
a @ p by xa @ p. Therefore, h j.

(ii) We now show that if APPLðjÞ is false then j is not a valid formula of PPL.

By contraposition, assume that h j. We prove that, for every assignment r

over R,

RrIfo EðQa1;...;ak
a11;...;akmk

� cÞ:

Assume that

RrIfo Q
a1;...;ak
a11;...;akmk

:

Let V be the stochastic valuation induced by r as defined in Proposition 6.2.

Then, VrI j since h j and, so, by the same proposition, RrIfo c.

Therefore,

ARCOF

�
EðQa1;...;ak

a11;...;akmk
� cÞ

�
returns true and so does APPLðjÞ. r
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8. Concluding remarks

Always within the setting of propositional logic we looked at ways of introducing

probabilistic reasoning into logic. First, towards assigning probabilities to valua-

tions we proposed to look at a random valuation as a stochastic process indexed

by the set of propositional symbols. This novel notion (of stochastic valuation as

we called it) allow us to be able to work with a countably infinite set of proposi-

tional symbols (we illustrate the relevance of this cardinality in the probabilistic

halting problem as well as in the meeting problem). Moreover, it has the advan-

tage of allowing the use of Kolmogorov’s existence theorem for moving from the

finite-dimensional probability distributions to the distribution in the underlying

probability space. In particular, the existence theorem was quite useful in estab-

lishing the equivalence between Adams’ probability assignments to formulas and

stochastic valuations. Afterwards, we investigated a notion of probabilistic en-

tailment in the scenario of leaving the propositional language unchanged. This

notion turned out to be identical to classical entailment. Since it seems that not

so much is gained by introducing probabilities without changing the language,

we decided to set-up a small enrichment (PPL) of classical propositional logic by

adding a language construct, inspired by [15], [23], [29], that allows the constrain-

ing (without nesting) of the probability of a formula. The resulting extension of

classical propositional logic was shown to be rich enough for setting-up interesting

theories and easy to axiomatize by relying on the decidable theory of real closed

ordered fields (RCOF). In due course, we proved that the extension is conservative

and still decidable.

Concerning future work, it seems worthwhile to investigate other meta-

properties of PPL, starting with bounding the complexity of its decision problem.

We expect this complexity to be much lower than the complexity of RCOF theo-

remhood, since we only need to recognize RCOF theorems of a very simple clausal

form. Strong completeness of the PPL axiomatization was out of question because

the semantics over R led to a non-compact entailment. Relaxing the semantics by

allowing any model of RCOF may open the door to establishing strong complete-

ness. Clearly, one should start by investigating whether Kolmogorov existence

theorem can be carried over to every RCOF model. We would like to explore fur-

ther definitions of probabilistic entailment namely involving the selection of a par-

ticular stochastic valuation using some criterion like, for example, the maximum

Shannon entropy or others as discussed in [32]. The relevance of abduction in

probabilistic reasoning was recognized in [17]. We would like to compute the re-

quired probability of the conjunction of the relevant hypotheses in order to ensure

an envisaged probability for the conclusion. We expect to be able to find inspira-

tion in the calculus presented in [38], given its abductive nature, towards develop-

ing an abduction calculus for PPL.
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