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quantization of the torus T2
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Abstract. In this paper, we give a correspondence between the Berezin—Toeplitz and the
complex Weyl quantizations of the torus T2. To achieve this, we use the correspondence
between the Berezin—Toeplitz and the complex Weyl quantizations of the complex plane
and a relation between the Berezin—Toeplitz quantization of a periodic symbol on the real
phase space R? and the Berezin—Toeplitz quantization of a symbol on the torus T2.
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Introduction

The object of this paper is to construct a new semi-classical quantization of the
torus T2 by adapting Sjostrand’s complex Weyl quantization of R? and to give the
correspondence between this quantization and the well-known Berezin—Toeplitz
quantization of T2. When the phase space is R?", the pseudo-differential Weyl
quantization allows us to relate a classical system to a quantum one through the
symbol map; thus pseudo-differential operators have become an important tool in
quantum mechanics. On the mathematical side, these operators have been intro-
duced in the mid-sixties by André Unterberger and Juliane Bokobza [22] and in
parallel by Joseph Kohn and Louis Nirenberg [16] and have been investigated by
Lars Hormander [13], [14], [15]. They allow to study physical systems in positions
and momenta. On the other hand, Berezin—Toeplitz operators have been intro-
duced by Feliks Berezin [2] and investigated by Louis Boutet de Monvel and Victor
Guillemin [5] as a generalization of Toeplitz matrices. The study of these operators
has been motivated by the fact that pseudo-differential operators take into account
only phases spaces that can be written as cotangent spaces, whereas in mechanics,
there are physical observables like spin that naturally lives on other types of phases
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spaces, like compact Kéhler manifolds, which can be quantized in the Berezin—
Toeplitz way. In fact, it was realized recently that the Berezin—Toeplitz quantiza-
tion applies to even more general symplectic manifolds, and thus has become a
tool of choice for applications of symplectic geometry and topology, see [7].

In this paper, we give a relation between the Berezin—Toeplitz quantization of
the torus, studied for instance by David Borthwick and Alejandro Uribe in [4] and
the complex Weyl quantization of the torus, which we introduce as a variation of
Sjostrand’s quantization of R?. The complex Weyl quantization of R has been
investigated by Johannes Sjostrand in [21], then by Anders Melin and Johannes
Sjostrand in [17], [18], also by Michael Hitrik and Johannes Sjostrand in [10] and
in their mini-courses [11] and by Michael Hitrik, Johannes Sjostrand and San
Vii Ngoc in [12]. This quantization of the real plane R? allows to study pseudo-
differential operators with complex symbols, and therefore is particularly useful
for problems involving non self-adjoint operators or quantum resonances. It is
defined by a contour integral over an /R-manifold (/-Lagrangian and R-symplectic)
which plays the role of the phase space. Here, we define an analogue of this
notion in the torus case.

If we consider the complex plane as a phase space, there exists a correspon-
dence between the complex Weyl and the Berezin—Toeplitz quantizations (this
correspondence uses a variant of Bargmann’s transform and can be found, for
instance, in the book [23], Chapter 13 of Maciej Zworski); using this result, we
are able to obtain Bohr-Sommerfeld quantization conditions for non-selfadjoint
perturbations of self-adjoint Berezin—Toeplitz operators of the complex plane C
by first proving the result in the case of pseudo-differential operators (see [20]).
Therefore, we expect that this new complex quantization of T2, together with its
relationship to the Berezin—Toeplitz quantization, will be crucial in obtaining pre-
cise eigenvalue asymptotics of non-selfadjoint Berezin—Toeplitz operators on the
torus.

Structure of the paper:
e In Section 1, we state our result.

e In Section 2, we give the proof of our result which is divided into three parts,
the first one consists in recalling the Berezin—Toeplitz quantization of the
torus, the second one in introducing the complex Weyl quantization of the
torus and the last one in relating these two quantizations.

1. Result

1.1. Context. In this section, we recall the definition of the Berezin—Toeplitz
quantization of a symbol on the torus T2 (see for example [6]) and we give a def-
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inition of the complex Weyl quantization of a symbol on the torus. Let0 </ <1
be the semi-classical parameter. By convention the Weyl quantization involves the
semi-classical parameter /i, contrary to the Berezin—Toeplitz quantization which
involves the inverse of this parameter, denoted by k. In the whole paper, we will
use these two parameters.

Notation: let & be an integer greater than 1. Let u and v be complex numbers of
modulus 1.

e If z € C, we denote by z = (p,q) € R*> or z = p + ig via the identification of
C with R2.

e T2 denotes the torus (R/27Z) x (R/Z).
e 4, is the space of measurable functions g such that:
2n 1 5 5
L JO l9(p, q)|*e ™ dp dg < +o0,
which are invariant under the action of the Heisenberg group (for more
details, see Subsection 2.1), i.e. for all (p,q) € R?, we have:
g(p+2m,9) =ulg(p,q) and  g(p,q+1) = vfe WHI2g(p g).
® %} is the space of holomorphic functions in %, i.e.:
g(p +2m,q) = u*g(p.q), }
M = € Hol(C); el .
‘ {g © g(p.q+1) = vke PHIEERg(p g)
e [1; is the orthogonal projection of the space % (equipped with the weighted
L?-scalar product on [0,27] x [0, 1]) on the space #;.
Remark 1.1.
e The spaces ¥, and #; depend on the complex numbers « and v.

e In [4], they consider the torus T? = R?/Z? and they choose an other quanti-
zation which leads to an other space of holomorphic functions, also called
M., defined as follows:

w_l9€ Hol(C);  V(m,n) e 72,
k g(z +m+ zn) _ (_1)kmnekn(z(n1—in)+(1/2)(m2+n2))g(z) :

Definition 1.2. Let f; € ¥*(R?). We say that f; admits an asymptotic expansion
in powers of 1/k for the ¥ -topology of the following form:

fk(x7 y) ~ Zk_lﬁ(x7 y)a

=0
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if:
(1) Ve N, f; € 6 (R?);
(2) VL e N*, ¥(x, ) € R?, 3C > 0 such that:

L1
‘fk(x, V) — Zk”f;(x, y)’ < Ck™*  for large enough k.
1=0

We denote by %;° (R?) the space of such functions.
Definition 1.3. Let f; € % (R?) be a function such that, for (x, y) € R?, we have:

Se(x +2n,y) = fi(x,¥) = fi(x, y +1).

Define the Berezin—Toeplitz quantization of the function f; by the sequence of
operators Ty, := (T}),-, where, for k > 1, the operator T} is given by:

Ty = W My X1y : A — Ay,

where My, : 9 — % is the multiplication operator by the function f;.
We call fj the symbol of the Berezin—Toeplitz operator T7,.

Now, we define the complex Weyl quantization of a symbol on the torus. We
will explain in details in Subsection 2.2 why we consider such a notion. First, we
introduce some notations.

Notation: let @, be the strictly subharmonic quadratic form defined by the follow-
ing formula for z € C:

e Ao, denotes the following set:

Ao, — {(LE%@);Z e @} — {(z-S(z))izeC} = C.

i
e L(dz) denotes the Lebesgue measure on C, i.e. L(dz) = %dz Adz.

o L}(C, @) := L*(C,e 2/ L(dz)) is the set of measurable functions f such
that:

J |f(2)]2e 22O/ (dz) < +o0.
c
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e H;(C,®;) := Hol(C) n L}(C, @) is the set of holomorphic functions in the
space L2(C, ®@y).

® %.°(Ao,) denotes the set of smooth functions on A, admitting an asymptotic
expansion in powers of 71 for the #“-topology in the sense of Definition 1.2
(by replacing 1/k by / and R? by Ag,).

Remark 1.4. There are several definitions of the Bargmann transform. Here we

. . 1 . .
chose the weight function @, (z) = 3 S(z)? instead of |z|* because it is well-adapted
to the analysis of the torus.

Definition 1.5 (see Definitions 2.22 and 2.24). Let b; € €, (Ao,) be a function
such that, for (z,w) € Ag,, we have:

bp(z + 27, w) = bp(z,w) = by(z +i,w —1).

Define the complex Weyl quantization of the function by, denoted by Opg, (bs), by
the following formula, for u € Hs(C, ®y):

w 1 i —w Z+w
Opg, (bn)u(z) = MJJr(-) el >cbh< 3 ,C) u(w) dwdg,

where the contour integral is the following:

r() ={<w,é> e C%C%%(zzw) _ —s<zzw>}.

We call by the symbol of the pseudo-differential operator Opg, (bs)-

We will show that for b, € 4, (Ao,) satisfying the hypotheses of Definition
1.5, the complex Weyl quantization defines an operator Opg, (bs) which sends the
space of holomorphic functions ;. on itself (see Proposition 2.25). Therefore, the
Berezin—Toeplitz and the complex Weyl quantizations give rise to operators acting
on the space of holomorphic functions #%.

1.2. Main result.
Theorem 1.6. Let f; € 4;°(R?) be a function such that, for (x, y) € R?, we have:

fk(x+27l, y) :fk(x7 y) :fk(x’y'i_ 1)

Let Ty, = (Ty);, be the Berezin—Toeplitz operator of symbol fi. Then, for k > 1,
we have:

Ty, = Op(‘lgl (bp) + O(k=*)  on H#;,
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where by € 6, (Aa,) is given by the following formula, for z € Ag, ~ C:

ba(2) = exp (li azaf> ((2)-

This formula means that by, is the solution at time 1 of the following ordinary differ-
ential equation:

Oibi(t,z) = %ﬁzﬁg(bﬁ(l, 2)),
by(0,2) = fi(2).
Besides, by, satisfies the following periodicity conditions, for (z,w) € Ag,:
bi(z + 2w, w) = by(z,w) = bp(z +i,w —1).

Remark 1.7. This result is analogous to Proposition 2.29 (see for example [23],
Chapter 13) which relates the Berezin—Toeplitz and the complex Weyl quantiza-
tions of the complex plane. The important difference here is that the phase space
is the torus.

Remark 1.8. As a corollary of this result, we can establish a connection between
the Berezin—Toeplitz and the classical Weyl quantizations of the torus (see Corol-
lary 2.36).

2. Proof

The structure of the proof is organized as follows:
e in Subsection 2.1, we recall the Berezin—Toeplitz quantization of the torus;
¢ in Subsection 2.2, we introduce the complex Weyl quantization of the torus;
¢ in Subsection 2.3, we relate the Berezin—Toeplitz quantization of the torus to

the complex Weyl quantization of the torus.

2.1. Berezin—Toeplitz quantization of the torus T2. In this paragraph, we
recall the geometric quantization of the torus (see for example the article [6] of
Laurent Charles and Julien Marché).

Consider the real plane R? endowed with the euclidean metric, its canonical
complex structure and with the symplectic form w = dp Adg. Let Ly = RZx C
be the trivial complex line bundle endowed with the constant metric and the con-

. 1 . .
nection V=d + 7 where o is the 1-form given by:

(pdq — qdp).

N —

o =
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The holomorphic sections of Lg: are the sections [ satisfying the following
condition:

0 1

We are interested in the holomorphic sections of the torus T2 = (R/277) x
(R/Z). Let x= Zn%, i.e. if we denote by ¢, the translation of vector Xx, it is
defined by the following formula:

ty: R? — R?
(p.q) = (p+2m,q).

o . . .
And let y = P which corresponds to the translation ¢, given by:
q

ty R? - R2
(p,q) — (p,g+1).

Note that the w volume of the fundamental domain of the lattice is 27.
Let k > 1, the Heisenberg group at level k is R? x U(1) with the product:

(x, 1) - (3,0) = (¥ + x, uve ®/D@02)),

for (x,u), (y,v) € R? x U(1) (where U(1) denotes the set of complex numbers of
modulus one). This formula defines an action of the Heisenberg group on the
bundle L?zk endowed with the product measure. We identify the space of square
integrable sections of L?zk which are invariant under the action of the Heisenberg
group with the space ¥ (defined in Subsection 1.1). In fact, if i/ denotes such a
section, we associate to it a function g € %; using the following application:

LY(T?, L) — %
Y= g(x),

where X € R? and X = xo + (n1,m3) with xo € [0,27] x [0,1], (n1,12) € Z> and
where:

(%, 9(%)) = ((m1,m2),1) - (x0,¥(x0))-

Similarly, we identify the space of holomorphic sections of L?zk with the following
Hilbert space:

g(p +2m,q) = ubg(p,q),
Jﬁ(:{geHol(C); A ,
g(p,q + 1) = vke PHokek2g(p g
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endowed with the L2-weighted scalar product on [0,27] x [0,1]. The complex
numbers u and v are called Floquet indices. The Hilbert space #} admits an
orthogonal basis, given for / € {0,...,k — 1}, by the functions ¢, which are
defined, for z € C, as follows:

61(2) _ ukz/(27z) Z(U—ke—/—kj/2uik/(27r))/ei(l-&-jk)z. (1)
Jjez

2.2. Complex Weyl quantization of the torus T2. In this paragraph, we intro-
duce the notion of complex Weyl quantization of the torus which, to our knowl-
edge, is new. To do so, we follow these three steps:

(1) we recall the definition of the classical Weyl quantization of the torus;

(2) we recall the definition of the semi-classical Bargmann transform and we look
at some of its properties;

(3) we introduce the complex Weyl quantization as the conjugate of the classical
Weyl quantization by the Bargmann transform.

2.2.1. Classical Weyl quantization of the torus. The classical Weyl quantiza-
tion of a symbol on the torus has been studied, for example, by Monique Combes-
cure and Didier Robert in the book [9], Chapter 6. We need to introduce the fol-
lowing notation.

Notation:

e 7(R) denotes the Schwartz space, i.e.:

S(R)={pe " (R)l4l.,:= $u§|X“5f¢(X)| < +o0, Yo, f e N}

e for ¢ € S (R), Fu¢ denotes the semi-classical Fourier transform of the func-
tion ¢ and it is defined by the following equality:

Fb(&) = | e () v
R
this transform is an isomorphism of the Schwartz space and its inverse is
given by:

90 = | ) de

¢ Y'(R) denotes the space of tempered distributions, it is the dual of the
Schwartz space ¥ (R), i.e. it is the space of continuous linear functionals on
S (R);



Quantizations of the torus 323

® (-, 4 o denotes the duality bracket between .¥’'(R) and . (R);

e for y € ¥'(R), Zuy denotes the semi-classical Fourier transform of a
tempered distribution and it is defined by the following equality, for
¢ e L (R):

LTIy, ¢>y',y = <‘//»97h¢>5/”,y;
e for a € R, we denote by 7, the translation of vector a defined as follows:

7, R—R

X+— X+ a,

recall that the translation of a tempered distribution € &'(R) is defined as
follows, for ¢ € L (R):

{ta¥, ¢>tc/}’,,¢ = <¢7T—a¢>9”,5”

the distribution  is called a-periodic if 7,4 = , in this case, y can be written
as a convergent Fourier series in 2'(R) (see for example the book of Jean-
Michel Bony [3]):

l// _ Z lPleilth/a
)
lez

where the sequence (y,),., is such that, there exists an integer N > 0 such
that:

W, <ca+|IpY  viez.

Recall now the definition of the subspace of tempered distributions that corre-
sponds to the natural space on which pseudo-differential operators of the torus act
(see [9], Chapter 6). For k> 1 and for u,v € U(1), we consider the following

space:

S = e S'(R); 1oy = ik, 11 () = v * 7 (W)}

Remark 2.1.

e The definition of the space % involves two complex numbers # and v. We
will see that they correspond to the Floquet indices seen in the definition of
the space #.

e In [8], they consider the torus T> = R?/Z? and they choose u = v = 1.
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This space admits a basis (see for example [9], Chapter 6), given for / € {0,...,
k — 1}, by the distributions ¢ which are defined as follows:

e = ukt/(2n) Z(U—k)jei(lﬂk)t‘ (2)
JjezZ

We consider the structure of Hilbert space such that the family (g;),., is an ortho-
normal basis of the space ¥. Recall now two different definitions of the Weyl
quantization of a symbol on the torus T2. In the whole paper S(R?) denotes the
following class of symbols on R?:

S(R?) = {a e *(R?); Ya e N?, 3C, > 0; |0%a| < C,}.

Remark 2.2. Let a; € 4°(R?) be a function such that, for all (x, y) € R?, we
have:

ap(x + 21, y) = an(x, y) = an(x, y + 1).
Then the function a;, belongs to the class of symbols S(R?).

Definition 2.3 (First definition of the Weyl quantization of the torus). Let
ap € 6 (R?) be a function such that, for all (x, y) € R?, we have:

an(x + 27, y) = ap(x, y) = ap(x, y + 1).

Define the Weyl quantization of the symbol a;, denoted by Op"(as)(x,hD,), by
the following integral formula, for u € ¥ (R):

xX+y

1 .
Op"(an)(x, hiDy)u(x) = Ik JR JR ey, < , é) u(y)dydé.

We call a; the symbol of the pseudo-differential operator Op"(as)(x, iDy).

Recall that if a; € S(R?), then (see for example the book of Maciej Zworski
[23], Chapter 3):
(1) Op"(ay)(x,hDy) : Z(R) — Z(R);
(2) Op"(as)(x,hDy) : ¥'(R) — L'(R);

are continuous linear transformations and the action of Op"(a;) on ¥'(R) is
defined, for € #'(R) and ¢ € ¥(R), by:

oD (@), .51, = <, OP" (@) $ 1 G)
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where, for (x,y) € R%, an(x,y) := ay(x,—y) € S(R?). This property allows to
easily prove the following proposition (see [8]).

Proposition 2.4. Let a; € 6;°(R?) be a function such that, for all (x,y) e R?
we have:

ap(x +27m,y) = ap(x, y) = ap(x, y + 1).

1
Then, if h = A Sfor k > 1, we have: Op"(ay)(x,hDy) : % — %

Since we consider a symbol a;, € % (R*) which is periodic, we can rewrite it as
a Fourier series, for all (x, y) € R*:

Dcn —i2mym
an(x, y) g am € 4 (4)

(m,n)eZ?

where (a’ ) (mmez? 18 @ sequence of complex coefficients depending on the semi-
classical parameter /. Recall an other definition of the Weyl quantization of a
symbol on the torus, linked to Equation (4), found in the book of Monique Cobes-
cure and Didier Robert [9], Chapter 6. By convention, this definition uses the
parameter k, which is the inverse of the semi-classical parameter /. Throughout
this text, we will make the abuse of notation of using @; and ay for the same object
where 1 = 1/k.

Definition 2.5 (Second definition of the Weyl quantization of the torus). Let
ax € 6 (R?) be a function such that, for all (x, y) € R?, we have:

ak(x—i— 2, y) = ak(X, y) = ak(xv y+ 1)~

Define the Weyl quantization of the symbol a, denoted by Op;’(ax), by the follow-
ing formula:

w . f2mm n
Opi(m) = 2, af%ﬂ(T’E)’
(m,n)ez?

where the sequence (a ) (mmez? is defined by Equation (4) and where T(p,q)
is the Weyl-Heisenberg translation operator by a vector (p,q) € R? defined, for

¢ € S(R), by:

T(p’q)¢(x) _ e—iqpk/Zeiqu¢(x _ p)
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Proposition 2.6 ((9]). Let a; € €;°(R?) be a function such that, for all (x, y) € R?,
we have:

ap(x +2m, y) = ar(x, y) = ax(x, y + 1).
Then, we have: Op}'(ay) : Lk — Zx.

Remark 2.7 ([8]). Definition 2.3 and Definition 2.5 coincides in the sense that,
if a5 = a; € €;°(R?) is a function such that, for all (x, y) € R?, we have:

ap(x + 21, y) = an(x, p) = an(x, y + 1).
Then, Op"(as) = Op,’ (ax) on the space %.

2.2.2. Bargmann transform. In this paragraph, we recall the definition of the
semi-classical Bargmann transform and we study some of its properties. The
principal difference with the transform introduced by Valentine Bargmann in
the article [1] is the weight function that we choose. The semi-classical Bargmann
transform has been studied by Anders Melin, Michael Hitrik and Johannes Sjos-
trand in [10], [17], [18] and by the last two authors in the mini-course [11]. Here,
we investigate the action of the semi-classical Bargmann transform on the
Schwartz space, on the tempered distributions space and on the space .%.

First, we recall the definition of the Bargmann transform and its first properties
(see for example the book of Maciej Zworski [23], Chapter 13).

Definition 2.8. Let ¢; be the holomorphic quadratic function defined, for (z, x) €
C x C, by:

i

hi(z,3) =5 (= )7,

The Bargmann transform associated with the function ¢, is the operator, denoted
by Ty, , defined on ¥ (R) by:

Tyu(z) = c¢1h73/4J eI 2y (x) dx = c¢1h73/4J e*(l/zm(zf")zu(x) dx,

R R
where:

1 |detdc0-¢,| 1 5
Ch = 12,374 (det%82¢1)1/4 T 1/23/4" (5)
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Define the canonical transformation associated with T by:

Ky :CxC—CxC,
(x, —0x1(z,x)) =2 (x, &) — (2,0-¢,(z, X)) = (x — i&, &).

We have the following properties on the Bargmann transform (see for example
[23], Chapter 13).

Proposition 2.9.
(1) T,, extends to a unitary transformation: L*(R) — H;(C, ®;).

@) If 1, : L}(C,®) — L*(R) denotes the adjoint of Ty, : L*(R) — L}(C,®y),
then it is given by the following formula, for v € L}(C, ®y):

T;lv(x) = c¢1h_3/4j e_(l/zh)(‘:_x>ze_2d)‘(z)/hv(z)L(dz).
C

(3) Let y, be the unique holomorphic quadratic form on C x C such that, for all
z € C, we have:

Vi(z,2) = @1 (2).

Then the orthogonal projection Ilg, j : L}%((E,(I)l) — H;y(C,®y) is given by the
following formula:

2detd? _
Mo, pu(z) = Tgmj@ o2z W)*CDI(W))/hu(W) dw div.

Moreover, Ig, ; = Ty, qu‘].

The following proposition gives a connection between the Weyl quantization
of R? and the complex Weyl quantization of R> (see for example the mini-course

[11]).

Proposition 2.10. Let a; € S(R?) be a function admitting an asymptotic expansion
in powers of h. Let Opg, (by) := Ty, Op"(an)T, . Then:

(1) Opg, (b) : Hy(C,®1) — H;(C, @) is uniformly bounded with respect to h;

(2) Opg, (bn) is given by the following contour integral:

: 1 ; Z4+w
Y = (i/h)(z—w)C
Opg, (bn)u(z) 2nh J Jr(;) ¢ b ( 5 C) u(w) dwd(,
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2001 (z+w 4w
= % 2‘ = — —1 = -
where T'(z) = {(w, 0 eC¢ s < 7 ) \s< 7 )}, where the

symbol by is given by by = ay o ;cq;ll and where the canonical transformation kg,
is defined by:

Ky, R> — Ao, = {(z,—%(z));z € C}
(x,8) — (x —i&¢).

We study now the action of the Bargmann transform on the Schwartz space
in the spirit of the article of Valentine Bargmann [1], except that in our case, we
introduce a semi-classical parameter and a different weight function. Therefore,
for the sake of completeness, we recall the theory. To do so, we introduce some
new notations.

Notation:

e for j e N:

FIR) = {¢p € €/(R); |4, := mg)j{(sug (14 x2)Y2amg(x)|) < +o0;
m=J xe
thus, the Schwartz space can be rewritten as follows:
x .
I(R) =77 (R) = {¢ e (R ¥ e N, |g]; < +o0};
j=0

e for je N:

S/(C) := {y € Hol(C); |, == sup((1 + |22 Oy (2)]) < o0 };
zeC
e we finally define:
S(C) = ﬁ@-f(di) = {y e Hol(C); Vj € N, |y|; < +o0}.
Jj=0

Proposition 2.11.
(1) Let je N, let ¢ € #/(R), then, for all z € C, we have the following estimate:

|T5,6(2) < al(1+[z7) /2™ Mg, (6)
where al' is a constant depending on j and on the semi-classical parameter .
As aresult: Ty, &'(R) C &/(C).

2) T, 7 (R) C S(C).
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Proof. We give a sketch of the proof; for more details, see the article of Valentine
Bargmann [1] where the argument can be adapted to the new weight.

Step 1: we prove using simple integral estimates that for j = 0 and for ¢ € & O(R),
there exists a constant ag such that, for all z € C, we have:

|T5,0(2)] < age™ gl

Step 2: we prove that for j > 1 and for ¢ € &/(R), there exists a constant a]ﬁ such
that, for all z € C, we have:

Ty, ()| < al(1+[z]7) 7™M g .

This step can be divided into 7 steps.
® Step 2.1: it follows from the definition of [|¢||; that:
(a) [0y p(x)[ < lIgll; for m < J;
(b) [$(0)] < lIgl;(1+x7) 7.
e Step 2.2: for ze C and for 1 e R, let: F(t) = (Ty,¢)(zz), thus: F(1) =
(Ty,¢)(z) and we can use the function F to decompose (74 ¢)(z) into two

functions:
F(1) = pi(2) +1;(2),

where:

J=1 (1

F9(0
pi(z) = l'( ),
=0
'

where #,(z) is a bound on GI(T,,;1 #)(z).

e Step 2.3: we prove that the function #,; satisfies the following equality for
zeC:

ni(z) = pe® N for I < j,
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where ff = (nh)_l/ ‘N4l ; using Lebesgue’s theorem, Step 2.1 (a) and integral
estimates.

e Step 2.4: we deduce from Step 2.2 and Step 2.3 that, for z € C, we have the
following estimates:

-1
CED e
[ri(2)] < ﬁIZI_j(Zh)fel/Zh(l +S(2)?) Tem @,
e Step 2.5: we prove using Step 2.4 that, for z € C, we have:
Ty, ¢(2)] < prllell; (1 + |Z|2)j/2(1 + %(z)z)ﬁeq"(")/ﬁ where pj, is a constant.
e Step 2.6: we prove using Step 2.1 (b) that, for z € C, we have:
| Ty, d(2)] < pg\|¢||j(1 + %(z)z)ii/ze@(z)/h where p; is an other constant.

e Step 2.7: we compare the estimates of Step 2.5 and Step 2.6 and we deduce
that, for z € C, we have:

T3, 0(2)| < pallgl; (1 + [21°) 72D/ where p, = max(2/p}, 27/°pf).

Step 3: the fact that T %/(R) C &/(C) is a corollary of Equation (6) and
Ty, (R) C S(C) can be deduced from the first assertion of the proposition and
the definitions of the spaces . (R) and S(C). O

Remark 2.12. Since #(R) C L*(R), then according to Propositions 2.9 and 2.11,
we have S(C) C H;(C, ®y).

Conversely, we have the following proposition.

Proposition 2.13.

(1) Let u =1+ j+ 7 with j € N and t € N*, then, for all y € S*(C), we have the
following estimate:

||T{*]¢H] Saﬁ‘rhﬁ'/ﬁ (7)

where aﬁf is a constant depending on the semi-classical parameter h and on the

integers j and t. As a result: T; S*(C) C S (R).
(2) T} &(C) C S (R).
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Proof. We give a sketch of the proof, for more details see [1].

Step 1: we give an estimate on 0’"T* Y for m < j by following these steps.

e Step 1.1: we prove using Lebesgue’s theorem that, for x € R, we have:

(T ()] < le 17 j@ Bo(z, x)L(ds),

where for (z,x) e C x R:
By (z,x) = [0} (e~ 1AE) o200y )]
e Step 1.2: we prove that, for (z,x) € C x R and for m < j, we have:

j m 1 2 m/z - h 77\'2 m—
Bulzx) <0{2" (14 5 (RE) = )7 e VI (1 2002y

where J;, / is a constant depending on j and /i. To do S0, We use estimates on
Herrmte polynomials for the term |8”(e~(1/20(=")| and the following esti-
mate, for z € C:

W< (14 [27) e DMy,

resulting from the fact that y € €#(C).
e Step 1.3: according to Step 1.1 and Step 1.2, for x € R, we have:

m * —j)/2
|0V (T )| < al (143",
where afff is a constant depending on j, 7 and /.
Step 2: according to Step 1, for x € Rand u =1+ j + 7, we have:

(1+x2) V2|0 (T p(x))| < al |,

Thus:

sup((1+x2) V2|07 (T; y(x))]) < @l |,

xeR

Consequently, we have:

17,1 = max(sup((1 %)V (27 (T5,0(0)])) < @ .



332 O. Rouby

Step 3: the fact that 7,; *(C) C S7/(R) is a corollary of Equation (7) and
T; S(C) € #(R) can be deduced from the first assertion of the proposition and
the definitions of the spaces . (R) and S(C). O

We are interested now in the action of the Bargmann transform on the tem-
pered distributions space. Here again we can adapt the techniques of [1].
Notation:

e S'(C) denotes the dual of the space S(C) (equipped with the topology of the
semi-norms | - |;) i.e. the space of continuous linear functionals on S(C);

® (-,->s ¢ denotes the duality bracket between '(C) and &(C);
e for f, g € Hol(C), we denote by <{g, /> the following product:

G f> = L 9B f (2)e 2L (),

when this integral converges.

Remark 2.14.

e The bracket defined above coincides with the scalar product <{g, /> L2(C. @)
when g, f € H,(C, ®y).

e [fge &”(C) and f € &7(C) with p + g > 2, then the bracket <{g, /) is well-
defined.

We use this bracket to describe the elements of the space S'(C) similarly to the
article of Valentine Bargmann [1].

Proposition 2.15. Every continuous linear functional L on S(C) can be written,

Sor all f € S(C), as follows:

L(f) = g, f> = J@ 9B f (2)e 20N L(d),

where g is a function in G'(C) for | € N and is uniquely defined, for all a € C,
by g(a) = L(e,) (where for all z € C, ey(z) = e~ (@2)/4)),

Conversely, every functional of the form L(f) = {g, > with g € S~ (C) defines
a continuous linear functional on S(C).

Proof. We give a sketch of the proof, for more details see [1].

Step 1: for all L € &'(C), there exists C > 0 and / € N such that: |L(f)| < C|f],,
for all /' € S(C).
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Step 2: for a € C, let g be the function defined by g(a) = L(e,). We prove using
Step 1 that ¢, € S(C) and g € ©7/(C) (e, is a reproducing kernel for the space
H;(C,®;) and for S(C)).

Step 3: let L; be the continuous linear functional defined, for f € S(C), by
Li(f)=<g,f>. We show that, for all « € C, we have L(¢,) = L(e,) then we
deduce that L = L, using the density of the set of finite linear combinations of
elements of 4 = {e,,a € C} in S(C). O

As in the article of Valentine Bargmann [1], we prove that the Bargmann trans-
form Ty, and its adjoint 7} act on the spaces .¥’ '(R) and &'(C) respectively.

Proposition 2.16.

(1) Ty, extends to an operator: &'(R) — &'(C), which satisfies for v e &'(R) and
f e &)

Ty0, e e =0Ty D9 o

(2) T, extends to an operator: S'(C) — Z'(R), which satisfies for L € S'(C) and
¢ e L (R):

<T(;1L7 ¢>.9”’,.9” = <L7 T¢1¢>€’,€'

Proof. We give a sketch of the proof, for more details see [1].
Let v € #'(R), let L(f) be the functional defined by:

L(f)=<v,$>9" o,

where f = Ty ¢ € S(C), then L(f) is a continuous linear functional on S(C).
Conversely if L € @'(C) and if we define v by:

o(f) = 0,491, = L(f)  where f =Ty, ¢,

then v is a continuous linear functional on .%(R). Then, according to Proposition
2.15, for [ € N, there exists g € ©~/(C) such that:

L(f) =<9,/
Thus, for all v € &'(R) and for all ¢ € #(R), we have:
{v, ¢>f/”,{/’ =g, Ty, 9>
This equality gives a bijection between the spaces #'(R) and &'(C) with:

g:=Tyv and v=T,g. ]
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Remark 2.17. For y € ¥'(R), we can rewrite Tj  as follows (see for example
[11] or [23]):

T¢1lp( )_ <lp C¢ h 3/4 1/2h) ) >(/’79(/.

We are now looking at the range by the Bargmann transform of the space %
and we prove that this range is the space #%, where we recall that:

L =¥ € S (R); 1oy = "y, 11 Z(Y) = v F(y)},
Hi. = {g € Hol(C); g(p +2m,q) = u*g(p.q), g(p,q+ 1) = vFe PHORE2g(p g1},

To our knowledge, this result is new in the literature and it constitutes a funda-
mental step in our proof of Theorem 1.6.

Proposition 2.18. Let k > 1. Then, we have:
(1) T¢1 D Lk — His
2) T, : A — L.

Proof. According to Proposition 2.16, T,, : #'(R) — &'(C). Since % C ¥'(R),
then T}, is well-defined on this space. Let’s prove that the Bargmann transform
T, sends the basis (&), 7k, of Z (see Equation (2)) on the basis (e;),. 77 of #i
(see Equation (1)). Let ¢ be the real number such that u = e. Let /e {0,...,
k — 1}, using Remark 2.17, we have:

Tyen(2) = e el 4e 1S o,

_ <uk./(2n)2(vfk) i(I4jk). Leph™ 3/4 o= (1/2h)(z—.) >

JjezZ
. 1
= C¢1k3/4 Z(U_k) {u k./(27) i /+jk) (k/z)(3—~)2>5/,’5/) since k = 7

jez

= ¢y, Jc3/4y K=/ (2m) Z(Ufk)]'ei(lJrjk)z<uk./(2n)ei(l+jk) —(k/2)(.

jez

S 27 1 [ck 2
_ 3/4 kz/(2m) —k\J i(l+jk)z [ = I B .
cg k7" u E (v ™) e \/kexp< 2k<2n+l+]k)>'

jez

)
9.

>5/ I

By a simple computation, we obtain:

1 [ck 21 [ck 2 %%k Jjck
2k< + 11+ k> _E<E+1) +T+ l+2
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Therefore, we have:

S 2n 1 [ck :
_ 3/4, kz/(2m) —k\J i(l+jk)z [ = I ;
Tye(z) =cp, k" u E (v ™) e 1/ A exp( 7 <2n+l+]k) >,

Jez
— Cluk‘/< )Z(v—ke—jk/Z—Iuik/(zn))jei(l-s-jk)z7
jez

= ciei(2),

where c,ﬂ is given by the following equality:

2
= ¢y, V2nk!/4 exp< Zlk <Ck + l> )

Conversely, We compute T ; e;. First, since ), C GO(C) and since the function

2+ e~ (129" belongs to the space &(C), then for v € #;, we have (according

to Remark 2.14):
Ceg e~ (1/2)(=) v>—c¢h 3/4J o1/ (E=x)? e 2O g (1) L(dz) < +oo.
c
Let/ € {0,1,...,k — 1}, then we have:

T} er(x) = e i J@ o /E9 =20V kg, () (),

= C¢1k3/4 e k2 (Ef’x)ze*k(gz)zez(Z)L(dZ>
c
i 1 2 1
since Dy (z) = E(gz) and k = -
= C¢1k3/4 e*<k/2)(5*«‘<)ze*k(9fl)zukz/(Zn)
C
% Z(Ufkeflfjk/Zuik/(h ViR (),
jez
= ¢4 k3N (ke IRy /2]
Jjez

% J ef<k/2)<z)2 efk(i‘r(z+x))2uk(z+x)/(27r) (1K) () L(d-),
C

— C¢1k3/4ukx/(2n) Z(Ufkeflfjk/zuik/(h))_/ei(l+jk)x
JjezZ

% J e—(k/Z)(f)ze—k(S ) iz(l+jk+ck/(2n)) (dZ)
C
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We have to compute the following integral (after the change of variables z =
p+iq):

JJ /D =i gk i pia) IR C) gy
RJR

_ J J e7kp2/267kq2/26ikpqe[p(l+jk+vk/(2n))efq(l+jk+ck/(2n)) dp dq
R JR

By a simple computation, we obtain:

J e k0?2 gikpa o ip(IHjktck/ (2m)) gy
R

2= 1 ck kq? . ck
= ?exp< 2k<l+ k+2) 7q<l+]k+%>>.

Thus, by an other simple computation, we obtain:
J J efkpz/Zefqu/Zeikpqeip(l+jk+ck/(27z))efq(lJrijrck/(Zn)) dp dq
rRJR

_ \/— (I+jk-+ek/ (2m))? ) (2k)

Consequently, we obtain:

Tgl €[(X) _ C¢lk3/4\/§£ukx/(2n) Z(v—ke—/—jk/2uik/(2ﬂ))jei(/+jk)xe(l+jk+ck/(27z))z/(2k)’

Jjez
= g kA Bk 028 ] 00§ (ki
jez
= Gai(x),
where ¢/ = c¢lk*1/4\/§ne(l+ck/<2n))2/(2k). 0

Since the Bargmann transform is a unitary transformation between the
spaces L?(R) and Hj(C,®;), we study this feature between the spaces % and
S,

Proposition 2.19.
(1) T;} T¢1 =1id on fk.
(2) Ty, T, =id on ;.
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Proof. Let ¢ be the real number such that u = ¢®“. According to the proof of
Proposition 2.18, we have, for / € {0,...,k— 1}:

Ty e = cle;  with ¢f = C4, V2 A (k] Cr)+)*/(2k)

Let 4 = diag(c, ..., ¢ ") be the matrix of the operator T}, in the basis (€/);. 7/7-
According to the proof of Proposition 2.18, we also have, for / € {0,...,k — 1}:

Tjer=cley  with & = cp k™4 2rellk/ 2020,

Let ¢* = diag(c?,...,cf ') be the matrix of the operator T 4, in the basis
(¢1)1ez/kz- We want to prove that: €% =€"¢ =1I.. Let k>1 and let / e
{0,1,...,k — 1}, we have:

clel = ¢ \/ﬂk1/467((,‘k/(27z)+l)2/(2k)C¢1k71/4\/jne(l+(fk/(2”))2/<2k),

=y, 2713/2

I : .
= (W) 273/ according to Definition 2.8,

=1,

= G-
Therefore, we have: €6 = 6¢*%¢ = Ix. O
2.2.3. Complex Weyl quantization of the torus. In this paragraph, we define
the complex Weyl quantization of a symbol on the torus. As in the classical Weyl
quantization case, we have two definitions for the complex Weyl quantization.
With an Egorov theorem analogous to Proposition 2.10 in the R*-case, we exhibit

the notion of complex Weyl quantization of the torus. First, we introduce a new
class of symbols. Recall that A, denotes the following space:

Ao, = {(26%@);2 e @} — (5 -3(2));z e C.

And that the canonical transformation x4, is defined as follows:
Ky, - R> — Ao,
(X, 9) = (z,w) = (x — iy, ).

Notice that, if @, € 4 (R?) is a function such that, for all (x, y) € R?, we have:

ar(x +2m,y) = ar(x, y) = ar(x, y + 1);
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and if by is the function defined by the following relation, for (z,w) € Ag,:
bi(z,w) :=ay o qull (z,w).
Then by € 4" (Ao, ) is a function such that, for (z, w) € Ag,, we have:
bi(z +2m,w) = bi(z,w) = bi(z +i,w —1).

Besides, thanks to the identification of Ag, with C, we can rewrite the symbol b,
as a convergent series, for z € C ~ Ag,:

Z bm . m?R 21’7'[;11‘3(2)7 (8)
(m,n)e2*

where (b}, ) . n <72 1s defined by the following formula:

m,n)

bk =a* where for (x, y) € R?, E am emxe2immy

m,n

Remark 2.20. Since Ag, ~ C, then the class of symbols S(Ag,) can be identified
with S(C) ~ S(R?).

We can now deduce the following Egorov theorem.

Proposition 2.21. Let a; € 6" (R?) be a function such that, for all (x, y) € R?, we
have:

ar(x +2m, y) = ar(x, y) = ar(x, y + 1).
Then, we have:
Ty, Op, (ax) = Op}{l,k(ak o K(%I)T¢1 on ¥ (R),

where Opg, . is defined by the following formula, for u € S(C):

; 2nm in
O ar o Ko a —mmn/ke—nz/Zkemzu _ i
Po, i (@ © ¢ Z T + %)

(m,n)e2?
where (a¥, n)(mmez? 1S the sequence of coefficients defined in Equation (4).

Proof. According to Definition 2.5, Op;’'(ax) : ¥(R) — Z(R). Let ¢ € ¥(R),
then we have:
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Ty, (Opy (ar)¢) (2)
= Cy, h73/4 (1/2h (Opk (ak)¢) (x) dx,

J R
_ C¢1h_3/4 —(1/2h)(z—x) Z a znmn/keixn¢ <X _ 27'61/)’!) dx,
R 2 k
(m,n)ez
2nm
-3/4 k zn ,—(1/27
:C¢]h / Z Zamn —inmn/ tn (1/2h)(z—x)* —i(z vn¢< . )dx,
(m n)ez

A A 2
_ C¢]h73/4 Z a mmn/ketzne(1/2h)(zx+mh)zenzh/2¢(x . zm> dX,

(m n)ez?

h,3/4 Z Cl mmn/keizne7(1/2h)(zfx+inh727zmh)lefnlh/2¢(x) dx

= G4y
R (m, n)ez?
_ Z LZ mmn/ke—nzh/2eiznc¢lh—3/4 J e—(l/Zh)(z—x+[nh—27zmh)2¢(x) dx,
(m,n)eZ? R
. . 2 ] 1
Z ayl;‘nefmmn/ke—nz/Zketzn(T¢1¢) (Z _ cmm + Z) because /i = —.
(m,n)ez? ’ k k k
Therefore, for u € S(C), we define Opg, ; (ax o K(;ll) as follows:
Opq) k(ak o K¢ Z a 7l7zmn/kefn2/2kelznu <Z . 7;:” 4 %) 0O

(m,n)eZ?

The previous proposition leads us to define the notion of complex Weyl quan-
tization of a symbol on the torus as follows.

Definition 2.22 (First definition of the complex Weyl quantization of the torus).
Let b € 4, (Aw,) be a function such that, for all (z,w) € Ag,, we have:

bi(z +2m,w) = br(z,w) = br(z +i,w —1).

Define the complex Weyl quantization of the symbol by, denoted by Opg, (bx), by
the following formula, for u € S(C):

2 .
Z bm ., ﬂnmn/k —n? /Zkelmu (Z Zm _1_%)7

(m,n)e2?

where the sequence (b,’;_yn)(m,n)

<72 1s given by Equation (8).
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Let’s prove a basic property on this notion of quantization. The operator
Opg, «(bx) defined above acts on the space S(C). We are now going to show
that it also acts on the space #; (as expected since the Bargmann transform sends
the space % on the space #%).

Proposition 2.23. Let by € 6" (Aa,) be a function such that, for all (z,w) € Aw,,
we have:

bi(z +2m,w) = b (z,w) = be(z +i,w —1).

Then Opg, ;(bk) can be extended into an operator which sends the space #j. on
itself.

Proof. According to Proposition 2.21, Opg, ,(bx) : S(C) — S(C). Let u,ve
S(C), then we have:

{Opg, i (bi)u, V)¢ &

= | 0pg, xBuz)o(z)e L),

_ Z bk emmn/k 112/2kefin5u (Z _ 2mm +ﬂ) U(Z)€72®1 /hL(dZ)

m,n
¢ (m,n)e2* k k
_ Z b K e ﬂnmn/kefnzﬂkefinfu <Z +%)U<Z + 27;:”) 67211)1 z /hL(dZ)
- (m n)e??
— @ Z blfz e mmn/k n2/2ke—tmv<z + km - ) e—2<I>1 z /hL(dZ)
= (m,n)eZ?
=| u(z) Z mei”m"/kefnz/zke*’”’ ( ——an i >32®1 ML (dz),
JC

(m,n)e2?

_ Z bfm e—inmn/ke—nz/Zkeinzv <Z o 27;:” + l]’:) e—2®1 (z)/ﬁL(dz)7

(m,n)eZ*

= | u(z)Opg, ((Bi)v(z)e *" O L(dz),
C
= <”7Op(‘1§1Ak(Ek)U>G,G>

where by € 6 (Aq,) is defined, for (z,w) € Ag,, by:
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in(z-+iw) ,—2inmw
(z,w) E bfm i e ,

(m,n)e2*

_ Z bk p—in(z+iw) ,2immw via (m,n) N (_m, —I’l),

m,n
(m,n)e2?

Z bk, bk =M =2mm3E)  gince (z,w) € Ag,, thus w = —S(z),

(m,n)e2*

= bi(z,w).

Since v e S(C) and by € 6 (Ag,), then Opgl’k(gk)v € S(C) and the complex
Weyl quantization Opg, (bx) is well-defined on @'(C) by the following formula,
for u e @'(C) and for v e S(C):

{Opg, 1 (br)u,v)er & = <u, Opg, ((br)v)er ¢

Afterwards, since #; C €'(C), then for g € #i, Opg, ,(bk)g € Hol(C). More-
over, for g € #4, using simple computations we prove that:

O, (bi)g(= + 2m) = u* Opy, 1 (be)g(2),
Opghk(bk)g(Z + l) = vk kth2 Opgl,k(bk)g(z)'

Let’s give a second definition of the complex Weyl quantization of the torus.
This notion is analogous to the already existing one in the R>-case (see for exam-
ple [11] or [23]). We believe that it is the first time that such a contour integral is
used in a context of the quantization of a compact phase space.

Definition 2.24 (Second definition of the complex Weyl quantization of the
torus). Let b, € €,°(Aw,) be a function such that, for all (z,w) € Ag,, we have:

by(z+ 2w, w) = by(z,w) = bp(z +i,w —1).

Define the complex Weyl quantization of the symbol b;, denoted by Opg, (bs), by
the following formula, for u € S(C):

, 1 ; N, [Z4+W
w _ (i/h)(z—w)¢
Opg, (bn)u(z) 2thJT(2) e bh< 5 ,C) u(w) dwd(,

where the contour integral is the following:

re ={moecne=2 22 (F1) o (Z21)1
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This second definition expresses the fact that the complex Weyl quantization of
R? (seen in Proposition 2.10) can be extended to a symbol defined on the torus.
Similarly to Proposition 2.23, we have the following property.

Proposition 2.25. Let b € €, (Ao,) be a function such that, for all (z,w) € Ag,,
we have:

bp(z 4+ 2w, w) = by(z,w) = bp(z +i,w —1).
Then, Opg, (by) can be extended into an operator which sends #j. on itself.

Proof. Let a; == by oKy, then a; € S(R?) and Op"(ay) : #(R) — F(R). Ac-
cording to Proposition 2.11, Ty : ¥ (R) — &(C) and according to Proposition
2.10, we have:

Opg, (br) = Ty, Op”’(aﬁ)T;l : G(C) — S(0).
Afterwards, let u,v € S(C), then we have:

{Opg, (br)u,v)¢ ¢

= | 5, ) Getz)e ™ L(a),

= ! JJ eTIME—IEp, <Z —g i , C) u(w) dw dlo(z)e 22O L(dz),
I'(z)

C 27Zh
C T T ST zZ4+w zZ4+w —_—
— | = (=i/h)(z=w)(=S(z+w/2)) LA« ¢ y
2 J@e bh< 7 J( 7 ))u(w)L(dw)v(z)

X e_zq)‘(Z)/hL(dz)7

where we used the definition of the contour integral I'(z) and where C >0 is a
constant. Then, for z € C ~ Ag,, we have:

by (Z, —%(Z)) _ Z bllzq’nein%(:)eZinm%(:)'

(m,n)ez*

Thus, for z € Ag,, we obtain:

by(z,—S(2)) = Z bl e MRE e 2mSE) = by (2, —S(2)).
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Therefore, we can rewrite the integral as follows, for u,v € S(C):

C oo = | Z W Z4+w
w = (i/h)(Z—w)S(z4+w/2) o
<Op(1)l (bp)u,v) =5 L Le bh< 7 \s( 3 ))

X u(w)v(z)e 2P EML(dw)L(dz).

With a short computation, we prove the following equality:
oo fztw) 2 b fEEw) 2
h(z w)c( 7 ) h(l)l(z) = h(z W) 7 hCI)l(w).

Consequently, for all u,v € S(C), we have:

{Opg, (br)u, 1) &

- C . N e —
— | Wy [ etmarseag, <Z+TW 3 (#) ) o(2)L(dz)

X e*2®1(“’)/hL(dw),

1 ‘ o
=| ulw)— eI/Mv=2)Cp, Z+W,C v(z)L(dz)e 2 /L (dw),
C 2ah ) Jro) 2

= | u(w)(Opg, (bn)v) (w)e >0/ L (dw),
Je

= <u7 Op&;] (BFI)U>‘3, S

zZ4+w

where ['(w) = {(z, 0 eC?e= —%(

€(C), then the operator Opg, (by) is well-defined on &'(C) by the following equal-
ity, for u € @'(C) and v € S(C):

>} Since, for v e S(C), Opg, (bp)v e

{Opg, (bp)u, vy ¢ = <u,Opg, (bn)v)er o

As a result, the operator Opc‘ﬁ1 (by) is well-defined on #j because it is a sub-
space of G'(C). Afterwards, since for g € #%, Opg, (bs)g € '(C), then we have
Opg, (br)g € Hol(C). Besides using simple computations, for g € #}, we prove
that:

Opg, (bi)g(z +27) = u* Opg, (b1)g(2),
Opg, (bn)g(z +1) = vkekth/2 Opg, (b1)g(2)-

To conclude this paragraph, we link Definition 2.22 and Definition 2.24.
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Proposition 2.26. Let b, = b € 6, (Ao,) be a function such that, for all
(z,w) € Ag,, we have:

bu(z + 2, w) = b(z,w) = bp(z +i,w —1).
Then:

Opg, (br) = Opg, 1 (bk)  on Hi.

Proof. According to Equation (8), for (z,w) € Ag,, we can rewrite by, as follows:

n(z+iw) —2imnw
(z,w) E bm " .

(m,n)eZ*

Consequently, we obtain, for u € S(C):

Opg, (b)u(z)

1 . -
E— /ﬁ Z—w) b ((z4w)/2+i) 7217sz_u(w) dw dC,
2 r(h) (mnX;Z2
: 27m
= eli/mE—w)t h ((z+4w)/2+iL) p—immn/ ke _
- 2nh . Z b, u<w 2 )dwdC,
') (m,n)eZ?
1 ) _ . . -
= (i/h)(z—w)¢ i ,—immn/k ,—n*[2k -
21h ) )i e Z by, e e u(w T > dwdc,
@ (m,n)e2?
! h)(z—w w
" 27 ) eMERI(Opg, i (biJu) (w) dw dC,

= Opg, x(br)u(2),

where we used the change of variables: I'(z) 3 (w,{) — <w + % L — 2n_k> e I'(z).
Therefore, for u € &'(C) and v € S(C), we have:

<Op(‘11;l (bh)u, U>S/,€ — <U, Op(‘f)l (Eh)v>e’7@7
- <”’Op$1,/c(5k)v>e',@,
= <Op$1,k(bk)u7 U>€’76.

In others words, we have:

Opg, (by) = Opg, 4 (bx) on &'(C).
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Finally, since #; C &'(C), then by restriction and according to Propositions 2.23
and 2.25, we obtain the result. O

2.3. Connections between the quantizations of the torus T2. In this paragraph,
we relate the different notions of quantization of the torus. To do so, we follow
these steps:

(1) we recall the connection between a Berezin—Toeplitz operator and a complex
pseudo-differential operator of the complex plane;

(2) within the Berezin—Toeplitz setting, we relate the quantization of the torus to
the quantization of the complex plane;

(3) we establish a correspondence between the Berezin—Toeplitz and the complex
Weyl quantizations of the torus.

2.3.1. Berezin—Toeplitz and complex Weyl quantizations of the complex
plane. First, we recall the definition of the Berezin-Toeplitz quantization of a
symbol on the complex plane and then the definition of the complex Weyl quanti-
zation of a symbol on Ag, (see for example [23]).

Definition 2.27. Let f; € S(C) be a function admitting an asymptotic expansion
in powers of 1/k. Define the Berezin—Toeplitz quantization of f;. by the sequence
of operators T}, := (T),, where for k > 1, T} is defined by:

Ty = o, 1My 1o, ,

where My, : L}(C,®,) — L}(C,®,) is the multiplication operator by the function
Ji and where we recall that Ilg, , is the orthogonal projection of the space
L2(C,®,) on Hy(C,®;) defined in Proposition 2.9.

We call fi the symbol of the Berezin—Toeplitz operator T7,.

Definition 2.28. Let b; € S(Ag,) be a function admitting an asymptotic expan-
sion in powers of 4. Define the complex Weyl quantization of b;, denoted by

Opg, (br), by the following formula, for u € Hy(C, ®):

zZ+w

, 1 i/h)(z—w)(
opg,'l(bh)u(z):%”me(/fﬂ- >@bh< ,C>u(w)dwdi»

where the contour integral is the following:

re) ={<w,c> cehr=2% (ﬁ‘”) _ —s<“2‘w>}.
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Recall now the result relating these two quantizations (see for example [23],
Chapter 13).

Proposition 2.29.

(1) Let fr € S(C) be a function admitting an asymptotic expansion in powers of
1/k. Let Ty, = (Tk);», be the Berezin—Toeplitz operator of symbol fi. Then,
for k > 1, we have:

Ty, = Op:f;1 (bh) on Hk((D,(Dl),

where by, € S(Aw,) is a function admitting an asymptotic expansion in powers of
i given by the following formula, for all z € Ap, ~ C:

bi(z) = exp (1 0.0 ) (62

(2) Let by € S(Ao,) be a function admitting an asymptotic expansion in powers of
h. Then, there exists fi € S(C) a function admitting an asymptotic expansion in
powers of 1/k such that for k > 1:

Opg, (bn) = T + O(k™™)  on Hy(C, ®y),

where (Ty),~, = T}, is the Berezin—Toeplitz operator of symbol fi. and where,
forall N € N and for z € C, f; is given by:

Nhj

:ZF ) (bu(z2)) + OBV,

2.3.2. Berezin—Toeplitz quantization of the torus and Berezin—Toeplitz quan-
tization of the complex plane. In this paragraph, we study a Berezin—Toeplitz
operator of the complex plane whose symbol is 2z-periodic with respect to its first
variable and 1-periodic with respect to its second variable. Previously, we look at

the action of a Berezin—Toeplitz operator of the complex plane on the spaces S(C)
and G'(C).

Proposition 2.30. Let f; € S(C) be a function admitting an asymptotic expansion

in powers of 1/k. Let Ty, = (Ty),, be the Berezin—Toeplitz operator of symbol fj.
Then, for k > 1, we have:

(1) Tk can be defined as an operator which sends S(C) on itself by:
Tio =g, k(frv)  forve S(C),

where Ilg, i is seen as an operator which sends S(C) on itself.
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(2) Ty can be extended into an operator which sends &'(C) on itself by:
(Teu,v)e ¢ = u, Trvyer e forue G'(C) and for ve S(C),
where (Tk) ksl =" TfA is the Berezin—Toeplitz operator of symbol f,.

Proof. Since Ty, = (T),, is a Berezin-Toeplitz operator of the complex plane,
then according to Proposition 2.29, there exists b, € S(Ag,) such that, for k > 1:

Ti = Opg, (bs)  on Hy(C,®y).
Besides, according to Proposition 2.10, we know that:
T} Opg, (ba) Ty, = Op" (b o i54,) : L*(R) — L*(R).
Since by o ky, € S(R?), then we have:
Op"(broky): #(R)— L (R) and Op"(byory): S (R) — S (R).

Moreover, according to Propositions 2.11, 2.13 and 2.16, the Bargmann transform
and its adjoint satisfy:

[18(C) - 7(R),

T;:S(R)—S(C) and T
T, : 9'(R) - &'(C) and Tj:E'(C)— 7'(R).

As a result, for £ > 1, we obtain:

T;:S(C) - 3(C) and T;:E'(C)— &'(0).

Then, by definition Ile,,« = Ty, T, and according to Proposition 2.11, the opera-
tor Ilg, , can be extended into an operator which sends ©(C) on itself. Since
S(C) C Hy(C,d,) (see Remark 2.12), then for v € S(C) and for f; € S(C), we
have:

e, ,v=0v and g, ((fiv) € S(C).

Therefore, the Berezin—Toeplitz operator Ty, = (7).~ is defined as follows, for
k > 1 and for v € S(C):

Tiv = o, (MsIle, v = H(I)l,k(fkv)a

where Ilg,  is an operator which sends S(C) on itself. Finally, for v = Ty €
€'(C) and for u = Ty ¢ € S(C), we have:
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(Tiv,uper ¢ = {Opg, (bn)v,uper ¢ according to Proposition 2.29,
= <v,Opg, (bn)uysr e according to Proposition 2.25,
=: <U, Tkll>g/’g.

Then, according to Proposition 2.29, for z € Ag, ~ C, we have:

m@:a%%@ymm.

Consequently, for z € Ag, ~ C, we obtain:

by(z) = exp G azaz-> (f(2)).

In others words, the sequence of operators (Tk) x>1 1s a Berezin-Toeplitz operator
of symbol f,. O

Remark 2.31. Let f; € %;°(R?) be a function such that, for (x, y) € R%, we have:

Se(x +2m,y) = fi(x,¥) = fi(x, y +1).

Let Ty, = (T%),~, be the Berezin—Toeplitz operator of the complex plane of sym-
bol fi. Then, for k > 1, the operator T} is well-defined on #; according to Prop-
osition 2.30 since #; C &'(C).

The following proposition gives a connection between the orthogonal projec-
tion Ilg, » which appears in the definition of a Berezin—-Toeplitz operator of the
complex plane (see Definition 2.27) and the orthogonal projection I, which ap-
pears in the definition of a Berezin—Toeplitz operator of the torus (see Definition
1.3). This proposition is fundamental for understanding the relation between these
two quantizations.

Proposition 2.32. Let Ig, ;o be the orthogonal projection of L}(C,®;) on
Hi(C,®y). Then:

(1) Ig, x can be extended into an operator which sends G on A (defined in Sub-
section 1.1);

(2) H(I)l,k =1id on Jfk
Consequently, Ilg, i coincides with 11 on 9.

Proof. First, let’s prove that Ilg, ; is well-defined on ;. The main difficulty to
prove this result comes from the fact that % is not included in &'(C). Recall the
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formula defining g,  for g € L}(C,®;) (see Proposition 2.9):
Moyg(2) = | e WHIE gu)e 2000 (),
c

Let g € %, by a simple computation, we notice that, for (m,n) € Z> and for
z € C, we have:

{g(z + 2nm) = (u¥)"g(z),
g(z—|— il’l) _ (vke—iszrkn/Z)ng(Z).

Then, for g € 9, we can write an estimate of the integral defining Ilg, x as
follows:

J |~ (1AM E=T)" 4 4) o =201 00/ I (),
c

= ,,,ZZJ[O . |~ (1/48)(== (w+27m))* g(w + 2mm)e 22102 ().
= mz: J[o - le —(l/4h)(z—u_f—27zm)2(uk)mg(w>e—2(1>1(w)/h|L(dW)’
:< 2>: J[o 21+i[0, 1] e (MO 2mm () g (4 - im)e D 40| L (),
myn)e
- ( Z>:z J[o 21)+i[0, 1] o (/M= in=2mm)” ey m (kg =inickn/2) 1)
m,n)e
X 3_2‘1’1(W)/he—nz/he—h%(w)/h|L(dw>,
- (m,n) €2 J[o,z:ﬂw[o, 1] e_(l/%)(z_wm_zm)z(“k)m(vk)"

e—kn2/2e—inkﬂxg(w)e—2d>1(w)/h |L(dw).
For all z € C, we have:

J o~ (1/4h) (= -+in—27m)’ (uk)M(Uk) ne—knz/ze—mkfvg(w)e—zdn (w)/h |L(dw)
[0,27]+4[0, 1]

— ef(l/4h)(zf va+in727zm)2efkn2/267inkfvg(w)672(l>1 (w)/h|L(dW)

J [0,27]+i[0,1]

< HqH(ZﬁA J |e—(l/4ﬁ)(z—\_v+in—2mn) —kn2/2 —inkw |2 =20 (w /hL(dW)
[0,27]-+i[0, 1]

using Cauchy-Schwartz in L2([0,27] + i[0, 1], e >*1&/" L (dz)),
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= ||q||(2J/k J[O pelion ‘67(1/4h)(zfﬁ+fn*27lm)2e*ink\_t’|26*1012872(1)1(W)/hL(dw)’
,2m|+1|0,
< C||9H30 e7k§)?(zz)/2672kn2mzefkn2/2 max(e2nmk§}?(2) eZn(erl)kéR(z))
= G, ,
% max(enk%(2)7 e(n+1)k‘\s"(z))’

where C is a constant independent of k. We recognize the general term of a con-
vergent series in m and n, thus according to Fubini’s theorem, Ilg, ; is well-defined
on % by the following formula, for g € %:

Mo, cg(z) = J o~ AG=5) g (1) 0= 20 0N/ (g,
c

J ef(l/4h)(zfrv+in72nm)2(uk)m(vk)n
[0,27]+i[0,1]

(m,n)e2?

% €7k112/2€7inkwg(w)672®1(W)/hL(dW).
Now, since the range of Ilg, , consists of holomorphic functions, then for g € %,
o, kg € Hol(C). Then, via the change of variables w — w + 27, we prove with
simple integral equalities that, for g € %, we have g, rg(z + 27) = u g, 1g(z)
and using the change of variables w — w + i, we also obtain that, for g € %,
o, 1g(z + i) = vke ™+ /12T1g, 1g(z). Finally, we recall that g, » = id on ¥
comes from Proposition 2.19. |

We can now define the action of a Berezin—Toeplitz operator of the complex
plane on the space #.

Proposition 2.33. Let fi € €,°(C) be a function such that, for z € C, we have:
Jilz +2m) = fi(2) = fi(z + ).

Let Ty, = (T); - be the Berezin—Toeplitz operator of the complex plane of symbol
fr. Then, for k > 1 and for v € 5, we have:

TkU = l_[(pl_’k(ﬁél))7
where Ilg, i is seen as the operator which sends %) on #j. (see Proposition 2.32).

Proof. According to Proposition 2.30, for v € #;, for u € S(C) and for k > 1, we
have:
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(Tyv,uyer e = v, Tiude: s,
={g, Trud withge S*Z(C) for/ e N
according to Proposition 2.15,
= <g,Hq>l_,kakH@1,ku> by definition of 7} on S(C),

= <Hq>hk]\41:_’vl'[q>,1kg,u> since H;ﬁ,k = H<I>],k-

Thus, for v € #; and for k > 1, we obtain, according to Proposition 2.32:

Tiv = Mo, kMo, kv = Ho, k(fi0). O

We deduce from Proposition 2.33 and Proposition 2.32, a result which relates a
Berezin—Toeplitz operator of the complex plane and a Berezin—Toeplitz operator
of the torus. To our knowledge, this fact is new in the literature and it is also fun-
damental to prove Theorem 1.6.

Proposition 2.34. Let fi € €,°(C) be a function such that, for z € C, we have:

Je(z+2n) = fi(z) = fi(z +10).

]

symbol fi. and let TIEZ = (T sz)kzl be the Berezin—Toeplitz operator of the torus
of symbol fi.. Then, for k > 1, we have:

Let Tff = (T,C)kZl be the Berezin—Toeplitz operator of the complex plane of

TE=T) + 0(k™®)  on #.

Consequently, a Berezin—Toeplitz operator of the complex plane whose symbol is
periodic coincides with a Berezin—Toeplitz operator of the torus.

2.3.3. Berezin—Toeplitz quantization and complex Weyl quantization of the
torus. Finally, we are able to establish and to prove the following proposition
which corresponds to Theorem 1.6.

Proposition 2.35 (Theorem 1.6). Let fi € € (R?) be a function such that, for
(x, ) € R?, we have:

Je(x+2m,y) = fix,») = filx, y + 1).

Let Ty = (Tx),s, be the Berezin-Toeplitz operator of the torus of symbol fj.
Then, for k > 1, we have:

T, = Op(‘lgl (b)) + (O(kioo) on .,



352 O. Rouby

where by € 6, (Ae,) is defined by the following formula, for z € Ap, ~ C:

bn(z) = exp(1 0:0:) (2. )

Besides, by, satisfies the following periodicity conditions, for (z,w) € Ag,:
bu(z + 2, w) = bp(z,w) = by(z +i,w —1).

Proof. Since in particular f; € S(C), if we denote by T = (T)"),~., the Berezin—
Toeplitz operator of the complex plane of symbol f;, then according to Proposi-
tion 2.29, there exists b; € S(Ag,) such that, for k£ > 1, we have:

T = Opg,(bs)  on H(C,®y),

where by is given by the following formula, for z € Ag, ~ C:

tn(z) = exp(ou0: ) (4(2).

Since S(C) is included into H;(C, @) (see Remark 2.12) then, by restriction, we
obtain:

T =Opg, (by)  on &(C).
By duality, we have:
T =Opy, (by) on &'(C).
Since #;, C &'(C), we obtain:
TS =Opg (by)  on #.

Notice that the periodicity conditions on f; and Equation (9) give the periodicity
conditions on by, consequently, Opq) (by) 1s well-defined on #%.

Finally, according to Proposition 2.34, if we denote by T7T (1! 2) v>1 the
Berezin—Toeplitz operator of the torus of symbol f;, we have, for k>1:

T = Tsz +O(k™™)  on A.
This concludes the proof. [

Thanks to Theorem 1.6 and Proposition 2.29, we deduce the following
corollary.
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Corollary 2.36. Let f; € 6;°(R?) be a function such that, for (x, y) € R?, we have:

Je(x+2m,y) = filx,») = filx, y + 1).

Let Ty = (Tx),s, be the Berezin—Toeplitz operator of the torus of symbol fj.
Then, for k > 1, we have:

T, TiTy, = Op"(an) + O(h*)  on L*(R),
where aj, € €;°(R?) is defined by the following formula:
ap = by o Ky,

where by € €,° (Aw,) is defined by Equation (9). Besides, ay, satisfies the following
periodicity conditions, for (x, y) € R%:

ah(x+ 27, y) = ah(X, y) = ah(?@ y+ 1)~
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