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On minimal Hölder gaps and Shannon entropy balance
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Abstract. When estimating a bilinear form in x and y by a product of two terms depending
solely on x or y, the well known Hölder inequality which uses the product of a p-norm and
its dual comes easily into play. However, if one can choose p freely, one could reduce this
Hölder gap accordingly. This note addresses this elementary but apparently not too popu-
lar issue by using strict log-convexity of the p-norm in 1

p
(sometimes called Littlewood’s

inequality). The optimal p is characterized by a balance condition on the Shannon entro-
pies of distributions related to x and y.
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1. Motivation

Let ðL; k:k;aÞ be a Banach lattice [18] with positive cone Lþ :¼ f f a L :

f b 0g. We denote by L� its topological dual, and

kyk� ¼ sup
kxka1

3x; y4

the dual norm on L�. Here we will discuss the special case the Euclidean space

L ¼ Rn, or the infinite-dimensional sequence space L ¼ lp, or else L ¼ LpðmÞ
where m is a finite measure on a measurable space ðW;FÞ, equipped by the

p-norms given by

kxkp
p ¼

Xn=l
i¼1

jxijp or kxkp
p ¼

ð
W

jxjp dm:

Then L� ¼ lq or L� ¼ LqðmÞ with 1
p
þ 1

q
¼ 1 and kyk� ¼ kykq, including the

cases p a f1;lg for which q a fl; 1g, a subscript rl designating (m-essential)

sup of an element. The ordera is understood pointwise (m-a.e.).



Now the well known Hölder inequality, more precisely, following [19], p. 135,

the Rogers–Hölder–Riesz inequality [10], [16], [17], reads

j3x; y4ja kxkpkykq; ð1Þ

with equality if and only if fx; yg are linearly dependent. By several authors, see

e.g. [3], [9], Thm. 101(a), p. 82, [13], it was shown that essentially no extension in

the form

j3x; y4jaF�1ðkF � jxj k1ÞC�1ðkC � jyj k1Þ

beyond FðtÞ ¼ tp and CðtÞ ¼ tq is possible for any bijections F, C on Rþ with

Fð0Þ ¼ Cð0Þ ¼ 0, if dimL > 1.

However, often x and y are given, and their product 3x; y4 is beyond our

control. Rather, we want to use (1) to estimate j3x; y4j with as tight gap as pos-

sible, meaning that for given x and y, we want to minimize the right-hand side

kxkpkykq in p which is not involved in j3x; y4j. Elementary as this question is,

apparently it has not received any significant attention. In this note, it is shown

that the problem has a unique solution in p under very mild conditions which

hold generically.

Here it should be mentioned that there are other estimates of the Hölder gap,

relating it to the Minkoswki gap rather than minimizing it in p, see [11], [12].

Since all p-norms are lattice norms [18], i.e. satisfy k jxj kp ¼ kxkp, we may and

do assume in the sequel that fx; yg � Lþ. Further, we will assume that fx; yg are

linearly independent, and, to simplify discussion also that fx; yg � l1þ in the se-

quence space case, or else that fx; yg � Ll
þ ðmÞ in the finite measure case. Recall

that for 1a p < ral we have lr � lp but the reverse inclusion LpðmÞ � LrðmÞ.
By dividing by their respective k:k1 (in the atomic case) or k:kl in the finite

measure case, we can use positive bi-homogeneity of (1) to ensure that both ele-

ments x and y are bounded by unity. Further we simply can minimize the loga-

rithm of the right-hand side of (1) and look at

jðtÞ :¼ logkxkp þ logkykq ¼ cxðtÞ þ cyð1� tÞ; t ¼ 1

p
; ð2Þ

where

cxðtÞ :¼ logkxk1=t ¼ ðt� 1ÞR1=tðxÞ with RpðxÞ ¼
1

1� p
logkxkp

p

denoting Rényi entropy [15]. We won’t pursue the connection to Rényi entropy

here further although some of the following results may be derived also via this

connection. See, e.g., [6], Lem. 2.7; see also [1], [2], [5].
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For 1 < p < l and m a f1; 2g, we have, putting b ¼ p�1
m

> 0,

xpjlog xjm ¼ ½xbjlog xj�mxa ðbeÞ�m
x for x a ½0; 1�;

by the above assumption, and similarly for the series case, so that integrability

(or summability) of derivatives does not pose any problem whatsoever when dif-

ferentiating under the integral (or summation) sign.

Next note that if x is constant, then cxðtÞ is constant in t since all norms then

have the same value.

2. Analysis and discussion

To discuss j, we note that cx is convex, see, e.g. [7], p. 55 where this fact is termed

Littlewood’s inequality. Then obviously also j is convex, and we will look at

the first two derivatives of cx which can be derived, e.g., from [8]. To this end,

consider for xA 0 the probability measure nðpÞ ¼ nðp; xÞ – for brevity we will

suppress the dependence on x except in Theorem 2.1 below – given by either

niðpÞ :¼
jxijpP
j jxjj

p ; i a f1; . . . ; ng or i a N ð3Þ

as discrete weights, or in the case L ¼ LpðmÞ, via the density function w.r.t. m

dnðpÞ
dm

ðoÞ :¼ 1

kxkp
p

jxðoÞjp; o a W: ð4Þ

To simplify notation, we will use nðpÞ also for above density function in o, and we

will write VðpÞ instead of nðpÞ if the expressions on the right-hand side in (3) or (4)

are considered as a random variable w.r.t. nðpÞ. Under the conditions discussed

above, this random variable VðpÞ, like the random variable X ¼ xðoÞ or X ¼ xi
itself, has all moments w.r.t. nðpÞ, for all pb 1. Before continuing we mention the

well-known (and elementary) fact for the Euclidean case L ¼ Rn that

lim
p!l

niðpÞ ¼
1
m
; if xi ¼ kxkl;

0; if xi < kxkl:

� �
ð5Þ

where m is the cardinality of Argmaxj xj (generically we have m ¼ 1). Note that

the space of all probability distributions (absolutely continuous w.r.t. m) may fail

to be compact w.r.t. norm topology if W is infinite (a classical problem in Bayesian

analysis), allowing for (weak) convergence nðpÞ ! 0 as p ! l, except in case

L ¼ Rn.
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Proposition 2.1. Consider an element x a Ll
þ ðmÞnf0g or an element x a l1þnf0g.

Then w.r.t. the probability nðpÞ defined in (4) or (3), we have

_ccxðtÞ ¼ ShanEnt½nðpÞ� :¼ EnðpÞ½�logVðpÞ� ð6Þ

and

€ccxðtÞ ¼ p3 VarnðpÞ½logX �b 0; ð7Þ

the latter relation becoming an equality if and only if X is constant m-a.e. (or in i

in the discrete case). In all cases, the function xr log x is continued with zero at

x ¼ 0.

Proof. As logVðpÞ ¼ p logX � p logkxkp, the densities of nðpÞ form an exponen-

tial family [14] in the one-dimensional parameter p with natural su‰cient statistics

TðXÞ ¼ logX . A general property in such exponential families implies EnðpÞ½TðXÞ�
¼ d

dp
½logkxkp

p �, easily obtained by di¤erentiating the constant
Ð
VðpÞ dnðpÞ ¼ 1

under the integral sign. Using t _pp ¼ �p, we now arrive at

_ccxðtÞ ¼ logkxkp
p þ t

d

dt
½logkxkp

p �

¼ logkxkp
p þ t _pp

d

dp
½logkxkp

p �

¼ logkxkp
p � pEnðpÞ½TðXÞ� ¼ EnðpÞ½�logVðpÞ� ¼ ShanEnt½nðpÞ�;

which is (6); after some manipulation, the same result can also be derived from [8],

Lem. 1.1, see also [1], Prop. I.2, [6], Lem. 2.7. A similar calculation (related to

arguments leading to the Cramér–Rao bound, cf. again [14]) shows d
dp
EnðpÞ½TðXÞ�

¼ VarnðpÞ½TðXÞ�, implying

€ccxðtÞ ¼ _pp
d

dp
flogkxkp

p � pEnðpÞ½TðXÞ�g

¼ � _ppp
d

dp
EnðpÞ½TðXÞ� ¼ p3 VarnðpÞ½logX �b 0:

The argument is completely analogous in the atomic/discrete case. r

The main result seems to have gone unnoticed up to now.

Theorem 2.1. Consider two linearly independent elements fx; yg � l1þ, both

bounded by unity. Then there is a unique p� minimizing the Hölder gap kxkpkykq �
3x; y4, namely either p� ¼ l or p� ¼ 1, or else the unique solution in p of the fol-
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lowing transcendental equation (with 1
p
þ 1

q
¼ 1 for symmetric and nicer notation):

logkxkp
p �

p

kxkp
p

X
i

x
p
i log xi ¼ logkykq

q �
q

kykq
q

X
i

y
q
i log yi: ð8Þ

A similar statement holds for two linearly independent elements fx; yg � Ll
þ ðmÞ

both bounded by unity, where m is a finite measure. Here the equation reads

logkxkp
p �

p

kxkp
p

ð
xp log x dm ¼ logkykq

q �
q

kykq
q

ð
yq log y dm: ð9Þ

Both conditions are equivalent to the Shannon entropy balance formula

ShanEnt½nðp; xÞ� ¼ ShanEnt½nðq; yÞ�:

Proof. The first two derivatives of j w.r.t. t a �0; 1½ are _jjðtÞ ¼ _ccxðtÞ � _ccyð1� tÞ
and €jjðtÞ ¼ €ccxðtÞ þ €ccyð1� tÞ. So (7) yields strict convexity of j. If _jjð0Þb 0,

then p� ¼ l. If _jjð1Þa 0, then p� ¼ 1. Else _jjð0Þ < 0 < _jjð1Þ (this includes the

possibility of _jjðtÞ & �l as t & 0 or _jjðtÞ % þl as t % 1 or both), and strict

convexity yields uniqueness of the minimizer p� a �1;l½ satisfying (8) or (9), using

(6). r

Let us discuss conditions for an interior solution p� a �1;l½. For ease of pre-

sentation only, we focus on the finite-dimensional case L ¼ Rn:

Theorem 2.2. Consider two vectors fx; yg � Rn. Suppose that both x and y have

a unique coordinate with maximum modulus less than unity, i.e.

jxjj < jxij ¼ kxkl < 1 ¼ kxk1 for all jA i

and likewise

jyjj < jykj ¼ kykl < 1 ¼ kyk1 for all jA k:

Then the minimizer p� of the Hölder gap solves (8) and is thus interior.

Proof. By assumption m ¼ 1, so (5) and (6) yield

_jjðtÞ ! 0� logkyk1 þ
X
i

jyij logjyij < 0 as t & 0;

because kyk1 ¼ 1 and jyjj logjyjj < 0 as by the above assumptions we have 0 <

jyjj < 1 for at least one j. By the same arguments we have limt%1 _jjðtÞ > 0, and

the result follows. r
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3. An application

As an application we improve upon Cauchy–Schwarz (p0 ¼ 2, i.e. t0 ¼ 1
2):

Theorem 3.1. For xA 0 define rðxÞ ¼ 3x;x logjxj4
3x;x4

and cðxÞ ¼ log3x; x4� 2rðxÞ.
(a) If cðxÞ ¼ cðyÞ, then Cauchy–Schwarz gives the tightest Hölder gap.

(b) However, if cðxÞAcðyÞ, then there is a tighter Hölder gap for p ¼ 1
t
with t a

(suitable) convex combination of t0 and t1 ¼ proj½0;1�ðtnÞ where

8tn ¼ 4� cðxÞ � cðyÞ
gðxÞ þ gðyÞ with gðxÞ ¼ kx logjxj k2

kxk2

� �2
� r2ðxÞ: ð10Þ

Here proj½0;1�ðsÞ ¼ minf1;maxf0; sgg is the point in ½0; 1� closest to s.

Proof. Consider a full Newton step for t, starting with t0 ¼ 1
2 . The projection

ensures feasibility, and the sign of _jjðt0Þ decides on moving left or right. r

Remark 3.1. Suppose X and Y are two random variables with joint distribution

m on W which may be stochastically dependent under m, but have the same mar-

ginal distribution. For the vast field of dependence models in this situation via

Sklar’s copula refer, e.g. to [4]. Then obviously the Hölder gap equals

½EmðjX jpÞ�1=p½EmðjY jqÞ�1=q � EmðXYÞ ¼ ½EmðjX jpÞ�1=p½EmðjX jqÞ�1=q � EmðXY Þ

which is symmetric in t around t0. So t0 minimizes the convex function j in this

situation, and the Cauchy–Schwarz gap – which in the uncorrelated (in particular

in the independent) case equals VarmðXÞ – is the smallest Hölder gap. The above

theorem generalizes this observation to other copulas which may be of some help

in case of non-identical marginals.

Even if the full Newton step is feasible, it is not necessarily improving which

requires the above mentioned convex combination. In our experiments below,

we simply took the arithmetic mean of t0 and t1, reducing the full step length by

50%, and obtained satisfactory results by this heuristic approach, for the case

tn a ½0; 1�:

th ¼
1

2
ðt1 þ t0Þ ¼ t0 �

cðxÞ � cðyÞ
16½gðxÞ þ gðyÞ� :

This procedure basically replaced the Taylor expansion of j around t0 with a

quadratic model qh having double curvature of the Taylor polynomial but same

tangent and value at t0, so qh is overestimating j locally around t0, and most of
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the time on the whole interval between t0 and th, which means that jðthÞa qhðthÞ <
qhðt0Þ ¼ jðt0Þ. According to the empirical results reported in the next section, this

seems to be often the case.

Examples. For x ¼ ½0:5; 0:45; 0:05� and y ¼ ½0:3; 0:3; 0:4� the minimal value of j

is attained at around t� ¼ 0:82 (so p� ¼ 1:22); here tn > 1, and t1 ¼ 1 neither

improves upon Cauchy–Schwarz nor on the heuristic value at th ¼ 3
4 , as the

(rounded) j-values at ðt�; t1; th; t0Þ are, respectively ð�1:01;�0:92;�1:00;�0:93Þ.
A slight variation of x to x 0 ¼ ½0:45; 0:45; 0:1� – which violates the assumptions

in Theorem 2.2 but using the arguments of its proof we still get _jjð0Þ ¼ log 2þP
i yi log yiQ�0:396 < 0 – and above y give j-values at ðt�; t1 ¼ tn; th; t0Þ ¼

ð0:78; 0:96; 0:73; 0:5Þ now equal to ð�1:024;�0:954;�1:022;�0:979Þ. Here

p� ¼ 1:28. Both phenomena reported here occur however rarely, and the fact

that th is almost optimal seems to be typical in view of the empirical evidence

reported in the following section.

4. A small simulation study

In this study, we consider dimensions n a f3; 5; 10g and look at the statistics for

the gap ratios
gðx;y; tÞ
gðx;y; t 0Þ across 10

4 randomly drawn samples ðx; yÞ from the unit in-

terval ½0; 1�, renormalized such that kxk1 ¼ kyk1 ¼ 1. Recall the gap gðx; y; tÞ ¼
kxkpkykq � 3x; y4 with t ¼ 1

p
. The gap ratios were taken for di¤erent combina-

tions ðt; t 0Þ a fðt�; t1Þ; ðt�; thÞ; ðt�; t0Þ; ðt1; t0Þ; ðth; t0Þg. We report the median value

as well as the lower and upper quartile for these ratios. Of course, the conditions

of Theorem 2.2 were satisfied so that always 0 < t� < 1 holds. In all these 30,000

samples, it never occurred that jðthÞ > jðt0Þ and in fact
gðx;y; t�Þ
gðx;y; thÞ dominates

gðx;y; t�Þ
gðx;y; t0Þ

by a significant amount at all quantiles and across all considered dimensions.

In case of n ¼ 3, among 104 samples we observed 213 cases where the (trun-

cated) Newton step t1 did not improve the Cauchy–Schwarz gap, 1571 cases

where jðt1Þ < jðthÞ, and 1212 cases where tn B ½0; 1�. The statistics are detailed in

Table 1 below. In case of n ¼ 5, among 104 samples we observed 103 cases where

the (truncated) Newton step t1 did not improve the Cauchy–Schwarz gap, 846

cases where jðt1Þ < jðthÞ, and 303 cases where tn B ½0; 1�. The statistics are de-

tailed in Table 2 below.

In case n ¼ 10, due to reasons detailed below, the interquantile range was

extended from
�
1
4 ;

3
4

�
to ½0:1; 0:9�, to include also more extreme observations where

only the lowest and the highest decile are treated as outliers. All other specifica-

tions were kept. Among 104 samples we observed 7 cases where the (truncated)

Newton step t1 did not improve the Cauchy–Schwarz gap, 138 cases where

jðt1Þ < jðthÞ, and 8 cases where tn B ½0; 1�. The statistics are detailed in Table 3

below.
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Pursuing the same simulation strategy for larger dimensions, the di¤erences

become less pronounced but this is an artefact of the approach: indeed, let gnðtÞ
denote the Hölder gap based on a sample ðxn; ynÞ ¼ ðxi; yiÞni¼1 a R2n of 2n i.i.d.

U ½0; 1�-distributed random variables. Then the law of large numbers implies that

for all t ¼ 1
p
and t 0 ¼ 1

p 0 we have almost surely

gnðtÞ
gnðt 0Þ

¼
1
n
ðkxnkpkynkq � 3xn; yn4Þ

1
n
ðkxnkp 0 kynkq 0 � 3xn; yn4Þ

! exp½jðtÞ � jðt 0Þ� as n ! l; ð11Þ

with jðtÞ ¼ logðEUkXkpEUkXkq � ½EUX �2Þ where X is a U ½0; 1�-distributed ran-

dom variable. Remark 3.1 ensures that jðtÞbjðt0Þ ¼ logVarU X ¼ �log 12 for

all t a ½0; 1�, so that the gap ratios (11) approach 100% for all ðt; t 0Þ combinations

considered in above tables, as convergence when n ! l is uniform in t a ½t0 � d;

t0 þ d� for small enough d > 0. Again, this does not preclude considerable Hölder

gap improvements for a particular instance in high dimensions; but this cannot be

detected in our simulation environment.

Table 1. Statistics on gap quotients
gðx; y; tÞ
gðx; y; t 0Þ across 10,000 random instances for fx; yg � R3;

rounded percentages reported.

ðt; t 0Þ ¼ ðt�; t1Þ ðt�; thÞ ðt�; t0Þ ðt1; t0Þ ðth; t0Þ

lower quartile 93.60 80.57 46.20 55.58 58.55
median 99.78 96.08 81.56 85.40 85.58

upper quartile 99.99 99.16 96.18 96.95 97.12

Table 2. Statistics on gap quotients
gðx; y; tÞ
gðx; y; t 0Þ across 10,000 random instances for fx; yg � R5;

rounded percentages reported.

ðt; t 0Þ ¼ ðt�; t1Þ ðt�; thÞ ðt�; t0Þ ðt1; t0Þ ðth; t0Þ

lower quartile 99.57 94.82 78.48 81.58 83.24
median 99.98 98.32 92.69 93.36 94.44

upper quartile 100.00 99.61 98.37 98.54 98.78

Table 3. Statistics on gap quotients
gðx; y; tÞ
gðx; y; t 0Þ across 10,000 random instances for fx; yg �

R10; rounded percentages reported.

ðt; t 0Þ ¼ ðt�; t1Þ ðt�; thÞ ðt�; t0Þ ðt1; t0Þ ðth; t0Þ

lower decile 99.76 95.48 82.66 83.44 86.66
median 100.00 99.26 96.98 97.01 97.74

upper decile 100.00 99.97 99.90 99.90 99.93
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5. Conclusion

If you want to reduce the Hölder gap, don’t stick with Cauchy–Schwarz inequal-

ity. It may pay o¤ by a significant improvement (around 20% or even more).
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