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Abstract. We are concerned with the theory of the existence and uniqueness of flows gen-
erated by divergence free vector fields with compact support. Hence, assuming that the
velocity vector fields are measurable, bounded, and the flows in the Euclidean space are
measure preserving, we show two counterexamples of uniqueness/existence of such flows.
First we consider the autonomous case in dimension 3 and then the non-autonomous one
in dimension 2.

Mathematics Subject Classification: 34A12, 35D30, 35F05
Keywords: Flows, existence, uniqueness, compact support

1. Introduction

We are concerned in this paper with the theory of the existence and uniqueness of
flows generated by compactly supported, divergence free vector fields. Moreover,
we assume that the velocity vector fields are measurable and bounded, without
differentiability regularity, and the flows in the Euclidean space are measure pre-
serving (with respect to Lebesgue measure). Under these conditions we show two
counterexamples of uniqueness/existence for such flows. First we consider the
autonomous case in dimension 3 and then the non-autonomous one in dimen-
sion 2. We stress that, the compactness feature of the vector fields to construct
the counterexamples (flows) has never been considered before.

The fundamental questions about the relation between velocity vector fields
and flows began a long time ago with Lagrange, Euler, Bernoulli, among other
important mathematicians. In the present-day, it seems it was reinitiated by
Nelson [14] and put into more evidence by Aizenman in his celebrated paper [1].
These types of flows, as mentioned above, are encountered in many physical appli-
cations, for instance, related to fluid flow problems.
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One usually studies fluid dynamics using the Eulerian approach instead of the
Lagrangean point of view given by the flow. This leaves to time evolution partial
differential equations, in particular linear transport equations, which the unique-
ness of weak solutions, for low regularity of the vector fields (called drift) has
called much attention. In this direction, we briefly recall the approach initiated
in 1989 by DiPerna, Lions [10], where they proved uniqueness of weak solutions
for drift vector fields with Sobolev W!:! spatial regularity, applying the nowadays
well known commutators idea. Hence in 2004, Ambrosio [4] supported again
on commutators, but with a different measure-theoretic framework, extended the
results of DiPerna, Lions for bounded variation drift vector fields. On those two
papers, the uniqueness of the flow was obtained from the uniqueness of the linear
transport equation.

Since Ambrosio’s cited paper [4], there is a great effort to pass beyond BV vec-
tor fields. We remark that, the autonomous case in dimensions 2 is very particular
(because of the Hamiltonian structure), and is completely understood. Indeed, it
is proven in [2] a necessary and sufficient condition for the uniqueness of bounded
solutions of the linear transport equations, for bounded (divergence free) drifts
a; namely the Lipschitz potential f* of a (i.e. a = (0,f,—0f)) has to satisfy a
“weak” Sard condition. Moreover, it is constructed in [3] (see also Corollary 4.8
and its proof in [2]) a divergence free vector field @ with compact support belong-
ing to C%*(R?; R?) for every o < 1, for which the transport equation has more
than one solution. Obviously this also provides a counterexample in dimensions
three and higher (hence giving another proof of Theorem 3). However it is not
known whether the vector field generates more that one regular flow (see definition
below).

The non uniqueness results established here are inspired by the strategies initi-
ated by Aizenman [1], which is to say, to generate more than one flow from the
same velocity vector field using low dimensional sets. Depauw [9] has used the
same strategy as [1] to construct counter-examples of uniqueness for transport
equations, also there exist some indications in that paper on how to modify the
counterexamples accordingly, but they are only sketches, and recall that, for trans-
port equations. On the other hand, the “donut™ ideia here is completely new;
further the precise description of the counterexamples of uniqueness/existence of
flows generated by vector fields with compact support is made with details in the
following sections.

Since the uniqueness of the linear transport equations implies uniqueness of the
flow, as by product, our results imply non uniqueness of the transport equations
without the “‘weak” Sard property (in particular, non uniqueness of renormalized
solutions). One might ask why such results for L? category for the vector fields
are interesting, once they are very far from the regularity needed for the positive
results. The answer is concerned with the proof of the existence of solutions to
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important physical problems. Indeed, let us briefly discuss the Buckley-Leverett
System, see [5] (an analogous example is the Muskat Problem, see [6], [11]).
Find a pair (p,v) : Qr — R x R” solution to the Buckley-Leverett system

dip +div(vg(p)) =0,
h(p)v=—Vp, divv=0,

p(0) = py,  v(0) = v,

+ Dirichlet boundary conditions,

where Q7 = (0,7) x Q, for any fixed 7 > 0, and Q C R” is an open bounded
domain. Moreover, g and & are given (locally) Lipschitz functions, such that
h(p) = ho > 0. One of the main steps towards the solution of this open problem
is the uniqueness (or renormalization) of the linear transport equations, with
L?*(Q7) integrability of divergence free drift vector fields. It is not difficult to
see that v e L?(Q7), and due to physical applications we suppose p € L*(Qr).
Another interesting open problem is the well-posedness of the incompressible
Euler’s equations in dimension 3. Again, it is very important to know whenever
the renormalization property holds for L? (divergence free) vector fields, see De
Lellis [8], also Lions’ books [12], [13].

1.1. Notation and background. At this point, we fix the notation used through-
out the paper, and recall some well known background.

We denote by div the usual divergence operator. Here |- | stands for the
Lebesgue measure in R”, (n = 2,3). Unless specified the contrary, any measure
framework considered is respect to Lebesgue measure.

Definition 1. A family {¢,},_, ¢, : R” — R" of measurable maps is called a mea-
sure preserving flow in R”, when it satisfies:
(1) For each r € R, and every measurable set 4 C R”",

¢ ()] = 14].

The previous equation can be equivalently replaced by

J h(g,(x)) dx = J h(y)dy, forevery h e L'(R").
- -

(2) Foreach 1,1, € R, and a.e. x € R”
¢(11+I2)<x) = ¢[] (¢t2 (x>)

Definition 2. Let a(z,x) be a measurable vector field from R x R” to R", such
that, |a(t, x)| < a(z) for some nonnegative function o € L .(R). For each T > 0,
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a mapping ¢ : [-T,T] x R" — R", (¢,(-) = 4(t,-)), is called a flow generated by
the vector field a(z, x), if for a.e. x € R", the map ¢(-, x) is absolutely continuous
in any compact subset of [T, T], and satisfies

t

Pt x) =x+ J a(s, (s, x)) ds. (1)

0

Moreover, we say that ¢, is regular if there exist positive constants C, C (inde-
pendent of ¢), such that, for each Borel set B C R”"

C|B| <, (B) < C|B|,
where y is the push-forward of the Lebesgue measure through the flow ¢,.

One remarks that, a necessary condition for a flow ¢,(-) generated by a(z,-) be
measure preserving is: diva = 0 in a suitable sense.

2. The autonomous case

Theorem 3. Part 1: Non uniqueness. There exists a divergence fiee vector field
ae L™ R3; R3) with compact support generating two distinct measure preserving
flows satisfying the group property a.e.. More precisely, it will be shown the exis-
tence of two distinct measurable maps ¢, : R x R® — R® satisfving, for every
teRandae xe R,

t t

a(f(s,x))ds, P(t,x) =x+ J a(y(s,x)) ds,

0

#(t,x) :x—i-J

0

such that ¢(t,-) and y(t,-) both preserve the Lebesgue measure for every t € R and
such that, for a.e. x € R", for every t; € R and for every t, € R except a countable
set (depending on x),

P11+ 12,x) = (01, (12, %)) and  Y(ty + 12, %) = Y (11, (82, %)).
Moreover, there exists a nontrivial L™ ([(), o0) X IR3) weak solution of
af“ + <a; Vx“> == O and M(O, ) = 0’

which explicitly means that, for every h e C* ([0, %0) x R?)

Jw J u(t,x)(0:h(t,x) + <a(x); Vih(t,x) ) dx dt = 0.
0 Jr?
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Part 2: Non existence. There exists a compactly supported, divergence free vector
field a € L*(R3; R®) generating no measure preserving flow satisfying the group
property a.e..

The proof of the above result is inspired by [1] and [9]. The core idea is, as
in [1], to construct a bounded divergence free vector field in [0, 1]* x (0, 1] whose
flow at some fixed time (here it will be 7 = 1) collapses a large enough class of
1-dimensional sets to points: That is, for a.e. x; € (0,1), the x;-fiber (0,1) x
{x,} x {1} is sent by the flow at time 1 to a point in (0,1) x {0}. This will be
done by following an argument in [9] using 2-dimensional square and rectangle
rotations: making use of such rotations we first exhibit a vector field whose
flow at time = 1/2 sends, for a.e. x; € (0, 1), the x;-fiber (0,1) x {x2} to a x;-
fiber of length 1/2, then repeating the construction inductively (by scaling the
geometry by a factor 1/2) we finally obtain our desired vector field. Note also
that a different construction of a vector field with the same properties was done
in [7].

Then, the vector field is extended to R?, so that, it remains bounded, diver-
gence free, and has additionally compact support.

Using the above collapsing property we then construct, proceeding similarly
as in [1], two distinct measure preserving flows ¢ and ¥ in R* of our vector field
which will be named a. As a direct by-product we show that (as it would trivially
be the case if ¢ and ¢ were smooth) uy(¢~") and uo(y ') both solve the linear
transport equation with initial data uy and with drift term a. Choosing uy appro-
priately these two solutions are distinct which shows non-uniqueness for the trans-
port equation. Finally, by slightly modifying a, we exhibit another vector field
(with the same properties of @) for which there does not exist a measure preserving
flow.

We stress on the fact that, all the bounded vector fields constructed in [1] and
[7], resp. in [9], do not belong to L?(R?), resp. L?(R?), for any p < oo (and a for-
tiori are not bounded and with compact support). Indeed, the vector fields [1] and
[7] are identically (0,0, 1) in (0,1)* x ((—o0, ~1) U (1, 00)) and the vector field
constructed in [9] is periodic (with a square as period).

Remark 4. (i) It is interesting to see that our vector fields ¢ and a constructed
below are moreover piecewise smooth in R*\([0,1]* x {0}) (cf. Step 1.2 of the
following proof).

(i) Recall (proceeding for example by approximation) that, it always have
existence of a (weak) bounded solution of the transport equation

ou+<a;Viuy =0 and  u(0,-) = up(-)

when a and uy are bounded.
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(iii) As a direct consequence of the a.e. group property (cf. Step 6.3 in the
proof below) we will also show that, for every 7 € R, ¢(z,-) and y(¢,-) both are
bijection from an open set of full measure in R* onto an open set of full measure
in R* (depending on 7) and that,

¢(Z7')71 = ¢(_[a ) and lﬁ(t,')71 = l//(—[, )

Proof. The proof is organized as follows. In the first 6 steps we establish the non
uniqueness for the flow. In Step 7 we prove the non uniqueness for the transport
equation. Finally in Step 8 we show the non existence part.

Step 1. Definition of the vector field a and its properties.

Step 1.1. The measurable and bounded vector field a(x) = a(xy, x2, x3), with
compact support and divergence free, will be first defined in the upper half space
and then in the lower half space. For its definition we will use two vector fields
exhibited in the appendix.

Define a in {x3 > 0} by

(b(1 — x3,x1,x2), 1) in Ay,
(O,X3 —1 , —X2 — 1) in Az,
2
a(xy, xz,x3) := \/ (3 — (x2+1)

in A3,

gc X1 — 1/2 x2+5/2)’1>

in {x3 > 0}\(4; U 4, U 43),

Figure 1. A representation of a: The black subset at {x3 = 0} is My = M7 while the blue
subsets represent M, ..., Mg and are enumerated counter clockwise starting at M. For
i=1,...,7, A4;is the region delimited by M;_; and M;: A; = [0,1]* x (0, 1] and so on until
A7 =1[0,1]> x [-1,0). The whole donut (without the black subset) is the union of the 4,’s
and is referred to as S. The four green arrows represent roughly the direction a.
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where (cf. Figure 1)

Ay = 10,1]* x (0,1]

Ay = {(x1,x2,x3) € R [0<x <1,1< \/(Xz + 1)2 + (x3 — 1)2 <2,x3>1}
Az :=10,1] x [-3,-2] x [0,1],
b:(—o0,1) x R* — R? is the 2-dimensional vector field defined in Lemma 10 and

¢ : R* — R? is the 2-dimensional autonomous vector field defined in Lemma 8 (i).
We next define a in {x3 < 0} as follows:

a(xy,xa,x3)
(0707 1) in A47
(0,)63 +2,—x; — 1) in As.
VO +27 4 (x +1)?
= (—c()q - 1/22,x2 -1/2) 7 _1> in A,
—R3 (a(Rg(x))) in A77
0 in {X3 < 0}\(144 U As U Ag UA7>,

where (cf. Figure 1)
Ay = [0,1] x [~3, 2] x [~2,0]

As = {(x1,x,x3) e R* [0 < < 1,1 < \/(Xz + 1)+ (x3+2)2 <2,x3 < -2}
Ag = [0,1]* x [-2, 1]

A7 = 0,1 x [-1,0)

where c is as before the vector field defined in Lemma 8 (i) and where

R3(x1,x2,x3) := (X1, X2, —X3).

The definition of @ in {x3 < 0} might not appear to be the most natural one (one
could have defined it by reflection everywhere in the lower half space e.g.); how-
ever with the definition the “period” of the flow of @ will be (contrary to the defi-
nition by reflection) independent of the position (cf. (19)) which will significantly
simplify some technical parts of the present proof.

Step 1.2: Properties of a. Let
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First, since a = 0 outside S and S is a bounded set, the vector field @ has compact
support (cf. Figure 1 for a representation of a). Next, since from Lemma 10,
b e L*([0,1) x R?) and since (cf. Lemma 8) ¢ is bounded, we directly get that a
in bounded in R*. Using in particular the definition of the vector fields » and ¢ we
directly get that « is piecewise smooth in R*\ ([0, 1]* x {0}): there exist countably
pairwise disjoint open sets U; with the following properties:

e ais smooth in every U; and can be extended in a smooth way to U;

o U; Ui = R\((0,1)* x {0})
e forevery x € R*\([0,1]* x {0}) we can find a neighbourhood of x intersecting
only finitely many Us.

In fact, except for finitely many i’s, the U/s will be of the form 7; x I; where T;
is an open isosceles triangle in R? and 7} is an open interval in R.

We now show that div(¢) = 0 in R* in the sense of distributions. First since
b(1,-) is divergence free in (—1/2,1/2) for every ¢ € [0,1) we directly get that
diva =0 in 4; and in A47. Similarly, since (cf. Lemma 8) ¢ is divergence free
in (—1/2,1/2)* we get that diva =0 in 43 and in 4. Moreover, we trivially
have that diva =0 in A4,, A3 and As. Next, noting the normal component of
a is continuous across every horizontal component of Ui7:1 0A4; (of course the nor-
mal component of a is the third component ¢ on such components) we directly
get that diva=0 in Su ((0,1)* x {0}). Finally since obviously diva =0 in
R3\{S U (0,1)* x {0}}, and since, using in particular Lemmas 10 and 8 (i), the
normal component of « is zero (and hence continuous) across every not horizontal
part of | J]_; 04, we get that diva = 0 in R® as wished.

Step 2. Definition of a measure preserving flow of a up to some positive
and negative stopping times. In this step we prove that, for every x €S,
there exist some finite positive time 77 (x) and some finite negative time 7~ (x)
and a measurable map ¢(¢,x) defined for 7 e [t~ (x),7(x)] with the following
properties:

e Flow of @ in S: for every x € S
o(t,x) = x + Jo a(p(s,x))ds forte [t (x), 1" (x)], (2)
p(t,x) e S forre (1 (x),1"(x)) (3)

and

(1 (x),x) € 0,1)* x {0}. (4)
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e Group property: for every x € S and 7, %, € R, such that 1, € (¢ (x), 17 (x))
and 7 + 1, € [t7(x), 1" (x)] we have

p(ty + 12, x) = (ﬂ(ll»(ﬂ(lzax» (5)

and
1*(p(t2,x)) = t*(x) — 1. (6)

e Measure preservation: for every ¢ € R and every measurable set U C S, such
that, r € (¢~ (x), 1" (x)) for every x € U then

o(t,-)|y: U—o(t,U) preserves the measure. (7)

e Local bijectivity: for every te R, and every set U C S, such that, ¢ €
(1~ (x),7(x)) for every x € U then

p(t,)]y : U= o(t,U) is bijective. (8)

In words (cf. (3) and (4)) ¢7(x), resp. 1~ (x), is the smallest positive time, resp. the
biggest negative time, after which the flow ¢(-, x) reaches the plane [0, 1]* x {0}
from above, resp. from below. Recall that, if # € (¢~ (x),77(x)) then ¢(7,x) € S
(and hence does not belong to [0, 1]* x {0}).

The idea for the construction of ¢ and ¢* is elementary: recalling that S =
Ui7:1 A; we first exhibit, for i =1,...,7, times t : 4; — R and a flow ¢ in 4; sat-
isfying (2), (5)—(8) (with S replaced by 4; and with ¢* replaced by ). See Figure
2 for an illustration of 7*. Denoting (cf. Figure 1)

My=M;:=[0,1]*x {0}, M :=[0,1°x {1}, M>:=[0,1] x [-3,-2] x {1}
M;:=[0,1] x [-3,-2] x {0}, M4 :=[0,1] x [-3,-2] x {2},
Ms =011 x {=2}, Myg:=1[0,1]% x {~1}.
we will also have that, for every 1 <i <7,
p(t,x) € AN\N(M;-y U M;)  forte (t; (x),t](x)) and x € 4;, 9)
p(t; (x),x) e M; and  ¢(1/(x),x) e M-y for x € 4;. (10)

It will hence be possible to glue the orbits on A4; and obtain our desired flow ¢
as well as 1%,

e Flow of @ in 4;: Define for every x € A; and every

texs—1,x3] = [t; (x), 1] (x)]
p(t,x) = ()(<1_x3)(t, X1,X2), X3 — t),
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p(tt (@) —1,2) € [0,1]* x {1}

p(tH(2).2) = ot~ (2),2) € [0, 1]* x {0}

Figure 2. Definition of 1% (x).

where =) is the flow of (t,x1,x2) = b(t+ 1 — x3,x1,x,) exhibited in
Lemma 11. By the properties of () listed in Lemma 11, it is a simple exercise
to check that ¢ satisfies (9), (10) and (2), (5)—(8) with S replaced by 4; and ¢*
replaced by tl‘—L.

e Flow of a in A,. Define for every x € 4,, writing x = (xl,rcos(ﬁ) -1,
rsin(0) + 1) with r € [1,2] and 0 € [0,7], and every

te[r(0—m),r0] = [t; (x), 15 (x)],
o(t,x) == (x1,rcos(0 — t/r) — 1,rsin(0 — t/r) + 1).
It is elementary to check that ¢ satisfies (9), (10) and (2), (5)—(8) with S
replaced by 4, and T replaced by tzi. In particular, note that for every
x € [0,1]% x {1}, then t; (x) = —m(x» + 1) and
go(—n(xz+1);x) = (x1,—x2 — 2,1). (11)

e Flow of @ in A3: Define for every x € A3 and

tel-x3 1 —x;3] = [15(x), 65 (x)]
o(t,x) 1= (E(1/2,x1 — 1/2,50 + 5/2) + (1/2,-5/2), x3 + 1)

where &€ is the flow exhibited is Lemma 8. It is easy to check that ¢ sat-
isfies (9), (10) and (2), (5)(8) with S replaced by A3 and ¢* replaced by 7;.
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In particular note that for every x € [0, 1] x [-3,=2] x {1} then 5 (x) = —1
and

p(=1,x) = (—x1+1,—x2—5,0). (12)
Flow of a in A4: Define for every x € A4 and
te—x3—2,—x3] = [15(x), 15 (x)]
o(t,x) == (x1,X2,x3 + 1).

Trivially, since ¢ = (0,0, 1) in A4, ¢ satisfies (9), (10) and (2), (5)—(8) with S
replaced by 44 and ¢* replaced by t4i.

Flow of a in As. Define for every x € 45 writing x = (xl,rcos(H) -1,
rsin(0) — 2) with r € [1,2] and 0 € [r, 2], and every

te[r(0—2m),r(0 — m)] =: [15 (x), 5 (x)],
(1, x) == (x1,rcos(0 — t/r) — 1,rsin(0 — t/r) — 2).

As before it is elementary to check that ¢ satisfies (9), (10) and (2), (5)—(8)
with S replaced by As and r* replaced by ;. In particular note that for every
x € [0,1] x [-3,-2] x {2} then 75 (x) = n(x2 + 1) and

p(n(x2+1),x) = (x1,—x2 — 2,-2). (13)
Flow of @ in A4: Define for every x € A¢ and

e (143,24 3] = [ (), 1 ()
p(t,x) == (E(=1/2,x1 = 1/2,x0 — 1/2) + (1/2,1/2),x3 — 1)

where &€ is the flow exhibited is Lemma 8. It is easy to check that ¢ satisfies
(9), (10) and (2), (5)—(8) with S replaced by A and ¢* replaced by #&. In par-
ticular note that for every x € [0, 1]? x {—2} then tg (x) =—1and

o(—1,x)=(1—x,1 —x3,—1). (14)
Flow of @ in A;. Define for every x € A7 and every

te [, 1+ x3] = [17 (%), 27 (%)),
(p(l,x) = R3((0(—I,R3(X))). (15)
Since a has been defined by reflection on A7 = R3(4;), i.e.

a(x) = —Rs(a(Rs(x))),
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combining Lemma 5 and the flow constructed in 4; we immediately get that
¢ satisfies (9), (10) and (2), (5)—(8) with S replaced by 47 and ¢* replaced
by 5.

Then, we naturally define +* as follows: For x € 4;, we set (cf. (10)) y(x) =
o(t (x),x) € M;_y and y; (x) = (17 (x),x) € M;. Forevery 1 < j < i define by
induction

y]»*(x) = w(?ﬁ(%ﬁ(@)v%ﬁl(@) € Mj

and similarly for every i </ <7,

v () =0t (v (x), v (x) € M.
Then define
) =0+ Y 5 (v ()
1<j<i
and

) =0+ Y 1 (v ().

i<l<7

Finally, we obtain our desired ¢(¢, x) for x € S and 7 € [t~ (x), " (x)] by gluing the
orbits of the previously obtained flows on 4;. Note in particular that (7) is sat-
isfied since a is divergence free. Note also that, since the third component of
(1, x) is x3 — 1 for x € [0,1]* x (0,1] and 7 € [x3 — 1, x3], we directly get from (4)
that

p(r"(x) — 1,x) € [0,1]> x {1}  forevery x € S. (16)

Step 3: Additional properties of ¢ and t*

e Recalling that « is piecewise smooth in R\ ([0, 1]* x {0}) we get in particular
a € BV(S). Hence (cf. [4]), ¢ is the unique measure preserving flow (up to a
null set) of ¢ in S.

e Noting that tAi,. is continuous in 4; and does not depend of x; we deduce that
the same holds for /* namely:

t* does not depend on x; an is continuous on S. (17)
Moreover it is easily checked that

HxeS|tt(x)=1}|=0 forevery‘eR. (18)
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e For every x € S we claim that
t"(x) =t (x)=6+3n (19)

and is hence independent of x. Indeed using first (6) we get that for every
xeS

Mot (x) = 1,x)) — 1 (p(t"(x) = 1,x)) = 17 (x) — 17 (x);

hence, using (16), it is sufficient to prove to claim for x € [0,1]* x {1} = M.
Then note that x € M, is sent by ¢ to [0,1]* x {0} after a time 7 = 1, hence
tT(x) =1. Next, using (11), x is sent by ¢ to (x;,—x2 —2,1) € M, after
a time t=—n(x; +1). By (12) ¢ sends then (x;,—x; —2,1) to (I — x,
x —3,0) € M3 after a time —1. Trivially (1 — x;,x, — 3,0) is sent by ¢ to
(I —x1,x3 —3,-2) € My after a time t = —2. Using (13) ¢ sends (1 — xy,
x;—3,-2) to (1 —x;,1 —xp,-2) € Ms after a t = —n(2 — x;). From (14)
¢ sends (1 —xj,1 —xp,—2) to (x1,x2,—1) € M after a time = —1 and
finally (x1, x>, —1) is sent by ¢ in [0, 1]* x {0} = M; after a time r = —1. So
at the end

7 (x)=-n(x+1)=1-3-7m(2-x)—1—-1=-5-3x
and therefore
T (x)—t (x)=6+3xn

as claimed. Note that in particular it has been shown that for every
X € M1

ot (x) + 1;x) = (x1,x2, —1). (20)
e Periodicity of ¢: We claim that, for every x € S,
(17 (x),x) = (1 (x),x) € [0,1]* x {0}. (21)

As before, using (5) and (6) we get that

p(t7(x),x) = (1,0t (x) — 1,x)),
p(t(x),x) = (7 (x) — 17 (x) + Lp(r"(x) — 1,x))

and

l=1"(p(r"(x) = 1,x)) and ¢ (x)—r"(x)+1=1 (p(t"(x) - 1,x)).
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Hence from (16), it is enough to prove (21) when x € [0, 1]2 x {1}. For such x

we have ¢(17(x); x) = ¢(1,x). Using (5), (20) and (15) we hence get, by def-
inition of ¢ in 47 (cf. Step 2)

(p(f(x),x) = (p(—l,(p(t*(x) + l,x)) =o(—1,x1,x,-1)
=o(1,x1,x,1) = p(r"(x),x

as claimed.

Collapsing of x;-fibers: We claim that
o(1,(0,1) x {x2} x {1}) is a singleton in (0,1)* x {0} (22)
for every x; € (0,1)\Z where
_JJ C i
Z.—{E‘O£]S2,121}.
It means that, except for countably many x, € (0, 1), ¢(1, -) collapses the fiber
(0,1) x {x2} x {1} into a point in (0,1)* x {0}. Indeed, by definition of ¢ in

[0,1]* x (0, 1] we have that

¢(17(O7 1) X {x2} X {1}) = (X«))(la (Ov 1) X {XZ})vo)

and we deduce the claim from (22) (cf. Figure 3 for an illustration of the
action of ¢(1,-)).

173:1
1 21F31/2

N

|
Y

43/44

Figure 3. The action of the flow ¢ generated by a: the image of every rectangle 7 (at x3 = 1)
is sent by ¢(1/2,-) to the corresponding square (at x3 = 1/2). Similarly, ¢(1/2,-) sends in
particular every rectangle 4.7 at its corresponding square at height 1/4.



On flows generated by vector fields with compact support 135

Step 4. A measure preserving map induced by ¢. We claim that, the map
h:S — S defined by

h(x) == p(1 = t*(x),m(p(t*(x) — 1,x)))

is well defined and measure preserving on S, where

m(y1, y2,¥3) == (1 = y1, y2, »3)
and satisfies
hoh=1id onS. (23)

In words the map 4 does the following: it first sends x to the set [0,1]* x {1}
by ¢(1(x) —1,-) (cf. (16)). It then does a reflection with respect to the set
{x1 = 1/2} and then sends back the resulting point by ¢(1 — ¢ (x),-). First using
(17) and (6) we get that

H(m(p(tt(x) = 1,x))) =t (p(17(x) = 1,x)) =1
and
t(m(p(r*(x) = 1,x))) =t (p(r"(x) = 1,x)) =t (x) =t (x) + 1

and hence

1=t (x) e (17 (m(p(t*(x) = 1,x))), " (m(p(*(x) — 1,x))))

implying (cf. (3)) that /4(x) is well define and belongs to S. Using again (6) and
(17) we get that

t(h(x)) =+ (p(1 — 7 (x),m(p(t(x) — 1,x))))
H(m(p(tt(x) = 1,x))) =1+ (x) =" (p(t"(x) = 1,x)) = 1 + 7 (x)
(). (24)

I
~

Hence, using (5) and (24), we get, since trivially m o m = id,

h(h(x)) = (1 =t (x),m(p(t" (x) — Lp(1 — t7(x),m(p(¢" (x) — 1,x)))))
p(1 =" (x),m(m(p(* (x) — 1,x))))
p(1 =" (x),p(t"(x) — 1,x)) = x,

showing (23). It remains to show that /s is measure preserving on S. For that,
since (cf. (23)) h is a bijection from S to S, it is enough to prove that, for every
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1 <i<7, and every x € 4;,
hix) = (1) (x1,x2), x3) (25)

for some measure preserving map Z_ﬁi) in R%.

e We first prove (25) for 4;. Recalling that, for x € 4; and 7 € [x3 — 1, x3],
p(t,x) = (x17%)(t,x1,x2), x3 — 1), where x*)(z,-) is measure preserving in
[0,1)% and that 7" (x) = x3, we get

h(x) = (1 = x3,m(p(x3 — 1,x))) = p(1 — X3,m()(<17'x3>(X3 —1,x1,x),1))
= (V1 = x3,m (" (x5 — L,x1,x2))), x3),
where, by abuse of notations, m stands for m(x,x;) = (1 — xy, x) in second
line of the previous equation. This shows the claim.

e Since a does not depend on x; in 4, we directly get (cf. the formula for ¢

is Step 2) that

h(x) =m(x) = (1 —x1,x2,x3) forxe A,

showing trivially the claim for 4,.

e For x € A; since ¢(1 — x3,x) € M, C A, we have (cf. the previous point) that

h(p(1 = x3,x)) = m(p(1 — x3,x)). Hence, using (5), (6) and (17),

h(x) = (1 =1 (x),m(p(t"(x) — 1,x)))
=pa—1+1—-x3+1—t"(x),m(p(xs — 1+ 1" (x) = 1+ 1 —x3,x)))
=p(xs—Lo(l —x3+1-1(x),

m(p(xs — 1+ 17 (x) = 1,9(1 — x3,x)))))
=g¢(x3 = Lha(p(l = x3,x))) = ¢(x3 — 1,m(p(1 — x3,x))).
Hence, by definition of ¢ in A5 (cf. Step 2) and the fact that £¢(«, -) and m are
measure preserving in R?, we obtain (25) for 43.

e For x € A4 U As a simple calculation gives
h(x) = (1 — x1,x2,x3),

which yields trivially the claim.

e Next for x € 44 proceeding similarly as for 43 we get that
h(x) = ¢(x3 4+ 2,m(p(-2 — x3,x)))

and thus by definition of ¢ in 4¢ we get (25) as for 4.
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e Finally for x € A7 proceeding as for x € 43 we get that

h(x) = p(1 — x3,m(p(x3 — 1,x)))
and hence by definition of ¢ in 47 we deduce, as for A, the claim.

Step 5: Construction of two distinct flows for a. With the help of ¢ we
now construct two measure preserving distinct flows ¢ and y of a where we
recall that, for every x € S, ¢(-,x) is a measure preserving flow of a defined on
[~ (x), 1% (x)]. Using crucially the collapsing of fibers discussed in Step 3 we will
show how to extend ¢(-,x) outside [t~ (x),7"(x)] in two distinct ways. Let (see
(19)), for every x € S,

T:=6+3n=1"(x)—1 (x),
which can be seen as the period of the orbit ¢(-, x) recalling (cf. (21))

p(t7(x),x) = p(r (x),x).
We first define ¢ by “periodicity’’:

X for t € Rand x € R3\S

dla.x) = {
p(t—kT,x) forte Randx e S

where k € Z is the unique integer such that
t—kT e (1 (x), 17 (x)].

The definition of  is more involved, and the authors wish here to express
their gratitude to Evgeny Panov [15] due to important corrections and also good
suggestions. First we define the set W C S by

Wi={xeS:p(t"(x)—1,x) € (0,1) x Z x {1}}.

Equivalently W is the set of points x in S whose orbit ([t~ (x), " (x)], x) goes
throw the set (0,1) x Z x {1}. Since Z is countable and ¢ is measure preserving
we get that || = 0. Next for every x € S\ W we claim that

p(t"(x),x) = (" (x), h(x)), (26)

where /1 is the measure preserving map defined in Step 4. Indeed, using (5), (16)
and (22),



138 O. Kneuss and W. Neves

o(17(x),h(x)) = p("(x), (1 — 7 (x),m(p(t7(x) — 1,x))))
(Lm(p(r"(x) = 1,x))) = o(L,p(r" (x) = 1,x)) = p(t*(x),x).

We now define y as follows:

x for t € Rand x € R*\S
Y(t,x): =< o(t—kT,x) forte Rand x e W
o(t —kT,h*(x)) forte Rand xe S\W

where k = k(t,x) € Z is the unique integer such that r— kT e (1~ (x), 1" (x)].
Observe that /F(x) = x for even k, and h*(x) = h(x) for odd k. Let t,1; € R,
ty—tt(x) ¢ {nT :ne Z}, x e S\W. Denoting k, = k(t2,x), k1 = k(t1, y), where
v =¥(t2,x), we have

b=kT+s, t=kT+s,
where

e (tm(x), ()], sie (@ (y), 7)) = (x)—s,(x) -]

Therefore, 1, + 1, = (ky + k2)T + 51 + 52, 51 + 82 € (¢ (x),77(x)] and in particu-
lar k(t; + t2,x) = k| + k>. This implies that

Yt + 12, x) = ¢(t1 + 1, H (%)) = ¢ (11, (12, B2 ()))
= ¢([1,hk1 (¢(t2,hk2(x)))) = lﬁ(ll, lﬁ(lz,x)).

Note that the previous definition makes sense since (cf. (24))
1= (h(x)) = t*(x).

See Figure 4 for an illustration of the orbits of ¢ and : The green closed
curbed represents the image of

{p(t,x):te [t (x) —kT,t"(x) —kT])} foranykeZ

where T = t7(x) — ¢t (x) is the “period” of the curb; the orange closed curbed
represents the image of

{Y(t,x):tet (x)—kT,t"(x) —kT]} foreach k € Z odd

(for k even, it coincides with the green curbed).
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Figure 4. The two distinct flows ¢ and  starting at a point x € W.

Step 6: Properties of ¢ are 1.

Step 6.1: ¢ and Yy are flows of a. First from (21) we deduce that for every
x € S the map ¢(-,x) is continuous in R. Hence, recalling (2), we directly get
that

t

P(t,x) = x + Jo a(¢(s,x))ds forevery x e R* and t € R. (27)

Similarly using (21), (6), (5) and (26) we get that, (-, x) is continuous in R.
Hence, again by (2), we deduce that

t
W(t,x) =x+ J a(y(s,x))ds forevery x e R*and t € R. (28)
0

Step 6.2: ¢ and \ satisfy the group property a.e. in R®. Using (5) and the defi-
nition of ¢ and ¢ we easily get that for every x € S, for every #; € R and for every
ty € R\{t"(x) +nT :ne 7},

¢(t1,¢(t2,x)) = ¢(l1 + lz,x) and lﬁ(ll,lﬂ(lbx)) = lﬁ(ll + lz,x). (29)

Obviously (29) is satisfied for every x ¢ S u ([0,1]* x {0}) and every 7,1 € R
since in that case ¢(-,x) = (-, x) = x. At the end we have showed that for a.e.
x € R, for every #; € R and for every f, € R except an at most countable set
(depending of x) (29) is satisfied.
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Step 6.3: ¢(t,-) and Y (t,-) are bijections a.e. in R3. For every t # 0 define
O, ={xeS|th(x)et+2T}.
and
0 := [0,1)* x {0}.

From (18), we directly get that |Q,] =0. As a direct consequence of the group
property established in Step 6.2, we deduce that, for every t € R, ¢(t,-), ¥(¢,-)
are both bijections from R*\(Q, U Qy) onto R*\(Q_; U Q) with

b)) = g(=t,) and ()T = (=1 in R\(Q- L Q).

Note that using (3), (4) and (26) we get from the definition of ¢ and y that

0, ={xeS|p(t,x) €[0,11* x {0}} = {x e S|y(s,x) € [0,1]* x {0}}.

Step 6.4: ¢(t,-) and (t,-) preserve the Lebesgue measure. We claim that for
every ¢ € R, ¢(t,-) and (¢, -) both preserve the Lebesgue measure in R*. We start
with ¢. As ¢ is a bijection (cf. Step 6.3) from R*\(Q; U Q) onto R*\(Q_; U Qo)
and |Q; U Qy| = 0, it is enough to show that for any x € R*\(Q, U Qy) there exists
a neighbourhood U of x such that ¢(¢,-)|, : U — ¢(t, U) preserves the mea-
sure. We can assume that x € S otherwise the claim is trivial since ¢(z,-) is the
identity on IR3\(S U Q;U Q). Then since x ¢ Q, we have by definition that ¢ ¢
tT(x)+ ZT. Hence by continuity of 7% (cf. (17)) there exist a neighbourhood U
of x in S and k € Z such that

t—kT e (1 (y),t*(y)) forevery yin U.
Since then by definition of ¢ we have, for every y € U,
#(t,y) = ot = kT, y)
we conclude by (7) that ¢(z, )|, : U — ¢(t, U) preserves the measure.
We now deal with y. Exactly as before it is enough to prove, for any
x € S\(Q; U Qy), the existence of the neighbourhood U of x in S such that
Y(t, )|y : U—y(t, U) preserves the measure. Again exactly as before we can

find a neighbourhood U of x in S and k € Z such that

t—kT e (1 (y),t*(y)) forevery yin U.
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If k is even, we are done using (7) since then, by definition of , for every y € U,

Y(t,y) =o(t,y).

We can therefore assume that k is odd. In this case, by definition of s, we have,
for every y € U\W

‘//(l7 y) = (p(l - kth(y))

Since h and ¢(t — kT,-) are measure preserving we get that, using (24), the
map y — ¢(t —kT,h(p)) preserves the measure in U. Since ¥ and y —
¢(t— kT, h(y)) only differ on the null set W we get that (7, -) preserves as well
the measure in U.

Step 6.5: ¢ and  differ on a set of positive Lebesgue measure. By definition
of ¢ in A, (cf. Step 2) we easily see that, for every x € 4, n{x; < —1} and
t € [0,7],

o(t,x) € Ay

and the first component of ¢(z, x) is simply x;.

Moreover for every x € A, recall that (cf. Step 4) h(x) = (1 — xy, x2,x3).
Hence, by definition, for every x € (Ao n{x; < —1})\W and r€ [T, T + x], as
t—T e (17 (x),1"(x)] we have

¢(Za X) = (D(Z - Ta X) and l,b(t, x) = (ﬂ(l - th(x))
and therefore
¢'(t,x)=x; and 1 —x; =y'(1,x). (30)

Since |W| = 0 the previous equation shows in particular that ¢ and y differ on a
set with positive Lebesgue measure in R*.

Combining Steps 6.1, 6.2 and 6.3 and 6.5 we have proved the existence of two
distinct measure preserving flows of « satisfying the group property a.e..

Step 7: Non uniqueness for the transport equation. Letuy € CF ([R?3). We claim
that v,w € L* ([0, c0) x R*) defined by

v(t,x) == uo(p(—1,x)) and  w(t,x) = uo(Y(—1,x))
both solve

ou+<a;Vauy =0 and  u(0,-) = uo(-),
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in the weak sense. We will only prove it for v the proof for w being exactly
identical. We have to prove that for every # € C ([0, o0) x R?)

J~oo J 3 —u(t,x) (0:h(t,x) 4 <a; Vyh(t,x))) dx dt = J 3 uo(x)h(0, x) dx.
0 Jr’ R’

Now since ¢(¢, -) preserves the Lebesgue measure (cf. Step 6.4) and since (cf. (27)),
for a.e. x € R® the map

1= ¢t x)

is Lipschitz on R with derivative a(¢(z, x)), we get, for h € C* ([0, %0) x R?),

JOC J —o(t,x) (0,h(t,x) + <a; Vh(t,x))) dx dt
0 JR?

o0

= —uo(x) (0:h(t, (¢(1,x))) + (a(¢(1,x)), Vih(1,4(t,x)))) dx dt

0 JR?
= : —ug(x) (2 (8, (4(1,))) + (a(d(1,)); Vi (1, 41, %)) )) di dx
- d
= 2, —Mo(X)%(h(l,gb(t,x)))d[dx
= | wuo(x)h(0,x)dx
Rf‘

which proves the claim. Finally choose 1y as a smooth function with compact
support such that uy(x) = x; in S. Then using (30) we get that v — w is different
from 0 on a set of positive Lebesgue measure set and solves (3), which proves the
second part of the theorem and concludes the proof.

Step 8: Non existence of a flow. First we define our vector field a as
follows:

i— {a in R3\A7
(0,0,—1) in A7.

Proceeding as in Step 1.2, we see that a is measurable bounded, has compact
support and is divergence free in R>. Moreover it is piecewise smooth in
R*\{[0,1]* x {0}}. We now establish that no map ¢ : R x R*> — R? satisfies

t

o(t,x) = x + J a(p(s,x))ds forae. xe R’ and foreveryte R, (31)
0
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satisfies the group property a.e. and is such that
¢(t, -) is measure preserving for every ¢ € R.

We proceed by contradiction and assume that such a ¢ exists. First, since a
is piecewise smooth in R*\([0,1]* x {0}) and thus in particular @ belongs to
BV ([0,1]* x (0,1]), we have (cf. [4]) that ¢ is uniquely determined (up to a null
set) in [0, 1]% x (0,1]. Hence since ¢ = a in 4; = [0, 1]* x (0, 1] we get (cf. Step 2)
that, necessarily, for a.e. x € 4;

o(t,x) = (5(17“)(1‘, x1,x2),x3 — 1) forze[x3—1,x3]. (32)

Next, since a = (0,0, —1) in [0, 1]2 x [=1,0) = A7, we obviously get that, for every
X € A7

p(t,x) =x—1(0,0,1) for e [x3,1+ x3]. (33)

Also, since the third component in identically —1 in 4, U 47, we trivially obtain
that

P (t,x)=x3—1t foreveryxe[0,1]*x [-1,1]and t € [x3 — I,x3+1]. (34)
Now by the group property, we get that for a.e. x € 47 and ¢ € [0, 1]
o(t,p(x3 — 1,x)) = p(t + x3 — 1, x). (35)
Combining (35), (34) and (32), we get that, for a.e. x € 47 and ¢ € [0, 1]
p(t+x3— 1,x) = o(t,(y1, y2,1)) = (EV(t, y1, 2), 1)

for some (1, ¥2) € [0, 1]2 . By continuity of ¢(-, x), combining the previous equa-
tion and (33) we must have

€<0>(17 Vi, J/2) = (x17x2)'

Hence, for a.e. (x1,x2) € ((0, 1)\2)2, by (48) and (49), y, is the unique number
in (0, 1)\ Z such that y(y,) = (x1,x,) while y; € (0,1) can be chosen arbitrarily.
Summarizing, we obtained that, for a.e.

xe ((0,1\2)* x [~1,0),
¢(t, (x1,x2,x3)) has necessarily the following form

x—1(0,0,1) for 7 € [x3,1 + x3]
(X(O)(l +Xx3—1,)1,)2),X3 — l‘), for 7 € [x3 — 1, x3]

ole.0 = {
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for some y; = yi(x1,x2) € (0,1) and where y, = y2(x1,x2) € (0,1)\Z is the
unique real number such that

7(12) = (x1,x2).

We now claim that
lp(=3/2, ((0,1\Z)* x [-1,-1/2]| = 0 (37)

which implies that ¢(—3/2,-) is not measure preserving whence a contradiction.
From the special structure of the third component of ¢ (cf. (34)) (37) will be
proved once showed that, for every x3 € [—1, —1/2] the set

M, == {(p"(=3/2,x1,x2,x3), 97 (=3/2,x1,x2,x3)) : (x1,x2) € ((0, 1)\2)2}
is a two dimensional null set. First note that, using (36),
M., = U {79 (=x3 = 1/2) (»1(x1, x2), y2(x1,%2)) }.
(x1,%2)€((0,1\2)*

Since 79 (4,-) is measure preserving it is enough to show that

U {nixrx), v, x)}

(x1,x2) € ((0,1\2)?

is a two dimensional null set. The latter is obvious since (xj,x3) — ya(x,x2) 18
one-to-one. |

In the previous proof we used the following elementary lemma whose proof
is omitted.

Lemma 5. Let a: {x3 >0} — R® be bounded and measurable. ~Extend a to
{x3 <0} by

a(x) == —Rs(a(R3(x))) = (—a' (x1,x2, —x3), —a*(x1, X2, —x3), @’ (%1, X2, —x3)),

where R3(x1,x72,x3) := (x1,Xx2,—X3). Suppose that for some x € {x3 > 0} there
exists a map ¢(-,x) € {x3 > 0} defined on [t|, 2] with t; < t; satisfying

t

p(t,x) =x+ Jo a(p(s,x))ds  for every t € [t1,1)]. (38)

Then for y := R3(x) € {x3 < 0} the map

o(t,y) == R3(p(—1,Rs(y))) 1€ [~t,—1]
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satisfies

t

o(t,y)=y+ Joa((p(s, y))ds  foreveryte|—t,—t].

3. The non autonomous case

We now establish the two dimensional (non autonomous) version of Theorem 3.

Theorem 6. Part 1: Non uniqueness. There exists a compactly supported vector
field a e L (R x R?*,R?), such that, a(t,-) is divergence free in R* for a.e. t € R
generating two distinct measure preserving flows satisfying the group property.
More precisely, it will be shown the existence of two distinct maps ¢, : R x R x
R? — R? satisfying, for every t € R, every « # 1 and every x € R,

t

Pt 0, x) = x + J a(s+ o, ¢(s, o, x)) ds,
0

Wt o, x) = x + J a(s+ o, y(s, o, x)) ds,
0

such that $(t,o,-) and (¢, o, ) both preserve the Lebesgue measure for every o # 1
and t € R and such that, for every ti,t,0 € Rwith o # 1 and t; + o # 1,

¢(l1,oc + 12, (12, oz,x)) =¢(t1 + tr,a,x) and
Yt 04 b, Y(6,0,x)) =yt + b2, o, x).
Moreover, there exists a nontrivial L* ([0, c0) x R?) weak solution of
ou+<a;Vauy =0 and  u(0,) =0,
which explicitly means that, for every h € C* ([0, 0) x [Rz)
Jow JR‘ u(t,x)(0:h(t,x) + <a(t, x); Vih(t,x))) dx dt = 0. (39)

Part 2: Non existence. There exists a divergence free vector field a € L™ (R x R
R?) with compact support generating no measure preserving flow satisfying the

group property.

Remark 7. (i) Note that the bounded vector field constructed in [9] (for which the
transport equation has two solutions) is periodic in x and hence it does not belong
to L”(R x R?) for any p < 0.

(i) The Remark 4 is also valid for the above theorem.
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Proof. The proof is very similar (and in fact easier) to the one of Theorem 3.
Oversimplifying, the x3 variable in Theorem 3 will play the role of the time in
the present proof.

Step 1. We first define a(t,x) = b(t,x) for ¢ < 1 and x € R* where b is the
vector field constructed in Lemma 10. Finally, for r > 1 and x € R? we let

a(t,x) := —a(2 —t,x).

By a direct application of Lemma 10 we deduce that (in the sense of distri-
butions)

divya(t,-) =0 forevery r # 1.

Moreover we observe that @ € L (R x R*; R?) and that suppa C [0,2] x [0, 1]%.

Step 2: A first flow of a. First for every o < 1 and x € R? define

(1, x ifr<l—ua
¢(I,O€,X) = {X(oc)( ) i
W2 -2u—t,x) ift>1-u«

where 7 is the flow of (¢,x) — b(¢ 4 a,x) exhibited in Lemma 11. For o > 1
define for x € R* and 7 € R

¢(t7 OC7X) = ¢(_172 - a, X).

From Lemma 11 and the fact that a(z, x) = —a(2 — 1, x) we easily deduce the fol-
lowing properties:

e Flow of a: forevery o # 1, x e R* and t € R

Pt 0, x) = x + Jo a(s+ o, ¢(t,2,x)) ds. (40)

e Foreverya # land 7+ o # 1, ¢(,a, ) is a bijection from R? to R? preserving
the measure.

e Forevery o # 1 and t1,7, € R with « 4 #; # 1 we have
d(t1, 00+ ta, §(t2, 0, X)) = $(11 + 12,1, x). (41)
e Collapsing of the fibers:

$(1,0,(0,1) x {x,}) is a singleton (42)
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for every x, € (0, 1)\ Z where
Z={pn7"0<j<2i>1}.
Step 3: A different flow for a. First, for o < 1 we define, for x € R?

¢(t,ac,x) lflSl—OC
(1,0, x) == ¢ P12 x) ift>1—-aand x¢ 4,
¢ (1,0, (2,0, m(¢(2, 0, -)71(x)))) ift>1—aand x € 4,

where m(x1,x2) = (1 — x1,x;) and

Az = {(2,0,-)}{(0,1) x ((0,1)\Z) }.
For o > 1 we define, for every 7 € R and x € R?,
Ut 0,x) = (1,2 = om* (2= 2,)),
where
m* (2, x) = ¢(,0,m(¢(—2,2,x))), fora<l.

First, we deduce from (41) that, for every o # 1 and every y € R?

¢(1 -, O(,¢(OC,O, y)) = ¢(1707 y)

Hence, combining the last equation with (42), we get that, for every « # 1 and
X € A,,

V(1 —a,0,x) =¢(l —a,o,x).
Hence, from (40), we get that for every o # 1, x e R and 1 € R
t

Wt x) = x + J a(s+ o, (t,o,x)) ds.

0

Moreover since, m and ¢(¢,«,-) are measure preserving and bijections from R?
onto R? for every o # 1 and 7+ « # 1 we get that the same is true for y(z,a,-).
Finally from (41) we easily that y also satisfies the group property: namely o # 1
and 1,1, € R with o + t, # 1 we have

lﬁ(ll, o+ tg,lﬁ(tz,oc,x)) =yt + t, 0, x).
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Also, forevery t > 2, x; € (0,1)\{1/2} and x, € (0, 1)\Z we have, since a(t,) =0
for t <0,

#(1,0,x) = (x1,x2) # (1 — x1,x2) = (1,0, x). (43)

From Steps 2 and 3 we have indeed found two distinct flows of ¢ which are mea-
sure preserving and satisfying the group property.

Step 4: Non uniqueness for the transport equation. For uy € CC?O([Rz) define
v,we L* ([0, 0) x R?) by

o(t,) = up((4(1,0,)) ") and  w(t,) == uo((Y(1,0,)) ).

Proceeding exactly as in Step 7 of the previous proof we have that v and w both
solve

% +<{a;Vuy =0 and  u(0,-) = up,

in the weak sense. Choose uy € C*(R?) such that uy(x) = x; in (0, 1)? and let
u:=v—weL”([0,00) x [REz). Then u is not identically zero (cf. (43)) and satis-
fies (39) which proves the second part of the theorem and concludes the proof.

Step 5: Non existence of a flow. Define a : R x R> — R? by

{a(z, ) forz<1
0 fortr>1.

From the properties of a (cf. Step 1) we directly get that a is bounded, measurable,
divergence free and has compact support. Proceeding exactly as in Step 8 of the
proof of Theorem 3 we show that there does not exist a measure preserving flow of
a satisfying the group property. This proves the last part of the theorem and con-
cludes the proof.

4. Appendix

In the proofs of the previous two theorems we have used the following three
lemmas inspired by [9].

The first one exhibits two divergence free vector fields in R? whose resulting
measure preserving flow is a “square” rotation, respectively a “‘rectangle” rota-
tion, and are the basic bricks to construct the vector field ¢ and a of Theorems 3
and 6.
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Lemma 8. (1) Define c € L*(R?*;R?) by

c(x) =9 (=8x2,0) if |xi] < |x2] < 1/2,

0 elsewhere.

{(O,8x1) l'f‘X2|<|X1|<1/2,

Then div ¢ = 0 in R? in the sense of distributions and the normal component of c is 0
across 0(=1/2,1/2)%. Additionally there exists &€ : R x R* — R with the follow-
ing properties:

(i) for every x € R? and every t € R

t

E(t,x) =x+ J ¢(&¢(s,x)) ds.

0
(i) for every x € R? and every ti,t: € R
&t + n,x) = &0, €5 (0, ).

(iii) for every te R, &°(t,-) is a bijection from R* onto R* preserving the
Lebesgue measure.

(iv) E(¢,-) is a “square” rotation in (—1/2,1/2)* of angle 2t (for t = k/4,
k € 7), and the identity outside (—1/2,1/2)% In particular

£(1/4,x) = { (—x2,x1)  for (x1,%2) € (=1/2,1/2)%,

X elsewhere.
(2) Define d € L*(R?*; R?) by

(0,4x1) I 2xf <|x| <1/2,
d(x) := ¢ (=16x2,0) if |x1| < [2x2] < 1/2,
0 elsewhere.

Then divd = 0 in R? in the sense of distributions and the normal component of d is
0 across 3[(—1/2,1/2) x (—1/4,1/4)]. Additionally there exists £? : R x R*> — R?
satisfying the previous points (i)—(iii) with ¢ replaced by d. Moreover &%(t,-) is
s a “rectangle” rotation in (—1/2,1/2) x (=1/4,1/4) of angle 2nt (for t = k/4,
k € 7), and the identity outside (—1/2,1/2) x (=1/4,1/4). In particular

(=2x2,x1/2)  for (x1,x2) € (=1/2,1/2) x (=1/4,1/4),
X elsewhere.

/a0 = {

Remark 9. Note that there exist infinitely many flows of ¢ (and d); indeed, for
example for ¢, one can stay any amount of time once reached the “diagonals”
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1
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d
Figure 5. The vector fields ¢ and d

{(x1,x2) |0 < |x1| = |x2| < 1} (where c is identically zero). However, since ¢ and
d belong to BV (R?) note that &<, resp ¢, is (up to a null set in R x R?) the unique
measure preserving flow of ¢, resp d (cf. [4]).

Proof.

Step 1: Proof of (1). First we obviously have dive = 0 in the four triangles

{—XQ<)C]<X2,0<)C2<1/2}, {—X2<X]<x2,—1/2<)€2<0}
{=x1 <x<x,0<x;<1/2}  and {—x; <xx<uxp,—-1/2<x <0}

See Figure 5 for a sketch of ¢. Moreover since the normal component of c¢ is
0 across the boundary of each of those four triangles (which contains d(—1/2,
1/2)%) we immediately get that, in the sense of distributions, div ¢ = 0 in R,

Let p(x) := max(|x], |x2]). For x e {p < 1/2} = (=1/2,1/2)* we write x =
p(x)0(x) where 6 belongs to the boundary of {p < 1} identified with R/8Z.
Then defining ¢¢ : R x R* — R? by

Etx)=x if x e R?\(=1/2,1/2)*
and
&t x) = E(t,p,0) = (p,0+41),  forx e (—1/2,1/2)%,

it is easily seen that £¢ satisfies all the claimed properties of the lemma. In par-
ticular note that £°(1,x) = x hence 7 = 1 corresponds to a rotation of 2z which
implies that &¢(z,-) is indeed a square rotation of 2z#; moreover noting that a
“square” rotation of angle 7/2 is the usual rotation of angle /2 (observe that
this property is only true for integer multiples of 7/2) we get that &(1/4,x) =
(=x2,x1) in (=1/2,1/2)* (and the identity outside (—1/2,1/2)?).

Step 2: Proof of (2). The assertions concerning the vector field d are proven
exactly as the ones for ¢. Letting p : R — R? defined by p(x1,x2) := (x1,2x2),
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note that

d(x)=p~'(c(p(x))) forevery x e R%.

Hence it is elementary to see that

(1, (x1, 2
&) = p7 (& (6 p(0) = ((é“)l(t, (1,22, £ 02 z>)>

satisfies all the wished properties. |

Lemma 10. Let ¢ and d be as in Lemma 8. Define b = b(t,x) € L™ ((—o0,1) x
R?; R?) as follows. First let b(t,x) = 0 for x ¢ [0, 1) and 1 € [0,1) and for x € R
and t < 0. Then define it on [0,1/2) x [0,1]* by

dx1 —1/2,x,—1/4)  forO0<t<1/4and x € 0,1] x [0,1/2],
b(t,x):= < d(x; —1/2,x,—3/4) for0<t<1/4and xe[0,1] x [1/2,1],
—c(x1 —1/2,x—1/2) for1/4d<t<1/2and x €0,1] x [0,1].
Define it finally in [1/2,1) x [0, 1]2 by inductively scaling the geometry by a factor
1/2 (but leaving its range unchanged) in the following way: For every i > 1 decom-
pose [0, 117 into 41 diadic (closed) squares (of size 1/21) denoted by C,1<j<4,
and denote their left lower vertices by I;. Let also

t = Zl: 27].
=1

Then for every i > 1 define b in [t;,t;11) x R* by
brx) b(2!(t = ti,x = 1)) forte [t ti1) and x € C/, lzg Jj<4i
fort € [t tir1) and x ¢ [0,1]".

Then b e L* ((—0,1) x R* R?) and for every t < 1 div,(b(t,-)) = 0 in R* in the
sense of distributions. Moreover, for every t < 1 the normal component of b(t,-) is
zero across [0, 1%

Proof. First it is clear that b is measurable and bounded in (—o,1) x R? once
observed that, forevery i > 1 and 1 < j < 4/,
HbHL”L([t,-,tiH)XC;) = ||b||L%([0,1/2)><[0,1]2)'

Since, from Lemma 8, we know that dive = 0 in (—1/2,1/2)% and that its four
normal components are 0 across é(—1/2,1/ 2)2 and, similarly for d on the bound-
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ary of (—=1/2,1/2) x (—1/4,1/4), we directly deduce from the definition of b that,
for every ¢ < 1, the normal component of b(z,-) is zero across 0[0,1]* and that
div, b(t,-) = 0 in R2. [ |

Lemma 11. Let b : (—c0,1) x R — [0, 1]2 be the vector field defined in the previ-
ous lemma. Then, for every z < 1, there exists a measurable map 3\ : (— o0,
1 —z] x R? — [0,1]? satisfying the following properties:

e Flow of b shifted by z: for every x € R? then

t
79(1,x) = x + J b(s+ z, 79 (s, x))ds  foreveryte (—oo,1—z]. (44)
0

e For every t € (—o0,1 —z), 9)(¢,-) is a bijection from R* onto R* preserving
the measure.

e Group property: for every x € R?, z < 1 and every t, t, with t»+z < 1 and
h+n+z<l1

){<Z+t2) (t17%<2)([2> x)) _ X(Z)(tl + 1, x). (45)

Moreover the following properties are fulfilled for y©:
e Explicit formula for t = 1/2: For every x € (0, )%

2+ szZJ /27 2xy — szZJ) if x, # 1/2,
©(1/2 _ [/ 4
7172, (1, 32)) {(xz,—xl—i-l) =12 (9
where |-| stands for the usual integer part.
e Collapsing property at time 1:
79(1,(0,1) x {x2}) is a singleton (47)

Jor every x; € (0,1)\Z where
_JJ . ni;
Z._{5‘03j£2,121}.

e Defining v : (0,1)\Z — (0,1)* by

p(x2) = 70 (1,(0,1) x {x2})

we have that

y is a bijection from (0,1)\Z onto ((0, 1)\Z)2. (48)
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Moreover
7O (1, (x1,x2)) € (Z % (0,1)) U ((0,1) x Z) (49)

for every xy € (0,1) and every x, € Z. Furthermore y and 3 (1,-) preserve the
measure.

Proof.

Step 1. We first exhibit y(©). First for x ¢ [0,1]% and 7 < 1 and for x € R? and
1 <0 we obviously let y©(z,x) = x. For x € [0,1]* and 7 € [0, 1] we proceed as
follows: We first define () (¢, x) for ¢ € [0, 1/4] as:

2O, %) = &t = (1/2,1/4)) + (1/2,1/4)  for x € [0,1] x [0,1/2]
T @ x - (1/2,3/4)) + (1/2,3/4) for x € [0,1] x [1/2,1].

We then define it for 7 € [1/4,1/2] in the following way:

)C(O)(ta x) = éc(_([ - 1/4)7X(O>(1/4a x))

We next define it for te[f,6]=[1/2,1/2+1/4] as follows: define y; :=
7 (11, x) and let 1 < j < 4 be such that y; € C and define

1
7O, x) = 5;{“’) Qt—n,3—11) +1}. (50)

We then define it by induction for ¢ € [t;,#;11], i = 2 as follows: Denote y; :=
79 (1, x) and let 1 < j < 4’ be such that y; € C/. We then let

1 i i i
29, x) = 5}((0)(2 (t—t,—,y,——lj))—i-lj. (51)

Finally we extend x(°)(z, x) to t = 1 by continuity. We define y*) similarly. It is
then a simple exercise to check that the first four properties listed in the statement
of the lemma are verified.

Step 2. We prove (46). First, from Lemma 8, x(*'(1/2,-) consists of a
rectangle rotation of angle +x/2 in the rectangles (0,1) x (0,1/2) and (0,1) x
(1/2,1) followed by a square rotation of angle —7/2 in the square (0,1)? (see Fig-
ure 6). The rectangle rotation in (0, 1) x (0,1/2), resp. the rectangle rotation in
(0,1) x (1/2,1), is the map, using Lemma 8 (ii),

vi(x1,x2) == EN1/2, 30 — 1/2,x0 — 1/4) 4+ (1/2,1/4) = (=2x2 + 1,x1/2),
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Figure 6. The action of ¢©(1/2, )

resp.,
v (v, x2) o= EN(1/2,x1 — 1/2,x0 — 3/4) + (1/2,3/4) = (=2x2 + 2,x1/2 + 1/2).
Moreover the square rotation (by the same argument) is easily seen to be the map
h(x1,x2) := (x2,—x1 + 1).
Hence we get
7 (1/2, (x1,x2))

. h(vl(xl,xz)) = (X1/2,2)C2) for (xl,xz) € (0, 1) X (0, 1/2)
C ] A(va(x1,x2)) = (x1/2 4 1/2,2x, — 1) for (x1,x2) € (0,1) x (1/2,1),

showing the first equation in (46). When x; = 1/2 both rectangle rotations act
trivially ((x;, 1/2) is sent to (x;,1/2)) while the square rotation sends (xj, 1/2) to
(1/2,—x; — 1) which shows the second equation in (46).

Step 3. We now prove (47). From (46) we have in particular that for every
x2 € (0,1)\{1/2}, the fiber (0,1) x {x,} is send by ¥ (1/2,-) to the fiber of
length 1/2

(m1(x2), 1/2 4 my(x2)) x {ni(x2)}

where m(x;) := 1/2|2x;2] € {0,1/2} and n;(x3) := 2x; — [2x2]. Trivially ny(x;)
does not belong Z whenever x, does not belong to Z where we recall that

Z:{%‘Osjstzl}

Next, using (50), a direct calculation gives that, for every x, € (0,1)\{1/4,1/2,
3/4}, x9(ty,-) sends (0,1) x {x,} to the fiber of length 1/4

(my(x2), 1/4 + ma(x2)) x {na(x2)}
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where nm,(x;) € {0,1/4,1/2,3/4} and where
ny(x2) € (0,1)\Z  whenever x, € (0,1)\Z.

Proceeding by induction, we obtain that, for every i >2 and for every x; €
(0, )\Z,

7 (1500, 1) x {x2}) = (mi(x2),27" + mi(x2)) x {ni(x2)}

for some m;(xy) € {j277]0 < j < 2'} and n;(x;) € (0,1)\Z. Letting i going to oo
we eventually obtain (22).

Step 4. First thanks to (47) y is well defined. Writing every x, € (0, 1) in base
four, i.e.

XQZO,OCIOQ...

with o; € {0,1,2,3} and

0
Xy = E o4
i=1

we get that
Z ={x; € (0,1) : 37 such that o; = 0 for every i > I or o; = 3 for every i > I.}
Writing y(x2) = (' (x2),7?(x2)) is base 2 i.e.
p/(x2) = 0, 8{p3 ...
with / € {0,1} and
Y (x2) = iﬂijzii
i=1

we easily get by induction (see Figure 6 for i = 1) that the [)’lj obey the following
rule

0 if o € {0,1} 0 if o € {0,2}
1 _ ’ 2 ’
ﬁ"_{1 ifoef23 9 ﬂf‘{1 if o; € {1,3).

From these two formulas we get at once that y is one-to-one on (0,1)\Z. More-
over, noting that

Z ={y e (0,1):3I such that 5; = 0 for every i > I or f§; = 1 for every i > I}
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we get that, by the characterization of Z (in base 2 and 4) and by the formula
for y,

2((0,1\Z) = ((0,1\2)’

proving (48).
Next noting that y((1/2,.) is the identity on [0, 1]* and sends (using (46))

(0,1) x {1/4,1/2,3/4}  to  ((0,1) x {1/2}) u ({1/2} x (0,1))

we easily get (49) proceeding by induction.

We finally establish the claim concerning the preservation of the measure.
First, by definition of y, #((1,.) preserves the measure (from (0,1)? to (0,1)%)
if and only if y preserves the measure (from (0,1) to (0,1)?). Then we get that
%9(1,-) is measure preserving as the pointwise limit of the measure preserving
maps (1 —1/n,-). One other direct way to prove the claim is to notice that
(using the formula for y) for every i >1 and every 0 < k < 4’ the “interval”
{x € (0,1)\Z : k/4" < xp < (k+ 1)/4" of length 4~ is sent by y to the “square”

((Liys vy +27N\Z) X ((my,my, + 27N\ Z)

of area 47 for some /,,m,, € Z; hence by bijectivity of y we get that y is measure
preserving. |
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