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Ricci flow on cone surfaces
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Abstract. We study the evolution under the Ricci flow of surfaces with singularities of cone
type. Firstly we provide a complete classification of gradient Ricci solitons on surfaces,
which is of independent interest. Secondly, we prove that closed cone surfaces with cone
angles less or equal to p converge, up to rescaling, to closed soliton metrics under the Ricci
flow.
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1. Introduction

The classical uniformization theorem for smooth closed surfaces states that every

smooth closed surface admits a Riemannian metric with constant curvature þ1, 0

or �1, according to its Euler characteristic w being positive, zero or negative,

respectively. If we consider non-smooth surfaces, for instance orbifolds or more

generally surfaces with cone singularities, it is well known that some closed sur-

faces do not admit Riemannian metrics (in the smooth part) with constant cur-

vature, such as the so called ‘‘teardrop’’ and ‘‘football’’ orbifolds. It is a natural

question to find a canonical or natural metric for these objects.

The uniformization theorem has many proofs and traces back to 19th century,

but one modern proof can be made using Ricci flow. A Ricci flow is a PDE evo-

lution equation for a time-dependent Riemannian metric gðtÞ on a smooth mani-

fold M, according to

q

qt
gðtÞ ¼ �2RicgðtÞ ð1Þ

with a given initial condition gð0Þ ¼ g0. It was introduced in 1982 by R. Hamilton

[Ham82] in the context of 3-manifolds, and later used by him [Ham88] and by

B. Chow [Cho91b] on surfaces. The general idea is that the evolution under the



Ricci flow spreads out the curvature, so the metric becomes more regular across

the manifold. Eventually, the metric can converge to a constant curvature metric,

or more generally, to the so-called solitons of the Ricci flow, which are the fixed

points of the flow as a dynamical system (up to di¤eomorphism and homothety).

This is the behavior on surfaces (up to scaling normalizations) but it is much

more complex in higher dimension. In 2002 and 2003 G. Perelman made major

advances to the understanding of the singularities of Ricci flow in dimension three

[Per02], [Per03b], [Per03a], which eventually led him to prove the Poincaré conjec-

ture and Thurston’s geometrization. The fact that the uniformization theorem can

be consistently proved by Ricci flow was established in 2006 by X. Chen, P. Lu

and G. Tian [CLT06].

The purpose of this article is to apply Ricci flow to uniformize surfaces with

cone-like singularities. First reference to this subject in the literature are the works

of L.-F. Wu and B. Chow in early 90s, [Wu91], [CW91], [Cho91a], that deal with

some ‘‘orbifold solitons’’ on the teardrop and the football that Hamilton found

in [Ham88], when he noted that cone singularities arise naturally in the study

of solitons. These works assume a group-equivariant definition of the flow for

orbifolds and don’t study the existence of the flow in a general cone surface.

More recently, the series of H. Yin [Yin10], [Yin13], [Yin16], and the work of R.

Mazzeo, Y. Rubinstein and N. Sesum [MRS15], study the problem of the short-

time existence on a cone surface, following di¤erent approaches. We appeal to

these results for this article. Yet another approach was followed by D. H. Phong,

J. Song, J. Sturm and X. Wang [PSSW14] for the existence. While all these works

contain some descriptions of the long-time behaviour of the flow and its conver-

gence, none of them use Perelman’s analysis of singularities by rescaling blow-up.

We propose this method to analyze the behaviour of the flow on cone surfaces

with Euler characteristic w > 0, which we find successful under the additional

assumption that the cone angles areap. This restriction has been later removed

in the works of [MRS15] and [PSSW15].

The structure of the article is the following. In the first part (Section 2) we

make an exhaustive enumeration of all complete gradient Ricci solitons on

smooth and cone surfaces, both compact and noncompact, with an arbitrary lower

bound on the curvature; and we give explicit constructions for them:

Theorem 1.1. All gradient Ricci solitons on a surface, smooth everywhere except

possibly on a discrete set of cone-like singularities, complete, and with curvature

bounded below fall into one of the following families:

(1) Steady solitons:

(a) Flat surfaces.

(b) The smooth cigar soliton.

(c) The cone-cigar solitons of angle a a ð0;þlÞ.
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(2) Shrinking solitons:

(a) Spherical surfaces.

(b) Teardrop and football solitons, on a sphere with one or two cone points.

(c) The shrinking flat Gaussian soliton on the plane.

(d) The shrinking flat Gaussian cones.

(3) Expanding solitons:

(a) Hyperbolic surfaces.

(b) The ab-cone solitons, with a cone point of angle b > 0 and an end asymp-

totic to a cone of angle a > 0.

(c) The smooth blunt a-cones.

(d) The smooth cusped a-cones in the cylinder, asymptotic to a hyperbolic cusp

in one end and asymptotic to a cone of angle a > 0 in the other end.

(e) The flat-hyperbolic solitons on the plane, that are universal coverings of the

cusped cones.

(f ) The expanding flat Gaussian soliton on the plane.

(g) The expanding flat Gaussian cones.

Theorem 1.1 unifies and completes the list of particular cases that were

scattered through the literature, and it is of independent interest beyond the study

of cone surfaces. Our method finds all solitons smooth or with cone points, but

we listed above only the ones that are complete and with bounded curvature.

Non-complete solitons and unbonded-below curvature also appear in our study,

but we discard them since their role as fixed points of the flow (modulo isometries

and homotheties) is somehow diluted (non-uniquenes or non-existence of solu-

tions). A similar classification for smooth solitons, using a di¤erent analysis, was

found in [BM15]; that classification lists complete and incomplete solitons, but not

solitons with cone singularities. Pictures in our Appendix A provide the first visu-

alizations for many of these solitons.

In the second part of the article (Sections 3 and 4) we study the evolution of

a surface with cone points along the Ricci flow. Our uniformization result is the

following:

Theorem 1.2. Let
�
M; ðp1; . . . ; pnÞ; g0

�
be a closed cone surface, and assume that

the cone angles are less than or equal to p. Then there is an angle-preserving Ricci

flow that converges, up to rescaling, to either

• a constant nonpositive curvature metric, if ŵwðMÞa 0, or

• a spherical (constant positive curvature) metric, a teardrop soliton or a football

soliton, if ŵwðMÞ > 0,

where ŵwðMÞ is the conic Euler characteristic of the cone surface.
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We start by giving in Section 3.1 an outline of a proof of the uniformization of

smooth surfaces via Ricci flow, using the results of Hamiton and Perelman. Next

we discuss the three main obstacles we need to address to make this proof valid

in the setting of cone manifolds: First, the existence of the flow (Section 3.2), for

which we invoke the short-time existence result in [MRS15]. Second, adapting the

maximum principles and Harnack inequalities (Section 3.3). Third, establishing

compactness theorems for classes of cone manifolds, to perform Perelman’s rescal-

ing blow-ups (postposed to Section 4). With these elements, we present the proof

of Theorem 1.2 in Section 3.4.

In contrast to Section 3, the compactness theorems exposed in Section 4 use

techniques of metric geometry, and most of them are independent of the flow,

hence the di¤erent section. We find that the compactness theorems that guarantee

the existence of limits of sequences of rescaled surfaces require the additional

assumption of small angles, namely less than or equal to p, in order to guarantee

that the cone structure at the limit is the same as in the sequence. If this condi-

tion is not satisfied, other phenomena might happen, like cone points collapsing

together. For a compactness theorem in the case of collapsing points, the reader

can confer with the later work of C. Débin [Déb16].

Our use of compactness of classes of cone surfaces is one of the main dif-

ferences of our work with respect to [Yin16] and [MRS15]. We obtain a more

precise control of the cone points in the case of anglesap, when points don’t

collapse together, but we could not adapt this technique to describe the col-

lapse of cone points. The results in [MRS15], [PSSW14] and [PSSW15] point

out that collapsing together of cone points actually happens in some condi-

tions with many cone points with angles bigger than p, so the limit is a soliton

with at most two cone points (as in the classification in Theorem 1.1). A descrip-

tion of how this phenomenon happens is not yet as precise as the case of small

angles.

A note about chronology: This paper was first completed and made public

as a PhD thesis in December 2013 [Ram14]. The complete classification of

two-dimensional gradient Ricci solitons was found and published independ-

ently and almost simultaneously in [BM15] and [Ram13] with the di¤erences

noted above. The works [Yin10], [Yin13] were prior to this work, although

we based ourselves in the existence theorem of [MRS15], which was announced

in the survey [IMS11] and was communicated personally in more detail to us

in 2012. The convergence theorem in [MRS15] was obtained independently to

ours. The works [Yin16], [PSSW14] and [PSSW15] are posterior to this work.

The work [Déb16] is also posterior, but it was also communicated to us in

2014.

Readers interested in a more extended exposition of this article can consult

[Ram14].
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2. Gradient Ricci solitons on smooth and cone surfaces

A Ricci soliton is a special type of self-similar solution of the Ricci flow (1), in the

form

gðtÞ ¼ cðtÞf�
t ðg0Þ ð2Þ

where for each t, cðtÞ is a constant and ft is a di¤eomorphism. The family ft is the

flow associated to a (maybe time-dependent) vector field XðtÞ. If this vector field

is the gradient field of a function, X ¼ grad f , the soliton is said to be a gradient

soliton. In this case, di¤erenciating (2) and evaluating at t ¼ 0 gives

RicþHess f þ e

2
g ¼ 0: ð3Þ

for g ¼ g0, where e ¼ _ccð0Þ. The soliton is said to be shrinking, steady or expand-

ing if the constant e is negative, zero or positive respectively. This constant can

be normalized to be �1, 0 or þ1 respectively, being this equivalent to reparame-

terize the time t. Therefore, a gradient Ricci flow is a triple ðM; g; f Þ satisfying
(3).

In our case, M is a surface. Thus, Ric ¼ R
2 g, and hence the soliton equation

(3) becomes

Hess f þ 1

2
ðRþ eÞg ¼ 0: ð4Þ

In dimension two we have the remarkable property that all nonconstant cur-

vature gradient solitons are rotationally symmetric. Let J : TM ! TM be an

almost-complex structure on the surface M, that is, a 90� rotation on the positive

orientation sense. Then the vector field Jðgrad f Þ is a Killing vector field (see

[CCCY03], pp. 241–242, [CCGþ07], p. 11, [Cao96] and [CLT06]). This vector

field may be null if the grad f field itself is null, but otherwise the flow of

Jðgrad f Þ constitutes a continuous group acting by isometries that makes the sur-

face symmetrical. Let us assume that the surface may have some marked points

(cone singularities) which are not locally di¤eomorphic to regular points.

Lemma 2.1. Let ðM; g; f Þ be a gradient Ricci soliton on a surface (possibly with

cone singularities). Then, at least one of the following holds:

(1) M has constant curvature.

(2) M is rotationally symmetric (i.e. admits a S1-action by isometries).

(3) M admits a quotient that is rotationally symmetric.
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Besides, if the soliton has not constant curvature, no more than two cone points

may exist.

Proof (cf. [CLT06]). We will discuss in terms of grad f . If grad f C 0, then by

the soliton equation (4) we have R ¼ �e and the curvature is constant. Let us as-

sume then that f is not constant everywhere. Therefore Jðgrad f Þ is a nontrivial

Killing vector field and its line flow, ft, is a one-parameter group acting over M by

isometries.

Suppose that grad f has at least one zero in a point O a M. The point O is a

zero of the vector field Jðgrad f Þ, so it is a fixed point of ft for every t. Then, ft
induces f�

t acting on TOM by isometries of the tangent plane, so we conclude that

the group fftg is S1 acting by rotations on the tangent plane. Via the exponential

map on O, the action is global on M and therefore the surface is rotationally

symmetric. This is the case of closed smooth surfaces.

Suppose now that grad f has no zeroes but the surface contains a cone point P.

Then the flowlines of ft cannot pass through P, because there is no local di¤eo-

morphism between a cone point and a smooth one. So this point P is fixed by ft
for every t and, via the exponential map, ft induces f

�
t acting on CPM the tangent

cone (space of directions) on P. Again, a continuous one-parameter subgroup of

the metric cone CPM must be the S1 group acting by rotations. Besides, if other

cone points were to exist, these should also be fixed by the already given S1 action.

This implies that no more than two cone points can exist on M, for otherwise the

minimal geodesics joining P with two or more conical points would be both fixed

and exchanged by some S1 group element. Note that in the case of two cone

points, these need not to have equal cone angles.

Finally suppose that grad f has no zeroes and the surface has no cone points.

Then the surface is smooth and the flowlines of grad f are all of them isomorphic

to R (no closed orbits can appear for the gradient of a function) and foliate the

surface. The action of ft exchanges the fibres of this foliation. The parameter

of ft is t a S1 or t a R. In the first case, S1 is acting on M and it is rotationally

symmetric. In the second case, MGR2, and the flowline ft of the Killing vector

field induces a Z-action by isometries by x 7! f1ðxÞ that acts freely on M since no

point is fixed by ft for any tA 0 (if ftðpÞ ¼ p, then all fibres are fixed and every

point in each fibre also is, so ft ¼ id ). Then the quotient by this action is topolog-

ically M=PGR� S1 and is rotationally symmetric. We will find nontrivial exam-

ples of these solitons as cusped expanding solitons and their universal coverings.

r

Being rotationally symmetric allows us to endow M with polar coordinates

ðr; yÞ such that the metric is given by

g ¼ dr2 þ h2ðrÞ dy2
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where r a I � R is the radial coordinate, and y a R=2pZ is the periodic angular

coordinate. The function hðrÞ does not depend on y because of the rotational sym-

metry; and similarly, the potential function f only depends on the r coordinate,

since grad f is a radial vector field. Surfaces not rotationally symmetric but with

a rotationally symmetric quotient also admit these coordinates, changing only

y a R.

In these coordinates, the Gaussian curvature is given by

K ¼ R

2
¼ �h 00

h
;

and the Hessian of a radial function f ðrÞ is given by

Hess f ¼ f 00 dr2 þ hh 0f 0 dy2:

On that rotationally symmetric setting, the soliton equation (4) becomes

Hess f þ 1

2
ðRþ eÞg ¼ f 00 � h 00

h
þ e

2

� �
dr2 þ

 
hh 0f 0 þ � h 00

h
þ e

2

� �
h2

!
dy2 ¼ 0;

which is equivalent to the second order ODEs system

f 00 � h 00

h
þ e

2 ¼ 0
h 0

h
f 0 � h 00

h
þ e

2 ¼ 0:

(
ð5Þ

We combine both equations to obtain

f 00

f 0 ¼
h 0

h
;

and integrating this equation,

ln f 0 ¼ ln hþ C

so

f 0 ¼ ah

for some a > 0. Hence, substituting on the system we obtain a single ODE,

h 00 � ahh 0 � e

2
h ¼ 0:

We summarize the computations in the following lemma,
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Lemma 2.2. Let ðM; g; f Þ be a gradient Ricci soliton on a surface with non-

constant curvature. Then M admits coordinates ðr; yÞ, with r a I � R and y a S1

or y a R, such that the metric takes the form g ¼ dr2 þ h2ðrÞ dy2 for some function

h ¼ hðrÞ satisfying

h 00 � ahh 0 � e

2
h ¼ 0; ð6Þ

for some a > 0 and e ¼ �1; 0; 1. The potential function f ¼ f ðrÞ satisfies f 0 ¼ ah.

Setting h 0 ¼ u, the second order ODE (6) is equivalent to a vectorial first order

ODE

h 0 ¼ u

u 0 ¼
�
auþ e

2

�
h:

�
ð7Þ

The solutions to system (7) are functions hðrÞ that define rotationally symmetric

metrics on the cylinder ðr; yÞ a R� S1. This cylinder may be pinched in one or

both ends, thus changing the topology of the surface. The pinching appears as

zeros of h. Compactness condition of the surface is equivalent to the boundary

conditions

hð0Þ ¼ 0 and hðAÞ ¼ 0

for some A > 0. In this case, one or two cone angles may appear,

h 0ð0Þ ¼ a1

2p
and h 0ðAÞ ¼ � a2

2p

where a1 and a2 are the cone angles. Smoothness conditions would be h 0ð0Þ ¼ 1

and h 0ðAÞ ¼ �1, plus the condition

hð2kÞ ¼ 0

at r ¼ 0 and r ¼ A for all kb 0. This condition ensures Cl regularity ([CCGþ07],
Lemma A.2). This condition holds on our solitons, since derivating 2k times the

equation (6) we obtain

hð2þ2kÞ � a
� X
iþj¼2k

hðiÞhð jþ1Þ
�
� e

2
hð2kÞ ¼ 0:

Since i þ j is an even number, both i and j must be even or odd. In both cases,

there is an even index in hðiÞhð jþ1Þ. Thus inductively, if all even-order derivatives
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vanish at r ¼ 0 up to order 2k, then also vanishes the 2k þ 2 derivative at r ¼ 0

(idem at r ¼ A).

We shall study the system (7) for steady, shrinking and expanding solitons

to obtain a complete enumeration of gradient Ricci solitons on surfaces of non-

constant curvature.

2.1. Closed solitons of constant curvature. Trivial examples of solitons are sur-

faces of constant curvature. Further, these are the only closed smooth solitons in

dimension 2 (cf. [CLT06]).

Lemma 2.3. The only solitons over a compact smooth surface are those of constant

curvature.

Proof. We multiply equation (6) by h 0 to get

h 0h 00 � ahðh 0Þ2 þ e
hh 0

2
¼ 0

and integrate on ½0;A� to obtain

ðh 0Þ2

2

����
A

0

� a

ðA
0

hðh 0Þ2 drþ e
h2

4

����
A

0

¼ 0:

If we look for rotationally symmetric closed smooth solitons, hð0Þ ¼ hðAÞ ¼ 0

and h 0ð0Þ ¼ �h 0ðAÞ ¼ 1, therefore

0 ¼ �a

ðA
0

hðh 0Þ2 dr

which implies a ¼ 0. Thus f 0 ¼ 0, there is no gradient vector field, no Killing

vector field, constant curvature and the soliton is a homothetic fixed metric. r

Note that if there is no vector field, there is no need to be rotationally

symmetric. More generally, rotationally symmetric closed solitons with two equal

angles satisfy h 0ð0Þ ¼ �h 0ðAÞ ¼ a
2p and the same argument applies.

Lemma 2.4. The only solitons over a compact surface with two equal cone points

are shrinking spherical surfaces.

Proof. In this case, equation (6) with a ¼ 0 turns into

h 00 � e

2
h ¼ 0
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that can be explicitly solved. For e ¼ 1 the solution is

hðrÞ ¼ c1e
r=
ffiffi
2

p
þ c2e

�r=
ffiffi
2

p

but the closedness condition hð0Þ ¼ hðAÞ ¼ 0 implies c1 ¼ c2 ¼ 0. Thus there are

no expanding solitons with two equal cone points besides the constant curvature

ones.

For e ¼ 0, the solution is hðrÞ ¼ c1rþ c2, that can’t have two zeroes unless

hC 0. Finally, for e ¼ �1 the solution is hðrÞ ¼ c1 sinðr=
ffiffiffi
2

p
Þ þ c2 cosðr=

ffiffiffi
2

p
Þ, and

by the closedness c2 ¼ 0. This metric is locally the round sphere. r

We have examined all possible cases with a ¼ 0, which account for the families

(1-a), (2-a) and (3-a) in Theorem 1.1. We will assume henceforth that aA 0 and f

is not constant.

2.2. Steady solitons. In this subsection we study the steady case ðe ¼ 0Þ of rota-
tionally symmetric solitons. The equation (6) reduces to

h 00 � ahh 0 ¼ 0 ð8Þ

and the system (7) to

h 0 ¼ u

u 0 ¼ auh

�
ð9Þ

The phase portrait of (9) is shown in Figure 1.

This phase portrait has a line of fixed points at fu ¼ 0g, that account for the
trivial steady solitons consisting on a flat cylinder of any fixed diameter (or their

universal covering, the flat plane). No other critical points are present. Only the

right half-plane fh > 0g is needed, since we can take h > 0 in the metric definition.

Every integral curve of the system lies on a parabola. This follows from

manipulating system (9)

u 0 ¼ ahh 0 ¼ a
h2

2

� �0

and hence

u ¼ a
h2

2
þ C:

In another terminology, the function

Hðh; uÞ ¼ a
h2

2
� u
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is a first integral of the system (9). Furthermore, we can finish the integration

of the equation

h 0 ¼ a
h2

2
þ C

by writting

h 0

C þ
� ffiffi

a
2

p
h
�2 ¼ 1:

The solution to this ODE is

hðrÞ ¼
ffiffiffiffiffiffiffi
2C

a

r
tan

ffiffiffiffiffiffiffi
2

aC

r
rþD

 !
ð10Þ

if C > 0;

hðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�2C

a

r
tanh

ffiffiffiffiffiffiffiffiffiffi
2

�aC

r
rþD

 !
ð11Þ

if C < 0; and

hðrÞ ¼ 1

D� a
2 r

ð12Þ

if C ¼ 0.

Figure 1. Phase portrait of the system (9) with a ¼ 1.
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Now, let us examine each type of solution. If C > 0, the parabola lies com-

pletely on the upper half-plane fu > 0g. The equation (10) implies that h ! l
for some finite value of r, and hence the metric is not complete. Furthermore,

the Gaussian curvature K of the metric satisfies

u 0 ¼ �Kh

and since u is increasing on these solutions, the curvature is not bounded below.

The case C ¼ 1 is sometimes called the exploding soliton in the literature

([CCGþ07]).
If we look at C ¼ 0, the parabola touches the origin of coordinates, and its

right hand branch defines a metric on the cylinder. The value of D ¼ 1
hð0Þ can be

set so that D ¼ hð0Þ ¼ 1 just reparameterizing r. With this parameterization,

r a
�
�l; 2

a

�
. For ra 0, the function h is well defined and determines a negatively

curved metric that approaches a cusp as r ! �l. However, for r a


0; 2

a

�
the met-

ric is not complete and its curvature tends to �l as t ! 2
a
.

We look now at the case C < 0, first for the solutions lying in the lower half-

plane fu < 0g. We can assume hð0Þ ¼ 0, C ¼ uð0Þ, D ¼ 0 and r < 0 (this means

that �r is the arc-parameter of the meridians). All these arcs of parabolas join a

point on the fh ¼ 0g axis with a point on the fh 0 ¼ u ¼ 0g axis. This means that

the cylinder is pinched in one end, and approaches a constant diameter cylinder on

the other end. The metrics are complete on the cylindrical end, because from

equation (11) h ! cst as r ! �l. The curvature on these metrics is bounded

and positive, since u and u 0 < 0 are bounded.

Some of these metrics are smooth, the particular cases of C ¼ uð0Þ ¼ h 0ð0Þ ¼
�1. Note that derivating the equation h 00 ¼ ahh 0 and evaluating at r ¼ 0 one

sees that all even-order derivatives vanish and the surface is truly Cl at this

point. These are the so called cigar solitons. There are actually infinitely many

of them, adjusting the value of a and changing the diameter of the asymptotic

cylinder, although all of them are homothetic and hence it is said to exist the

cigar soliton. All the other metrics have a cone point at r ¼ 0, whose angle is

�2ph 0ð0Þ.
The only remaining case to inspect is the solutions with C < 0 lying on the

upper half plane fu > 0g. These unbounded arcs of parabolas rise from the

axis fu ¼ 0g. We can assume (changing D and reparameterizing r) that r a
½0;þlÞ. The metric is complete in r ! þl because of equation (11), however,

these metrics fail to be complete on r ¼ 0, having a metric completion with

boundary S1. The curvature on these metrics is negative and not bounded

below.

This completes the classification of the steady solitons in Theorem 1.1, Part 1.

Pictures of a cigar soliton and a cone-cigar soliton are shown in Figures 6 and 7 in

Appendix A.
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2.3. Shrinking solitons. In this subsection we study the shrinking solitons

ðe ¼ �1Þ, besides the round sphere and the spherical footballs with two equal

cone angles found in Subsection 2.1. When e ¼ �1, the metric of M is determined

by a real-valued function hðrÞ satisfying the second order ODE

h 00 � ahh 0 þ h

2
¼ 0; ð13Þ

or equivalently the system

h 0 ¼ u

u 0 ¼
�
au� 1

2

�
h:

�
ð14Þ

The phase portrait of this ODE system with a ¼ 1 is shown in Figure 2. This

phase portrait has a critical point at ðh; uÞ ¼ ð0; 0Þ of type center, and a horizontal

isocline (points such that u 0 ¼ 0) at the line u ¼ 1
2a . Each curve on this hu-plane

corresponds to a solution h, and the intersection with the vertical axis fh ¼ 0g are

at uð0Þ and uðAÞ, which stand for the cone angles. Indeed, only half of each curve

is enough to define the soliton, the one lying in the fh > 0g half-plane, since we

can choose the sign of h because only h2 is used to define the metric.

All curves in the phase portrait represent rotationally symmetric soliton met-

rics over, a priori, a topological cylinder. Closed curves (that intersect twice

Figure 2. Phase portrait of the system (14) with a ¼ 1.
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the axis fh ¼ 0g) are actually metrics over a doubly pinched cylinder, thus a topo-

logical sphere with two cone points, giving the so called football solitons. Open

curves only intersect once the fh ¼ 0g axis, and hence are metrics over a topo-

logical plane. If the intersection of any curve with the fh ¼ 0g axis occurs at

u ¼e1, then the metric extends smoothly to this point (truly Cl since derivating

(13) all even-order derivatives vanish at this point). For instance, in Figure 2 there

is only one curve associated to a teardrop soliton, namely the one intersecting the

vertical axis at some value uð0Þ a
�
0; 12
�
and at uðAÞ ¼ �1. There is also a smooth

soliton metric on R2, namely the one associated with the curve passing through

ðh; uÞ ¼ ð0; 1Þ, and all other curves represent solitons over cone surfaces. The sep-

aratrix line, u ¼ 1
2a , represents the solution hðrÞ ¼ r

2a þ c0, which stands for the

metric dr2 þ 1
4a2

r2 dy2. This is a flat metric on the cone of angle p
a
, a cone version

of the shrinking Gaussian soliton, and we call it a shrinking Gaussian cone soliton

(the smooth shrinking Gaussian soliton is the case a ¼ 1
2).

Let us focus on the compact shrinking solitons.

Lemma 2.5. For every pair of values 0 < a1 < a2 < l, there exist a unique value

a > 0 such that the equation (6) has one solution satisfying the boundary conditions

h 0ð0Þ ¼ a1
2p and h 0ðAÞ ¼ � a2

2p .

Equivalently, the lemma asserts that there exists a value a such that the phase

portrait of the system (7) has one solution curve that intersect the vertical axis

fh ¼ 0g at uð0Þ ¼ a1
2p and uðAÞ ¼ � a2

2p .

Proof. We can normalize the system by

v ¼ ah

w ¼ au

�

so that on this coordinates the system becomes

v 0 ¼ w

w 0 ¼
�
w� 1

2

�
v

�
ð15Þ

This would be the same system as (14) with a ¼ 1, shown in Figure 2.

The system (15) has the following first integral,

Hðv;wÞ ¼ v2 � 2w� lnj2w� 1j

that is, the solution curves of the system are the level sets of H. Indeed, derivating

H
�
vðrÞ;wðrÞ

�
with respect to r,
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q

qr
Hðv;wÞ ¼ 2vv 0 � 2w 0 � 2w 0

2w� 1

¼ 2vw� 2 w� 1

2

� �
v 1þ 1

2w� 1

� �
¼ 0:

The cone angle conditions are a1 ¼ 2pwð0Þ
a

, a2 ¼ � 2pwðAÞ
a

, while vð0Þ ¼ vðAÞ ¼
0. Thus, the function w evaluated at 0 and A satisfies

Hð0;wÞ ¼ 2wþ lnj2w� 1j ¼ C

for some C a R. This is equivalent, via 2w� 1 ¼ �y and eC ¼ k, to the equation

jyj ¼ key�1 ð16Þ

(cf. [Ham88]). Although not expressable in terms of elementary functions, this

equation has three solutions for y, one for negative y and two for positive y (see

Figure 3). The two positive solutions of (16) are the intersection of the expo-

nential function ey�1 with the line 1
k
y with slope 1

k
. These two positive solu-

tions are associated to a compact connected component of Hðv;wÞ ¼ C, whereas

the negative solution is associated to a noncompact component of H that repre-

sent noncompact soliton surfaces. The two positive solutions of (16) exist only

when k a ð0; 1Þ and actually these two solutions are equal when k ¼ 1 and the

line is tangent to the exponential function at y ¼ 1. These two solutions y1, y2
of (16) are therefore located on ð0; 1Þ and ð1;þlÞ respectively, and can be

expressed as

y1 ¼ 1� p; y2 ¼ 1þ q

Figure 3. The graphs of the exponential ey�1 and 1
k
jyj.
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with p; qb 0. The two cone angles, having assumed a1 < a2, are then expressed as

a1 ¼ 2ph 0ð0Þ ¼ 2puð0Þ ¼ 2pwð0Þ
a

¼ 2p

a

1� y1

2
¼ p

a
p

a2 ¼ �2ph 0ðAÞ ¼ �2puðAÞ ¼ � 2pwðAÞ
a

¼ � 2p

a

1� y2

2
¼ p

a
q

and their quotient is

a1

a2
¼ p

q
:

Let C : ð0; 1Þ ! R be the mapping

k 7! CðkÞ ¼ p

q
:

The function C is injective and the quotient CðkÞ ranges from 0 to 1 when varying

k a ð0; 1Þ. This is proven in [Ham88], Lem 10.7, we can visualize its graph in Fig-

ure 4. Therefore, for any pair of chosen angles a1 < a2 there exists k ¼ C�1
�
a1
a2

�
,

such that the equation (16) has two positive solutions y1, y2. This yields two

values p ¼ 1� y1, q ¼ y2 � 1, and finally we recover

a ¼ a1

pp
¼ a2

pq
:

This value makes the system (7) and the equation (6) to have the required

solutions. r

Figure 4. The function CðkÞ.
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This completes the classification of the shrinking solitons in Theorem 1.1,

Part 2. Pictures of a football soliton and a teardrop soliton are shown in Figures

8 and 9 in Appendix A.

2.4. Expanding solitons. We end our classification with the expanding solitons

ðe ¼ 1Þ. The equation (6) and the system (7) are in this case

h 00 � ahh 0 þ h

2
¼ 0 ð17Þ

and

h 0 ¼ u

u 0 ¼
�
auþ 1

2

�
h:

�
ð18Þ

The phase portrait of (18) is shown in Figure 5. We can rescale the system (18)

with the change

v ¼ ah

w ¼ au

�

so that on this coordinates the system becomes

v 0 ¼ w

w 0 ¼
�
wþ 1

2

�
v

�
ð19Þ

Figure 5. Phase portrait of the system (18) with a ¼ 1.
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which is exactly the system (18) with a ¼ 1, shown in Figure 5. We will study

the trajectories of the normalized system and next we will discuss the geometrical

interpretation of each trajectory.

The system (19) has a critical point ðv 0 ¼ w 0 ¼ 0Þ at ð0; 0Þ. It has an horizontal

isocline ðw 0 ¼ 0Þ at the line L ¼
�
w ¼ � 1

2

�
(in the unnormalized system it is at

L ¼
�
u ¼ � 1

2a

�
), that is also an orbit solution, and hence no other trajectory can

cross it. The vertical axis fv ¼ 0g is also an horizontal isocline. The horizontal

axis fw ¼ 0g is, on the other hand, a vertical isocline ðv 0 ¼ 0Þ.
The linearization of the system (19) at the critical point ð0; 0Þ is

v 0

w 0

� �
¼

0 1

wþ 1
2 v

� �
v

w

� �
:

The matrix of the linearized system at the critical point is
0 1
1
2 0

� �
, that has deter-

minant � 1
2 < 0 and hence the critical point is a saddle point. The eigenvalues of

this matrix are 1ffiffi
2

p and � 1ffiffi
2

p , with eigenvectors respectively ð
ffiffiffi
2

p
; 1Þ and ð

ffiffiffi
2

p
;�1Þ.

These eigenvectors determine the two principal directions of the saddle point, from

which four separatrix curves are emanating.

The system (19) has the following first integral,

Hðv;wÞ ¼ v2 � 2wþ lnj2wþ 1j

that is, the solution curves of the system are the level sets of H. Indeed, derivating

H
�
vðrÞ;wðrÞ

�
with respect to r,

q

qr
Hðv;wÞ ¼ 2vv 0 � 2w 0 þ 2w 0

2wþ 1

¼ 2vw� 2 wþ 1

2

� �
v 1� 1

2wþ 1

� �
¼ 0:

From the system, and more apparently from the first integral, it is clear that

the phase portrait is symmetric with respect to the axis fv ¼ 0g. We will only

study then the trajectories on the right-hand half-plane fv > 0g. Actually this

restriction agrees with the geometric assumption of h > 0.

We first inspect the separatrix S emanating (actually sinking) from the criti-

cal point at the direction ð
ffiffiffi
2

p
;�1Þ. The associated eigenvalue is �1=

ffiffiffi
2

p
and

hence the trajectory is approaching the saddle point (hence the sinking). The

curve S lies in the w 0 > 0 region, and cannot cross the horizontal isocline L.

Therefore, the separatrix when seen backwards in r must be decreasing and

bounded, and hence must approach a horizontal asymptote. This asymptote

must be L, since if the trajectory were lying in the region w 0 > d > 0 for infi-
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nite time, it would come from w ¼ �l, which is absurd since it cannot cross

the isocline L. Therefore, over this separatrix S, v ! þl and w ! � 1
2 as

r ! �l.

We discuss three cases of trajectories: those above S, below S, and the trajec-

tory S itself.

Trajectories above S. Any such trajectory eventually enters the upper right

quadrant, fv > 0;w > 0g. Then v 0 > 0 and w 0 > 0 and hence the curve moves

upwards and rightwards. More carefully, it is easy to see that limr!þl
vðrÞ2
2wðrÞ ¼ 1,

so the orbit approaches a parabola (as in the steady and shrinking cases). All

these solutions have unbounded positive w. This means that the Gaussian curva-

ture of the associated metric K ¼ �
�
auþ 1

2

�
¼ �

�
wþ 1

2

�
is not bounded below,

and we will discard them.

Trajectories below S. All these curves intersect the axis fv ¼ 0g, and we can

consider the origin of the r coordinate as such that the intersection point with the

axis occurs at r ¼ 0. Then, the region of the curves parameterized by r < 0 lies in

the v > 0 half-plane. Since the curves are below S, they lie in the lower right quad-

rant and hence v 0 < 0 and v ! þl as r ! �l. If the curve lies over L, then

w 0 > 0, and if it lies below L, then w 0 < 0. This means that the isocline is repulsive

forward in r and attractive backwards in r. Therefore any curve lying below S will

have an asymptote as r ! �l and as before this must be the isocline L, that is,

v ! þl and w ! � 1
2 as r ! �l.

Let us remark that the trajectories below S are parameterized for r a ð�l; 0�,
although a priori it could be r a ð�M; 0� for some maximal M (and hence

v ! þl as r ! �M, and these would represent noncomplete metrics). This is

not the case, since the trajectories are approaching v 0 ¼ � 1
2 , and hence v 0 is

bounded (jv 0j < 1 for r less than some r0 < 0), so v cannot grow to þl for finite

r-time.

These trajectories have bounded w and therefore bounded curvature on the

associated metric. More specifically, the curves above the isocline L will give

metrics with negative curvature, and curves below L will give metrics with positive

curvature. These curves will intersect the fh ¼ 0g axis at b < 0, and the associated

metric will have a cone point of angle

b ¼ �2pb

at the point of coordinate r ¼ 0. On the other end, the function hðrÞ is asymptotic

to � 1
2a r (recall that the parameter is r a ð�l; 0�) and the metric will be asymp-

totic to the wide part of a flat cone of angle

a ¼ p

a
:
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We call these solitons the ab-cone solitons. These solitons have positive curva-

ture if a < b
�
b < �1

2a

�
and negative if a > b

�
b > �1

2a

�
. In the case a ¼ b

�
b ¼ �1

2a

�
we are in the case of the isocline L. This line h 0 ¼ u ¼ � 1

2a , has as solution the

parameterization

hðrÞ ¼ � 1

2a
rþ C

which represents a flat expanding Gaussian cone soliton, with cone angle p
a
. The

special case a ¼ 1
2 yields a smooth metric at r ¼ 0, thus we have a flat metric on

the plane known as the flat expanding Gaussian soliton.

Other remarkable cases are those with b ¼ 2p ðb ¼ �1Þ, because the cone

point at the apex is now blunted and the surface is smooth (we can check from

equation (17) that all even-order derivatives vanish at r ¼ 0), we call them the

blunt a-cone solitons. The angle a may be less or greater than 2p and the curvature

is positive or negative respectively. However, only the first case can be embedded

symmetrically in R3. The existence of this family was described by a di¤erent

method by H.-D. Cao in [Cao97] in the context of Kähler–Ricci solitons.

Trajectory of the separatrix S. This curve is parameterized by r a R, and

ðv;wÞ ! ð0; 0Þ as r ! þl and ðv;wÞ !
�
þl;� 1

2

�
as r ! �l (this follows from

the Grobman–Hartman theorem in the end near the saddle point, and from the

asymptotic L on the other end). We can give a more detailed description of

the asymptotics. As r ! �l, we know that w ! � 1
2 , this is limr!�l

v 0

�1
2

¼ 1:

Then, applying the l’Hôpital rule, limr!�l
v

�1
2r

¼ 1, or vðrÞP� 1
2 r as r ! �l.

This is valid for all the trajectories asymptotic to the horizontal isocline. Simi-

larly, as r ! þl, we know that v;w ! 0, but furthermore we know that their

quotient tends to the slope of the eigenvector determining the separatrix,

i.e. limr!þl
v
w
¼ limr!þl

v
v 0 ¼ �1ffiffi

2
p , which is to say limr!þlðln vÞ0 ¼ limr!þl

v 0

v
¼

�
ffiffiffi
2

p
: Then, by l’Hôpital rule, limr!þl

ðln vÞ 0

�
ffiffi
2

p ¼ limr!þl
ln v

�
ffiffi
2

p
r
¼ 1: This is,

vðrÞP e�
ffiffi
2

p
r as r ! þl.

Geometrically, the separatrix corresponds to the limiting case of ab-cone soli-

tons when the angle b tends to zero. In this case the parameter r is not on ð�l; 0�
but on the whole R and thus hðrÞ defines a smooth complete metric on the

cylinder. As r ! þl, the function hðrÞ is asymptotic to 1
a
e�

ffiffi
2

p
r, that defines a

hyperbolic metric of constant curvature �2. This hyperbolic metric on a cylinder

is called a hyperbolic cusp. The separatrix S represents a soliton metric that

approaches the thin part of a hyperbolic cusp in one end, and the wide part of a

flat cone on the other. There is still freedom to set the angle a, and we call these

the cusped a-cone solitons.

Finally, there is still one more family of two-dimensional gradient solitons,

namely the universal cover of the cusped a-cones. These solitons are metrics on
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R2 locally isometric to the cusped cones. These solitons are not rotationally sym-

metric, but translationally symmetric, i.e. there is not a S1 group but a R group

acting by isometries. The plane R2 with any of this metrics has a fixed direction

(given by grad f ) such that a straight line following this direction (that is also a

geodesic of the soliton metric) transits gradually from a region of hyperbolic cur-

vature on one end to a region of flat curvature on the other. Any translation on

the direction perpendicular to grad f (this is, in the direction of J
�
gradð f Þ

�
) is an

isometry on these metrics. We call these flat-hyperbolic soliton planes.

This completes the classification of the expanding solitons in Theorem 1.1,

Part 3; which finishes the proof or the whole Theorem. Pictures of some expand-

ing solitons are shown in Figures 10 to 13 in Appendix A.

2.5. Solitons embedded into R3. We end the section with a visualization

remark. Some of the solitons we described above can be embedded into R3 and

then visualized numerically as surfaces with the inherited metric from the ambient

Euclidean space. If we want to keep the rotational symmetry apparent, however,

we cannot embed into R3 a cone point of angle greater than 2p, and we can’t

embed a rotational surface whose parallels have length L ¼ 2phðRÞ if R < L
2p .

In order to do this, we use the metric in polar coordinates ðr; yÞ a ½0;A� �
½0; 2p�,

dr2 þ hðrÞ2 dy2:

We recall that r is the arc parameter of the fy ¼ cstg curves (meridians), and

that the fr ¼ cstg curves (parallels) are circles of radius hðrÞ parameterized by

y a ½0; 2p�. Therefore, we can use the h, y as polar coordinates on the plane, and

find an appropriate third coordinate z (height). When we put the stacked parallels

of radius hðrÞ at height zðrÞ, we obtain a rotational surface whose meridians have

length parameter r. Thus,

dr2 ¼ dh2 þ dz2

or equivalently

dz2

dr2
¼ 1� dh2

dr2

which defines z ¼ zðrÞ as satisfying

ðz 0Þ2 ¼ 1� u2

with the convention that h 0 ¼ u. Hence, to obtain an embedded surface satisfying

the soliton system (7) it is su‰cient to integrate the first order vector ODE
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h 0 ¼ u

u 0 ¼
�
auþ e

2

�
h

z 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p

8><
>:

with initial conditions hð0Þ ¼ 0, uð0Þ ¼ b, zð0Þ ¼ 0. Once obtained a numerical

solution for hðrÞ, uðrÞ and zðrÞ, we can fix a value A > 0 and then plot the set of

points ��
hðrÞ cos y; hðrÞ sin y; zðrÞ

�
a R3 j r a ½0;A�; y a ½0; 2p�

�
:

In Appendix A we display some embedded solitons.

3. Cone surfaces evolving along Ricci flow

3.1. Uniformization of smooth surfaces. In this section we present a proof of

the uniformization theorem using Ricci flow, by using the techniques of Hamilton

and Perelman. On this proof, the surface is endowed with an arbitrary metric, and

we let it evolve according to Ricci flow (for the question of existence of the flow,

see [Ham88]). We analyse the behavior of this evolving metric to conclude that it

converges (maybe up to suitable rescalings) to a constant curvature metric. This

argumental line will be adapted to the framework of cone surfaces in Section 3.4.

3.1.1. Surfaces with wðMÞa0. In the case wa 0 we use the argument in

[Ham88]. We use the normalized version of the Ricci flow,

q

qt
g ¼ ðr� RÞg

with gð0Þ ¼ g0, where r is the average scalar curvature, a constant defined by r ¼Ð
RdmÐ
dm

¼ 4pwðMÞ
AreaðMÞ , that depends on the topology by Gauss–Bonnet theorem. This

normalization is a time-dependent rescaling so that the area of the compact sur-

face is kept invariant.

The evolution of the scalar curvature for the normalized Ricci flow is

q

qt
R ¼ DRþ R2 � rR

Therefore, by the maximum principle, if �C < R < �e < 0 at t ¼ 0, then

re�et
a r� RaCert:
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Thus, if R < 0, then the metric is defined for all time and converges exponentially

fast to a metric of constant negative curvature.

Further, we introduce a measure of how much a flow di¤ers from a soliton.

The soliton equation for the normalized Ricci flow is

Hess f � 1

2
ðR� rÞg ¼ 0 ð20Þ

for some function f . In normalized Ricci flow there are no distinctions between

shrinking, steady or expanding solitons, since the area is fixed and therefore no

homothetic factor applies.

Although that equation has no solution when the Ricci flow is not a soliton,

it is always possible to solve the traced equation (which is a Poisson PDE). The

potential f of a Ricci flow is the solution of

Df ¼ R� r

normalized to have mean value zero,
Ð
f ¼ 0. The soliton quantity is

M :¼ Hess f � 1

2
ðR� rÞg ¼ Hess f � 1

2
Dfg

and vanishes i¤ the flow is a soliton. We also define

h ¼ Df þ j‘f j2

that helps controlling R ¼ hþ j‘f j2 þ ra hþ r.

The evolution of these quantities under the normalized Ricci flow is

q

qt
h ¼ Dh� 2jMj2 þ rh

q

qt
jMj2 ¼ DjMj2 � 2j‘Mj2 � 2RjMj2

and using the maximum principle we deduce that for any initial metric, there is a

constant C such that

�CaRaCert þ r:

In particular, for any initial metric the normalized Ricci flow has solution for all

time t a ½0;þlÞ (since the curvature remains bounded).
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This implies that if r < 0, then the metric converges exponentially fast to a

metric of constant negative curvature, which proves the uniformization for w < 0.

If Rb c > 0, then jMj2aCe�ct for all time. This implies that the metric con-

verges exponentially fast to a soliton metric. Together with the classification of

solitons, this proves the uniformization for surfaces of positive curvature. How-

ever, proving that a surface with w > 0 (the sphere) eventually develops positive

curvature is much harder and required Hamilton and Chow to develop several

Harnack inequalities and monotone entropies. We will take a di¤erent path on

the case w > 0 using Perelman’s techniques.

The case r ¼ w ¼ 0 can be solved by similar techniques applying the maximum

principle to the evolution of several other quantities, such as j‘f j2 and ‘R (this

argument is in the style of Bernstein–Bando–Shi estimates, and is di¤erent from

Hamilton’s original, see for instance [CK04], Sec 5.6).

3.1.2. Surfaces with wðMÞ > 0. From now on, we use the unnormalized Ricci

flow and assume that wðMÞ > 0. On this situation, the flow develops a singularity

on finite time. For, the evolution of the area of the surface is

d

dt
AreaðMÞ ¼

ð
M

d

dt
dm ¼

ð
M

�Rdm ¼ �4pwðMÞ

and since wðMÞ > 0, the area or M is a decreasing linear function of t and it col-

lapses to zero in finite time.

Singularity formation is a phenomenon that may occur in the long time behav-

iour of the n-dimensional Ricci flow. By [Ham95b], Thm. 8.1 (see also [Top06],

Sec 5.3), if gðtÞ is a Ricci flow defined on a maximal time interval ½0;TÞ and

T < l, then supMjRmjð�; tÞ ! l as t ! T . That means that the only obstruc-

tion to continue the evolution of the Ricci flow further in time is the appearance

of points with infinite curvature in finite time.

To study the singularities of the flow, and the phenomena of exploding curva-

ture or vanishing volume, the technique is to use parabolic rescalings. A parabolic

rescaling is a transformation of the evolving metric into the form

gðtÞ 7! l2g
t

l2

� �
¼ ~ggðtÞ:

It is useful because if gðtÞ is a Ricci flow, then so is ~ggðtÞ. Besides, distances get

multiplied by l, time gets multiplied by l2 and scalar curvature gets divided by

l2. The idea is to pick a sequence fligi AN, and construct a sequence of rescaled

pointed Ricci flows keeping the curvature bounded. The hope is to find a conver-

gent subsequence of these pointed flows, using techniques of classes (spaces) of

manifolds, and compactness theorems for classes of manifolds. If this process of
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iterated rescalings is successful and we obtain a limit, we call this a blow-up of the

singularity.

The compactness theorems for classes of manifolds usually need as a hypothe-

sis a control of the injectivity radius of the manifold. This allows one to consider

the sequence of manifolds as a sequence of metrics on a fixed chart, with its co-

ordinate functions defined over a fixed open subset of Rn. However, controling

the injectivity radius is di‰cult, because topology and curvature a¤ect it. Fortu-

nately, under bounded curvature, controlling volume is equivalent to controlling

the injectivity radius. More precisely ([BBI01], Thm 10.6.8, [CGT82], Thm 4.3),

if ðMn; gÞ is a smooth Riemannian n-manifold, p a M, and jRmja r�2 in Bðp; rÞ,
then

injðpÞ
r

is bounded below if and only if
VolðBðp; rÞÞ

rn
is bounded below (note that all

quantities involved, Rm
r�2 ,

inj
r
, Vol

rn
, are scale-invariant). Thus, one can focus on con-

trolling the volume, instead of the more elusive injectivity radius.

This fact motivated Perelman to define the notion of k-noncollapsed mani-

folds (and flows). A Riemannian manifold ðMn; gÞ is k-noncollapsed at scale r in

p a M if Er < r it is satisfied that

jRmjðxÞa 1

r2
Ex a Bðp; rÞ )

Vol
�
Bðp; rÞ

�
rn

bk:

This means that every ball with radius r < r and bounded curvature has a

volume of at least krn. Observe that for any given smooth compact manifold,

one can find k, r small enough such that the manifold is k-noncollapsed at scale

r. The breaktrhough of Perelman is that k and r do not degrade under the Ricci

flow, so k-noncollapse is perserved under the flow ([Per02], see also [KL08], Thm

26.2, [CZ06], Thm 3.4.2).

Proposition 3.1 (Noncollapsing theorem (Perelman)). Given numbers n a N,

T < l, r;K ; c > 0, there exists k > 0 such that the following holds: Let�
Mn; gðtÞ

�
be a Ricci flow defined on ½0;TÞ such that

• jRmj is bounded on every compact subinterval ½0;T 0� � ½0;TÞ.

•
�
M; gð0Þ

�
is complete with jRmj < K and inj

�
M; gð0Þ

�
b c > 0.

Then the Ricci flow is k-noncollapsed at scale r (that is, every time t slice of the flow

is a k-noncollapsed manifold at scale r, with uniform k). Furthermore, k is (non-

strictly) decreasing in T, while all other constants fixed.

Perelman developed several proofs of the noncollapsing theorem. One of

them, the ‘‘comparison geometry approach’’ based in the so-called L-geodesics

uses entirely integral quantities, which are not a¤ected by perturbations in sets of

measure zero, such as isolated cone points.

35Ricci flow on cone surfaces



The k-noncollapsing property allows one to find limits of sequences of rescaled

Ricci flows. Since we use sequences of dilations around points of high positive

curvature, the limit flow will have positive curvature, and since we are dilating

the time before the singular moment, the limit flow will be ancient. Perelman

coined the word k-solution for those Ricci flows that enjoy these good properties.

A k-solution is a Ricci flow ancient
�
t a ð�l;T �

�
, nonflat ðRmA 0Þ, with curva-

ture operator Rm positive definite and bounded in each time-slice ðjRmj < CÞ, and
k-noncollapsed at all scales.

The technique of parabolic rescalings, together with the noncollapsing theo-

rem, allows to find a model for the singular times of the flow.

Proposition 3.2. Let
�
M2; gðtÞ

�
be a Ricci flow on a surface, defined on ½0;TÞ,

which becomes singular at time T. Let k; r > 0 and assume
�
M; gð0Þ

�
is

k-noncollapsed at scale r. There is a sequence of times ti ! T such that, if

Qi ¼ maxRð�; tiÞ and pi is the point that achieves the maximum of R at time ti,

then the sequence of pointed Ricci flows
�
M; giðtÞ; pi

�
with

giðtÞ ¼ Qig
t

Qi

þ ti

� �

has a subsequence that converges to a k-solution.

This theorem in dimension three is the so-called Canonical Neighbourhood

theorem of Perelman, [Per02], Thm 12.1, and it requires a subsequent classification

of k-solutions to understand the local model of the singularities of the flow. In

dimension two, the picture is much simpler, since as we see below, all k-solutions

turn out to be solitons.

The enhanced properties of k-solutions allow an in-depth analysis that can’t be

done for a general Ricci flow. An important feature is that one can find a soliton

‘‘buried’’ inside every k-solution (Perelman [Per02], see also [KL08] Prop 39.1).

More specifically, the limit backwards in time to t ¼ �l is, after rescaling, a gra-

dient shrinking soliton, called the asymptotic soliton.

The proof of the asymptotic soliton theorem uses the same L-geodesics theory

as in the noncollapsing theory, and additionally it uses a maximum principle, or

more accurately, a Harnack inequality from [Ham93]. Harnack inequalities are

elaborated uses of the maximum principle where one computes not only the evo-

lution of a function f in terms of its second derivatives ðDf Þ, but the also the evo-

lution of the convexity ðQ ¼ Df Þ in terms of fourth order derivatives ðDQÞ . See

[Ram14], Ch. 3.2–3.5 for a quick survey of these results.

To prove that all k-solutions are solitons, one can use in the smooth case

[Per02], Cor. 11.3 (clarified by [Ye04]), but we propose the following proof:
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Lemma 3.1. Let
�
M2; gðtÞ

�
be a k-solution of the Ricci flow on a smooth surface.

Then it is a soliton.

Proof. Given a k-solution we construct its asymptotic soliton by taking a se-

quence of times tk ! þl; then picking appropriate qk a M; and then construct-

ing the sequence of rescalings

gkðtÞ ¼
1

tk
gðtktÞ

that subconverges to a shrinking soliton.

From the classification of the solitons on surfaces on Section 2, the only

smooth, complete, nonflat, gradient shrinking soliton on a surface is the shrink-

ing round sphere, which is compact. Therefore, the limit of rescalings is not only

locally di¤eopmorphic to the original surface, but also globally di¤eomorphic and

hence M is compact.

The (dynamic) soliton equation for unnormalized Ricci flow is

RicþHess f þ 1

2t
g ¼ 0:

Although not always exists a function f solving that, one can solve the traced

equation

Df ¼ � Rþ 1

t

� �

to obtain a potential function f for the flow. This is a Poisson equation ðDf ¼ hÞ
over a compact manifold, which by operator theory has a unique solution f with

mean value zero,
Ð
M f dm ¼ 0, if and only if

Ð
M h dm ¼ 0. In our case it is satisfied

since

ð
M

Rþ 1

t
dm ¼

ð
M

Rdmþ 1

t
AreaM ¼ 4pwðMÞ þ 1

t
AreaM ¼ 0:

We define then the soliton quantity

M ¼ Hess f þ 1

2
Rþ 1

t

� �
g

which vanishes i¤ the Ricci flow is a gradient shrinking soliton. We would like to

consider the evolution of jMj2, but this is not a scale invariant quantity. Instead,
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we use the quantity t2jMj2 and obtain

q

qt
t2jMj2 ¼ Dðt2jMj2Þ � 2t2j‘Mj2aDðt2jMj2Þ;

and by the maximum principle, maxM t2jMj2 is decreasing on t.

On the sequence of rescalings, by monotonicity, taking tk ¼ �tk, Ex0 a M and

Et0 a ð�l;TÞ,

t20 jMj2gðt0Þðx0; t0Þa max
M

t2k jMj2gðtkÞð�; tkÞ Etk < t0:

By the rescaling invariance,

t2k jMj2gðtkÞð�; tkÞ ¼ jMj2gkð�1Þð�;�1Þ:

Using that the limit of rescalings is a soliton, for all e > 0 there exists k > 0

big enough (tk negative big enough) such that jMj2gkð�1Þð�;�1Þ < e: Putting all

together, for all ðx0; t0Þ and for all e > 0 we conclude that jMj2gðt0Þðx0; t0Þ < e, so

MC 0, which proves that the k-solution is actually a soliton. r

Thus, the surface evolving under Ricci flow converges, up to rescaling, to a

round sphere. This finishes the proof of the uniformization theorem for smooth

surfaces with wðMÞ > 0.

3.2. Existence of Ricci flow on cone surfaces. A cone surface
�
M; ðp1; . . . ;

pnÞ; g
�
is a topological surface M and marked points p1; . . . ; pn a M equipped

with a smooth Riemannian metric g on Mnfp1; . . . ; png, such that every point pi
admits a local chart where the metric takes some model form.

The marked points are part of the boundary of the domain where we try to

run a PDE, and hence, some boundary conditions apply. We have some free-

dom to choose these boundary conditions, but they carry implications for the

flow. For instance, in [Ram15] we construct a Ricci flow that instantaneously

removes cone points; or in [GT11] it is constructed an instantaneously complete

cusp-generating flow, from a surface with some points removed. Here we look

for an angle-preserving flow that allows the uniformization of cone surfaces, that

is, the model structure of the metric around a marked point is invariant under

the flow.

The metric model we used in Section 2, call it polar geodesic coordinates, takes

a disc with coordinates ðr; yÞ where the metric is written

g ¼ dr2 þ h2 dy2
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with h ¼ hðr; yÞ a smooth function h : D ! R, satisfying

hð0Þ ¼ 0;
qh

qr
ð0Þ ¼ ai

2p
;

q2kh

qr2k
ð0Þ ¼ 0 ð21Þ

for some ai a ð0; 2p� (the cone angles). Here, r > 0 is the arclength parameter

measuring the distance to the singular point, and y a ½0; 2p�=P is proportional to

the angle.

A second metric model, call it conformal to a flat cone, considers the metric

of a standard Euclidean cone with angle a g0 ¼ dr2 þ
�
a
2p

�2
r2 dy2 on a disc ðr; yÞ,

and writes a general cone metric as a conformal deformation of the Euclidean

one,

g ¼ e2fðr;yÞ

 
dr2 þ a

2p

� �2

r2 dy2

!

for a function fðr; yÞ with certain regularity. The Ricci flow equation on surfaces

is q
qt
gðtÞ ¼ �Rg. If gðtÞ ¼ e2fðt;xÞg0, then the flow becomes

q

qt
fðtÞ ¼ e�2fDg0fþ Rg0 : ð22Þ

We appeal to the following existence result by Mazzeo, Rubinstein and Sesum:

Proposition 3.3 ([MRS15], Prop 3.12). Let
�
M; ðp1; . . . ; pnÞ; g0

�
be a cone

surface. Let g0 be a background reference metric such that on a neighbourhood

of a cone point pi is flat and takes the conic form g0 ¼ dr2 þ a
2p

� �2
r2 dy2. Let

g0 ¼ e2f0g0 be a cone metric, where f0 a Dk; d
b ð ~MMÞ, and let gðtÞ ¼ e2fðtÞg0. Then,

there is a unique solution f a Dkþd; ðkþdÞ=2ð½0;T � � ~MMÞ to (22) with fjt¼0 ¼ 0, pro-

vided T is su‰ciently small.

This theorem uses the b-calculus introduced by R. B. Melrose [Mel93], that

gives an explicit description of the asymptotic behaviour of the functions near the

cone point. The idea is to ‘‘desingularize’’ the point by a blow-up, substituting the

cone point by the S1 boundary fr ¼ 0; y a R=2pZg one obtains a manifold with

boundary ~MM. In polar coordinates, one changes the space of derivative operators

to Vb ¼ r q
qr
; q
qy

� �
instead of the usual

�
q
qr
; q
qy

�
. This is equivalent to restrict to

vector fields on ~MM tangent to the boundary. Then it is constructed Ck; d
b ð ~MMÞ

as the space of functions with k derivatives (taken in Vb), and after taking all

the derivatives, the result is on a Hölder space C0; dð ~MMÞ. Similarly, the space

C
kþd; ðkþdÞ=2
b ð½0;T � � ~MMÞ is the space of functions of space and time, with i space-

derivatives (taken in Vb), j time-derivatives (in the usual sense), i þ 2ja k, and
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after taking all the derivatives, the result is on a Hölder space Cd; d=2. Finally, the

Hölder-Friedrichs domain for these functions is

D
kþd; ðkþdÞ=2
b ð½0;T � � ~MMÞ ¼ fu a C

kþd; ðkþdÞ=2
b jDgu a C

kþd; ðkþdÞ=2
b g:

Lemma 3.2. A metric in polar geodesic coordinates with h a Cl can be written as

conformal to a flat cone with f a Dk; d
b for all k > 0. Conversely, a metric conformal

to a flat cone with f a Dk 0; d
b can be written as polar geodesic coordinates for h sat-

isfying (21) up to certain k.

Proof. We express a cone metric in the two coordinate charts: conformal coordi-

nates with respect to a cone, and polar geodesic coordinates.

g ¼ e2u

 
dr2 þ a

2p

� �2

r2 dy2

!
¼ dr2 þ h2 dx2:

For simplicity, we will assume that the functions u, h are radial, i.e. u ¼ uðrÞ,
h ¼ hðrÞ. The general case u ¼ uðr; yÞ, h ¼ hðr; xÞ follows the same structure,

only involving more terms on qu
qy
and qh

qx
.

The Gaussian curvature can be expressed as

K ¼ �Dg ¼ �e�2uDu ¼ � 1

h

q2h

qr2

where D ¼ q2

qr2
þ 1

r
q
qr
þ 1

r2
q2

qy2
. The change of coordinates can be achieved by the

transformation

dr ¼ eu dr x ¼ y h ¼ a

2p

� �
reu

Assume we have a metric in polar geodesic coordinates, given by hðrÞ a
Cl
�
½0;AÞ

�
and satisfying (21). We need to check that

uðrÞ ¼ ln h� ln r� ln
a

2p

� �

and Dgu belong to Ck
b for any k, i.e. when applying k times the operator r q

qr
the

result is in C0. Indeed,

r
q

qr
u ¼ r

q

qr
ln h� ln r� ln

a

2p

� �
¼ r

1

h

qh

qr

qr

qr
� 1 ¼ reu

1

h

qh

qr
� 1 ¼ 2p

a

qh

qr
� 1
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which is C0 and tends to 0 as r ! 0. Since the derivative operator is

r
q

qr
¼ r

qr

qr

q

qr
¼ reu

q

qr
¼ 2p

a

� �
h
q

qr
;

when applied further, results on functions with the same regularity as h and the

derivatives of h. For the Laplacian,

r
q

qr
Dgu ¼ �r

q

qr
K ¼ 2p

a
h
q

qr

1

h

q2h

qr2

 !
¼ 2p

a

q3h

qr3
þ K

qh

qr

 !
:

Hence, all further derivations respect to h q
qr

will yield terms in K and derivatives

of h. Since h ¼ a
2p rþOðr3Þ, the curvature has a limit as r ! 0,

lim
r!0

K ¼ lim
r!0

�hrr

h
¼ lim

r!0

OðrÞ
a
2p rþOðr3Þ ¼ C;

and hence K is a C0 function. Therefore, Dgu is in Ck
b . r

3.3. Barrier maximum principles for cone manifolds. We now develop some

maximum principles for cone manifolds. First we develop a generic maximum

principle for functions on cone surfaces. Next, we show an ad hoc maximum prin-

ciple for the Harnack inequality that proves the asymptotic soliton theorem.

One standard formulation of the maximum principle states that the maximum

of a function u ¼ uðx; tÞ evolving according to

qu

qt
aDu t a ½0;TÞ

occurs at t ¼ 0 or at the boundary of the domain. Heuristically, an interior max-

imum would have gradient zero and Hessian negative defined. So it would have

negative Laplacian and the function on that point would be decreasing when

fixed on that point, giving greater values backwards in time. Therefore the space

maximum cannot increase in time, and hence the maximum is at t ¼ 0, or at the

boundary.

This argument fails if u is not at least C2 on the interior of the domain, in par-

ticular if the domain itself contains a cone point, because a nonsmooth maximum

point no longer needs to have zero gradient or negative Laplacian. We can work-

around this problem if we are able to find a way to guarantee that the maximum

cannot occur on the cone point. The way for achieving this is constructing a new
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function ue depending on a parameter e > 0 such that ue tends uniformly to u when

e ! 0; and on a small neighbourhood, ue is strictly increasing over radial lines

leaving the cone point (thus not having a maximum at the cone point). We call

this new ue a barrier function for u.

Through all this section, we will assume that ðM; fp1; . . . ; png; gÞ is a cone sur-

face such that the metric on a neighbourhood of a cone point is written as g ¼
dr2 þ hðr; yÞ2 dy2 for some analytic h : ½0;AÞ � R=2pZ ! Rþ, such that

• hð0; yÞ ¼ 0, Ey (the neighbourhood is a disc),

• hrð0; yÞ ¼ a
2p (where a is the cone angle), and

• jhrrjaCh (bounded curvature).

Recall (cf. with Section 2) that on that metric, the Gaussian curvature and the

Hessian and Laplacian of a radial function are given by

K ¼ � hrr

h
; Hess f ¼ frr dr

2 þ hhr fr dy
2; Df ¼ frr þ

hr

h
fr:

Further, using the control on hr and hrr on the Taylor expansion of h, we obtain

that for a fixed y,

hðr; yÞ ¼ a

2p
rþOðr3Þ and r

hr

h
� 1 ¼ Oðr2Þ:

In particular, hr
h
P 1

r
as r ! 0.

Now we define a helpful function (cf. [Jef05]) that we will use later to build the

barriers.

Lemma 3.3. Let U be a topological disk, with given polar coordinates ðr; yÞ a
ð0; r0Þ � ½0; 2pÞ, a cone angle at the origin, and a smooth Riemannian metric outside

the cone point with bounded curvature. Let 0 < d < 1. Then the function given by

ðr; yÞ 7! rd satisfies

• grad rd is pointing away from the cone point, and with norm tending to þl as

we approach the vertex.

• Drd > 0 if r small enough.

Proof. The gradient vector is

grad rd ¼ drd�1 q

qr
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so it is clear that it points away from the origin and its norm tends to l as r ! 0.

The Laplacian of rd is

Drd ¼ dðd� 1Þrd�2 þ 1

h

qh

qr
drd�1 ¼ drd�2 d� 1þ 1

h

qh

qr
r

� �
:

Since r 1
h
qh
qr
! 1 as r ! 0, then Drd > 0 for r small enough. r

This lemma allows us to construct a barrier function that proves the maximum

principle on closed cone surfaces:

Theorem 3.1. Let
�
M; ðp1; . . . ; pnÞ; g0

�
be a closed cone surface, and let u a

C2;1
�
M� ð0;T �; g0

�
such that

qu

qt
aDu

Let ðx0; t0Þ a M� ½0;T � such that realizes the maximum of u over space and time,

uðx0; t0Þ ¼ max
M�½0;T �

u

then t0 ¼ 0.

The notation C2;1
�
M� ð0;T �; g0

�
means functions C2 in space and C1 in time

with bounded C2-norm, this norm taken with respect to the metric g0.

Proof. Applying the maximum principle over the open set MnS, where we denote
S ¼ fp1; . . . ; png, the maximum of u is achieved on t ¼ 0 or, maybe, on t > 0 and

p a S. We will rule out the latter case. Assume by contradiction that ðp; t0Þ,
p a S, is the maximum of u over M� ½0;T �.

Let U be a small neighbourhood of p such that we can dispose polar coordi-

nates ðr; yÞ, and Drd > 0 for some 0 < d < 1, by Lemma 3.3. Let e > 0, and define

over U the function

u ¼ uþ erd:

It satisfies

qu

qt
¼ qu

qt
aDuaDðuþ erdÞ ¼ Du:

Applying the maximum principle to the open set Unfpg, maxU�½0;T � u lies

on t ¼ 0 or on x a qU A fpg. We claim that the latter cannot happen. Indeed, u
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cannot have a maximum on x ¼ p (i.e. r ¼ 0) because grad u is pointing away

from p with infinite norm when r ¼ 0, and grad uj is bounded, so u is strictly

increasing on radial directions leaving p. On the other hand, the original u has

no maxima on qU � ð0;T � because they would be interior points in MnS� ½0;T �.
Since u ! u uniformly as e ! 0, u cannot either have maxima on qU � ð0;T �; spe-
cifically, for any e < e0 ¼ 1

2 ðmaxU�ð0;T � u�maxqU�ð0;T � uÞ, the function u cannot

have maxima on qU because this value would be at most maxqU uþ e that is less

than uðp; t0Þ.
Therefore, max u is on t ¼ 0 and again since u ! u uniformly, max u is on

t ¼ 0. r

Now we look for a cone version of Harnack inequality for Ricci flows. Recall

from Section 3.1 that the only point we need a Harnack inequality is in the proof

of the Asymptotic soliton of a k-solution. This Harnack inequality is given in

[Ham93] and states that if
�
M; gðtÞ

�
is a Ricci flow with nonnegative curvature

operator, then certain quantity ðZ ¼ MijW
iW j þ 2PkijU

kiW j þ RijklU
ijU klÞ is

nonnegative. This is proven using a maximum (minimum) principle that in-

volves creating a barrier function for the spatial infinity, given by the following

lemma.

Proposition 3.4 ([Ham93], Lem 5.2). For any C, h > 0 and any compact set K in

space-time, we can find functions c ¼ cðtÞ and j ¼ jðx; tÞ such that

(1) daca h for some d > 0, for all t;

(2) eaja h on the compact set K for some e > 0, for all t. Furthermore,

jðx; tÞ ! l if x ! l, i.e. the sets fx j jðx; tÞ < Mg are compact for all t and

all M;

(3) qj
qt
> Djþ Cj;

(4) qc
qt
> Cc;

(5) jbCc.

The functions in this smooth case are:

j ¼ eeAtf ðxÞ; c ¼ deBt

with e, d small and A B su‰ciently large. The function f ðxÞ depends only on the

position, f ðxÞ ! þl as x goes to l (the distance to a fixed basepoint tends to

infinity), but the derivatives of f are bounded. Then, j is a space barrier for the

infinity and a time barrier for t ¼ 0. The function c is only a time barrier.

The only point we need is to change j to be a barrier also at the cone

points.
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Lemma 3.4. Let
�
M; ðp1; . . . ; pnÞ; g

�
be a cone surface. There is some C > 0 and

a function m ¼ mðxÞ satisfying
(1) mb 1=C

(2) m ! þl as x tends to a cone point.

(3) DmaC

Proof. On a local chart around pi, we can assume that g ¼ dr2 þ h2 dy2 for

r a ½0; r0Þ, for some r0 uniform on the surface. Without loss of generality, we can

assume r0 ¼ 1.

It su‰ces to use a smooth interpolation between m ¼ �ln r for r < 1
2 and

m ¼ ln 2 for r > 1
2 (assume that the interpolation only a¤ects a very small neigh-

bourhood of r ¼ 1
2 . This function m obviously satisfies (1) and (2). To see (3), we

only need to check it for the case m ¼ �ln r for r small. This gives us,

Dm ¼ mrr þ
hr

h
mr ¼

1

r2
1� r

hr

h

� �
¼ 1

r2
Oðr2Þ ¼ Oð1Þ

and hence Dm is bounded on


0; 12
�
. Finally, glue all the functions defined on neigh-

bourhoods of the cone points, and define m ¼ ln 2 outside these neighbourhoods.

r

Now we construct the new barriers.

Lemma 3.5. For any C, h > 0 and any compact set K in space-time not containing

cone points, the functions c ¼ cðtÞ and ~jj ¼ ~jjðx; tÞ defined as

~jj ¼ eeAt
�
f ðxÞ þ mðxÞ

�
; c ¼ deBt

satisfy

(1) daca h for some d > 0, for all t;

(2) ea ~jja h on the compact K for some e > 0, for all t. Furthermore, ~jjðx; tÞ ! l
if x ! l or x ! S ¼ fp1; . . . ; png, i.e. the sets fx j ~jjðx; tÞ < Mg are compact

for all t and all M;

(3) q ~jj
qt
> D~jjþ C ~jj;

(4) qc
qt
> Cc;

(5) ~jjbCc.

Proof. We have defined

~jj ¼ jþ eeAtm
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where j is the function on the smooth case on Lemma 3.4. Thus, items 1 and 4

have not changed. Item 2 follows from the fact that m ! þl as x tends to a cone

point. Item 5 is immediate, Ccaja ~jj.

We check item 3:

q

qt
� D

� �
~jj ¼ q

qt
� D

� �
jþ eeAtðAm� DmÞ:

Since DmaC 0a ðC 0Þ2m, we have Am� Dmb
�
A� ðC 0Þ2

�
mbC 00m if A is big

enough. Hence,

q

qt
� D

� �
~jj > Cjþ C 00eeAtm > C 000 ~jj;

for possibly di¤erent constants C’s. r

3.4. Uniformization of cone surfaces. We finally assemble the properties ob-

tained on the previous sections to reconstruct a proof for the uniformization of

certain cone surfaces, as done with the smooth case.

Recall that for cone surfaces there is a suitable modified definition of Euler

characteristic,

ŵwðMÞ ¼ wðMÞ þ
Xn
i¼1

bi

where wðMÞ is the Euler characteristic of the underlying topological surface, and

bi ¼ ai
2p � 1 are the angle parameters of the cone points. In the case of orbifolds,

this definition makes the conic Euler characteristic multiplicative with respect

to branched coverings (i.e. if ~MM ! M is an n-to-one branched covering, then

ŵwð ~MMÞ ¼ nŵwðMÞ). Furthermore, with this definition the Gauss–Bonnet formula

holds,

ð
M

K dm ¼ 2pŵwðMÞ;

and the evolution of the area of the surface under the Ricci flow is still

q

qt
AreaðMÞ ¼

ð
M

q

qt
dm ¼

ð
M

Rdm ¼ �4pŵwðMÞ:

In the case ŵwðMÞa 0, the area does not tend to zero, and there are also no

isolated infinite-curvature singularities; since the rescaling blow-up of such singu-
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larities would bring as a limit a noncompact k-solution, which is impossible.

Therefore, the flow is defined for all t > 0. In this case the most easy way to study

the flow is to use the normalized Ricci flow, as in the smooth case. Substituting

the maximum principle with the cone maximum principle from Section 3.3, the

result is the same, and the surface converges to a constant curvature cone metric.

In the case ŵwðMÞ > 0, the area tends to zero in finite time and there must be

an infinite-curvature singularity, which, as before, cannot be isolated and must

happen at the same time as the area collapses to zero.

In the smooth case, the only obstruction to the continuation of the flow is the

explosion of the curvature at some point, as we saw in Section 3.1. To prove this,

one picks a flow defined on t a ½0;TÞ and assumes uniformly bounded curvature.

One selects a sequence ti ! T and then the metrics gðtiÞ are equivalent to gð0Þ. By

a compactness theorem, we get a limit as ti ! T and get a metric gðTÞ that can
serve as initial data for a continuation of the flow.

In the case of cone surfaces, the same result applies. However, the compact-

ness theorem must be examined. A priori, other phenomena associated with the

cone points might prevent a continuation of the flow, such as two cone points col-

lapsing close together, or a limit of cone points with certain angle that converge to

a di¤erent cone angle. Fortunately, in Section 4 we prove that, provided uniform

bounds on the injectivity radius and the curvature, the cone structure is preserved

under Gromov–Hausdor¤ limits. The uniform bound for the injectivity radius on

½0; tiÞ comes automatically from the finite distortion of the metric for finite time

(and hence finite distortion of the distances). If we assume bounded curvature on

½0; tiÞ, then we can apply Gromov’s compactness theorem to get a G–H limit, this

limit is smooth except on the limit of the cone points, and the cone angle of the

limit is the same as in gð0Þ. Therefore, the continuous extension is not altered by

the cone points, and the smooth extension applies (locally) to any neighbourhood

of any smooth point. Let us remark that no maximum principle is required for the

continuous extension of the metric. We have proven the following result.

Theorem 3.2. Let M be a smooth closed cone surface, S � M a discrete set of cone

points, and gðtÞ a Ricci flow on a maximal time interval ½0;TÞ and T < l, then

supMnSjRð�; tÞj ! l as t ! T.

If the curvature explodes to infinity for finite time, we can perform a sequence

of pointed parabolic rescalings. In the smooth case, the k-noncollapsing property

allows us to get a pointed limit flow, that is a k-solution. In the cone setting, the

same result applies, but we need to impose a restriction on the magnitude of the

cone angles. In order to have k-noncollapsing, the cone angles must be less than

2p. This is natural since a cone angle bigger than 2p has metric curvature �l
(in the sense of Alexandrov), so even Gromov–Hausdor¤ convergence could fail.

More interestingly, in order to keep the same cone structure in the limit, we need
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to restrict ourselves to surfaces with cone angles less than or equal to p (this in

particular covers the case of all orbifolds, with cone angles 2p
n
for n a N). If this

restriction is dropped, collision of cone points might happen in the limit.

The theory of L-geodesics is still valid on cone surfaces. This is due to the

following fact.

Lemma 3.6. Let
�
M; gðtÞ

�
be a smooth closed cone surface with cone angles less

than 2p. Then, an L-geodesics that minimizes the L-length between two smooth

points does not pass across any cone point.

Sketch of the proof. It is analogous to classical geodesics (as a length-minimizing

path). On a smooth surface, a minimizing geodesic does not have sharp angles.

Let gðtÞ be an arc-parameterized path with a sharp angle in p ¼ gðt�Þ, it has an

angle bisector h ¼ _ggðpÞþ � _ggðpÞ� (the bisector of the inner angle, which is less

than p).

Then a smooth variation of g with normal direction Y and YðpÞ ¼ h of would

shorten the length of the path. This is proven by using the first variation of the

length-energy functional L ¼
Ð t2
t1
j _ggðtÞj2 dt, which is

dYL ¼ 2

ð t2
t1

3‘XY ;X4 dt

or when there is a sharp angle,

dYL ¼ 2

ð t2
t1

3‘XY ;X4 dt� 3YðpÞ; h4;

where X is the tangent vector to the curves in the variation and Y is the normal

vector to the variation. In the same way, the tangent vector to a geodesic on a

cone surface that passes through a cone angle, will form one (or two) angles less

than p at the cone point. Taking a variation in the direction of the bisector of that

angle will decrease the length.

The same occurs with L-geodesics. A spacetime path gðtÞ, parameterized

backwards in time ðt ¼ �tÞ is an L-geodesic if it minimizes the L-functional

LðgÞ ¼
ð t2
t1

ffiffiffi
t

p �
R
�
gðtÞ

�
þ jgðtÞj2

�
dt

between its endpoints. The first variation [KL08], Sec 17 is

dYL ¼
ð t2
t1

ffiffiffi
t

p
ð3Y ;‘R4þ 23‘XY ;X4Þ dt:
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Using that ‘R is bounded in a neighbourhood of the cone point (and that it

keeps so under the Ricci flow), the same shortening variation trick applies to this

functional. r

Hence, integral quantities (such as Perelman’s reduced volume) on a cone sur-

face are defined the same way as in the smooth case, up to a set of singular cone

points that have zero measure. Since the noncollapsing theorem is independent

of Harnack inequalities and maximum principles, we have directly the same non-

collapsing theorem for cone surfaces.

Now, noncollapsing together with Lemma 4.2 has the following important

consequence for surfaces with cone angles less or equal than p.

Theorem 3.3. Let
�
M; ðp1; . . . ; pnÞ; gðtÞ

�
be an angle-preserving Ricci flow on

a cone surface defined on ½0;T �, such that jK j < C for all t a ½0;T �. Assume that

all the cone angles are less than or equal to p. Then, the injectivity radius of the

cone points injðSÞ ¼ minp A fp1;...;png injðpÞ is uniformly bounded below along the

flow. In particular, the distance between any two cone points is uniformly bounded

below.

Proof. By the k-noncollapse and the bounds on the curvature, there is a lower

bound on the volume and hence, by metric geometry, a lower bound on the injec-

tivity radius, and this bounds are uniform in time as far as the curvature keeps

uniformly bounded. Then, by Lemma 4.2, the cone points keep a uniformly

bounded distance between them (the injectivity radius of the cone points is uni-

formly bounded below). r

This theorem applies to the rescaled cone surfaces on the blow-up, and there-

fore there is a limit to a k-solution which has the same cone structure as the orig-

inal surface. Since the Harnack inequality holds for flows on cone surfaces, every

k-solution has an asymptotic shrinking soliton, complete and with bounded

curvature. We classified all cone solitons in Section 2, and all the possible solitons

are compact, namely the teardrop and the football solitons, or the constant curva-

ture solitons.

Since we have a maximum principle for functions on cone surfaces, we can ap-

ply it on k-solutions to the function u ¼ t2jMj2, over M and nested compact time

intervals ½t1; t2� with t1 ! �l, as in the smooth case, and obtain that jMj ¼ 0.

This proves that every k-solution on a cone surface is a soliton.

Theorem 3.4. Let
�
M; ðp1; . . . ; pnÞ; gðtÞ

�
be a k-solution over a cone surface with

cone angles less than or equal to p. Then it is a shrinking soliton.

Since all k solutions are therefore compact, this gives a strong restriction

on which kind of surfaces with ŵwðMÞ > 0 can develop an infinite-curvature
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singularity. Note that by the definition of ŵw and our restriction of anglesap,

the underlying topological surface must be a sphere and at most three cone

points can occur. Only in the case of two cone points there is an infinite-curvature

singularity.

All together, this gives a uniformization of all closed cone surfaces with angles

less than or equal to p, and in particular, a uniformization of all closed two-

dimensional orbifolds.

Theorem 3.5. Let
�
M; ðp1; . . . ; pnÞ; g0

�
be a closed cone surface, and assume that

the cone points are less than or equal to p. Then there exists an angle-preserving

Ricci flow that converges, up to rescaling, to:

• a constant nonpositive curvature metric, if ŵwðMÞa 0.

• a spherical (constant positive curvature) metric, a teardrop soliton or a football

soliton; if ŵwðMÞ > 0.

As a final remark, if some cone points are greater than p, then the nonlocal

collapsing is not enough to guarantee that two cone points stay at a uniformly

bounded distance, i.e. two cone points could approach each other asymptotically

while maintaining bounded curvature and area on the surface, then colliding

together. This phenomenon has been also observed and confirmed in [MRS15].

See also [PSSW14] and [PSSW15].

4. Compactness theorems for classes of cone surfaces

The theory of compactness of classes of manifolds traces back to Cheeger [Che70],

Gromov [Gro07], Greene and Wu [GW88], and Peters [Pet87]. It studies the exis-

tence and regularity of a limit on sequences of manifolds, and in particular it is a

key step in the Ricci flow theory (cf. [CCGþ07], Ch 3, Ch 4). Hamilton adapted

the existing theorems for manifolds, adding stronger hypothesis on the regularity

of the curvature tensor, and proved a specific version for solutions to the Ricci

flow that is the appropriate result needed to perform sequences of rescalings on

the flow [Ham95a].

If our manifolds have cone-like singularities, the cone structure after passing

to a limit a priori might be very di¤erent from the structure of the terms of the

sequence. We will work on the class of pointed cone surfaces (that is, pairs

ðM;OÞ with M a cone surface and O a M a base point) with bounded curvatures

on all points on the smooth part, and with bounded injectivity radius on the base

point. Note that if the base point is on the smooth part, it must be away from a

certain (uniform) distance of the cone points, or otherwise the injectivity radius

could converge to zero as the base point approaches a cone point. Base points at
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exactly cone points are also allowed, with the natural definition via the exponen-

tial map from the tangent cone. This will ensure that all base points have standard

neighbourhoods with a uniform radius. Additionally, we will need to impose

some conditions about the magnitude of the cone angles to ensure stability of the

cone structure.

Gromov’s compactness theorem [Gro07], cf. [BBI01], Thm 7.4.15, Thm 10.7.2,

ensures that a sequence of metric spaces with fixed dimension n, bounded diam-

eter diamaD and curvature bounded below secbL has a subsequence con-

vergent in the Gromov–Hausdor¤ topology. This will ensure us a weak conver-

gence of a sequence of cone surfaces to a limit which is, a priori, just a metric

space.

Hamilton’s compactness theorem [Ham95a], cf. [CCGþ07], Thm 3.9, states

that a sequence of complete pointed Riemannian manifolds ðMk;Ok; gkÞ with

j‘pRmjaCp, Ek, Ep, and injðOkÞb i0, Ek has a subsequence convergent in the

Cl sense. We will apply this theorem to the smooth part of our surfaces. Our

compactness result for cone surfaces is:

Theorem 4.1. Let M denote the class of pointed cone surfaces ðM;OÞ satisfying
(1) cone points with anglesap,

(2) j‘pRmxjaCp Ex B SM where SM is the singular set of M, for all pb 0,

(3) injðOÞb i0, if O B SM,

(4) injðOÞb i1 and a > a0 > 0, if O a SM.

Then M is compact in the topology of the (pointed ) Cl convergence on the smooth

part and Lipschitz on the singular points.

Lipschitz convergence is stronger than Gromov–Hausdor¤ convergence and,

as we will see, the number of cone points at the limit is the same as the number

of cone points on the terms of the approximating sequence, and the magnitude of

the cone angles form convergent sequences for each cone point. Therefore, the

cone structure is preserved at the limit (Lemma 4.1 below).

Note that the theorem uses two injectivity radius, one for smooth base points

and another for singular base points. The bound on the first one allows a version

of an ‘‘injectivity radius decay with distance’’ as in the case of smooth manifolds

(Lemma 4.3 below) that is needed to apply Hamilton’s compactness theorem. The

bound on the second, together with the restriction anglesap ensure that the cone

points cannot get close together (Lemma 4.2 below).

We start by proving that two compact cone surfaces that are close enough in

the Gromov–Hausdor¤ sense must have the same number of cone points, and

their respective cone angles must also be close.
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Lemma 4.1. For all e; i1; i0;L > 0 and o0 < 2p there exists d > 0 such that the fol-

lowing holds. Let M, M be two compact cone surfaces with S, S their singular sets,

satisfying

• cone anglesao0 < 2p.

• inj xb i1 Ex a S (resp. S).

• inj xb i0 Ex a MnUi1=2ðSÞ (resp. for M), where UhðSÞ ¼ fy a M j dðy;SÞ <
hg is an open neighbourhood of S.

• jsecxjaL for all x B S (resp. S).

If the Gromov–Hausdor¤ distance between them is dGHðM;MÞ < d, then there

exists a 2d-isometry f : M ! M that sends cone points to cone points. Further, if

p a S and f ðpÞ a S have cone angles o, o, respectively, then jo� oj < e:

Proof. From the properties of Gromov–Hausdor¤ distance, we have [BBI01], Cor

7.3.28 that dGHðM;MÞa d implies that there exists f : M ! M a 2d-isometry,

that is, a possibly noncontinuous function such that f ðMÞ is a 2d-net in M and

dis f ¼ supx;x 0
��dM� f ðxÞ; f ðx 0Þ

�
� dMðx; x 0Þ

��a 2d: Our goal is to modify the

map f so it sends cone points to cone points. Hence, we need to show that if p

is a cone point in M, then f ðpÞ is arbitrarily close to a cone point in M, choosing

d small enough.

Let p a M be a cone point with angle o < o0 < 2p. We launch four small

geodesic rays spreading from p, of length d < i1, on directions separated by an

angle of a :¼ o
4 . We join the four endpoints of the rays with geodesic paths to

form a quadrilateral. The image by f of the vertices of this quadrilateral defines

a new quadrilateral in M. We can compare the triangles formed by the rays and

the sides of the quadrilaterals. Since the sides of the triangles are almost the same

ðe2dÞ, and the curvature is bounded, the angles also must be almost the same, and

hence the angles around f ðpÞ will also add up less than 2p.

We proceed by contradiction, and we suppose that the image of the quad-

rilateral is contained in an open set of M with no cone points. We consider the

triangle in M defined by p and two rays of length d forming an angle a; with

a third side of length l. The image of the vertices of this triangle by f defines a

new triangle in M of corresponding sides d1, d2 and l, with an angle in f ðpÞ of
a 0. Since f is a 2d-isometry, we have jl � lj < 2d and jd � djj < 2d j ¼ 1; 2.

We look for an upper bound of a 0 in terms of a. We compare these triangles

with their constant curvature models. We can assume without loss of generality

(by a dilation) that the bound on the curvature is L ¼ 1.

We compare the triangle in M with a hyperbolic triangle keeping the data side-

angle-side fixed (a hinge). We compare the triangle in M with a spherical triangle

keeping the data side-side-side fixed (side lengths). By Toponogov’s comparison
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theorems, we have l < ~ll and a 0 < ~aa 0, and (since a 0 < p
2) we have

cosh l < cosh ~ll and cos a 0 > cos ~aa 0:

On the other hand, by hyperbolic/spherical trigonometry

cos a ¼ cosh d cosh d � cosh ~ll

sinh d sinh d
and cos ~aa 0 ¼ � cos d1 cos d2 � cos l

sin d1 sin d2

;

hence,

cos a <
cosh d cosh d � cosh l

sinh d sinh d
¼: A and cos a 0 > cos ~aa 0 ¼: B:

Although A and B cannot be ordered in general, it is easy to verify that

limd!0
A
B
¼ 1. Therefore, for all h > 0, we can assume 1� h < A

B
< 1þ h if we

choose d small enough and d < d 3. Then, jA� Bj < hjBj < h and finally,

cos a 0 > B > A� h > cos a� h:

Given 0 < a < p
2 we have cos a > 0. Let h be such that cos a� h > 0. Then

cos a 0 > cos a� h > 0 and therefore a 0 < p
2 . Applying this to the four triangles

forming the quadrilateral in M, the central point f ðpÞ of the image quadrilateral

in M must be conical.

Thus, we have seen that if d is small enough, then f ðpÞ is arbitrarily close to

a cone point on M. Only one cone point, since on M there are no cone points

arbitrarily close (the injectivity radius is bounded). We define ~ff as ~ff ðxÞ ¼ f ðxÞ
if x is a smooth point, and ~ff ðpÞ ¼ p if p is a cone point, where p is the closest

cone point on M to f ðpÞ. From our argument above, if f is a 2d-isometry, then
~ff is a ð2dþ mÞ-isometry for any m arbitrarily small.

Finally we compare the cone angles at p, p. If a ¼ o
4 and a ¼ o

4 , we have seen

that cos a > cos a� h1. By symmetry, there is also a 2d-isometry g : M ! M

and hence cos a > cos a� h2. Therefore jcos a� cos aj < maxfh1; h2g and then

ja� aj < e if h1, h2 small enough. r

Now we prove that two cone points with cone angles less than or equal to p

cannot be close together on a surface with bounded curvature. Heuristically, forc-

ing two cone points to be close each other would force the curvature to descend

towards �l on the region near the geodesic joining the two cone points.

Lemma 4.2. For all i0;L;D > 0 there exists C ¼ Cði0;L;DÞ > 0 such that the

following holds. Let ðM; x0Þ be a cone surface with smooth base point x0, satisfying
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• cone anglesap.

• injðx0Þ > i0.

• jsecj < L.

If p; q a BDðx0Þ are two cone points, then dðp; qÞ > C and injðpÞ > C:

Proof. Let p; q a M be two cone points, and let s be the shortest geodesic arc

joining them, and let jsj be its length. Let

BRðsÞ ¼ fx a M : dðx; sÞaRg

be a neighbourhood of s of radius R. Clearly, as R ! l, BRðsÞ is exhausting all

M. Let

NRðsÞ ¼ fx a M : x ¼ expyðvÞ; y a s; v ?e_ssðyÞ; kvkaRg

be a normal neighbourhood of s.

First step in the proof is that since the cone angles at p, q areap, we have

BRðsÞ ¼ NRðsÞ: Indeed, if x a M and y a s is the point that realizes the distance,

dðx; sÞ ¼ dðx; yÞ, then y must be attained perpendicularly, and hence y is the foot

of the perpendicular from which the exponential emanates. To see this, if y is not

an endpoint of s, then if the angle y between s and the geodesic joining with x

were less than p
2 on either side, the distance could be shortened towards that side.

If y is one of the endpoints of s, the angle y must necessarily bea p
2 , since the

space of directions at p and q measuresap, and hence the angle forming two geo-

desics at a cone point must form an anglea p
2 .

Let now V be the construction of NRðsÞ ported to the hyperbolic space H2
�L

of constant negative curvature �L. That is: first draw a geodesic segment

~ssðtÞ½0; jsj� ! H2
�L of length jsj; then for each x ¼ expsðtÞðvÞ a NRðsÞ, add the

point ~xx ¼ exp~ssðtÞ ~vv a H2
�L, where ~vv ? _~ss~ssðtÞ, with the same orientation, and j~vvj ¼ jvj.

Let ~NNRð~ssÞ � H2
�L be a normal neighbourhood of ~ss. Then it must contain V ,

that is, V � ~NNRð~ssÞ. Choosing appropriate coordinates on H2
�L, the hyperbolic

metric (of curvature �L) can be written dx2 þ cosh2ð
ffiffiffiffi
L

p
xÞ dy2 and ~ss is the curve

fy ¼ 0g with arc-parameter x. We can compute the area of ~NNRð~ssÞ,

Area
�
~NNRð~ssÞ

�
¼
ðR
�R

ð jsj
0

coshð
ffiffiffiffi
L

p
xÞ dx dy ¼ 2jsj sinhð

ffiffiffiffi
L

p
RÞffiffiffiffi

L
p :

Now we apply a comparison theorem. For R ¼ Dþ i0, NRðsÞ contains

Bðx0; i0Þ a smooth regular ball, whose area is bounded below by Cði0;LÞ, the
area of a ball with same radius in the spherical space of curvature þL. Then,
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Cði0;LÞaArea
�
Bðx0; i0Þ

�
aArea

�
NRðsÞ

�
aAreaðVÞ

aArea
�
~NNRð~ssÞ

�
¼ 2jsj sinhð

ffiffiffiffi
L

p
RÞffiffiffiffi

L
p a 2jsj

sinh
� ffiffiffiffi

L
p

ðDþ i0Þ
�

ffiffiffiffi
L

p

Thus,

jsjb Cði0;LÞ
ffiffiffiffi
L

p

2 sinh
� ffiffiffiffi

L
p

ðDþ i0Þ
�

and this bounds below the length of s.

In order to bound injðpÞ, it su‰ces to consider p ¼ q and s a geodesic loop

based on p, and the argument above applies. r

We adapt now the Injectivity radius decay lemma [Che70], [CGT82], to the

case of cone surfaces.

Lemma 4.3. For all i0; d0;R;L > 0 there exists C > 0 such that the following

holds. Let ðM; x0Þ be a cone surface with smooth base point x0, and let z a M

smooth such that

• cone anglesap.

• injðx0Þ > i0.

• jsecj < L on the smooth part.

• z a BRðx0Þ and dðz;SÞ > d0 > 0.

Then injðzÞ > C:

Proof. We start with a bound on the injectivity radius of the base point,

i0 ¼ injðx0Þ. By Günther–Bishop inequality [Cha06], Thm III.4.2 we can bound

volBðx0; i0Þ,

volBðx0; i0Þb volLði0Þ ¼ C1ðL; i0Þ > 0

and this bounds below volBðz; 2RÞ since R > dðx0; zÞ and then Bðx0; i0Þ �
Bðz; 2RÞ,

volBðz; 2RÞb volBðx0; i0Þ > C1ðL; i0Þ:

Now let d < d0. We can use Bishop–Gromov inequality [BBI01], Thm 10.6.6 to

bound volBðz; dÞ,

volBðz; dÞbC2ðL;R; dÞ volBðz; 2RÞ > C3ðR; d;L; i0Þ:
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Finally we apply Cheeger–Gromov–Taylor inequality [CGT82], Thm 4.3 to

bound injðzÞ. In order to use this result, we need to reduce further d < 1
4

pffiffiffi
L

p .

Now the radius of the ball is under the conjugacy radius, and at the same time

there are no cone points on that ball. Cheeger–Gromov–Taylor inequality bounds

the radius of balls without conjugate points, in terms of the volume and curvature

of the ball. A cone point would have here the same e¤ect as a conjugate point

(a pencil of geodesic rays through a cone point converges instantaneously). Thus,

injðzÞ > d

2

1

1þ volLð2dÞ
volBðz; dÞ

b
d

2

1

1þ volLð2dÞ
C3ðR; d;L; i0Þ

¼: Cði0;R;L; d0Þ: r

We are now in position to prove the compactness theorem for cone surfaces.

Proof (of Theorem 4.1). Let fðMk; xkÞglk¼1 a sequence of pointed cone surfaces

inside the class M. By Gromov’s compactness theorem, there is a convergent sub-

sequence to a pointed metric space ðXl; xlÞ in the pointed Gromov–Hausdor¤

topology. Since we are not assuming compact surfaces, the pointed convergence

is relevant. Gromov’s theorem states that for all R > 0 there is a convergent

subsequence

Mk BBðxk;RÞ �!
GH

XlBBðxl;RÞ

in the Gromov–Hausdor¤ topology.

To simplify the notation, we will use Mk ¼ Mk BBðxk;RÞ and Xk ¼ Xk B
Bðxk;RÞ. If Mk are compact, we can take Mk ¼ Mk; otherwise, Mk are open non-

complete cone surfaces, and Mk ! Xl in the Gromov–Hausdor¤ sense.

By Lemma 4.1, there is a subsequence such that Mk all have the same number

of cone points, and their cone angles form convergent sequences. By Lemma 4.2,

the cone points are separated by a uniform distance. Hence we can pick e ¼
eðRÞ > 0 not depending on k, such that

e <
1

10
inffdðp; qÞ : p; q a Sk; k ¼ 1 . . .lg:

We remove on each surface a neighbourhood of radius e of each cone point,

and we form the sequence

M e
k :¼ Mkn

[
x AS

Bðx; eÞ

of noncomplete smooth Riemannian surfaces. By Lemma 4.3 and Hamilton’s

compactness of manifolds, M e
k ! M e

l in the Cl sense, and M e
l � Xl. If we
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reduce e to e=2, we obtain another M
e=2
l . Since M e

k � M
e=2
k , this passes to the limit

as M e
l � M

e=2
l , and both di¤erential structures are compatible since an open

covering of M e
l is extended to an open covering of M

e=2
l , where the radius of the

covering balls only depends of the distance to the base point and the singular set.

Therefore, M
e=2 l

k ! Mk in the Cl sense as l ! l, because is a nested sequence,

and hence M
e=2 l

k ! M
e=2 l

l in the Cl sense as k ! l, for all l. Since fM e=2 l

l gl
is also a nested sequence, we can take a subsequence of the diagonal sequence

M
e=2k

k ! M
ð0Þ
l in the Cl sense, where M

ð0Þ
l ¼

S
l>0 M

e=2 l

l . This limit M
ð0Þ
l is a

smooth noncomplete surface inside the metric space Xl. We define Sl ¼
XlnM ð0Þ

l .

The only remaining issue is to check that Sl consist of cone points with a

model cone metric. Let pk a Mk be a sequence of cone points with a limit cone

angle. In a neighbourhood of pk we can write the metric of Mk as gk ¼
dr2 þ h2kðr; yÞ dy

2 with

hkð0; yÞ ¼ 0;
qhk

qr
ð0; yÞ ¼ ak

2p
;

q2hk

qr2
ð0; yÞ ¼ 0

where ak is the cone angle. Last condition follows from bounded curvature, since
q2hk
qr2

¼ �Kkðr; yÞhk:
In other words, the function hk can be written as hk ¼ ak

2p rþOðr3Þ and the

function in Oðr3Þ may depend on y. By the convergence on the smooth part seen

above, for any r > 0 we have hk ! hl as k ! l, and the convergence is uniform

on compact sets not containing r ¼ 0. On the other hand, from Lemma 4.1 we

have ak ! a as k ! l. We must check

1Þ lim
r!0

hlðr; yÞ ¼ 0; 2Þ lim
r!0

qhl

qr
ðr; yÞ ¼ a

2p
; 3Þ lim

r!0

q2hl

qr2
ðr; yÞ ¼ 0:

For the third point, since the Riemannian curvature on the smooth part of the

surfaces is uniformly bounded by hypothesis, also is the Riemannian curvature in

the limit surface, and hence the second derivative on r is zero if and only if hl is

zero. Hence it follows from first point.

For the first point, the area element of the metrics gk is hkðr; yÞ drbdy: Since

the curvature is bounded below by �L, by comparison the volume element is

less than the volume element of the hyperbolic space of curvature �L, namely
sinhð

ffiffiffi
L

p
rÞffiffiffi

L
p drbdy, thus, hkðr; yÞa sinhð

ffiffiffi
L

p
rÞffiffiffi

L
p : This bound is uniform in k, and hence

also applies in the limit hl. Therefore

lim
r!0

jhlðr; yÞja lim
r!0

sinhð
ffiffiffiffi
L

p
rÞffiffiffiffi

L
p ¼ 0:
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Finally we check the second point. By integration,

qhk

qr
ðr; yÞ ¼

ð r
0

q2hk

qt2
ðt; yÞ dtþ qhk

qr
ð0; yÞ:

Then,

qhk

qr
ðr; yÞ � ak

2p

����
����a

ð r
0

q2hk

qt2
ðt; yÞ

����
����dta

ð r
0

jKðt; yÞhkðt; yÞj dtaL

ð r
0

jhkðt; yÞj dt

aL

ð r
0

sinhð
ffiffiffiffi
L

p
rÞffiffiffiffi

L
p dt ¼ L

�1þ coshð
ffiffiffiffi
L

p
rÞ

L
¼ L

1

2
r2 þOðr4ÞaLr2

for r small. This bound is uniform in k. Thus,

qhl

qr
ðr; yÞ � a

2p

����
����a qhl

qr
ðr; yÞ � qhk

qr
ðr; yÞ

����
����þ qhk

qr
ðr; yÞ � ak

2p

����
����þ ak

2p
� a

2p

����
����

a eðr; kÞ þLr2 þ e 0ðkÞ

Now, as k ! l, we have eðr; kÞ; e 0ðkÞ ! 0, and hence

qhl

qr
ðr; yÞ � a

2p

����
����aLr2

so

lim
k!l

qhl

qr
ðr; yÞ � a

2p

����
����¼ 0:

This proves the convergence of the cone structure. The sequence hk converges in

the C1 sense by Arzelà–Ascoli theorem, so the metric tensors gk converge in C1 on

that coordinate chart, and this implies Lipschitz convergence of the sequence of

(metric) surfaces. This finishes the proof of the theorem. r

We end the section by proving a compactness theorem for flows on cone

surfaces. The smooth counterpart, Hamilton’s compactness theorem for solutions

of Ricci flow [Ham95a], is the actual result needed to analyse singularities of the

flow.

Hamilton’s compactness for flows states that given a sequence of complete

pointed solutions to the Ricci flow
�
Mk;Ok; gkðtÞ

�
on a fixed time interval t a

ða; bÞ, with jRmjaC0 on Mk � ða; bÞ Ek, and injgkð0ÞðOkÞb i0 Ek, there exists a
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converging subsequence to a pointed flow
�
Ml;Ol; glðtÞ

�
with t a ða; bÞ in the

Cl sense. The remarkable point is that the hypothesis can be relaxed from asking

bounds on all the derivatives of the curvature to just asking a bound on the

curvature. This is due to the Bernstein–Bando–Shi estimates, [Shi89], [CK04],

Ch 7, i.e. the Ricci flow equation relates space and time derivatives, and derivating

the equation the regularity propagates to higher derivatives bounds. These

bounds, however, depend on time and get worse as t ! 0.

We now turn to flows on cone surfaces. Recall from Section 3 that the

existence of the angle preserving flow is given by the work in [MRS15]. This

flow preserves the cone angles and has, at least for short time, bounded curva-

ture and derivative of the curvature. Our compactness theorem for flows is the

following.

Theorem 4.2. Let
�
Mk; gkðtÞ;Ok

�
, with t a ða; bÞ, be a sequence of pointed cone

surfaces evolving according to the angle-preserving Ricci flow. Assume that

(1) all cone angles are less than or equal to p,

(2) jRmxjaC0 for all x a Mk � ða; bÞ, with x not a cone point,

(3) injgkð0Þ Ok b i0, if Ok B Sk,

(4) injgkð0Þ Ok b i1 and a > a0 > 0, if Ok is a cone point of angle a.

Then there exists a convergent subsequence to a pointed limit flow
�
Ml; glðtÞ;Ol

�
in the Cl sense on the smooth part, and Lipschitz on the singular points.

Proof. The same argument of Hamilton’s compactness theorem for flows applies

to neighbourhoods of smooth points (all bounds, such as Shi’s estimates can be

done locally). However, it remains to check that, in a neighbourhood of a cone

point of fixed angle a, a sequence of angle-preserving flows subconverges to an

angle-preserving flow.

From the short-time existence Theorem 3.3, for every initial metric gkð0Þ there
exists an angle-preserving flow gkðtÞ for t a ða; bÞ a uniform time interval since

the curvature is bounded by hypothesis. From Lemma 3.2, these metrics can be

written in geodesic polar coordinates around a cone point as

gkðtÞ ¼ dr2 þ hkðr; y; tÞ2 dy2

and then the Ricci flow equation adopt the form of the system

hk
t ¼ hk

rr � hk
r

Ð hk
rr

hk

hk ¼ 0 on r ¼ 0:

(
ð23Þ
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We only need to apply the Arzelà–Ascoli theorem to the functions hk to get

uniform convergence over compact sets. Note that these compact sets may

contain the cone point itself, since the functions are defined for r a ½0; r0Þ.
This is a very convenient property that we would not have in conformal

coordinates.

From the proof of Theorem 4.1, hk is uniformly bounded,

hk
a

sinhð
ffiffiffiffiffiffi
C0

p
rÞffiffiffiffiffiffi

C0

p :

Also, the space derivatives of hk are also uniformly bounded since

hk
r � a

2p

����
����aC0r

2:

Further, the second derivative hk
rr is also uniformly bounded since the curvature

K ¼ � hk
rr

hk is uniformly bounded by hypothesis.

Finally, the Ricci flow equation, written in the form of (23), ensures that

the time derivative of hk is uniformly bounded. Hence, we have uniform

bounds on space and time derivatives and therefore, by Arzelà–Ascoli theorem

there is a convergent subsequence of hk to a limit hl. Up to now, we have

that the limit function is C1 in space and C0 in time. The regularity can be

improved by checking second derivatives. From [Ram14], Prop 4.2, we know

that hk
rt is uniformly bounded and vanishes for r ¼ 0, hence the limit flow is

also an angle-preserving flow and the cone angle is the same by the Gromov–

Hausdor¤ (and stronger) convergence of the time-slice surfaces. Similarly,

higher derivatives (in space and time) of hk can be derived from expressions

on the space derivatives of K ¼ �hrr=h (each time derivative is translated into

two space derivatives by the flow equation). But bounds on the derivatives

of the curvature can be obtained from the bounds of the curvature itself by

using Bernstein–Bando–Shi estimates, cf. [CK04], Thm 7.1. The proof of these

estimates relies only on local computations in coordinates and in the applica-

tion of a maximum principle for functions. The maximum principle holds on

cone surfaces by Theorem 3.1, and hence the Bernstein–Bando–Shi estimates

apply. This implies uniform bounds on the derivatives of hk and therefore the

convergence of the metric tensor on these coordinates is Cl both in space and

time. From an intrinsic point of view, we can only claim Lipschitz conver-

gence at the singular points, since no tangent vectors exist at these points in the

smooth Riemannian sense. The convergence is Cl in the smooth part of the

flow. r
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Appendix A. Gallery of embedded solitons

Figure 6. Hamilton’s cigar soliton.
(e ¼ 0, a ¼ 1, b ¼ �1)

Figure 7. A cone-cigar soliton with cone
angle 180�.
(e ¼ 0, a ¼ 1, b ¼ �0:5)

Figure 8. A football soliton with cone
angles 108� and 183:38�.
(e ¼ �1, a ¼ 1, b ¼ 0:3, A ¼ 4:56)

Figure 9. A teardrop soliton with cone
angle 169:36�.
(e ¼ �1, a ¼ 0:8, b ¼ �1, A ¼ 4:68)

Figure 10. An ab-cone soliton with
asymptotic cone angle a ¼ 240� and ver-
tex cone angle b ¼ 90�. Note that the
curvature is negative since a > b.
(e ¼ 1, a ¼ 0:75, b ¼ �0:25)

Figure 11. An ab-cone soliton with
asymptotic cone angle a ¼ 180� and ver-
tex cone angle b ¼ 306�. Note that the
curvature is positive since a < b.
(e ¼ 1, a ¼ 1, b ¼ �0:85)
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[Déb16] Clément Débin. A compactness theorem for surfaces with bounded integral cur-
vature. Preprint, arXiv:1605.07755 [math.DG], 2016.

[GT11] Gregor Giesen and Peter M. Topping. Existence of Ricci flows of incomplete
surfaces. Comm. Partial Di¤erential Equations, 36(10):1860–1880, 2011.

[GW88] R. E. Greene and H. Wu. Lipschitz convergence of Riemannian manifolds.
Pacific J. Math., 131(1):119–141, 1988.

[Gro07] Misha Gromov. Metric structures for Riemannian and non-Riemannian spaces.
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