
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 75, Fasc. 2, 2018, 79–119 6 European Mathematical Society

DOI 10.4171/PM/2012

Towards a pseudoequational proof theory

Jorge Almeida and Ondřej Klı́ma

Abstract. A new scheme for proving pseudoidentities from a given set S of pseudoiden-
tities, which is clearly sound, is also shown to be complete in many instances, such as when
S defines a locally finite variety, a pseudovariety of groups, more generally, of completely
simple semigroups, or of commutative monoids. Many further examples for which the
scheme is complete are given when S defines a pseudovariety V which is s-reducible for
the equation x ¼ y, provided S is enough to prove a basis of identities for the variety of
s-algebras generated by V. This gives ample evidence in support of the conjecture that the
proof scheme is complete in general.
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1. Introduction

Pseudovarieties are classes of finite algebras closed under taking homomorphic

images, subalgebras and finite direct products. They have been studied mostly in

the context of finite semigroup theory due to the connections with automata and

formal languages. In the framework of Eilenberg’s correspondence [26], determin-

ing whether a regular language enjoys a suitable property of a certain kind is con-

verted to the membership problem of its syntactic semigroup in the corresponding

pseudovariety of semigroups. On the other hand, pseudovarieties are in many

respects like the varieties of classical Universal Algebra, admitting relatively free

algebras, albeit in general not finite, but rather profinite, and thus being defined by

formal equations, where pseudoidentities play the role of identities [2]. While

there is a natural proof scheme for identities that is sound and complete, which is

provided by Birkho¤ ’s completeness theorem for equational logic, the situation in

the theory of pseudovarieties is not so simple.

Indeed, the first author has shown that there is no complete finite deduction

system that is su‰cient to prove a given pseudoidentity from a set of hypotheses



(or basis) assuming that all models of the basis are also models of the pseudoiden-

tity [2], Section 3.8. Some sort of topological closure operator seems to be

required. While such an operator was also proposed by the first author (see [2],

Section 3.8), it is very hard to handle and only one instance of its application has

been found so far [12].

The main contribution of this paper is a new approach which consists in start-

ing with all evaluation consequences of the basis, and completing them in the same

term; then, transfinitely alternating transitive closure and topological closure.

This proof scheme is clearly sound and, by definition, it is suitable for transfinite

induction proofs. We show that it is complete in many familiar instances of con-

crete bases: whenever they define locally finite varieties (in their algebraic lan-

guage), pseudovarieties of groups or, more generally, of completely simple semi-

groups, or pseudovarieties of commutative monoids. For the proof of some of

these results, we need to show that concrete pseudoidentities that are valid in a

pseudovariety with a given basis are provable from the basis. The main technique

in proving such results is invoking excluded structures.

We also show that the proof scheme is complete when the pseudovariety de-

fined by the basis S is s-reducible with respect to the equation x ¼ y, where s is

an implicit signature such that the variety of s-algebras generated by the pseudo-

variety defined by S admits a basis whose elements can be obtained from S by our

proof scheme. Combining with several reducibility results that can be found in the

literature, an exercise that by no means we carry out exhaustively, this provides

ample evidence in favor of the conjecture that our proof scheme is complete in

general.

2. Preliminaries

We recall quickly in this section some basic notions from general algebra, which

also serves to fix some notation. The reader is referred to [19] for basic notions on

Universal Algebra and to [2], [5], [36] for an introduction to pseudovarieties and

profinite structures.

By an algebraic type t we mean a set of operation symbols, each of which has

an associated finite arity. An algebra of type t or a t-algebra is a nonempty set

endowed with an interpretation of each operation symbol of the type in question

as an operation of the corresponding arity. In general, we fix an algebraic type

and consider only algebras of that type. The (symbols of ) operations of the type

are sometimes called the basic operations.

By a topological algebra we mean an algebra endowed with a Hausdor¤ topol-

ogy such that the interpretations of the basic operations are continuous functions.

Such an algebra is compact if so is its topology. We endow finite algebras with the
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discrete topology. A topological algebra S is residually C for a class C of algebras

if distinct points in S may be separated by continuous homomorphisms into

members of C.

Given a family ðSiÞi A I of topological algebras, where the index set is directed,

and for each pair ði; jÞ of indices with ib j, a continuous homomorphism

ji; j : Si ! Sj such that ji; i is the identity mapping on Si and, for ib jb k,

jj;k � ji; j ¼ ji;k, we may consider the inverse limit lim � i A I
Si, which may be de-

scribed as the subset of the product
Q

i A I Si consisting of all families ðsiÞi A I such

that each si a Si and, for ib j, ji; jðsiÞ ¼ sj. In case each Si is compact, lim � i A I
Si

is nonempty and a closed subalgebra of
Q

i A I Si.

Recall that a pseudovariety is a (nonempty) class of finite algebras of a given

type that is closed under taking homomorphic images, subalgebras and finite

direct products. Let U be a pseudovariety. A pro-U algebra is an inverse limit

of algebras from U. In other words, a pro-U algebra is a compact algebra that

is residually U. A profinite algebra is a pro-U algebra for the class U of all finite

algebras of the given type. In case a profinite algebra S is finitely generated as

a topological algebra, meaning that a finitely generated subalgebra is dense, and

if the signature is assumed to be finite, then there are, up to isomorphism, only

countably many finite homomorphic images of S. Hence, such an S embeds in

a countable product of finite algebras, which implies that its topology is met-

rizable; in particular, the topology of S is characterized by the convergence of

sequences.

Given an arbitrary algebra S, one may consider all homomorphisms S ! F

onto algebras from a set of representatives of isomorphism classes of algebras

from a given pseudovariety U. These homomorphisms form a directed set and

so we may consider the inverse limit lim � S!F
F , which is called the pro-U com-

pletion of S and is denoted ŜSU. Note that the natural mapping S ! ŜSU is in-

jective if and only if S is residually U. In case U consists of all finite algebras

of the given type, we drop the index U and talk about the profinite completion

of S.

By an alphabet we simply mean a finite set. Its elements are called either letters

or variables. Alphabets appear in this paper as free generating sets of various

structures.

By a term (of a given algebraic type) we mean a formal expression on an alpha-

bet A constructed using the basic operations according to their arities. In other

words, it is an element of a free algebra TA in the (Birkho¤ ) variety of all algebras

of the given type.

A pro-U algebra S is said to be freely generated by A if it comes endowed with

a function i : A! S such that, for every function j : A! T into a pro-U algebra

T , there is a unique continuous homomorphism ĵj : S ! T such that the following

diagram commutes:
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Such a structure S is unique up to isomorphism of topological algebras and can be

easily shown to be precisely the inverse limit of all A-generated members of U. It

is denoted WAU. If n ¼ jAj, then we may sometimes write WnU instead of WAU as

it is easy to see that, up to isomorphism of topological algebras, WAU only depends

on the cardinality of the set A and not on the set itself. The subalgebra of WAU

generated by iðAÞ is denoted WAU; it is the algebra in the variety generated by U

that is freely generated by the alphabet A. Note that WAU may also be obtained as

the profinite completion dWAUWAU.

An element of WAU is called a U-pseudoword or simply a pseudoword if the

pseudovariety U is understood from the context;1 those that lie in WAU are said

to be finite whereas the remaining U-pseudowords are said to be infinite. Every

pseudoword w a WAU has a natural interpretation as an operation of arity jAj on
a pro-U algebra T : jAj-tuples of elements of T may be identified with functions

j : A! T and so the interpretation of w becomes a function wT : TA ! T ; the

image wT ðjÞ is defined to be ĵjðwÞ, where ĵj is given by the above commutative

diagram. Viewed as operations, pseudowords are sometimes called implicit oper-

ations because their natural interpretations commute with continuous homomor-

phisms between pro-U algebras.

By a U-pseudoidentity we mean a formal equality u ¼ v with u; v a WAU for

some alphabet A. A pseudoidentity u ¼ v holds in an algebra T a U if uT ¼ vT .

For a set S of U-pseudoidentities the class 7S8U consists of all algebras T a U in

which all pseudoidentities from S hold. When the ambient pseudovariety U is

understood from the context, we may also write 7S8. This defines a pseudovariety

contained in U, that is, a subpseudovariety of U, and Reiterman’s theorem [35]

states that every subpseudovariety of U is of this form.

In case u; v a WAU, the formal equality u ¼ v is called a U-identity. We may

choose terms u 0 and v 0 which map respectively to u and v under the natural homo-

morphism TA ! WAU which fixes each generator. An algebra of U satisfies the

U-identity u ¼ v if and only if it satisfies the identity u 0 ¼ v 0. We call the identity

u 0 ¼ v 0 a lifting of u ¼ v. For a set S of U-identities, we let S 0 be the union of the

set consisting of an arbitrarily chosen lifting of each element of S together with a

basis of identities for the variety generated by U. By ½S� we mean the variety ½S 0�
consisting of all algebras that satisfy all identities from S 0.

1The name pseudoword actually comes from the theory of semigroups since the elements of free semi-
groups are usually viewed as words. We would call it a pseudoterm in case U is the pseudovariety of all
finite algebras of the given type, but this special case plays no role in this paper.
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Let U be a pseudovariety of type t. An implicit signature (over U) is a set s

of U-pseudowords including those of the form oða1; . . . ; anÞ a WAn
U, where o is a

basic operation from t of arity n and An ¼ fa1; . . . ; ang is an n-letter alphabet.

By the above, every pro-U algebra has a natural structure of s-algebra. In partic-

ular, this is the case for the algebras from U which, as s-algebras, generate a vari-

ety of s-algebras denoted Us. It is also the case of WAU; the s-subalgebra gener-

ated by iðAÞ is denoted Ws
AU and it is easily shown to be the algebra of the variety

Us freely generated by A.

Two pseudovarieties that have received a lot of attention are the pseudovariety

S, of all finite semigroups, and M, of all finite monoids. For an element s of a

finite semigroup S, there is a unique power sn (nb 1) of s which is an idempotent

and it is denoted so. The element s2n�1 is then also denoted so�1. In terms of the

discrete topology, so is the limit of the sequence ðsn!Þn while so�1 is the limit of the

sequence ðsn!�1Þn. It follows that if, instead of taking S finite we take S to be pro-

finite, the sequences in question still converge and the notation for the limits is

retained.

Consider the semiring N of all natural numbers (including zero) and the ring

Z of integers, both under the usual addition and multiplication. These may be

viewed as algebras of type consisting of two binary operation symbols, of addi-

tion and multiplication. Since both underlying additive structures (respectively a

monoid and a group) are monogenic, so are their finite homomorphic images.

Note also that a finite monogenic additive monoid M carries a natural structure

of semiring via the natural additive homomorphism N!M. It follows that the

profinite completion of each of N and Z as additive structures carries a multiplica-

tion which makes it isomorphic (as a topological algebra) with the semiring N̂N, re-

spectively with the ring ẐZ.

Let G and Gp denote, respectively, the pseudovarieties of all finite groups and

of all finite p-groups. The above allows us to describe the structure of the monoid

W1M and of the groups W1G and W1Gp. Indeed we know that W1M and W1G are

respectively the inverse limits of the finite monogenic monoids and of the finite

cyclic groups, which we know that, as additive algebras, carry multiplicative struc-

tures which make them isomorphic to N̂N and ẐZ, respectively. The isomorphisms

N̂N! W1M and ẐZ! W1G are easy to describe: if the free generator is denoted x,

they send each number n in N or in Z to xn, respectively in W1M and in W1G.

For this reason, we also denote, for each a in N̂N or in ẐZ the image in W1M or in

W1G, respectively, by xa. Thus the usual laws of exponents hold and ðxaÞb ¼ xab

can be viewed as a composition of implicit operations.

Similarly, W1Gp may be identified with the completion ẐZGp
¼ lim � n

Z=pnZ,

which is frequently denoted Zp. Moreover, thanks to the Chinese Remainder The-

orem, it is easy to see that ẐZU
Q

p Zp, where the index p runs over all primes. The

structure of the ring Zp is quite transparent: it is an integral domain and every
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ideal is both principal and closed. It follows that the principal ideals of the ring ẐZ

are the closed ideals. In particular, every subset of ẐZ has a greatest common

divisor, which is a generator of the closed ideal generated by the given set.

Since each of the (semi)rings N and Z is residually finite, and the latter is even

residually Gp, there are natural embeddings N! N̂N, Z! ẐZ, and Z! Zp, which

we view as inclusion mappings. It is easy to see that the invertible elements of Zp

are those that are not divisible by p. Hence, the invertible elements of ẐZ are those

that are not divisible by any prime p.

The semiring N̂N has two additive idempotents, namely 0 and o ¼ lim n!. The

maximal additive group Ho containing o is a closed ideal of N̂N which is generated

by oþ 1. The natural continuous homomorphism p : N̂N! ẐZ, mapping 1 to 1,

also maps oþ 1 to 1 and therefore restricts to an isomorphism Ho ! ẐZ. Thus,

ẐZ may be identified with Ho, which we do from hereon; it is a retract of N̂N under

the mapping a 7! oþ a. Also note that N̂N is the disjoint union of N with ẐZ. We

say that the elements of N are finite while those of ẐZ are infinite.

3. A proof scheme

Let U be a pseudovariety of a certain finite type of algebras involving only finitary

operations. Let S be a set of pseudoidentities u ¼ v with u and v elements of the

free pro-U algebra over some arbitrary finite alphabet, which may depend on u

and v. We seek a complete proof scheme for pseudoidentities valid in the pseudo-

variety 7S8, that is, a deduction system that is capable of deducing from S exactly

the pseudoidentities valid in 7S8.
Since we are concerned with proving one concrete pseudoidentity, we fix

a finite alphabet A and consider only U-pseudoidentities over A. By transfinite

recursion, we define, for each ordinal a, a set Sa of pseudoidentities over A as

follows:

• S0 consists of all trivial pseudoidentities u ¼ u,2 with u a WAU together with

all pairs of the form
�
t
�
jðuÞ;w1; . . . ;wn

�
; t
�
jðvÞ;w1; . . . ;wn

��

such that either u ¼ v or v ¼ u is a pseudoidentity from S, say with u; v a
WBU, j : WBU! WAU is a continuous homomorphism, t is a term (in the

algebraic language of U), and wi a WAU (i ¼ 1; . . . ; n);

• S2aþ1 is the transitive closure of the binary relation S2a;

• S2aþ2 is the topological closure of the relation S2aþ1 in the space WAU�WAU;

• if a is a limit ordinal, then Sa ¼
S

b<a Sb.

2Note that, in case � is nonempty, this is superfluous.
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Finally, we let ~SS ¼
S

a Sa. The reader should keep in mind that, although the

notation does not indicate it, the sets Sa and ~SS depend on the choice of finite al-

phabet A. Occasionally, this dependence will be made explicit by writing instead

Sa;A and ~SSA.

Note that, Saþ2 ¼ Sa if and only if Sa is both transitive and topologically

closed, in which case Sb ¼ Sa for every ordinal b with bb a.

If a is a limit ordinal, then Sa is transitive for, given pseudoidentities u ¼ v and

v ¼ w from Sa, there exists and ordinal b < a such that u ¼ v and v ¼ w both lie

in Sb and, therefore, u ¼ w lies in the transitive closure of Sb, which is contained

in Sbþ2, whence also in Sa. Similarly, for the least uncountable ordinal o1, we

claim that the set So1
is topologically closed, which basically follows from the

fact that the topological closure is captured by limits of sequences in the metric

space WAU�WAU. Indeed, suppose that ðun; vnÞ ! ðu; vÞ is a convergent sequence

in WAU�WAU such that each pseudoidentity un ¼ vn belongs to So1
. Then, for

each n, there exists a countable ordinal bn such that un ¼ vn belongs to Sbn . It

follows that b ¼
S

n bn is again a countable ordinal and u ¼ v belongs to Sbþ2,
whence also to So1

, which establishes the claim that So1
is closed. The above

proves the following result.

Proposition 3.1. The least ordinal a such that Sa is both transitive and topologi-

cally closed satisfies aao1. In particular, ~SS is a transitive closed binary relation

on WAU.

Consider a binary relation y on WAU. We say that y is stable if ðu; vÞ a y

implies

�
tðu;w1; . . . ;wnÞ; tðv;w1; . . . ;wnÞ

�
a y

for every term t and w1; . . . ;wn a WAU. We also say that y is fully invariant if, for

every continuous endomorphism j of WAU and ðu; vÞ a y, we have
�
jðuÞ; jðvÞ

�
a y.

A stable equivalence relation is also called a congruence.

The following result establishes the soundness of the above proof scheme.

Proposition 3.2. The relation ~SS is a fully invariant closed congruence on WAU. For

every ðu; vÞ a ~SS, the pseudoidentity u ¼ v is valid in 7S8.

Proof. Note that S0 is a reflexive and symmetric binary relation on WAU, whence

so are all Sa as well as ~SS. We prove by transfinite induction on a that each Sa is a

stable fully invariant binary relation on WAU whose elements, viewed as pseudo-

identities, are valid in the pseudovariety 7S8.
For a ¼ 0, the claimed properties are immediate from the definition of S0.

Assuming the claim holds for all a < b, then it clearly also holds for Sb in case b
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is a limit ordinal. Otherwise, b is a successor ordinal, and we distinguish the cases

where b is odd or even.

In case b is odd, that is, it is of the form b ¼ 2gþ 1, Sb is the transitive closure

of S2g which, by the induction hypothesis, is a stable fully invariant binary relation

on WAU whose elements define pseudoidentities valid in the pseudovariety 7S8.
The elements of Sb are pairs ðu0; unÞ such that there exist u1; . . . ; un�1 with each

ðui; uiþ1Þ a S2g (i ¼ 0; . . . ; n� 1). In particular, each pseudoidentity ui ¼ uiþ1 is

valid in 7S8, whence so is u0 ¼ un. If t is a term and w1; . . . ;wm are elements

from WAU then, by the induction hypothesis, each pair
�
tðui;w1; . . . ;wmÞ; tðuiþ1;

w1; . . . ;wmÞ
�
belongs to S2g, and so the pair

�
tðu0;w1; . . . ;wmÞ; tðun;w1; . . . ;wmÞ

�
also belongs to Sb. Finally, if j is a continuous endomorphism of WAU, by the

induction hypothesis each of the pairs
�
jðuiÞ; jðuiþ1Þ

�
belongs to S2g, which entails

that
�
jðu0Þ; jðunÞ

�
belongs to Sb.

Consider next the case where b ¼ 2gþ 2, that is, a nonzero and non-limit even

ordinal. Then, since WAU is a metric space, every element from Sb is the limit

ðu; vÞ of a sequence ðun; vnÞn of elements from S2gþ1. By the induction hypothesis,

as a pseudoidentity, every element of the sequence is valid in 7S8, whence so is

u ¼ v since, under an evaluation of the elements of A in a finite algebra, the se-

quences ðunÞn and ðvnÞn eventually stabilize, precisely at the values of u and v,

respectively. Since S2gþ1 is assumed to be stable, for a term t and w1; . . . ;wm a
WAU, the sequence of pairs

�
tðun;w1; . . . ;wmÞ; tðvn;w1; . . . ;wmÞ

�
n
consists of ele-

ments of S2gþ1, whence its limit
�
tðu;w1; . . . ;wmÞ; tðv;w1; . . . ;wmÞ

�
belongs to

Sb ¼ S2gþ1. Finally, if j is a continuous endomorphism of WAU, then the elements

of the sequence
�
jðunÞ; jðvnÞ

�
n
belong to S2gþ1 and, therefore, its limit

�
jðuÞ; jðvÞ

�
belongs to Sb. This completes the transfinite induction.

In view of the already established initial claim, we know that ~SS is a reflexive

symmetric stable fully invariant binary relation consisting of pairs ðu; vÞ such that

the pseudoidentity u ¼ v is valid in 7S8. To complete the proof, it remains to re-

call that we already observed that ~SS is a closed transitive binary relation. r

We say that a U-pseudoidentity over a finite alphabet A is provable from S if it

belongs to ~SSA. A set G of U-pseudoidentities is provable from S if every member of

G is provable from S. Note that if G is provable from S and D is provable from G,

then D is provable from S.

A proof of a pseudoidentity consists in a transfinite sequence of steps in which

in step 0 we invoke pseudoidentities from S, suitably evaluated in WAU, in which

both sides are plugged in the same place of an arbitrary term, and in later steps we

either use transitivity of equality or take limits, in the latter two cases from already

proved steps, or simply collect together all pseudoidentities in previous steps. In

the last step in the proof we should have a set of pseudoidentities containing the

one to be proved. Note that a pseudoidentity is provable from S if and only if it

admits a proof from S.
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An alternative but equivalent definition of proof, in the sense of capturing the

same provable pseudoidentities, would be to take a transfinite sequence of pseudo-

identities in which in each step we allow one of the pseudoidentities of the above

step 0, we take u ¼ w if there are two previous steps of the form u ¼ v and v ¼ w,

or we take u ¼ v provided there is a sequence of earlier steps ðun ¼ vnÞn with

u ¼ lim un and v ¼ lim vn. The latter steps are called limiting steps. The last step

in such a proof should be the pseudoidentity to be proved.

If such a proof only involves a finite number of non-limiting steps and no limit-

ing steps, then we say the proof is algebraic. Note that such a proof exists for a

pseudoidentity over a given finite alphabet A precisely for the pseudoidentities of

S1;A.

Several examples of proofs in the above general sense can be found in the

literature. In fact, all proofs that a pseudovariety defined by certain pseudoiden-

tities satisfies a given pseudoidentity that we have been able to find in the literature

seem to be expressible in this form. This suggests the following general conjecture

which amounts to completeness of our proof scheme.

Conjecture 3.3. A U-pseudoidentity u ¼ v is provable from a set S of U-

pseudoidentities whenever 7S8 satisfies u ¼ v.

The above statement is to be interpreted as a logical clause depending on three

parameters: U, S, and u ¼ v, where each of the latter two determine the first

one. Since we have been unable to establish the conjecture in full generality, par-

ticular instances of the conjecture, where one of the parameters is fixed may be

of interest as they provide evidence towards the conjecture. If a parameter is

fixed then those that are not determined by it are interpreted as being universally

quantified.

We say that a set S of U-pseudoidentities is h-strong (within U, or for U) if the

statement in the conjecture holds for the given fixed choice of S and an arbitrary

choice of the U-pseudoidentity u ¼ v. In case S ¼ fw ¼ zg consists of a single

pseudoidentity, we also say that w ¼ z is h-strong if so is S.

A U-pseudoidentity u ¼ v is said to be t-strong (within U, or for U) if the state-

ment in the conjecture holds for the given fixed choice of u ¼ v and an arbitrary

choice of S. The letters h and t in ‘‘h/t-strong’’ are meant to refer to whether the

pseudoidentities appear as hypotheses or as thesis in the proofs.

The conjecture also involves an ambient pseudovariety U with respect to which

pseudoidentities are taken. We say that the pseudovariety U is strong if the state-

ment in the conjecture holds, that is, it holds for every set S of U-pseudoidentities

and U-pseudoidentity u ¼ v.

Taking into account the results of [2], Section 3.8, showing that S is h-strong

is equivalent to showing that ~SS is a profinite congruence in the sense of [36],

Page 139, that is, for every finite alphabet A, that ~SS is a closed congruence on
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WAU such that the quotient topological algebra WAU=~SS is a profinite algebra. A

further equivalent formulation of this property is that, given any two distinct
~SS-classes, there is a clopen union of ~SS-classes separating them. The di‰culty in

establishing this property in general is to obtain ~SS-saturation of such clopen sets.

In case all congruence classes are determined by a single class, as in the group

case, this program is much easier to achieve (cf. Section 8).

We are able to prove the conjecture in several cases of interest. The remainder

of the paper is concerned with gathering evidence for the conjecture.

4. A transfer result

The purpose of this section is to show that it is possible to extend the validity of

the conjecture within a certain ambient pseudovariety V to a larger pseudovariety

U provided that V admits an h-strong basis within U. We first prove that the con-

verse is also true without the additional assumption on a basis of V.

We denote by pA;U;V the natural continuous homomorphism WAU! WAV,

which fixes the free generators. Where it is clear from the context what some of

A, U, and V are supposed to be, we may drop them from the preceding notation

and, in particular, we may simply write p.

Proposition 4.1. Let U be a pseudovariety and let V be a subpseudovariety of U.

Suppose that the set G of U-pseudoidentities defines a subpseudovariety of V and

G is h-strong within U. Then the set G 0 ¼ fpðuÞ ¼ pðvÞ : ðu ¼ vÞ a Gg is h-strong

within V.

Proof. Let u; v a WAU be such that the V-pseudoidentity pðuÞ ¼ pðvÞ holds in

the pseudovariety 7G 08V ¼ 7G8U. Then, the U-pseudoidentity u ¼ v holds in the

pseudovariety 7G8U. Since we assume that G is h-strong within U, it follows that

there is a proof of the pseudoidentity u ¼ v from G. Projecting by p into WAV all

steps in such a proof, we obtain a proof of pðuÞ ¼ pðvÞ from G 0; more precisely,

one may easily prove by induction on the ordinal a that ðp� pÞðGaÞ � G 0a. Hence,

G 0 is h-strong within V. r

Going in the opposite direction is more interesting, but requires an additional

assumption.

Proposition 4.2. Let U be a pseudovariety and let V be a subpseudovariety of U.

Suppose that V admits a basis S of U-pseudoidentities that is h-strong within U and

consists of t-strong pseudoidentities. Let G be a set of U-pseudoidentities such that

7G8U � V. If the set G 0 ¼ fpðuÞ ¼ pðvÞ : ðu ¼ vÞ a Gg is h-strong within V, then the

set G is h-strong within U.
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Proof. Let u ¼ v be a U-pseudoidentity valid in the pseudovariety 7G8U. This

means that the V-pseudoidentity pðuÞ ¼ pðvÞ holds in 7G 08V ¼ 7G8U. Since G 0 is
h-strong within V, pðuÞ ¼ pðvÞ is provable from G 0. We need to show that u ¼ v

is also provable from G. We first claim that there are u 0 and v 0 such that u 0 ¼ v 0 is
provable from G, pðu 0Þ ¼ pðuÞ, and pðv 0Þ ¼ pðvÞ. Before proving the claim, we

show how it allows us to conclude the proof of the proposition. Since S is h-strong

within U, it follows that S proves u 0 ¼ u and v 0 ¼ v. On the other hand, since the

pseudovariety 7G8 is contained in V, it satisfies all pseudoidentities from S and,

as these are assumed to be t-strong, they are provable from G. Hence, G proves

u 0 ¼ u, v 0 ¼ v and, assuming the claim, also u 0 ¼ v 0, which entails that G proves

u ¼ v. Thus, it remains to establish the claim.

Consider the sets G 0a ¼ ðG 0Þa defined as in Section 3. The proof will be com-

plete once we establish the above claim that every pseudoidentity in G 0a is of the

form pðwÞ ¼ pðzÞ for some pseudoidentity w ¼ z provable from G. To prove the

claim, we proceed by transfinite induction on a.

In case a ¼ 0, we have a pseudoidentity of the form

t
�
j
�
pðwÞ

�
; pðs1Þ; . . . ; pðsnÞ

�
¼ t

�
j
�
pðzÞ

�
; pðs1Þ; . . . ; pðsnÞ

�
; ð1Þ

where t is a term, w ¼ z is a pseudoidentity from G, say over the set of variables B,

j : WBV! WAV is a continuous homomorphism, and s1; . . . ; sn a WAU. By the

universal property of relatively free profinite algebras, there is a continuous homo-

morphism c : WBU! WAU such that the following diagram commutes:

WBU ���!c WAU???ypB

???ypA

WBV ���!j WAV

It follows that the pseudoidentity (1) is obtained from

t
�
cðwÞ; s1; . . . ; sn

�
¼ t

�
cðzÞ; s1; . . . ; sn

�

by applying p to each member, which completes the basic step a ¼ 0 of the

induction.

Suppose next that a ¼ 2b þ 1 and that the pseudoidentities wi ¼ wiþ1 (i ¼
0; . . . ; k � 1) belong to G 02b. By induction hypothesis, there exist w 00i ;w

0
iþ1 a WAU

such that the pseudoidentity w 00i ¼ w 0iþ1 is provable from G, pðw 0i Þ ¼ wi, and

pðw 00iþ1Þ ¼ wiþ1. In particular, we have pðw 0i Þ ¼ wi ¼ pðw 00i Þ for i ¼ 1; . . . ; k � 1,

and so each pseudoidentity w 0i ¼ w 00i is also provable from G. Hence, w0 ¼ wk is

provable from G.
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For the case a ¼ 2b þ 2, consider a sequence ðwn ¼ znÞn of U-pseudoidentities

such that each pðwnÞ ¼ pðznÞ belongs to G 02bþ1 and suppose that the sequence�
pðwnÞ ¼ pðznÞ

�
n
converges to pðwÞ ¼ pðzÞ. By compactness and continuity of p,

we may as well assume that ðwn ¼ znÞn converges to w ¼ z. Since each pseudo-

identity wn ¼ zn is provable from G by induction hypothesis, w ¼ z is also prov-

able from G.

Since the case of limit ordinals is trivial, the transfinite induction is complete

and the claim is established. r

With essentially the same arguments, one may replace the t-strongness hypoth-

esis by provability of S from G, which yields the following corollary.

Corollary 4.3. Let U be a pseudovariety and let V be a subpseudovariety of U.

Suppose that V admits a basis of U-pseudoidentities S that is h-strong within U and

that V is strong. Then every set of U-pseudoidentities from which S is provable is

h-strong within U.

5. Locally finite sets of identities

Recall that a variety is locally finite if all its finitely generated algebras are finite.

We also say that a set of pseudoidentities is locally finite if it defines a pseudo-

variety which is contained in some locally finite variety. Note that, if S is a locally

finite set of identities, then the variety ½S� is generated by 7S8 since every variety is

generated by its finitely generated free members.

Theorem 5.1. Every locally finite set of identities is h-strong.

Proof. Consider a locally finite set S of identities. Let A be a finite set and let

p ¼ pA;U; 7S8 be the natural continuous homomorphism. For each of the finitely

many elements s of WA7S8 choose an element f ðsÞ of WAU such that p
�
f ðsÞ

�
¼ s.

Let ~ff ¼ f � p and note that, since p is continuous, so is ~ff .

WAU ���!p WA7S8

~ff

???yf

WAU

�������!

For u a WAU, consider the identity u ¼ ~ff ðuÞ. Since pðuÞ ¼ p � f � pðuÞ ¼
p
�
~ff ðuÞ

�
, it is valid in the pseudovariety 7S8. As the basis S is locally finite, it is

90 J. Almeida and O. Klı́ma



also valid in the variety ½S�. By the completeness theorem for equational logic, it

follows that the identity u ¼ ~ff ðuÞ is algebraically provable from S.

Finally, consider an arbitrary pseudoidentity u ¼ v with u; v a WAU and sup-

pose that it is valid in 7S8, that is, pðuÞ ¼ pðvÞ. Let ðunÞn and ðvnÞn be sequences

in WAU converging respectively to u and v. Since p is continuous and WA7S8 is

a discrete space, we may as well assume that the sequences
�
pðunÞ

�
n
and

�
pðvnÞ

�
n

are constant. It follows that each of the identities un ¼ vn is valid in 7S8, whence
the equality ~ff ðunÞ ¼ ~ff ðvnÞ holds. By the preceding paragraph, we deduce that the

identities un ¼ ~ff ðunÞ ¼ vn are algebraically provable from S. Hence, the pseudo-

identity u ¼ v is, sidewise, the limit of the sequence ðun ¼ vnÞn of algebraically

provable pseudoidentities, which shows that u ¼ v is provable from S, thereby

establishing that S is h-strong. r

For a locally finite set of identities, we may take any basis of a variety gener-

ated by a single finite algebra. A classical example of locally finite identity for

semigroups which is not of this type is x2 ¼ x (see, for instance, [29], Theorems

IV.4.7 and IV.4.9).

Along the same lines of the proof of Theorem 5.1, we may prove the following

result.

Theorem 5.2. Every locally finite set of identities defines a strong pseudovariety.

Proof. Let V be the pseudovariety defined by a locally finite set S of identities

and let V be the variety defined by S. Let G be a set of V-identities and let

u; v a WAV ¼ WAV be such that the identity u ¼ v is valid in 7G8V. Let G 0 be a set

of liftings of the elements of G. Since S is locally finite, the variety ½G� ¼ ½SAG 0� is
generated by the pseudovariety 7G8V and so the variety ½SAG 0� also satisfies the

identity u ¼ v. By the completeness theorem for equational logic, we deduce that

u ¼ v is provable from SAG 0. Since, in proofs within the ambient pseudovariety

V ¼ 7S8, the identities from S are taken for granted, it follows that u ¼ v is prov-

able from G within V. r

Combining Theorems 5.1 and 5.2 with Corollary 4.3, we obtain the following

result.

Corollary 5.3. Every set of pseudoidentities which proves a locally finite set of iden-

tities is h-strong.

It would be nice to replace the provability assumption in Corollary 5.3 by the

hypothesis that the given set of pseudoidentities is locally finite. This would follow

from Corollary 4.3 if we could show that every identity is t-strong, which is a par-

ticular case of the conjecture that has not been established in general.
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6. T-strongness

The main proposition of this section gathers the statement of t-strongness of

several pseudoidentities. Some of these results play a role in the application of

Proposition 4.2 in later sections.

We start with a simple lemma which is used in several points in the sequel.

Lemma 6.1. If xa ¼ xb is a nontrivial one-variable M-pseudoidentity, then it proves

the pseudoidentity xa ¼ xaþo.

Proof. We start by noting that xa ¼ xb proves xa ¼ xaþo if and only if it proves

xb ¼ xbþo. To establish it, by symmetry, we may assume that xa ¼ xb proves

xb ¼ xbþo. Then, it also proves xa ¼ xb ¼ xbxo ¼ xaxo ¼ xaþo.
The cases where a or b are infinite are now immediate since o is the neutral

element of the additive group ẐZ. Thus, it remains to consider the case where

both a and b are finite and, by the equivalence in the preceding paragraph, we

may as well assume that b > a. We may then write the given pseudoidentity in

the form xa ¼ xaxb�a which proves algebraically xa ¼ xaxðb�aÞn! for every positive

integer n. Taking the limit as n goes to infinity, we deduce that xa ¼ xb proves

xa ¼ xaxðb�aÞo ¼ xaþo. r

The following finite semigroups play a role below:

• Sl2 stands for the two-element semilattice;

• for positive integers m and n, let Bðm; nÞ denote the rectangular band m� n,

consisting of the pairs ði; jÞ with 1a iam and 1a ja n, where multiplica-

tion is described by ði; jÞðk; lÞ ¼ ði; lÞ;

• for positive integers m and n, let Cm;n ¼ 3a : am ¼ amþn4 be the mono-

genic semigroup with mþ n� 1 elements and maximal subgroup with n

elements;

• for a positive integer n, let Cn be the cyclic group of order n;

• B2 is the five-element aperiodic Brandt semigroup, which is given by the

presentation

3a; b; aba ¼ a; bab ¼ b; a2 ¼ b2 ¼ 04

as a semigroup with zero;

• N is the semigroup with zero given by the presentation

3a; b; a2 ¼ b2 ¼ ba ¼ 04;
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• T is the semigroup with zero given by the presentation

3e; a; e2 ¼ e; ea ¼ a; ae ¼ 04:

We say that two sets of U-pseudoidentities are equivalent if every pseudo-

identity from each set is provable from the other set. Another simple result that

is useful below is the following lemma.

Lemma 6.2. Let G be a set of pseudoidentities and suppose that G is equivalent to a

single pseudoidentity e. If each pseudoidentity in G is t-strong, then so is e.

Proof. Let S be a set of pseudoidentities and suppose that 7S8 satisfies e. From

the equivalence hypothesis, it follows that 7S8 satisfies each pseudoidentity g

from G. Since g is t-strong, we deduce that S proves g. By the equivalence hypoth-

esis again, we conclude that S proves e. r

We are now ready for the announced proposition.

Proposition 6.3. Each of the following pseudoidentities is t-strong within M:

(i) xo ¼ 1;

(ii) xoþ1 ¼ x;

(iii) xoþ1 ¼ xo;

(iv) ðxoyÞoxo ¼ ðxoyÞo;
(v) ðxoyÞo ¼ ðyxoÞo;
(vi)

�
ðxyÞoxðxyÞo

�o ¼ ðxyÞo;
(vii) ðxyÞoxðxyÞo ¼ ðxyÞo;
(viii)

�
ðxyÞox

�o ¼ ðxyÞo;
(ix) ðxyÞo ¼ ðyxÞo;
(x) ðxyÞox ¼ ðxyÞo;
(xi) xoy ¼ yxo.

Proof. For simplicity, we may refer to one of (i)–(xi) as meaning either a part of

the proposition or the pseudoidentity in it; which is the case should be clear from

the context.

Let S be a set of M-pseudoidentities. For each of the pseudoidentities e in the

statement of the proposition, we assume that the pseudovariety 7S8 satisfies e and
show that S proves e.

(i) Since all finite semigroups satisfying S are groups, in particular Sl2 fails

some pseudoidentity u ¼ v from S, which means that there is some variable that

93Pseudoequational proof theory



occurs in one of the sides but not in the other. Substituting xo for that variable

and 1 for all others, we conclude that xo ¼ 1 is algebraically provable from S.

(ii) Since the monoid C1
2;1 ¼ f1; a; 0g (with a2 ¼ 0) fails (ii), it must fail some

pseudoidentity u ¼ v from S under some suitable evaluation. If such an evalua-

tion gives the values 0 and 1 for u and v, then u and v do not involve the same

variables, so that, substituting xo for one variable and 1 for all others, one gets

xo ¼ 1, from which (ii) follows. Otherwise, one of the sides, say u, is evaluated

to a and the other to either 0 or 1. Substituting 1 for all variables in u that are

not evaluated to a and x for every other variable, we obtain a pseudoidentity

of the form x ¼ xa, with a a N̂Nnf1g. By Lemma 6.1, each such pseudoidentity

proves (ii).

(iii) Each of the cyclic groups of prime order fails the pseudoidentity (iii). For

a pseudoword w and a variable x, let wx be the pseudoword that is obtained from

w by substituting 1 for every variable except x. Since the cyclic group Cp satisfies a

pseudoidentity u ¼ v if and only if, for every variable x, it satisfies the pseudoiden-

tity ux ¼ vx, it follows that, if Cp fails S, then there is ap a N̂NnN ¼ ẐZ such that p

does not divide ap and S proves xap ¼ xo.

Let a be a greatest common divisor of the ap, which is a limit of a sequence

of linear combinations of the ap with nonnegative integer coe‰cients. Since each

prime p does not divide ap, it cannot divide a. Hence, a is invertible in the ring ẐZ

and there exists b a ẐZ such that ab ¼ oþ 1. Now, if g ¼
Pn

i¼1 giapi with the coef-

ficients gi in N, then S proves xg ¼ xo by raising both sides of each pseudoidentity

xapi ¼ xo to the gi power and multiplying the results side by side. The pseudoiden-

tity xa ¼ xo is therefore a limit of pseudoidentities provable from S, and hence it is

provable from S. Finally, raising both sides of xa ¼ xo to the b power, we deduce

that the pseudoidentity (iii) is provable from S.

(iv) As it is easy to see, and well known, Bð1; 2Þ1 fails a pseudoidentity u ¼ v

if and only if, from right to left, the order of first occurrences of variables in u and

v is not the same. In particular, the monoid Bð1; 2Þ1 fails (iv) and, therefore, it

fails some pseudoidentity from S. Hence, there is a substitution that sends all

variables but two to 1 that yields from some pseudoidentity in S a two-variable

pseudoidentity of the form ux ¼ vy, where x and y are distinct variables, or a

nontrivial pseudoidentity u ¼ 1 or 1 ¼ u. In the latter case, by substituting all

variables by xo, we conclude that S proves xo ¼ 1 and, hence, every pseudoiden-

tity in which both sides are products of o powers, as is the case of (iv). Thus,

it remains to consider the former case. Applying the substitution x 7! xo and

y 7! xoy and raising both sides to the o power, we conclude that S proves the

pseudoidentity (iv).

(v) Noting that the sets of pseudoidentities fðxoyÞoxo ¼ ðxoyÞo; xoðyxoÞo ¼
ðyxoÞog and fðxoyÞo ¼ ðyxoÞog are equivalent, in view of (iv) and its dual, it

su‰ces to apply Lemma 6.2.
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(vi) The evaluation of x to a and y to b shows that the monoid B1
2 fails the

pseudoidentity (vi). Hence, there is some pseudoidentity u ¼ v from S and an

evaluation of the variables in B1
2 which yields di¤erent values for u and v. A vari-

able being assigned the value 1 corresponds to deleting that variable. For all other

values in B1
2 , since B2 is generated by fa; bg as a semigroup, we may first substitute

the variable by a word in the variables x and y and then evaluate x to a and y to b.

Thus, under the assumption that B1
2 fails u ¼ v, we conclude that there is a pseudo-

identity u 0 ¼ v 0 in x and y that can be proved from S and which fails in B1
2 under

the evaluation x 7! a and y 7! b. Under such an evaluation, not both sides are

evaluated to 0. If one of the sides is 1 then, substituting x for y, we get a pseudo-

identity of the form xa ¼ 1, which proves xo ¼ 1 and, therefore, also the pseudo-

identity (vi). Otherwise, one of the sides of the pseudoidentity u 0 ¼ v 0, say u 0, must

be a factor of ðxyÞo while v 0 either admits x2 or y2 as a factor or does not start

or end with the same letter as u 0. By multiplying both sides of u 0 ¼ v 0 by suitable

factors of ðxyÞo, we may prove from u 0 ¼ v 0 a pseudoidentity u 00 ¼ v 00 of the form
ðxyÞo ¼ w where w is a pseudoword that admits at least one of the words x2 and

y2 as a factor, starts with x and ends with y. Substituting ðxyÞox for x and

yðxyÞo for y, we obtain from u 00 ¼ v 00 a pseudoidentity of the form

ðxyÞo ¼ ðxyÞaxðxyÞbt ð2Þ

or of the form

ðxyÞo ¼ ðxyÞayðxyÞbt; ð3Þ

where a and b are infinite exponents and t is some pseudoword. From the pseudo-

identity (2), we may prove, algebraically,

ðxyÞo ¼ ðxyÞax � ðxyÞo � ðxyÞbt ¼ � � � ¼
�
ðxyÞax

�n!ðxyÞo�ðxyÞbt�n!

and so, taking limits, also

ðxyÞo ¼
�
ðxyÞax

�oðxyÞo�ðxyÞbt�o

which entails

ðxyÞo ¼
�
ðxyÞax

�o�ðxyÞax�oðxyÞo�ðxyÞbt�o
¼

�
ðxyÞax

�oðxyÞo ¼ �
ðxyÞaxðxyÞo

�o
:

Similarly, from

ðxyÞo ¼
�
ðxyÞaxðxyÞo

�o�1ðxyÞa � ðxyÞo � xðxyÞo;
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concentrating on the rightmost factor, we may deduce the desired pseudoiden-

tity (vi). If we start from the pseudoidentity (3) instead of (2), we reach similarly

the pseudoidentity ðxyÞo ¼
�
ðxyÞoyðxyÞo

�o
. Interchanging x and y, we obtain

ðyxÞo ¼
�
ðyxÞoxðyxÞo

�o
. Multiplying both sides on the left by x and on the

right by yðxyÞo�1, and rearranging the right hand side (using equalities valid in

M) yields the pseudoidentity (vi).

(vii) First note that (vii) proves (vi) by simply raising both sides to the o

power; it also proves (iii) by substituting y by x and using equalities that are valid

in M. Conversely, from (vi), using (iii), we deduce that

ðxyÞoxðxyÞo ¼ ðxyÞoðxyÞoxðxyÞo ¼
�
ðxyÞoxðxyÞo

�oðxyÞoxðxyÞo

¼
�
ðxyÞoxðxyÞo

�oþ1 ¼ �
ðxyÞoxðxyÞo

�o ¼ ðxyÞo:

It remains to apply Lemma 6.2 and the above.

(viii) By applying the substitution x 7! xo we transform (viii) into the pseudo-

identity
�
ðxoyÞoxo

�o ¼ ðxoyÞo. Since ðxoyÞoxo is an idempotent, this shows

that (viii) proves (iv). Similarly, upon multiplication of both sides of (viii) on the

right by ðxyÞo, we conclude that (viii) proves (vi). In view of the above and

Lemma 6.2, it remains to establish that, together, the pseudoidentities (iv) and

(vi) prove (viii). Indeed, the substitution x 7! ðxyÞox, y 7! ðxyÞo in (iv) gives�
ðxyÞox

�o ¼ �
ðxyÞoxðxyÞo

�o
. Combining the latter pseudoidentity with (vi), by

transitivity we obtain (viii).

(ix) Note first that (ix) proves the pseudoidentities

ðxyÞo ¼ ðyxÞo ¼ yðxyÞo�1 � ðxyÞo � ðxyÞox:

Hence, (ix) proves ðxyÞo ¼
�
yðxyÞo�1

�n! � ðxyÞo � �ðxyÞox�n!; by taking limits, we

get ðxyÞo ¼
�
yðxyÞo�1

�o � ðxyÞo � �ðxyÞox�o and, therefore, (ix) proves (viii).

Since (ix) is its own left right dual, (ix) also proves the dual of (viii), namely the

pseudoidentity
�
xðyxÞo

�o ¼ ðyxÞo. Conversely, from (viii) and its dual, we may

prove

ðxyÞo ¼
�
yðxyÞo

�o ¼ �
ðyxÞoy

�o ¼ ðyxÞo:

In view of previous parts of the proposition, it su‰ces to invoke Lemma 6.2.

(x) Substituting y by x in the pseudoidentity (x) yields (iii) while, raising both

sides to the o power we obtain (viii). Once again, in view of Lemma 6.2, it su‰ces

to show that, together, (iii) and (viii) also prove (x) which can be done as in proof

of (vii):

ðxyÞo ¼
�
ðxyÞox

�o ¼ �
ðxyÞox

�oðxyÞox ¼ ðxyÞoðxyÞox ¼ ðxyÞox:
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(xi) Raising both sides of (xi) to the o power, we obtain (v) and so S proves

(v). On the other hand, the monoid T 1 and its left right dual fails the pseudoiden-

tity (xi). Hence, each of them fails some pseudoidentity from S.

Let us consider first the fact that T 1 fails some pseudoidentity from S. If there

is such a pseudoidentity in which a variable appears on one side but not the other

then, as in (i), S proves xo ¼ 1, which entails (xi). Hence, as T 1nfag is a semilat-

tice, to fail a pseudoidentity from S, some variable must be evaluated by a and

occur only as the last letter that is not evaluated to 1 in one of the sides of the

pseudoidentity. Substituting xoy for that variable, 1 for every variable that is

evaluated to 1, and xo for every other variable, we deduce that S proves a two-

variable pseudoidentity of the form xoy ¼ w, where w is a pseudoword that

admits yx as a factor. If y occurs more than once in w then, substituting x by 1,

we get a nontrivial pseudoidentity y ¼ ya, which yields x ¼ xoþ1 by Lemma 6.1.

Hence, S proves either x ¼ xoþ1 or xoy ¼ xoyxo. Working instead with the dual

of the monoid T 1, we deduce dually that S proves either x ¼ xoþ1 or yxo ¼
xoyxo.

Suppose first that S proves x ¼ xoþ1. Since S also proves (v), it proves the

following pseudoidentities:

xoy ¼ ðxoyÞoþ1 ¼ xoðyxoÞoy ¼ xoðxoyÞoy ¼ ðxoyÞoy ¼ ðyxoÞoy:

Dually, S proves yxo ¼ yðxoyÞo and so also (xi). Thus, we may assume that

S does not prove x ¼ xoþ1. From the above, it follows that S proves xoy ¼
xoyxo ¼ yxo, as required. r

The choice of the monoids considered in the proof of Proposition 6.3 was

guided by several results in the literature, even though such results are not ex-

plicitly used in the proof. For a pseudoidentity e, we essentially take a complete

set of excluded monoids, that is, a set of finite monoids such that a pseudovariety V

satisfies e if and only if it contains none of the monoids from the set. Such sets can

be found in the literature for several pseudoidentities. See [2] for further details. It

should be noted that the proof of Proposition 6.3 in fact implies that the sets in

question are complete sets of excluded monoids.

We conclude with an example of a t-strong pseudoidentity for semigroups

which is used in Section 9.

Proposition 6.4. The following pseudoidentities are t-strong within S:

(i) xoþ1 ¼ x;

(ii) ðxyÞox ¼ x.

Proof. (i) This may be proved with the same argument as in the proof of Proposi-

tion 6.3(ii), using the semigroup C2;1 instead of the monoid C1
2;1.
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(ii) Let S be a set of S-pseudoidentities such that 7S8 satisfies (ii). Substituting

y by x in (ii), we obtain the pseudoidentity xoþ1 ¼ x. On the other hand, since

Sl2 fails (ii), it also fails some pseudoidentity from S, and so there is some variable

z that occurs only on one side of that pseudoidentity. Substituting xoyxo for z

and xo for every other variable, we conclude that S proves a pseudoidentity of

the form ðxoyxoÞa ¼ xo and so also the special case where a ¼ o, which may be

written in the form ðxoyÞoxo ¼ xo. Substituting xy for y, multiplying both sides

on the right by x, and using additionally the pseudoidentity xoþ1 ¼ x, which may

be proved from S by (i), we obtain the required pseudoidentity (ii). r

7. H-strongness: the role of reducibility

In this section, we consider a method that allows us to give a class of examples of

h-strong sets of pseudoidentities. In all of them, the key property of the pseudo-

variety V ¼ 7S8 is that every pseudoidentity u ¼ v valid in V is the limit of a se-

quence of identities in a suitable implicit signature s which are also valid in V.

In this case we say that the pseudovariety V is s-reducible for the equation x ¼ y.

Proposition 7.1. Let s be an implicit signature and let S be a set of U-

pseudoidentities defining a s-reducible pseudovariety V for the equation x ¼ y. If

the variety Vs admits a basis whose identities are provable from S, then S is h-strong.

Proof. Let u ¼ v be a pseudoidentity valid in V. Since V is s-reducible, there

exists a sequence of s-identities un ¼ vn valid in V that converges to u ¼ v in

WAU�WAU. In particular, the variety Vs satisfies each of the identities un ¼ vn.

If S 0 is a basis of the variety Vs provable from S, then the completeness theorem

of equational logic (which holds for an arbitrary algebraic type) guarantees that

each s-identity un ¼ vn is provable from S 0 and, hence, also from S. r

We apply below Proposition 7.1 to the usual bases of pseudoidentities of sev-

eral extensively studied pseudovarieties of semigroups or monoids. Before doing

so, it is worth explaining why we use the above terminology introduced in [13] that

has been widely adopted in the literature with an apparently di¤erent meaning.

This connection needs to be clarified in order to justify invoking several published

results that are required in our application of Proposition 7.1.

As above, fix an ambient pseudovariety U. We also consider a subpseudovari-

ety V of U. By a system of equations we mean a set S whose elements u ¼ v are

formal equalities (that is, pairs) of terms in the algebraic signature of U. Let X be

the set of variables that occur in S, a set which we assume to be finite. We are

interested in V-solutions of S on a fixed but arbitrary finite set A of generators,

which consist of a mapping j assigning to each variable x a X an element jðxÞ
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of WAU whose natural extension ĵj to terms is such that V satisfies each pseudo-

identity ĵjðuÞ ¼ ĵjðvÞ with u ¼ v an equation from S. Such systems are often

constrained by assigning to each variable x a X a clopen subset Kx of WAU. The

V-solution j is said to satisfy the constraints if jðxÞ a Kx for every x a X .

The key property of the pseudovariety V introduced in [13] is the following.

Let s be an implicit signature, each of whose elements belongs to some WBU,

where B is a finite set. We say that V is s-reducible for S if, for every choice of

clopen constraints for X , if there is a V-solution of S satisfying the constraints,

then there is such a solution taking its values in Ws
AU, which we call a ðV; sÞ-

solution. The following result is a topological reformulation of the definition of

reducibility. Here, we view solutions of the system S as elements of the product

space ðWAUÞX .

Proposition 7.2. The pseudovariety V is s-reducible for the system of equations S

over the set of variables X if and only if the set of ðV; sÞ-solutions is dense in the set

of all V-solutions.

Proof. It is well known that the topological space WAU is zero-dimensional, mean-

ing that the clopen sets form a basis of the topology. Thus, in the product space

ðWAUÞX , a basis is given by the set of all products of the form
Q

x AX Kx where the

mapping x 7! Kx is a choice of constraitns for the system S. Hence, a V-solution

j of S can be arbitrarily approximated by ðV; sÞ-solutions if and only if, for any

given choice of constraints which are satisfied by j, there is a ðV; sÞ-solution of S

which satisfies the same constraints. r

In particular, the terminology adopted at the beginning of the section is con-

sistent with that from [13] provided the underlying algebraic type (but not neces-

sarily s) is finite since then topological closure is captured by taking limits of

sequences.

The property of s-reducibility of a pseudovariety V was conceived as part of

a strong form of decidability called s-tameness. The remaining requirements for

s-tameness are computability assumptions, namely: the pseudovariety V is as-

sumed to be recursively enumerable, the signature s is also assumed to be recur-

sively enumerable and to consist of operations that are computable in elements of

V, and the word problem in Ws
AV is supposed to be decidable. The computability

assumptions on the pseudovariety V and the implicit signatures considered in all

our examples are immediately verified.

It should be pointed out that the word problem in Ws
AV is algorithmically solv-

able if and only if the variety Vs admits a recursive basis of identities. Besides

s-reducibility for the identity x ¼ y, it is the knowledge of such a basis that under-

lies all our applications of Proposition 7.1. Thus, our results rely more properly

on s-tameness of V rather than just s-reducibility for the identity x ¼ y.
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We are now ready to present our concrete examples of evidence for the conjec-

ture which are obtained as applications of Proposition 7.1. In the following, the

ambient pseudovariety U will be either the pseudovariety S of all finite semigroups

or the pseudovariety M of all finite monoids. The implicit signatures involved are

often either k ¼ f_ � _; _o�1g or f_ � _; _og the latter of which, by abuse of nota-

tion, we also denote o.

7.1. Some simple examples. Our first example is given by the pseudoidentity

xoþ1 ¼ xo, which defines the pseudovariety A of all finite aperiodic monoids. In

view of Schützenberger’s characterization of star-free languages [38], this is a very

important pseudovariety.

Theorem 7.3. For U ¼ M, the pseudoidentity xoþ1 ¼ xo is h-strong.

Proof. The first key ingredient here is that the pseudovariety A is o-reducible for

the equation x ¼ y. This is proved in [10], Corollary 3.2 based on Henckell’s com-

putation of A-pointlike sets of finite monoids [27], [28].

The second key ingredient is a basis of identities for the variety Ao obtained by

McCammond [31], [9]. It consists of the following identities:

ðxyÞz ¼ xðyzÞ; x1 ¼ 1x ¼ x

ðxoÞo ¼ ðxrÞo ¼ xoxo ¼ xo ðrb 2Þ
ðxyÞox ¼ xðyxÞo

xox ¼ xxo ¼ xo

Except for the identities in the last line, which are immediately provable from

xoþ1 ¼ xo, all the other identities are valid in all finite monoids and so they re-

quire no proof in our proof setup within the ambient pseudovariety M. Applying

Proposition 7.1, we conclude that the pseudoidentity xoþ1 ¼ xo is h-strong. r

Our next example is the usual basis of the pseudovariety R of all finite R-trivial

monoids.

Theorem 7.4. For U ¼ M, the pseudoidentity ðxyÞox ¼ ðxyÞo is h-strong.

Proof. The o-reducibility of R for the equation x ¼ y was first proved in [7]. In

fact, the same holds for arbitrary systems of o-equations [8]. The following basis

of identities for the variety Ro was obtained in [17]:

ðxrÞo ¼ ðxoÞo ¼ xo ðrb 2Þ
ðxyÞz ¼ xðyzÞ; x1 ¼ 1x ¼ x

ðxyÞo ¼ ðxyÞox ¼ ðxyÞoxo ¼ xðyxÞo:
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Of all the above identities the only one that is not obviously provable from

ðxyÞox ¼ ðxyÞo is ðxyÞoxo ¼ ðxyÞo. Yet, iterating the hypothesis, one gets

ðxyÞoxn! ¼ ðxyÞo, whence also ðxyÞoxo ¼ ðxyÞo by taking limits. r

While the two previous examples could be reformulated in the language of

semigroups, as the pseudovariety of semigroups generated in each case has no

additional monoids, for the next one the monoids in the pseudovariety constitute

a much smaller class. Indeed, we now consider the pseudovariety LSl of all finite

semigroups which are locally semilattices, that is, the pseudovariety defined by the

set in the following result.

Theorem 7.5. For U ¼ S, the set of pseudoidentities

S ¼ fxoyxozxo ¼ xozxoyxo; xoyxoyxo ¼ xoyxog

is h-strong.

Proof. The o-reducibility of LSl for the equation x ¼ y was first proved in [24],

where graph systems of equations are also considered.3 The following basis of

identities for the variety LSl may be found in [21]:

ðxrÞo ¼ xoxo ¼ xox ¼ xo ðrb 2Þ
ðxyÞz ¼ xðyzÞ; ðxyÞox ¼ xðyxÞo

xoyxozxo ¼ xozxoyxo; xoyxoyxo ¼ xoyxo

ðxyozÞo ¼ ðxyozÞ2:

Of all the above identities, the only one that requires a proof from S is the last one.

We first note that the second pseudoidentity from S immediately infers ðxyozÞ3 ¼
ðxyozÞ2, which entails ðxyozÞnþ1 ¼ ðxyozÞn for every nb 2, whence also ðxyozÞn!
¼ ðxyozÞ2. Taking limits, we may further prove ðxyozÞo ¼ ðxyozÞ2. In view of

Proposition 7.1, this concludes the proof of the theorem. r

7.2. Monoids in which regular elements are idempotents. The next example is

given by two simple bases of pseudoidentities for the pseudovariety DA of all finite

semigroups whose regular D-classes are aperiodic subsemigroups, a property

which is equivalent to all regular elements being idempotents. For the relevance

of the pseudovariety DA, see [40].

3Later, reducibility of LSl was extended to arbitrary systems of �-equations [22]. In view of the well-
known decomposition LSl ¼ Sl � D (see, for instance, [2], Section 10.8), a generalization in a di¤erent di-
rection has been obtained in [23] where, in particular, it is proved that if V is �-reducible for the equation
x ¼ y, then so is V � D. This was later extended to the case of graph systems of equations in [25]. Here, by
a graph system of equations we mean the system associated with a finite directed graph which, for each
edge x!y z in the graph, includes the equation xy ¼ z.
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Theorem 7.6. For U ¼ M, the sets of pseudoidentities

S ¼ fxoþ1 ¼ xo; ðxyÞoðyxÞoðxyÞo ¼ ðxyÞog

G ¼
��
ðxyÞox

�2 ¼ ðxyÞox�

are h-strong.

Proof. The o-reducibility of DA for the equation x ¼ y has been proved in

[10]. The following basis of identities for DAo has been recently obtained

[11]:

ðxrÞo ¼ ðxoÞo ¼ xo ðrb 2Þ
ðxyÞox ¼ xðyxÞo

ðxyÞz ¼ xðyzÞ; x1 ¼ 1x ¼ x

uovuo ¼ uo;

where u; v a WBU for an arbitrary finite alphabet B and every variable that occurs

in v also occurs in u. Only the family of identities in the last line requires a proof

since the others are valid in every finite monoid.

We start by showing that S proves G. We may prove algebraically:

ðxyÞo ¼ ðxyÞoðyxÞoðxyÞo ¼ ðxyÞoðyxÞoþ1ðxyÞo

¼ ðxyÞoy � ðxyÞo � xðxyÞo ¼ � � � ¼
�
ðxyÞoy

�n!ðxyÞo�xðxyÞo�n!:

Taking limits, we get

ðxyÞo ¼
�
ðxyÞoy

�oðxyÞo�xðxyÞo�o ð4Þ

which, upon multiplication of both sides on the right by xðxyÞox, yields

�
ðxyÞox

�2 ¼ �
ðxyÞoy

�oðxyÞo�xðxyÞo�oþ1x
¼

�
ðxyÞoy

�oðxyÞo�xðxyÞo�ox ¼
ð4Þ
ðxyÞox:

Conversely, we may algebraically prove S from G as follows. First, substitut-

ing x for y in the pseudoidentity
�
ðxyÞox

�2 ¼ ðxyÞox and multiplying both sides

by xo�1, we obtain

xoþ1 ¼ xo�1�ðxxÞox�2 ¼ xo�1ðxxÞox ¼ xo:
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Also, multiplying both sides of the pseudoidentity from G on the right by

yðxyÞo�1 yields

ðxyÞoxðxyÞo ¼ ðxyÞo: ð5Þ

Next, we obtain

ðxyÞo ¼ ðxyÞo�1xyðxyÞo ¼ ðxyÞo�1xðyxÞoy ¼
ð5Þ
ðxyÞo�1xðyxÞoyðyxÞoy

¼ ðxyÞoðyxÞoy ¼ ðxyÞoyðxyÞo;

and so

ðxyÞoyðxyÞo ¼ ðxyÞo; ð6Þ

which entails

ðxyÞo ¼
ð6Þ
ðxyÞoyðxyÞo ¼

ð5Þ
ðxyÞoyðxyÞoxðxyÞo

¼ ðxyÞoðyxÞoþ1ðxyÞo ¼ ðxyÞoðyxÞoðxyÞo:

From hereon, we are thus allowed to use SAG as hypothesis in our proofs and

we assume them without further mention. Recall that our objective is to prove

every o-identity of the form uovuo ¼ uo under the assumption that every variable

in v also occurs in u.

We claim that the following statements hold, where e stands for an arbitrary

idempotent in WAU:

(i) if ewe ¼ e may be proved, then ew2e ¼ e may also be proved;

(ii) if ew1e ¼ e ¼ ew2e may be proved, then ew1w2e ¼ e may also be proved;

(iii) the pseudoidentity ðxyzÞoyðxyzÞo ¼ ðxyzÞo is provable.

To establish (i), assume that we have proved ewe ¼ e. Then we may also prove

ew ¼ ewew ¼ � � � ¼ ðewÞn and, taking limits, ew ¼ ðewÞo ¼ ðewÞo�1. Similarly,

we can prove we ¼ ðweÞo. This yields the following equalities:

e ¼ ewe ¼ ðewÞoe ¼ ðewÞoðweÞoðewÞoe ¼ ewweewe ¼ ew2e:

For (ii), suppose we have proved ew1e ¼ e ¼ ew2e. Then, in view of (i), we may

prove

e ¼ ee ¼ ew2eew1e ¼ e � w2ew1 � e ¼ e � w2ew1 � w2ew1 � e ¼ ew1w2e:
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To prove (iii), observe first that, from (5) and (6) we deduce that the pseudoiden-

tities

ðyzxÞo ¼ ðyzxÞoyzðyzxÞo ¼ ðyzxÞoyðyzxÞo ¼ ðyzxÞoxðyzxÞo

are provable, so that, by (ii), so are ðyzxÞo ¼ ðyzxÞoyxðyzxÞo and

ðxyzÞo ¼ ðxyzÞoþ1 ¼ xðyzxÞoyz ¼
ðiiÞ

xðyzxÞoyzyxðyzxÞoyz

¼ ðxyzÞoþ1yðxyzÞoþ1 ¼ ðxyzÞoyðxyzÞo:

Let v ¼ v1 . . . vn, where the vi are letters. By (iii) since every letter appearing in v

also appears in u, we may prove uoviu
o ¼ uo (i ¼ 1; . . . ; n). Applying (ii) n� 1

times, we deduce that we may also prove uovuo ¼ uo, as required. r

7.3. J-trivial monoids. The next example consists of the two bases commonly

used to describe the pseudovariety J of all finite J-trivial monoids.

Theorem 7.7. For U ¼ M, the sets of pseudoidentities

S ¼ fxoþ1 ¼ xo; ðxyÞo ¼ ðyxÞog and G ¼ fðxyÞox ¼ ðxyÞo ¼ yðxyÞog

are h-strong.

Proof. It is not di‰cult to show that J is o-reducible for the equation x ¼ y. In

fact, J is o-reducible for all finite systems of equations, and even of k-equations

[4], Theorem 12.3. On the other hand, the following basis of identities for the

variety Jo is given in [2], Section 8.2:

ðxyÞz ¼ xðyzÞ; x1 ¼ 1x ¼ x; ðxoÞo ¼ xo

xox ¼ xxo ¼ xo

ðxyÞo ¼ ðyxÞo ¼ ðxoyoÞo:

The identities in the first line are valid in all finite monoids and, therefore require

no proof. In view of Proposition 7.1, to finish the proof it su‰ces to show that the

remaining identities are provable from both S and G.

In the case of S, only the identity ðxyÞo ¼ ðxoyoÞo needs to be considered.

The following describes a proof from S. First, we do an algebraic proof:

ðxyÞo ¼ ðxyÞoþ1 ¼ xðyxÞoy ¼ xðxyÞoy ¼ � � � ¼ xmðxyÞoym: ð7Þ
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Hence, we may also prove from S

ðxyÞo ¼ ðyxÞo ¼ ymðyxÞoxm ¼ ymðxyÞoxm;

which, combined with (7), yields

ðxyÞo ¼ xmymðxyÞoxmym ð8Þ

Iterating (8), we get an algebraic proof of ðxyÞo ¼ ðxmymÞmðxyÞoðxmymÞm. Let-

ting m ¼ n! and taking limits, we obtain that S proves

ðxyÞo ¼ ðxoyoÞoðxyÞoðxoyoÞo: ð9Þ

Similarly, we may prove algebraically

ðxoyoÞo ¼ xoyoðxoyoÞo ¼ xxoyoðxoyoÞo ¼ xðxoyoÞo

and so also

ðxoyoÞo ¼ xyðxoyoÞo ¼ � � � ¼ ðxyÞn!ðxoyoÞo:

Taking limits, we get ðxoyoÞo ¼ ðxyÞoðxoyoÞo. Combining with (9) and taking

into account that ðxoyoÞo is idempotent, we finally complete the proof of ðxyÞo ¼
ðxoyoÞo from S.

For G, we first note that, substituting x for y in ðxyÞox ¼ ðxyÞo, yields

xoþ1 ¼ xo. Hence, it su‰ces to show that the pseudoidentity ðxyÞo ¼ ðyxÞo is

provable from G, which can be established algebraically:

ðxyÞo ¼ yðxyÞo ¼ ðyxÞoy ¼ ðyxÞo: r

Note that, in the proof of Theorem 7.7, we alternated several times topological

and transitive closure. More precisely, we actually proved that ~SS ¼ S4. We do

not know whether ~SS ¼ S3 but show below that ~SSAS2.

We start with an auxiliary lemma involving equidivisibility. We say that a

semigroup S is equidivisible if any two factorizations of the same element admit a

common refinement [32]. We say that a pseudovariety (of semigroups or monoids)

V is equidivisible if, for each finite set A, the semigroup WAV is equidivisible. The

equidivisible pseudovarieties of semigroups have been characterized in [6]. The

characterization of equidivisible pseudovarieties of monoids can be derived from

it by noting that, for a pseudovariety V of monoids, WAV ¼ ðWAWÞ1, where W is

the pseudovariety of semigroups generated by V, which amounts to a simple exer-

cise, together with the obvious observation that a semigroup S is equidivisible if

and only if so is the monoid S1. In particular, M is equidivisible.
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The following lemma can surely be generalized but it is already su‰cient for

our purposes.

Lemma 7.8. Let w a A� and u; v a WAM be such that wo is a factor of the product

uv. Then, wo is a factor of at least one of the factors u and v.

Proof. Observe first that the result is trivial for w ¼ 1 and assume wA 1. By equi-

divisibility, from the two factorizations uv ¼ xwoy (for some x; y a WAM), we

know that there is a common refinement. Hence, if wo is a factor of neither u

nor v, then there is a factorization wo ¼ zt with u ¼ xz and v ¼ ty. We reach a

contradiction by showing that wo must be a factor of at least one of z and t.

First note that at least one of z and t is a not a finite word for, otherwise,

so would be wo. By symmetry, we may as well assume that z is not a finite

word. We claim that wn is a prefix of z for every nb 1 and, therefore, so is

wo, thereby reaching the desired contradiction. To prove the claim, consider the

monoid Mk consisting of all words of A� of length at most k ¼ jwnj where the

product is defined by r � s ¼ rs if jrsja k, while r � s is taken to be the prefix of

rs of length k otherwise. Consider also the unique continuous homomorphism

jk : WAM!Mk which maps each letter a from A to a as an element of Mk.

Note that jk maps each word of length at most k to itself and every other finite

word to its prefix of length k. It follows that jkðsÞ is a prefix of s for every pseudo-

word s a WAM.

Since z is not a finite word, there is a sequence of words ðzmÞm converging to z

with jzmjb k for every m. Then, from the equalities jkðzÞ ¼ jkðztÞ ¼ jkðwoÞ ¼
wn, we deduce that wn is a prefix of z, as was claimed. r

Proposition 7.9. For U ¼ M and S ¼ fxoþ1 ¼ xo; ðxyÞo ¼ ðyxÞog, we have
~SSAS2.

Proof. For the purpose of the present proof, we take A ¼ fx; yg.
We have shown in the proof of Theorem 7.7 that the o-identity

ðxoyoÞo ¼ ðxyÞo ð10Þ

belongs to S3. We prove that it does belong to S2. For that purpose, we claim

that, if the pseudoidentity w ¼ ðxyÞo is in S2, then ðxyÞo is a factor of w. Since

not even the word xyx is a factor of ðxoyoÞo (cf. [16], Lemma 8.2), we conclude

that the pseudoidentity (10) cannot belong to S2.

The hypothesis of the claim implies the existence of a sequence of pseudo-

identities ðwn ¼ vnÞn in S1 which converges to w ¼ ðxyÞo. Now, by taking sub-

sequences, we may as well assume that either the sequence ðvnÞn consists only

of finite words or only of infinite pseudowords. In the first case, the only S1-
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pseudoidentity of the form u ¼ vn is the trivial pseudoidentity vn ¼ vn. Since the

pseudoidentity (10) is not trivial over M, the first case is excluded. In the second

case, we note that ðxyÞo is a factor of vn for every su‰ciently large n. Indeed, the

language ðxyÞ� has an open closure in WAM [2], Theorem 3.6.1, which consists of

all powers of xy.

Thus, to establish our claim, it su‰ces to show that, if the pseudoidentity u ¼ v

belongs to S1 and the pseudoword ðxyÞo is a factor of v, then it is also a factor of

u. Since S1 is the transitive closure of S0, by a straightforward induction argument

it su‰ces to treat the case where u ¼ v belongs to S0. Hence, there are a nonempty

word t, pseudowords w1; . . . ;wn, a pseudoidentity u 0 ¼ v 0 such that either it or

v 0 ¼ u 0 belongs to S, and a continuous endomorphism j of WAM such that u ¼
t
�
jðu 0Þ;w1; . . . ;wn

�
and v ¼ t

�
jðv 0Þ;w1; . . . ;wn

�
. Note that, since u 0 and v 0 are

J-equivalent, so are jðu 0Þ and jðv 0Þ, which means that these two pseudowords

have the same factors. Without loss of generality, we may assume that, writing

t ¼ tðx0; x1; . . . ; xnÞ, all the letters xi (i ¼ 1; . . . ; n) appear at least once in t. By

Lemma 7.8, we deduce from the assumption that ðxyÞo is a factor of v that it

must also be a factor of either jðv 0Þ or one of the wi. Hence, ðxyÞo is a factor of

either jðu 0Þ or one of the wi and, therefore, also of u. r

8. The group case

Let G be the pseudovariety of all finite groups. As far as subpseudovarieties of G

are concerned, whether we view groups in the natural signatures for semigroups,

monoids, or groups is irrelevant, since the identity element is the only idempotent

xo and inversion is also captured by the semigroup pseudoword xo�1. However,

for the purpose of this section, we prefer to deal with the group signature, consist-

ing of a binary multiplication, a constant symbol 1, for the identity element, and

the unary operation of inversion.

Note that for u; v a WAG, each of the pseudoidentities u ¼ v and u�1v ¼ 1 is

provable from the other. Hence, in the language of groups, it su‰ces to deal

with pseudoidentities of the form w ¼ 1.

Theorem 8.1. The pseudovariety G is strong.

Proof. Let S be a set of G-pseudoidentities and let u a WAG be such that the group

pseudovariety 7S8 satisfies the pseudoidentity u ¼ 1. Consider the closed congru-

ence ~SS on the profinite group WAG. The congruence class of 1 is a closed normal

subgroup N of WAG. It is well known that N must be the intersection of the open

normal subgroups of WAG containing it (see [37], Proposition 2.1.4(d)), which

means that the quotient topological group WAG=N is profinite. Hence, if u ¼ 1 is

not provable from S, that is, if u B N, then there is a continuous homomorphism
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j : WAG! G onto a finite group such that jðNÞ ¼ 1 and jðuÞA 1. The condition

jðNÞ ¼ 1 entails that G satisfies all pseudoidentities from S while the condition

jðuÞA 1 implies that G fails the pseudoidentity u ¼ 1, in contradiction with the

assumption that 7S8 satisfies u ¼ 1. Hence, u ¼ 1 is provable from S. r

The key ingredient in the preceding proof is that congruences in groups are

determined by a single class. So, for instance, the same method may be applied

to show that the pseudovariety of all finite rings (not necessarily with identity ele-

ment) is strong.

Theorem 8.2. For U ¼ M, the pseudoidentity xo ¼ 1 is h-strong.

Proof. The key result upon which the proof is based is the k-reducibility of

G ¼ 7xo ¼ 18 for the equation x ¼ y. More generally, based on a celebrated the-

orem of Ash [18], which contains all the essential hard work, it has been observed

in [13], Theorem 4.9 that G is k-reducible for all finite graph systems of equations.4

In view of Proposition 7.1, it remains to show that every k-identity valid in G may

be proved from xo ¼ 1 in the sense of Section 3. In fact, we show that an alge-

braic proof exists.

The essential observation is that the k-identity

ðxyÞo�1 ¼ yo�1xo�1 ð11Þ

may be algebraically proved from xo ¼ 1. Indeed, here is a description of such a

proof:

ðxyÞo�1 ¼ yoðxyÞo�1xo ¼ yo�1yðxyÞo�1xxo�1

¼ yo�1ðyxÞoxo�1 ¼ yo�1xo�1:

Note also that ðxo�1Þo�1 ¼ xoþ1 ¼ x, where the latter equality is provable from

xo ¼ 1. Applying repeatedly the identity (11), every k-term may be rewritten in

the form xe1
1 . . . xen

n , where each xi is a variable and each exponent ei is either 1 or

o� 1. We say that a k-term of this type is in standard form; a k-identity whose

sides are in standard form is also said to be in standard form. Thus, in the pres-

ence of the pseudoidentity xo ¼ 1, every k-identity valid in G is algebraically prov-

ably equivalent to a k-identity u ¼ v in standard form that is also valid in G. Since

the free group is residually finite, u ¼ v may be viewed as a group identity (by

removing the o’s from the exponents) that is satisfied by all groups, which means

4For G, every solution of the equation y1 ¼ y2 is a solution of the graph system determined by the

graph x
y1

y2
z and, conversely, every solution of the graph system involves a solution of the equation

y1 ¼ y2.
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that, by applying the reduction rules aa�1 ! 1 and a�1a! 1 a finite number of

times, both sides may be transformed to the same reduced group word. Since, in

the context of finite monoids, both rules follow from the pseudoidentity xo ¼ 1,

we conclude that u ¼ v is algebraically provable from xo ¼ 1. r

Although the next result is superseded by Corollary 9.4, it seems worthwhile to

include it at this stage.

Corollary 8.3. For U ¼ M, every set S of pseudoidentities defining a group pseudo-

variety is h-strong.

Proof. It su‰ces to apply Proposition 4.2 taking into account Theorems 8.2 and

8.1, and Proposition 6.3(i). r

9. The completely simple semigroup case

Let CS be the pseudovariety of all finite completely simple semigroups. It is de-

fined, for instance, by the pseudoidentity ðxyÞox ¼ x. By a well-known theorem

of Rees, completely simple semigroups are precisely those that admit a Rees

matrix representation MðI ;G;L;PÞ, where I and L are sets, G is a group, and

P : L� I ! G is a function (the sandwich matrix, the image Pðl; iÞ being usually

denoted pl; i); as a set, it is the Cartesian product I � G �L, and multiplication is

given by the formula

ði; g; lÞð j; h; mÞ ¼ ði; gpl; jh; mÞ:

Assuming that 1 is a common element of I and L, the sandwich matrix may be

supposed to be normalized in the sense that p1; i ¼ pl;1 ¼ 1 for all i a I and l a L.

The purpose of this section is to establish that CS is strong. The key ingredient

is the following characterization of the congruences on a Rees matrix semigroup

which may be extracted from [20], Theorem 10.48.

Theorem 9.1. Let S ¼MðI ;G;L;PÞ be a Rees matrix semigroup and let r be a

congruence on S. Consider the relations

r1 ¼ fði; jÞ a I � I : ði; 1; 1Þrð j; 1; 1Þg
r2 ¼ fðl; mÞ a L�L : ð1; 1; lÞrð1; 1; mÞg
Nr ¼ fg a G : ð1; g; 1Þrð1; 1; 1Þg:

Then r1 (respectively r2) is an equivalence relation on the set I (resp. L) and Nr is a

normal subgroup of G such that
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ði; jÞ a r1 ) pl; iNr ¼ pl; jNr ð12Þ
ðl; mÞ a r2 ) pl; iNr ¼ pm; iNr: ð13Þ

Conversely, for every triple t ¼ ðr1; r2;NrÞ, where r1 (resp. r2) is an equivalence re-

lation on the set I (resp. L) and Nr is a normal subgroup of G, satisfying properties

(12) and (13), the relation

rt ¼
��
ði; g; lÞ; ð j; h; mÞ

�
a S � S : ir1 j; lr2m; gNr ¼ hNr

�

is a congruence on S and every congruence on S is of this form.

We may now proceed as in the proof of Theorem 8.1 to obtain our next result.

Theorem 9.2. The pseudovariety CS is strong.

Proof. For a set S of CS-pseudoidentities, consider the closed congruence r ¼ ~SS.
Suppose that u; v a WACS are such that the pseudoidentity u ¼ v is valid in 7S8.
We claim that u ¼ v is provable from S, which amounts to the condition urv.

Arguing by contradiction, suppose that ðu; vÞ B r. By [1], there is an isomor-

phism c : WACS! S ¼MðA;WXG;A;PÞ where, choosing an element a0 from A

and letting A 0 ¼ ðAnfa0gÞ2 be the Cartesian square, we have X ¼ AAA 0, pa0;b ¼
pb;a0 ¼ 1 for every b a A, and pa;b ¼ ða; bÞ for each ða; bÞ a A 0. Note that the

letter a0 plays the role of 1 in the normalization of the sandwich matrix.

Consider the normal subgroup Nr and the equivalence relations r1 and r2 as

defined in Theorem 9.1. Note that Nr is a closed normal subgroup of WXG.

Let cðuÞ ¼ ða; g; bÞ and cðvÞ ¼ ðc; h; dÞ. Since we are assuming that ðu; vÞ B r,

at least one of the following conditions must hold:

ða; cÞ B r1; ðb; dÞ B r2; or gNrA hNr:

In case one of the first two conditions holds, the mapping from S onto the rectan-

gular band T ¼ A=r1 � A=r2 that maps each triple ðx;w; yÞ a S to ðx=r1; y=r2Þ is
a continuous homomorphism onto a semigroup from CS that distinguishes u and

v. Moreover, its kernel congruence is contained in r, which implies that T a 7S8,
contradicting the assumption that 7S8 satisfies u ¼ v. Hence, we may assume that

ða; cÞ a r1 and ðb; dÞ a r2, so that go�1h does not belong to Nr. As in the proof of

Theorem 8.1, we deduce that there is a clopen normal subgroup K of WXG such

that Nr � K and go�1h B K . Since K contains Nr, the triple ðr1; r2;KÞ still satis-
fies the analogues of conditions (12) and (13). Hence, by Theorem 9.1, it defines a

congruence r on S. Since K has finite index in WXG, the congruence r has finite

index in S. The reader may easily verify that, since r is a closed congruence on S

and K is a closed subgroup of WXG, the congruence r is still closed, whence the
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natural mapping S ! S=r is a continuous homomorphism. As r contains r, the

quotient semigroup S=r satisfies S but, by construction, fails the pseudoidentity

u ¼ v. This completes the proof. r

We proceed with some observations on the variety CS of completely simple

semigroups, consisting of algebras with a binary multiplication and unary ‘‘inver-

sion’’ _�1 satisfying the following identities, where u0 abbreviates uu�1:

ðxyÞz ¼ xðyzÞ; x�1x ¼ x0; x0x ¼ x; ðx�1Þ�1 ¼ x ð14Þ

ðxyxÞ0 ¼ x0: ð15Þ

The identities (14) define the variety of completely regular semigroups [34]. In the

presence of them, it is well known that the identity (15) is equivalent to

ðxyÞ0x ¼ x: ð16Þ

Note that, when the inversion operation _�1 is interpreted as _o�1 in a finite

semigroup, _0 becomes _o and the first two identities in (14) are verified while

the last two identities in (14) are valid in every completely regular finite semi-

group.

Theorem 9.3. For U ¼ S, each of the sets of pseudoidentities

S ¼ fðxyxÞo ¼ xo; xoþ1 ¼ xg and G ¼ fðxyÞox ¼ xg

is h-strong.

Proof. As implied by the entry for the pseudovariety CS in [13], Table 2, the

methods of [3] show that the pseudovariety CS is k-reducible for graph systems

of equations. In fact, in [3] vertices were allowed to be constrained by the clopen

subset f1g � ðWASÞ1, which forces the corresponding variable to be evaluated

by 1. It follows that CS is k-reducible for the equation x ¼ y.

Consider next the variety CSk. Since free completely simple semigroups are

residually finite [33], Proposition 2.5, in view of the above remarks a basis of iden-

tities for CSk is given by

ðxyÞz ¼ xðyzÞ; xo�1x ¼ xxo�1; xxo�1x ¼ x; ðxo�1Þo�1 ¼ x

xyxðxyxÞo�1 ¼ xxo�1:

All the identities in the first line are obviously provable from S. On the other

hand, substituting x for y gives a proof of xoþ1 ¼ x from G and we already ob-

served that in the presence of the identities in the above first line, the identities
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ðxyxÞo ¼ xo and ðxyÞox ¼ x are provable from each other. Thus, the result fol-

lows from Proposition 7.1. r

Combining Theorems 9.2 and 9.3 with Proposition 6.4, and applying Proposi-

tion 4.2, we obtain the following result.

Corollary 9.4. For U ¼ S, every set S of pseudoidentities such that 7S8 � CS is

h-strong.

Taking into account the k-reducibility for the equation x ¼ y of the pseudo-

variety CR ¼ 7xoþ1 ¼ x8, of all finite completely regular semigroups, (cf. [15])

and the residual finiteness of free completely regular semigroups (viewed as alge-

bras in the signature f_:_; _�1g), the following theorem can be proved in the same

way as Theorem 9.3.

Theorem 9.5. For U ¼ S, the pseudoidentity xoþ1 ¼ x is h-strong.

10. The commutative case

Our next example is the usual basis of the pseudovariety Com of all finite commu-

tative monoids.

Theorem 10.1. For U ¼ M, the identity xy ¼ yx is h-strong.

Proof. Although [39] deals with the notion of hyperdecidability, which is weaker

than s-reducibility provided the implicit signature s has suitable algorithmic prop-

erties (cf. [13], [14]), it is observed in [13] that the same methods show that Com is

k-reducible, in particular for the equation x ¼ y. We claim that the following is a

basis of identities for the variety Comk where, as usual, we write xo for the prod-

uct xo�1x:

xo�1xo ¼ xo�1; ðxo�1Þo�1 ¼ xoþ1

ðxyÞz ¼ xðyzÞ; x1 ¼ 1x ¼ x

xy ¼ yx

ðxyÞo�1 ¼ xo�1yo�1:

Indeed, all such identities are clearly valid in Com. On the other hand, using the

above identities, one may reduce every k-term to one of the form u ¼ xe1
1 . . . xen

n ,

where each exponent ei is either 1 or o� 1 and the xi are not necessarily distinct

variables. Moreover, we may rearrange the factors so that the powers with the
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same base are not separated by other powers. On the other hand, powers with the

same base may be collected together to powers of one of the forms xn or xo�1xn,

where n is a nonnegative integer, or ðxo�1Þn, where nb 2. For convenience, we

write xo�1xn as xo�1þn and ðxo�1Þn as xðo�1Þn. In this form, we say that we have

a k-term in completely reduced form. Consider two k-terms in completely reduced

form u ¼ ae1
1 . . . aen

n and v ¼ ad1
1 . . . adn

n over the alphabet fa1; . . . ; ang and assume

that the identity u ¼ v is valid in Com. Then, substituting 1 for every variable but

one, we obtain an identity valid in Com of the form xe ¼ xd with e and d exponents

of one of the forms n, o� 1þ n or ðo� 1Þn. By considering a suitable monogenic

finite semigroup, one immediately verifies that e ¼ d. This proves the claim.

To conclude the proof, it remains to observe that the last identity in the above

basis is provable from xy ¼ yx. Indeed, each identity ðxyÞn!�1 ¼ xn!�1yn!�1 can be

easily proved and the result follows by taking limits. r

We next show that the pseudoidentity xy ¼ yx also defines a strong pseudo-

variety.

Theorem 10.2. The pseudovariety Com is strong.

Proof. First of all, we recall that elements of the free profinite monoid WACom

over the set A ¼ fa1; . . . ; ang can be written in the form ae1
1 . . . aen

n , where e1; . . . ;

en a N̂N. Each pseudoidentity ae1
1 . . . aen

n ¼ ad1
1 . . . adn

n is provably equivalent to the

set of pseudoidentities fae1
1 ¼ ad1

1 ; . . . ; aen
n ¼ adn

n g. Therefore, we may assume that

all pseudoidentities which are under consideration are over a single variable.

Recall that W1Com and W1M are both isomorphic to N̂N via the mapping e 7! xe

and that ẐZ ¼ N̂NnN is isomorphic to W1G. For the purpose of simplification of

notation, we identify isomorphic structures, so, for example, we denote by p the

continuous homomorphisms p : W1Com! W1G given by the rule pðxeÞ ¼ xoþe,
which is formally the projection p1;M;G : W1M! W1G after the identification

W1Com ¼ W1M. In this way, the group W1G can be viewed as a retract of the

monoid W1Com.

Let S be a set of pseudoidentities in the variable x and xe ¼ xd be a nontrivial

pseudoidentity satisfied by 7S8. We need to show that xe ¼ xd belongs to ~SS.
By the finite index iðSÞ of S is meant the minimum natural number n such that

a pseudoidentity of one of the forms xn ¼ xm or xm ¼ xn belongs to S where mA n.

If such n a N does not exist, we say that S has infinite index.

If n is the finite index of S, then in a nontrivial pseudoidentity xn ¼ xm such

that it or its left-right dual lies in S, either m is infinite or n < m a N. In both

cases, in view of Lemma 6.1 the pseudoidentity xn ¼ xoþn is provable from S.

On the other hand, the monogenic monoid C1
n;1 belongs to 7S8, whence it satisfies

xe ¼ xd. Hence, both e and d are infinite or greater than or equal to iðSÞ ¼ n.

From Lemma 6.1, it follows that xe ¼ xoþe and xd ¼ xoþd are provable from S.
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Therefore, xe ¼ xd is provable from S if and only if so is xoþe ¼ xoþd. On the

other hand, if S has infinite index, then the monoid C1
n;1 belongs to 7S8 for every

n a N and we see that e; d B N. Altogether, we can deal just with the case e; d a ẐZ.

Before finishing the proof, we make one technical observation. Let r be the

restriction of the relation ~SS to the set fxl : l a ẐZg and t denote the relation gpðSÞpðSÞ
on W1G, where we abuse notation and write pðSÞ instead of ðp� pÞðSÞ. We claim

that these relations are equal, under our identification of underlying sets with ẐZ.

Since ẐZ is a closed ideal in N̂N and ~SS is a closed congruence on N̂N ¼ W1Com, the

relation r is a closed congruence on ẐZ. We have pðSÞ � S0, because each pseudo-

identity xoþl ¼ xoþm is provable from xl ¼ xm. Hence, pðSÞ � ~SS, where pðSÞ is a
relation on ẐZ. Therefore, pðSÞ � r and the transitive-topological closure t ¼ gpðSÞpðSÞ
is also a subset of the closed congruence r. The reverse inclusion r � t will be

proved if we establish (by induction), for each a, the inclusion SajẐZ �
�
pðSÞ

�
a
,

where we let SajẐZ ¼ SaB ðẐZ� ẐZÞ.
Let a ¼ 0 and ðxl; xmÞ a S0, where l; m a ẐZ. Taking into account commu-

tativity, we may assume that xl ¼ xaþbk, xm ¼ xaþbl, where a; b; k; l a N̂N and

ðxk ¼ xlÞ a S. Then, ðxoþk ¼ xoþlÞ a pðSÞ and we have ðxaþbðoþkÞ ¼ xaþbðoþlÞÞ
a
�
pðSÞ

�
0
. Since l; m a ẐZ, we see that aþ bðoþ kÞ ¼ aþ bk þ o ¼ lþ o ¼ l

and, similarly, aþ bðoþ lÞ ¼ m, which yields S0jẐZ �
�
pðSÞ

�
0
.

Now assume that S2gjẐZ �
�
pðSÞ

�
2g

and let ðxl ¼ xmÞ a S2gþ1, where l; m a ẐZ.

Then there is a finite sequence l ¼ l0; l1; . . . ; lm ¼ m a N̂N such that ðxli�1 ¼ xliÞ
a S2g, for each i ¼ 1; . . . ;m. Since S2g is stable under multiplication, we deduce

that ðxliþo ¼ xliþ1þoÞ a S2gjẐZ. By the induction assumption, these pairs also

belong to
�
pðSÞ

�
2g

and since lþ o ¼ l and mþ o ¼ m, we obtain ðxl ¼ xmÞ a�
pðSÞ

�
2gþ1.

Let S2gþ1jẐZ �
�
pðSÞ

�
2gþ1 and assume that ðxl ¼ xmÞ a S2gþ2, where l; m a ẐZ.

Then, there is an infinite sequence of pseudoidentities from S2gþ1 converging to

xl ¼ xm. Multiplying the pseudoidentities in the sequence by xo and using the

fact that S2gþ1 is a congruence, we obtain a sequence of pseudoidentities from

S2gþ1jẐZ converging to xl ¼ xm. Now, using the induction hypothesis we obtain

ðxl ¼ xmÞ a
�
pðSÞ

�
2gþ2.

To accomplish the proof of the claim by transfinite induction we need to

consider a limit ordinal a, for which the inclusion follows immediately from the

inclusions for smaller ordinals.

Now, we are ready to finish the proof of the theorem. We assumed that

7S8 satisfies the pseudoidentity xe ¼ xd, where e; d a ẐZ. We need to show

that ðxe ¼ xdÞ a ~SS, or equivalently written ðe; dÞ a r. Assume on the contrary

that ðe; dÞ B r. We have proved the equality of two closed congruences r and t.

So, we can consider the monoid ẐZ=r ¼ ẐZ=t, which is a profinite monoid, because

it is a quotient of W1G by the relation t ¼ ~GG for G ¼ pðSÞ and G is strong by The-

orem 8.1. Thus, there is a continuous homomorphism f : ẐZ! G onto a finite
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(cyclic) group G a 7pðSÞ8G � 7S8, such that f ðeÞA f ðdÞ. Now, we can consider

the composition of f with p and we obtain the continuous homomorphism

g : W1Com! G, given by gðxlÞ ¼ f ðlþ oÞ, such that gðxeÞA gðxdÞ. This is a

contradiction because the group G a 7S8 must satisfy the pseudoidentity xe ¼ xd.

Therefore, we have ðxe ¼ xdÞ a ~SS and the proof is finished. r

To complete the program already followed in Sections 8 and 9, we establish the

missing strongness property for the pseudoidentity xy ¼ yx. It was not estab-

lished earlier, namely as part of Proposition 6.3, because our argument depends

on Corollary 8.3.

Proposition 10.3. The pseudoidentity of monoids xy ¼ yx is t-strong.

Proof. Let S be a set of M-pseudoidentities such that all monoids in 7S8 are

commutative. We need to show that S proves xy ¼ yx.

In the terminology introduced at the end of Section 6, by a theorem of

Margolis and Pin [30], a complete set of excluded monoids for the pseudoidentity

xy ¼ yx is given by all non-Abelian groups together with N 1, Bð1; 2Þ1, and

Bð2; 1Þ1. Hence, each such monoid fails some pseudoidentity from S. Actually,

since xy ¼ yx entails xoy ¼ yxo and the latter pseudoidentity is t-strong by Prop-

osition 6.3(xi), we already know that S proves xoy ¼ yxo.

On the other hand, as N 1 fails some pseudoidentity u ¼ v from S, either S

proves xo ¼ 1 or N 1 fails an at most two-variable pseudoidentity provable from

S by evaluating x as a and y as b. Taking into account that the only nonzero

product involving at least two factors using either a, b, or both is ab, we deduce

that S proves either x ¼ xoþ1 or a nontrivial pseudoidentity of the form xy ¼ w.

If w is not yx, then one may substitute one of the variables by 1 to get a nontrivial

pseudoidentity of the from x ¼ xa, which again entails x ¼ xoþ1 by Lemma 6.1.

Hence, S deduces either x ¼ xoþ1 or xy ¼ yx, which means that we may as well

assume that S proves the former pseudoidentity. Thus, S proves the pseudoiden-

tities

xoþ1 ¼ x ð17Þ
xoy ¼ yxo; ð18Þ

which are known to define the join Sl4G, that is, the pseudovariety of all finite

monoids that are semilattices of groups [2], Exercise 9.1.4. Since it is not so easy

to deduce pseudoidentities from S from the knowledge that non-Abelian groups

fail some pseudoidentity in S, we proceed instead to reduce our problem to the

group case and apply Corollary 8.3 to draw the conclusion that S proves xy ¼ yx.

First, we exhibit other provable consequences of S. Since we deal with the

pseudoidentity xy ¼ yx, we work over the alphabet A ¼ fx; yg only, even though
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more general pseudoidentities may be handled similarly. In fact we list some

useful pseudoidentities that are provable from (17) and (18).

We have ðxyÞo ¼ xoðxyÞoyo ¼ yoðxyÞoxo, where we used (17) first and (18)

in the second step. Then we get yoðxyÞoxo ¼ yo�1ðyxÞoþ1xo�1 ¼ yo�1yxxo�1

¼ yoxo ¼ xoyo, where the first and third equalities hold in WAM and the second

and fourth equalities follow respectively from (17) and (18). Now, for each word

w a A� containing both variables x and y, if we use the pseudoidentities ðxyÞo ¼
xoyo and (18) repeatedly, we may prove wo ¼ xoyo. Hence, from (17) and (18)

we may prove woxoyo ¼ xoyo for every pseudoword w over the alphabet fx; yg.
Recall that ~SS is a relation on WAM. Let G ¼ SA fxo ¼ 1g and consider ~GG on

the same monoid WAM. Then 7G8 ¼ 7S8BG. Applying Corollary 8.3 we obtain

that ðxy ¼ yxÞ a ~GG. We claim, for any pseudoidentity u ¼ v, that ðu ¼ vÞ a ~GG

implies ðuxoyo ¼ vxoyoÞ a ~SS. This gives the proof of the statement because the

pseudoidentities xy ¼ xyxoyo and yx ¼ yxxoyo are provable from (17) and (18).

The claim will be proved if we show, for every ordinal a, the following impli-

cation:

ðu ¼ vÞ a Ga ) ðuxoyo ¼ vxoyoÞ a ~SS:

Let a ¼ 0 and ðu ¼ vÞ a G0. If we use in the proof of u ¼ v a pseudoidentity

from S, then ðu ¼ vÞ a S0 and therefore also ðuxoyo ¼ vxoyoÞ a S0. So, we

may assume, without loss of generality, that u ¼ t
�
jðxoÞ;w1; . . . ;wnÞ, v ¼ t

�
jð1Þ;

w1; . . . ;wn

�
, where j : W1M! WAM is a continuous homomorphism, t is a word

and wi a WAM (i ¼ 1; . . . ; n). Using (18) and the fact that
�
jðxÞ

�o
xoyo ¼ xoyo

is S-provable, we get that ðuxoyo ¼ vxoyoÞ a ~SS.
The other steps of the induction proof are easy to see as ~SS is a closed

congruence. r

As in Sections 8 and 9, we may now apply Proposition 4.2 to obtain the follow-

ing result.

Corollary 10.4. For U ¼ M, every set S of pseudoidentities defining a pseudovariety

of commutative monoids is h-strong.

11. Conclusion

We have introduced a natural and sound proof scheme for pseudoidentities. We

have given ample evidence for the conjecture that our proof scheme is complete.

There is a nice connection with the much studied notions of reducibility and

tameness. In fact, in all our examples built on reducible pseudovarieties, we have

Sn ¼ ~SS for some integer n. For instance, for the set S of Theorem 7.7, we have
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observed that S4 ¼ ~SS and that S2A ~SS. It is expectable that in general there may

be no nb 1 such that Sn ¼ ~SS, or perhaps even SoA ~SS, but we have found no

example in which that is the case.

We have not tried to treat exhaustively all cases of pseudovarieties which are

known to be tame. Those that we have considered are perhaps those that appear

more frequently in the literature. Of course, since we believe in our conjecture,

more such results would only be adding evidence to our claim that we have iden-

tified a completely general phenomenon.

It is the knowledge of congruences on suitable relatively profinite monoids or

semigroups that allowed us to prove that the pseudovarieties G, CS, and Com are

strong. Much is also known about the congruences on WACR but we have not

taken the natural path of trying to prove that the pseudovariety CR is strong.
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