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Abstract. In these notes we describe heuristics to predict computational-to-statistical gaps
in certain statistical problems. These are regimes in which the underlying statistical prob-
lem is information-theoretically possible although no e‰cient algorithm exists, rendering
the problem essentially unsolvable for large instances. The methods we describe here are
based on mature, albeit non-rigorous, tools from statistical physics.
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1. Introduction

Statistics has long studied how to recover information from data. Theoretical sta-

tistics is concerned with, in part, understanding under which circumstances such

recovery is possible. Oftentimes recovery procedures amount to computational

tasks to be performed on the data that may be computationally expensive, and

so prohibitive for large datasets. While computer science, and in particular com-

plexity theory, has focused on studying hardness of computational problems on

worst-case instances, time and time again it is observed that computational tasks

on data can often be solved far faster than the worst case complexity would

suggest. This is not shocking; it is simply a manifestation of the fact that instances
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arising from real-world data are not adversarial. This illustrates, however, an

important gap in fundamental knowledge: the understanding of ‘‘computational

hardness of statistical estimation problems’’.

For concreteness we will focus on the case where we want to learn a set of

parameters from samples of a distribution, or estimate a signal from noisy mea-

surements (often two interpretations of the same problem). In the problems

we will consider, there is a natural notion of signal-to-noise ratio (SNR) which

can be related to the variance of the distribution of samples, the strength of

the noise, the number of samples or measurements obtained, the size of a

hidden planted structure buried in noise, etc. Two ‘‘phase transitions’’ are often

studied. Theoretical statistics and information theory often study the critical

SNR below which it is statistically impossible to estimate the parameters (or

recover the signal, or find the hidden structure), and we call this threshold

SNRStat. On the other hand, many algorithm development fields propose and

analyze e‰cient algorithms to understand for which SNR levels di¤erent algo-

rithms work. Despite significant e¤ort to develop ever better algorithms, there

are various problems for which no e‰cient algorithm is known to achieve re-

covery close to the statistical threshold SNRStat. Thus we are interested in the

critical threshold SNRCompbSNRStat below which it is fundamentally impos-

sible for an e‰cient (polynomial time) algorithm to recover the information of

interest.

There are many problems believed to exhibit computational-to-statistical gaps.

Examples include community detection [33], [22], [2], [8], planted clique [4], [25],

[10], sparse principal component analysis [17], [18], [49], [9], structured spiked

matrix models [48], [70], [44], [15], [47], spiked tensor models [73], [35], [68], [50],

[43], synchronization problems over groups [75], [70], [69], clustering [9], and sub-

matrix localization [9].

In these notes we will be concerned with predicting the locations of the thresh-

olds SNRStat and SNRComp for Bayesian inference problems. In particular, we

will focus on a couple of heuristics borrowed from statistical physics and illustrate

them on two example problems: the Rademacher spiked Wigner problem (Exam-

ple 2.1) and the related problem of community detection in the stochastic block

model (Example 2.2). While we focus on these problems, we will try to cover the

techniques in a way that conveys how they are broadly applicable.

At first glance, it may seem surprising that statistical physics has anything

to do with Bayesian inference problems. The connection lies in the Gibbs (or

Boltzmann) distribution that is widely used in statistical physics to model dis-
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ordered systems such as magnets. It turns out that in many Bayesian inference

problems, the posterior distribution of the unknown signal given the data also

follows a Gibbs distribution, and thus many techniques from statistical physics

can be applied. More specifically, many inference problems follow similar equa-

tions to spin glasses, which are physical systems in which the interaction

strength between each pair of particles is random. The techniques that we borrow

from statistical physics are largely non-rigorous but yield extremely precise pre-

dictions of both the statistical and computational limits. Furthermore, the pre-

dictions made by these heuristics have now been rigorously verified for many

problems, and thus we have good reason to trust them on new problems. See

the survey [77] for more on the deep interplay between statistical physics and

inference.

Many techniques have been developed in order to understand computational-

to-statistical gaps. We now give a brief overview of some of these methods, both

the ones we will cover in these notes and some that we will not.

Reductions. A natural approach to arguing that a task is computationally hard

is via reductions, by showing that a problem is computationally hard conditioned

on another problem being hard. This technique is extremely e¤ective when study-

ing the worst-case hardness of computational problems (a famous example being

the list of 21 NP-complete combinatorial problems of Karp [39]). There are also

some remarkable successes in using this idea in the context of average-case prob-

lems (i.e. statistical inference on random models), starting with the work of Berthet

and Rigollet on sparse PCA [17], [18] and including also some conditional lower

bounds for community detection with sublinear sized communities [53], [32].

These works show conditional hardness by reduction from the planted clique

problem, which is widely believed to be hard in certain regimes. Unfortunately

this method of reductions has so far been limited to problems that are fairly simi-

lar to planted clique.

Sum-of-squares hierarchy. Sum-of-squares [46], [66], [61], [74], [14] is a hier-

archy of algorithms to approximate solutions of combinatorial problems, or more

generally, polynomial optimization problems. For each positive integer d, the

algorithm at level d of the hierarchy is a semidefinite program that relaxes the

notion of a distribution over the solution space by only keeping track of moments

of ordera d. As you go up the hierarchy (increasing d ), the algorithms get more

powerful but also run slower: the runtime is nOðdÞ. The level-2 relaxation coincides

with the algorithms in the seminal work of Goemans and Williamson [31] and

Lovasz [51]. The celebrated unique games conjecture of Khot implies that the

level-2 algorithm gives optimal worst-case approximation ratio for a wide class

of problems [41], [72], [42]. Sum-of-squares algorithms have also seen many suc-

cess stories for average-case inference problems such as planted sparse vector [11],
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[34], dictionary learning [12], tensor PCA [35], tensor decomposition [12], [29],

[34], [52], and tensor completion [13], [71]. One way to argue that an inference

problem is hard is by showing that the sum-of-squares hierarchy fails to solve

it at a particular level d (or ideally, at every constant value of d ). Such lower

bounds have been shown for many problems such as planted clique [10], tensor

PCA [35], and community detection [7]. There is also recent work that gives evi-

dence for computational hardness by relating the power of sum-of-squares to the

low-degree moments of the posterior distribution [36].

Belief propagation, approximate message passing, and the cavity method.
Another important heuristic to predict computational thresholds is based on ideas

from statistical physics and is often referred to as the cavity method [56]. It is

based on analyzing an iterative algorithm called belief propagation (BP) [67], or

its close relative approximate message passing (AMP) [26]. Specifically, BP has a

trivial fixed point wherein the algorithm fails to perform inference. If this fixed

point is stable (attracting) then we expect inference to be computationally hard.

In these notes we will cover this method in detail. For further references, see

[55], [77].

Replica method and the complexity of the posterior. Another method bor-

rowed from statistical physics is the replica method (see e.g. [55]). This is a mys-

terious non-rigorous calculation from statistical physics that can produce many

of the same predictions as the cavity method. One way to think about this

method is as a way to measure the complexity of the posterior distribution. In

particular, we are interested in whether the posterior distribution resembles one

big connected region or whether it fractures into disconnected clusters (indicating

computational hardness). We will cover the replica method in Section 5 of these

notes.

Complexity of a random objective function. Another method for investigating

computational hardness is through the lens of non-convex optimization. Intui-

tively, we expect that ‘‘easy’’ optimization problems have no ‘‘bad’’ local minima

and so an algorithm such as gradient descent can find the global minimum (or at

least a point whose objective value is close to the global minimum). For Bayesian

inference problems, maximum likelihood estimation amounts to minimizing a par-

ticular random non-convex function. One tool to study critical points of random

functions is the Kac-Rice formula (see [3] for an introduction). This has been used

to study optimization landscapes in settings such as spin glasses [5], tensor decom-

position [30], and problems arising in community detection [6]. There are also

other methods to show that there are no spurious local minima in certain settings,

e.g. [28], [20], [45].
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2. Setting and vocabulary

Throughout, we’ll largely focus on Bayesian inference problems. Here we have

a signal s� a Rn viewed through some noisy observation model. We present two

examples, and examine them simultaneously through the parallel language of

machine learning and statistical physics.

Example 2.1 (Rademacher spiked Wigner). The signal s� is drawn uniformly at

random from fe1gn. We observe the n� n matrix

Y ¼ l

n
s�ðs�Þ> þ 1ffiffiffi

n
p W ;

where l is a signal-to-noise parameter, and W is a GOE matrix (Gaussian orthog-

onal ensemble: symmetric with diagonal entries drawn i.i.d. Nð0; 2Þ and the

(strict) upper triangle drawn i.i.d. as Nð0; 1Þ). We wish to approximately recover

s� from Y , up to a global negation (since s� and �s� are indistinguishable).

This problem is motivated by the statistical study of the spiked Wigner model

from random matrix theory (see e.g. [70]). This model has also been studied as a

Gaussian variant of community detection [23] and as a model for synchronization

over the group Z=2 [38].

Example 2.2 (Stochastic block model). The signal s� is drawn uniformly at ran-

dom from fe1gn. We observe a graph G with vertex set ½n� ¼ f1; . . . ; ng, with
edges drawn independently as follows: for vertices u; v, we have uP v with proba-

bility a=n if s�
us

�
v ¼ 1, and probability b=n if s�

us
�
v ¼ �1. We will restrict ourselves

to the case a > b. We imagine the entries s�
u as indicating membership of vertex u

in either the þ1 or �1 ‘community’; thus vertices in the same community are more

likely to share an edge. We wish to approximately recover the community struc-

ture s� (up to global negation) from G.

This is a popular model for community detection in graphs. See e.g. [1], [58]

for a survey. Here we consider the sparse regime, but other regimes are also con-

sidered in the literature.

There is a key di¤erence between the two models above. The Rademacher

spiked Wigner model is dense in the sense that we are given an observation for

every pair of variables. On the other hand, the stochastic block model is sparse

(at least in the regime we have chosen) because essentially all the useful informa-

tion comes from the observed edges, which form a sparse graph. We will see that

di¤erent tools are needed for dense and sparse problems.
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2.1. Machine learning view. We are interested in inferring the signal s�, so it

is natural to write down the posterior distribution. For the Rademacher spiked

Wigner problem (Example 2.1), we can compute the posterior distribution explic-

itly as follows:

Pr½s jY �mPr½Y j s�m
Y
i< j

exp � n

2
Yij �

l

n
sisj

� �2 !

¼
Y
i< j

exp � n

2
Y 2

ij þ lYijsisj �
l2

2n
s2
i s

2
j

 !

m
Y
i< j

expðlYijsisjÞ:

(Here m hides a normalizing constant which depends on Y but not s; it is

chosen so that
P

s A fe1gn Pr½s jY � ¼ 1.) The above factorization over edges de-

fines a graphical model: a probability distribution factoring in the form Pr½s� ¼Q
S�½n� cSðsSÞ into potentials cS that each only depend on a small (constant-size)

subset S of the entries of s. (For instance, in our example above, S ranges over all

subsets of size 2.)

2.2. Statistical physics view. The observation Y defines a Hamiltonian, or

energy function, HðsÞ ¼
P

i< j Yijsisj, consisting of two-spin interactions; we refer

to each entry of s as a spin, and to s as a state. A Hamiltonian together with

a parameter T ¼ 1
b
, called the temperature, defines a Gibbs distribution (or Boltz-

mann distribution):

Pr½s�m e�bHðsÞ:

Thus low-energy states are more likely than high-energy states; moreover, at low

temperature (large b), the distribution becomes more concentrated on lower

energy states, becoming supported entirely on the minimum energy states (ground

states) in the limit as b ! l. On the other hand, in the high-temperature limit

(b ! 0), the Gibbs distribution becomes uniform.

Connecting the machine learning and physics languages, we observe that the

posterior distribution on s is precisely the above Gibbs distribution with inverse-

temperature equal to the SNR: b ¼ l. (This is often referred to as lying on the

Nishimori line [62], [63], [64], or being at Bayes-optimal temperature.)

2.3. Optimization and statistical physics. A common optimization viewpoint

on inference is maximum likelihood estimation (MLE), or the maximization task

of finding the state s that maximizes the posterior likelihood. This optimization
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problem is frequently computationally hard, but convex relaxations or surrogates

may be studied. To rephraze this optimization task in physical terms, we wish to

minimize the energy HðsÞ over states s, or equivalently sample from (or otherwise

describe) the low-temperature Gibbs distribution in the limit b ! l.

This viewpoint is limited, in that the MLE frequently lacks any a priori guar-

antee of optimality. On the other hand, the Gibbs distribution at the true temper-

ature b ¼ l enjoys optimality guarantees at a high level of generality:

Claim 2.3. Suppose we are given some observation Y leading to a posterior distri-

bution on s. For any estimate ŝs ¼ ŝsðYÞ, define the (expected ) mean squared error

(MSE) Ekŝs� sk22. The estimator that minimizes the expected MSE is given by

ŝs ¼ E½s jY �, the posterior expectation (and thus the expectation under the Gibbs dis-

tribution at Bayes-optimal temperature).

Remark 2.4. In the case of the Rademacher spiked Wigner model, there is a

caveat here: since s� and �s� are indistinguishable, the posterior expectation is

zero. Our objective is not to minimize the MSE but to minimize the error between

s� and either ŝs or �ŝs (whichever is better).

Note that maximum likelihood estimation is equivalent to expectation over

the zero temperature (b ¼ l) Gibbs distribution. While maximum likelihood is

often close to optimal, it is not truly the optimal method because it uses too low

a temperature. Intuitively, MLE searches for the single state with highest indi-

vidual likelihood, whereas the optimal Bayesian approach looks for a large cluster

of closely-related states with a high aggregate likelihood.

Fortunately, the true Gibbs distribution has an optimization property of its

own:

Claim 2.5. The Gibbs distribution with Hamiltonian H and temperature T > 0 is

the unique distribution minimizing the (Helmholtz) free energy

F ¼ EH � TS;

where S denotes the Shannon entropy S ¼ �Es log PrðsÞ.

In other words, optimal inference is performed not by minimizing energy (as in

MLE) but by minimizing free energy.

Proof. Entropy is concave with infinite derivative at the edge of the probability

simplex, and the expected Hamiltonian is linear in the distribution, so the free

energy is convex and minimized in the interior of the simplex. We find the unique

local (hence global) minimum with a Lagrange multiplier:
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const � 1 ¼ ‘F ¼ ‘
X
s

pðsÞ
�
HðsÞ þ T log pðsÞ

�
const ¼ HðsÞ þ T log pðsÞ

const � e�HðsÞ=T ¼ pðsÞ;

which we recognize as the Gibbs distribution. r

This optimization approach is willing to trade o¤ some energy for an increase

in entropy, and can thus detect large clusters of states with a high aggregate likeli-

hood, even when no individual state has the highest possible likelihood. More-

over, the free energy is convex, but it is a function of an arbitrary probability dis-

tribution on the state space, which is typically an exponentially large object.

We are thus led to ask the question: is there any way to reduce the problem of

free energy minimization to a tractable, polynomial-size problem? Can we get a

theoretical or algorithmic handle on this problem?

3. The cavity method and belief propagation

3.1. BP as an algorithm for inference. Belief propagation (BP) is a general

algorithm for inference in graphical models, generally credited to Pearl [67] (see

e.g. [55] for a reference). As we’ve seen above, the study of graphical models is

essentially the statistical physics of Hamiltonians consisting of interactions that

each only depend on a few spins. Quite often, we care about the average case

study of random graphical models that describe a posterior distribution given

some noisy observation of a signal, such as in the Rademacher spiked Wigner ex-

ample discussed above. Much of statistical physics is concerned with disorder and

random systems, and indeed the concept of belief propagation appeared in physics

as the cavity method – not only as an algorithm but as a theoretical means to make

predictions about systems such as spin glasses [56].

To simplify the setting and notation, let us consider sparse graphical models

with only pairwise interactions:

Pr½s�m
Y
uPv

cuvðsu; svÞ;

where each vertex v has only relatively few ‘‘neighbors’’ u (denoted uP v).

Belief propagation is an iterative algorithm. We think of each spin su as a

vertex and each pair of neighbors as an edge. Each vertex tracks a ‘‘belief ’’ about

its own spin (more formally, an estimated posterior marginal). These beliefs are

often initialized to something like a prior distribution, or just random noise, and
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then iteratively refined to become more consistent with the graphical model. This

refinement happens as follows: each vertex u transmits its belief to each neigh-

bor, and then each vertex updates its belief based on the incoming beliefs of its

neighbors. If we let mu!v denote the previous beliefs sent from neighbors u to

a vertex v, we can formulate a new belief for v in a Bayesian way, assuming that

the incoming influences of the neighbor vertices are independent (more on this

assumption below):

mvðsvÞm
Y
uPv

X
su

cuvðsu; svÞmu!vðsuÞ

Each message mu!v is a probability distribution (over the possible values for su),

with the proportionality constant being determined by probabilities summing to 1

over all values of su.

This is almost a full description of belief propagation, except for one detail. If

the belief from vertex v at time t� 2 influences the belief of neighbor u at time

t� 1, then neighbor u should not parrot that influence back to neighbor v, rein-

forcing its belief at time t without any new evidence. Thus we ensure that the

propagation of messages does not immediately backtrack:

mðtÞ
v!wðsvÞm

Y
uPv
uAw

X
su

cuvðsu; svÞmðt�1Þ
u!v ðsuÞ: ð1Þ

This formula is the iteration rule for belief propagation.

The most suspicious aspect of the discussion above is the idea that neighbors

of a vertex v exert probabilistically independent influences on v. If the graphical

model is a tree, then the neighbors are independent after conditioning on v, and in

this setting it is a theorem (see e.g. [55]) that belief propagation converges to the

exact posterior marginals. On a general graphical model, this independence fails,

and belief propagation is heuristic. In many sparse graph models, neighborhoods

of most vertices are trees, with most loops being long, so that independence might

approximately hold (if correlations decay with distance). BP certainly fails in the

worst case; outside of special cases such as trees it is certainly only suitable in an

average-case setting. However, on many families of random graphical models,

belief propagation is a remarkably strong approach; it is general, e‰cient, and

often yields a state-of-the-art statistical estimate. It is conjectured in many models

that belief propagation achieves asymptotically optimal inference, either among

all estimators or among all polynomial-time estimators, but most rigorous results

in this direction are yet to be established.

To connect to the previous viewpoint of free energy minimization: belief prop-

agation is intimately connected with the Bethe free energy, a heuristic proxy for
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the free energy which may be described in terms of the messages mu!v (see [77],

Section III.B). It can be shown that the fixed points of BP are precisely the critical

points of the Bethe free energy, justifying the view that BP is roughly a minimiza-

tion procedure for the free energy. Again, rigorously the situation is much worse:

the Bethe free energy is non-convex, and BP is not guaranteed to converge, let

alone guaranteed to find the global minimum.

3.2. The cavity method for the stochastic block model. The ideas of belief

propagation above appear as the cavity method in statistical physics, owing to

the idea that the Bethe free energy is believed to be essentially an accurate model

for the true (Helmholtz) free energy on a variety of models of interest. In pass-

ing to the Bethe free energy, we can pass from studying a general distribution

(an exponentially complicated object) to studying node and edge marginals, which

are theoretically much simpler objects and, crucially, can be studied locally on the

graph. Local neighborhoods of sparse graphs as in the SBM (stochastic block

model) look like trees, and so we are drawn to studying message passing on a

tree.

Much as for the Rademacher spiked Wigner model above, we derive a Hamil-

tonian from the block model posterior:

HðsÞ ¼
X
iP j

yþsisj þ
X
iSj

y�sisj;

where uP v denotes adjacency in the observed graph, and yþ > 0 > y� are con-

stants depending on a and b; yþ is of constant order, while y� is of order 1=n. In

expressing belief propagation, we will make a small notational simplification: in-

stead of passing messages m that are distributions over fþ;�g, it su‰ces to pass

the expectation mðþÞ �mð�Þ. The reader can verify that rewriting the belief

propagation equations in this notation yields

mðtÞ
u!v ¼ tanh

�X
wPu
wAv

atanhðyþmðt�1Þ
w!u Þ þ

X
wSu
wAv

atanhðy�mðt�1Þ
w!u Þ

�

where tanh is the hyperbolic tangent function tanhðzÞ ¼ ðez � e�zÞ=ðez þ e�zÞ,
and atanh is its inverse.

The first term inside the tanh represents strong, constant-order attractions with

the few graph neighbors, while the second term represents very weak, low-order

repulsions with the multitude of non-neighbors. The value of the second term

thus depends very little on any individual spin, but rather on the overall balance

of positive and negative spins in the graph, with the tendency to cause the global

spin configuration to become balanced. As we are only interested in a local view

168 A. S. Bandeira, A. Perry and A. S. Wein



of message passing, we will assume here that the global configuration is roughly

balanced and neglect the second term:

mðtÞ
u!vQ tanh

�X
wPu
wAv

atanhðyþmðt�1Þ
w!u Þ

�
:

As this message-passing only involves the graph edges, it now makes sense to

study this on a tree-like neighborhood. We now discuss a generative model for

(approximate) local neighborhoods under the stochastic block model.

Model 3.1 (Galton–Watson tree). Begin with a root vertex, with spin þ or �
chosen uniformly. Recursively, each vertex gives birth to a Poisson number of child

nodes: Pois
�
ð1� eÞk

�
vertices of the same spin and PoisðekÞ vertices of opposite

spin, up to a total tree depth of d.

As shown in [59], the Galton–Watson tree with k ¼ ðaþ bÞ=2 and e ¼
b=ðaþ bÞ is distributionally very close to the radius-d neighborhood of a vertex

in the SBM with its true spins, so long as d ¼ oðlog nÞ. Thus we will study belief

propagation on a random Galton–Watson tree.

Let us consider only the BP messages passing toward the root of the tree. The

upward message from any vertex v is computed as:

mv ¼ tanh
�X

u

atanh
�
ð1� 2eÞmu

��
ð2Þ

where u ranges over the children of v. We now imagine that the child messages

mu are independently drawn from some distribution D
ðt�1Þ
þ for children with

spin þ, and (leveraging symmetry) from the distribution Dðt�1Þ
� ¼ �D

ðt�1Þ
þ for

children with spin �; this distribution represents the randomness of our BP cal-

culation below each child, over the random subtree hanging o¤ each one. Then,

from equation (2), together with the fact that there are Pois
�
ð1� eÞk

�
same-

spin children and PoisðekÞ opposite-spin children, the distribution D
ðtÞ
e of the

parent message m is determined! Thus we obtain a distributional recurrence for

D
ðtÞ
þ .

The calculation above is independent of n, and the radius of validity of the tree

approximation grows with n, so we are interested in the behavior of the recurrence

above as t ! l, i.e. fixed points of the distributional recurrence above and their

stability.

Typically one initializes BP with small random messages, a perturbation of

the trivial all-0 fixed point that represents our prior. For small messages, we can

linearize tanh and atanh, and write mvQð1� 2eÞ
P

u mu. Then if the child dis-
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tribution D
ðt�1Þ
þ has mean m and variance s2, it is easily computed that the par-

ent distribution D
ðtÞ
þ has mean kð1� 2eÞ2m and variance kð1� 2eÞ2s2. Thus if

kð1� 2eÞ2 < 1, then perturbations of the all-0 fixed point decay, or in other

words, this fixed point is stable, and BP is totally uninformative on this typical

initialization. If kð1� 2eÞ2 > 1, then small perturbations do become magnified

under BP dynamics, and one imagines that BP might find a more informative fixed

point (though this remains an open question!).

This transition is known as the Kesten–Stigum threshold [40], and calculations

of this form are loosely conjectured to describe the computational threshold beyond

which no e‰cient algorithm can perform inference, for sparse models such as the

SBM. The above SBM threshold was first computed heuristically by [22] and was

later rigorously vindicated using techniques slightly di¤erent from BP: inference

is known to be statistically impossible when kð1� 2eÞ2 < 1 (meaning that any

estimator has zero correlation with the truth as n ! l) [59], and e‰ciently possi-

ble when kð1� 2eÞ2 > 1 (meaning that asymptotically nonzero correlation is pos-

sible) [54], [60]. In particular, there is no computational-to-statistical gap in the

2-communities case.

One might also endeavor to study the other fixed points of BP, not just the

trivial fixed points. This is a di‰cult undertaking in most situations, as the BP

recurrence lacks convexity properties, but it is expected to give an understanding

of the statistical threshold of the problem, i.e. the limit below which even ine‰cient

inference techniques fail. This has been rigorously proven for some variants of the

stochastic block model [21]. Intuitively, exploring the BP landscape by brute force

for the best (in terms of Bethe free energy) BP fixed point is a statistically optimal

inference technique. For more general stochastic block models with 4 or more

communities, there exists a gap between the statistical threshold and the analogous

Kesten–Stigum bound [22], [2], [8].

While rigorously analyzing the performance of BP seems di‰cult (although

some progress is made in [63]), algorithms inspired by BP have been proven to

work up to the Kesten–Stigum bound. These include spectral methods using the

non-backtracking walk matrix [45], [20] and acyclic BP [2].

4. Approximate message passing

4.1. AMP as a simplification of BP. Our cavity analysis of the block model

above was well-adapted to sparse models, in which the analysis localizes onto

a tree of constant average degree. But many models, such as the Rademacher

spiked Wigner model, are dense and their analysis cannot be local. Thankfully,

many of these models are amenable to analysis for di¤erent reasons: as each vertex

is acted on by a large number of individually weak influences, the quantities of in-

terest in belief propagation are subject to central limit theorems and concentration
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of measure. In this section we will demonstrate this on the Rademacher spiked

Wigner example.

Recall the Hamiltonian H ¼
P

i< j Yijsisj and inverse temperature l. As in the

SBM discussion above, we can summarize BP messages by the expectation

mðþÞ �mð�Þ. Then BP for this model reads as

mðtÞ
u!v ¼ tanh

�X
wAv

atanhðlYwum
ðt�1Þ
w!u Þ

�
:

We next exploit the weakness of individual interactions. Note that the values

m
ðt�1Þ
w!u lie in ½�1; 1�, while Ywu is of order n�1=2 in probability. Taylor-expanding

atanh, we simplify:

mðtÞ
u!v ¼ tanh

��X
wAv

lYwum
ðt�1Þ
w!u

�
þOðn�1=2Þ

�
w:h:p:

We next simplify the non-backtracking nature of BP. Naı̈vely, one might

expect that we can simply drop the condition wA v from the sum above, as the

contribution from vertex v in the above sum should be only of size n�1=2. As our

formula for m
ðtÞ
u!v would then no longer depend on v, we could write down mes-

sages indexed by a single vertex:

mðtÞ
u ¼ tanh

�X
w

lYwum
ðt�1Þ
w

�
;

or in vector notation,

mðtÞ ¼ tanhðlYmðt�1ÞÞ; ð3Þ

where tanh applies entrywise. This resembles the ‘‘power iteration’’ iterative algo-

rithm to compute the leading eigenvector of Y :

mðtÞ ¼ Ymðt�1Þ;

but with tanhðl�Þ providing some form of soft projection onto the interval ½�1; 1�,
exploiting the entrywise e 1 structure.

Unfortunately, the non-backtracking simplification above is flawed, and equa-

tion (3) does not accurately summarize BP or provide as strong an estimator.

The problem is that the terms we have neglected add up constructively over two

iterations. Specifically: consider that vertex v exerts an influence lYvum
ðt�2Þ
v on

each neighbor u; this small perturbation translates directly to a perturbation of

m
ðt�1Þ
u (scaled by a derivative of tanh). At the next iteration, vertex u influences
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m
ðtÞ
v according to lYvum

ðt�1Þ
u ; the total contribution from backtracking here is

thus l2Y 2
vum

ðt�2Þ
v , scaled through some derivatives of tanh. This influence is a

random, positive, order 1=n multiple of m
ðt�2Þ
v . Summing over all neighbors u,

we realize that the aggregate contribution of backtracking over two steps is in

fact of order 1.

Thankfully, this contribution is also a sum of small random variables, and ex-

hibits concentration of measure. The solution is thus to subtract o¤ this aggregate

backtracking term in expectation, adding a correction called the Onsager reaction

term:

mðtÞ ¼ tanh
�
Ymðt�1Þ � l2ð1� kmk22=nÞmðt�2Þ�: ð4Þ

This iterative algorithm is known as approximate message passing (AMP). The

simplifications above to BP first appeared in the work of Thouless, Anderson, and

Palmer [76], who used it to obtain a theoretical handle on spin glasses at high

temperature. The first AMP algorithm [26] appeared in the context of compressed

sensing. The AMP algorithm (4) for this problem can be found in [23], and AMP

has been applied to many other problems such as rank-one matrix estimation [27],

sparse PCA [24], non-negative PCA [57], planted clique [25], and synchronization

over groups [69] ( just to name a few).

4.2. AMP state evolution. In contrast to belief propagation, approximate mes-

sage passing (AMP) algorithms tend to be amenable to exact analysis in the limit

n ! l. Here we introduce state evolution, a simple heuristic argument for the

analysis of AMP that has been proven correct in many settings. The idea of state

evolution was first introduced by [26], based on ideas from [19]; it was later proved

correct in various settings [16], [37].

We will focus again on the Rademacher spiked Wigner model: we observe

Y ¼ l

n
xx> þ 1ffiffiffi

n
p W

where x a fe1gn is the true signal (drawn uniformly at random) and the n� n

noise matrix W is symmetric with the upper triangle drawn i.i.d. as Nð0; 1Þ. In

this setting, the AMP algorithm and its analysis are due to [23].

We have seen above that the AMP algorithm for this problem takes the form

vtþ1 ¼ Yf ðvtÞ þ ½Onsager�

where f ðvÞ denotes entrywise application of the function f ðvÞ ¼ tanhðlvÞ. (Here

we abuse notation and let f refer to both the scalar function and its entrywise

application to a vector.) The superscript t indexes timesteps of the algorithm

172 A. S. Bandeira, A. Perry and A. S. Wein



(and is not to be confused with an exponent). The details of the Onsager term,

discussed previously, will not be important here.

The state evolution heuristic proceeds as follows. Postulate that at timestep t,

AMP’s iterate vt is distributed as

vt ¼ mtxþ stg where gPNð0; IÞ: ð5Þ

This breaks down vt into a signal term (recall x is the true signal) and a noise

term, whose sizes are determined by parameters mt a R and st a Rb0. The idea

of state evolution is to write down a recurrence for how the parameters mt and st
evolve from one timestep to the next. In performing this calculation we will make

two simplifying assumptions that will be justified later: (1) we drop the Onsager

term, and (2) we assume the noise W is independent at each timestep (i.e. there

is no correlation between W and the noise g in the current iterate). Under these

assumptions we have

vtþ1 ¼ Yf ðvtÞ ¼ l

n
xx> þ 1ffiffiffi

n
p W

� �
f ðvtÞ

¼ l

n
3x; f ðvtÞ4xþ 1ffiffiffi

n
p Wf ðvtÞ

which takes the form of (5) with a signal term and a noise term. We therefore

have

mtþ1 ¼
l

n
3x; f ðvtÞ4 ¼ l

n
3x; f ðmtxþ stgÞ4

Ql E
X ;G

½Xf ðmtX þ stGÞ� with scalars X PUniffe1g;GPNð0; 1Þ

¼ l E
G
½ f ðmt þ stGÞ� since f ð�vÞ ¼ �f ðvÞ:

For the noise term, think of f ðvtÞ as fixed and consider the randomness over W .

Each entry of the noise term 1ffiffi
n

p Wf ðvtÞ has mean zero and variance

ðs tþ1Þ2 ¼
X
i

1

n
f ðvti Þ

2 ¼
X
i

1

n
f ðmtxi þ stgiÞ2

Ql E
X ;G

½ f ðmtX þ stGÞ2� with scalars X ;G as above

¼ E
G
½ f ðmt þ stGÞ2� again by symmetry of f :

We now have ‘‘state evolution’’ equations for mtþ1 and stþ1 in terms of mt and st.

Since we could arbitrarily scale our iterates vt without adding or losing informa-
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tion, we really only care about the parameter gx ðm=sÞ2. It is possible (see [23])

to reduce the state evolution recurrence to this single parameter:

gtþ1 ¼ l2 E
GPNð0;1Þ

tanhðgt þ
ffiffiffiffi
gt

p
GÞ ð6Þ

(where we have substituted the actual expression for f ).

We can analyze AMP as follows. Choose a small positive initial value g0 and

iterate (6) until we reach a fixed point gl. We then expect the output vl of AMP

to behave like

vl ¼ mlxþ slg ð7Þ

where gPNð0; IÞ, ml ¼ gl=l, and s2
l ¼ gl=l2. For the Rademacher spiked

Wigner model, this has in fact been proven to be correct in the limit n ! l
[16], [37]. Namely, when we run AMP (with the Onsager term and without

fresh noise W at each timestep), the output behaves like (7) in a particular formal

sense.

State evolution reveals a phase transition at l ¼ 1: when la 1 we have gl ¼ 0

(so AMP has zero correlation with the truth as n ! l) and when l > 1 we have

gl > 0 (so AMP achieves nontrivial correlation with the truth). Furthermore,

from (7) we can deduce the value of any performance metric (e.g. mean squared

error) at any signal-to-noise ratio l. It has in fact been shown (for Rademacher

spiked Wigner) that the mean squared error achieved by AMP is information-

theoretically optimal [23].

It is perhaps surprising that state evolution is correct, given the seemingly-

questionable assumptions we made in deriving it. This can be understood as

follows. Recall that we eliminated the Onsager term and assumed independent

noise W at each timestep. Also recall that the Onsager term is a correction that

makes the update step non-backtracking: a message sent across an edge at one

iteration does not a¤ect the message sent back across the edge (in the opposite

direction) at the next iteration. It turns out that to leading order, using fresh noise

at each timestep is equivalent to using a non-backtracking update step. This is

because the largest e¤ect of fresh noise is to terms where a particular noise entry

Wij is used twice in a row, i.e. backtracking steps. So the two assumptions we

made actually cancel each other out! Note that both of the two assumptions are

crucial in making the state evolution analysis tractable, so it is quite spectacular

that we are able to make both of these assumptions for free (and still get the cor-

rect answer)!

One caveat in the rigorous analysis of AMP is that it assumes an initialization

that has some nonzero correlation with the truth [23]. In other words, we need to

assume that we start with some nonzero g because if we start with g ¼ 0 we will
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remain there forever. In practice this is not an issue; a small random initialization

su‰ces.

4.3. Free energy diagrams. In this section we will finally see how to predict

computational-to-statistical gaps (for dense problems)! Above we have seen how

to analyze a particular algorithm: AMP. In various settings it has been shown

that AMP is information-theoretically optimal. More generally, it is believed that

AMP is optimal among all e‰cient algorithms (for a wide class of problems). We

will now show how to use AMP to predict whether a problem should be easy,

(computationally) hard or (statistically) impossible. The ideas here originate from

[48], [49].

Recall that the state of AMP is described by a parameter g, where larger g

indicates better correlation with the truth and g ¼ 0 means that AMP achieves

zero correlation with the truth. Also recall that the Bethe free energy is the quan-

tity that belief propagation (or AMP) is locally trying to minimize. It is possible

to analytically write down the function f ðgÞ which gives the (Bethe) free energy

of the AMP state corresponding to g; in the next section, we will see one way to

compute f ðgÞ. AMP can be seen as starting at g ¼ 0 and naively moving in the

direction of lowest free energy until it reaches a local minimum; the g value at

this minimum characterizes AMP’s output. The information-theoretically optimal

estimator is instead described by the global minimum of the free energy (and this

has been proven rigorously in various cases [15], [47]); this corresponds to the in-

e‰cient algorithm that uses exhaustive search to find the AMP state which glob-

ally minimizes free energy. Figure 1 illustrates how the free energy landscape f ðgÞ
dictates whether the problem is easy, hard, or impossible at a particular l value.

Stationary points of the free energy curve correspond to fixed points of the

state evolution equations. Analogously to the Kesten-Stigum transition, the prob-

lem becomes computationally possible when the trivial fixed point at g ¼ 0 be-

comes unstable to small perturbations.

For Rademacher spiked Wigner, we have phase (a) (from Figure 1) when

la 1 and phase (d) when l > 1, so there is no computational-to-statistical gap.

However, for some variants of the problem (for instance if the signal x is sparse,

i.e. only a small constant fraction of entries are nonzero) then we see phases

(a), (b), (c), (d) appear in that order as l increases; in particular, there is a

computational-to-statistical gap during the hard phase (c).

Although many parts of this picture have been made rigorous in certain cases,

the one piece that we do not have the tools to prove is that no e‰cient algorithm

can succeed during the hard phase (c). This is merely conjectured based on the

belief that AMP should be optimal among e‰cient algorithms.

There are a few di¤erent ways to compute the free energy landscape f ðgÞ. One

method is to use the replica method discussed in the next section. Alternatively,
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there is a direct formula for Bethe free energy in terms of the BP messages, which

can be adapted to AMP (see e.g. [48]).

5. The replica method

The replica method is an alternative viewpoint that can derive many of the

same results shown in the previous section. We will again use the example of

Rademacher spiked Wigner to illustrate it. A general introduction to the replica

method can be found in [55]. The calculations of this section are carried out in

somewhat higher generality in Appendix B of [68].

f

f f

f

γ γ

γ γ

Figure 1. (a) The global minimizer is g ¼ 0 (left edge of the figure) so no estimator achieves
nontrivial recovery. (b) A new local minimum in the free energy has appeared, but the
global minimum is still at g ¼ 0 and so nontrivial recovery remains impossible. (c) AMP
is stuck at g ¼ 0 but the (ine‰cient) statistically optimal estimator achieves a nontrivial g
(the global minimum). AMP is not statistically optimal. (d) AMP achieves nontrivial (in
fact optimal) recovery.
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Recall again the setup: we observe Y ¼ l
n
xx> þ 1ffiffi

n
p W with x a fe1gn and

Wij ¼ Wji PNð0; 1Þ.
The posterior distribution of x given Y is

Pr½x jY �m
Y
i< j

exp � n

2

l

n
xixj � Yij

� �2 !
m exp

�
l
X
i< j

Yijxixj

�

and so we are interested in the Gibbs distribution over s a fe1gn given by

Pr½s jY �m exp
�
�bHðsÞ

�
with energy (Hamiltonian) HðsÞ ¼ �

P
i< j Yijsisj and

inverse temperature b ¼ l.

The goal is to compute the free energy density, defined as f ¼ � 1
bn
E logZ

where

Z ¼
X

s A fe1gn

exp
�
�bHðsÞ

�
:

(This can be shown to coincide with the notion of free energy introduced earlier.)

The idea of the replica method is to compute the moments E½Zr� of Z for r a N

and perform the (non-rigorous) analytic continuation

E½logZ� ¼ lim
r!0

1

r
log E½Zr�: ð8Þ

Note that this is quite bizarre – we at first assume r is a positive integer, but then

take the limit as r tends to zero! This will require writing E½Zr� in an analytic form

that is defined for all values of r. An informal justification for the correctness of

(8) is that when r is close to 0, Zr is close to 1 and so we can interchange log and E

on the right-hand side.

The moment E½Zr� can be expanded in terms of r ‘replicas’ s1; . . . ; sr with

sa a fe1gn:

E½Zr� ¼
X
fs ag

E exp
�
b
X
i< j

Yij

Xr
a¼1

sa
i s

a
j

�
:

After applying the definition of Y and the Gaussian moment-generating function

(to compute expectation over the noise W ) we arrive at

E½Zr� ¼
X
fsag

exp

�
n
�l2
2

X
a

c2a þ
l2

4

X
a;b

q2ab

�	
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where qab ¼ 1
n

P
i s

a
i s

b
i is the correlation between replicas a and b, and ca ¼

1
n

P
i s

a
i xi is the correlation between replica a and the truth.

Without loss of generality we can assume (by symmetry) the true spike is x ¼ 1

(all-ones vector). Let Q be the ðrþ 1Þ � ðrþ 1Þ matrix of overlaps (qab and ca),

including x as the zeroth replica. Note that Q is the average of n i.i.d. matrices

and so by the theory of large deviations (Cramér’s Theorem in multiple dimen-

sions), the number of configurations fsag corresponding to given overlap param-

eters qab, ca is asymptotically

inf
m; n

exp

�
n

�
�
X
a

naca �
1

2

X
aAb

mabqab

þ log
X

s A fe1g r

exp
�X

a

nasa þ
1

2

X
aAb

mabsasb

��	
: ð9Þ

We now apply the saddle point method (or Laplace method ): in the large n

limit, the expression for E½Zr� should be dominated by a single value of the over-

lap parameters qab, ca. This yields

1

n
log E½Zr� ¼ �Gðq�

ab; c
�
a ; m

�
ab; n

�
a Þ

where ðq�
ab; c

�
a ; m

�
ab; n

�
a Þ is a critical point of

Gðqab; ca; mab; naÞ ¼ � l2

2

X
a

c2a �
l2

4

X
a;b

q2ab þ
X
a

naca þ
1

2

X
aAb

mabqab

� log
X

s A fe1g r

exp
�X

a

nasa þ
1

2

X
aAb

mabsasb

�
:

We next assume that the dominant saddle point takes a particular form: the

so-called replica symmetric ansatz. The replica symmetric ansatz is given by

qaa ¼ 1, ca ¼ c, na ¼ n, and for aA b, qab ¼ q and mab ¼ m for constants q, c, m, n.

This yields

lim
r!0

1

r
Gðq; c; m; nÞ ¼ � l2

2
c2 � l2

4
þ l2

4
q2 þ nc� 1

2
mðq� 1Þ

� E
zPNð0;1Þ

log
�
2 coshðnþ ffiffiffi

m
p

zÞ
�

ð10Þ

where the last term is handled as follows:
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lim
r!0

1

r
log

X
s A fe1g r

exp
�X

a

nasa þ
1

2

X
aAb

mabsasb

�

¼ lim
r!0

1

r
log

X
s A fe1g r

exp
�
n
X
a

sa þ
m

2

X
aAb

sasb

�

¼ lim
r!0

1

r
log

X
s A fe1g r

exp
�
n
X
a

sa þ
m

2

X
a;b

sasb �
rm

2

�

¼ lim
r!0

1

r
log

X
s A fe1g r

expð�rm=2Þ exp
�
n
X
a

sa þ
m

2

�X
a

sa

�2�

¼ � m

2
þ lim

r!0

1

r
log

X
s A fe1g r

exp

�
n
X
a

sa þ
m

2

�X
a

sa

�2�

¼ðaÞ � m

2
þ lim

r!0

1

r
log

X
s A fe1g r

E
zPNð0;1Þ

exp
�
n
X
a

sa þ
ffiffiffi
m

p
z
X
a

sa

�

¼ � m

2
þ lim

r!0

1

r
log E

zPNð0;1Þ

X
s A fe1g r

exp
�
ðnþ ffiffiffi

m
p

zÞ
X
a

sa

�

¼ � m

2
þ lim

r!0

1

r
log E

zPNð0;1Þ



expðnþ ffiffiffi

m
p

zÞ þ exp
�
�ðnþ ffiffiffi

m
p

zÞ
�� r

¼ � m

2
þ lim

r!0

1

r
log E

zPNð0;1Þ

�
2 coshðnþ ffiffiffi

m
p

zÞ
�r

¼ðbÞ � m

2
þ E

zPNð0;1Þ
log
�
2 coshðnþ ffiffiffi

m
p

zÞ
�

where (a) uses the Gaussian moment-generating function and (b) uses the replica

trick (8).

We next find the critical points by setting the derivatives of (10) (with respect

to all four variables) to zero, which yields

n ¼ l2c; m ¼ l2q; c ¼ Ez tanhðnþ
ffiffiffi
m

p
zÞ; q ¼ Ez tanh

2ðnþ ffiffiffi
m

p
zÞ:

Recall that the replicas are drawn from the posterior distribution Pr½x jY � and
so the truth x behaves as if it is a replica; therefore we should have c ¼ q. Using

the identity Ez tanhðgþ
ffiffiffi
g

p
zÞ ¼ Ez tanh

2ðgþ ffiffiffi
g

p
zÞ (see e.g. [23]), we obtain the

solution c ¼ q and n ¼ m where q and m are solutions to

m ¼ l2q; q ¼ E
zPNð0;1Þ

tanhðmþ ffiffiffi
m

p
zÞ: ð11Þ
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The solution q to this equation tells us about the structure of the posterior distri-

bution; namely, if we take two independent draws from this distribution, their

overlap will concentrate about q. (Equivalently, the true signal x and a draw

from the posterior distribution will also have overlap that concentrates about q.)

Note that (11) exactly matches the state evolution fixed-point equation (6) with m

in place of g and q ¼ g=l2.

The free energy density of a solution to (11) is given by

f ¼ 1

b
lim
r!0

1

r
Gðq; c; m; nÞ

¼ 1

l
� l2

4
ðq2 þ 1Þ þ 1

2
mðqþ 1Þ � Ez log

�
2 coshðmþ ffiffiffi

m
p

zÞ
�" #

:

This is how one can derive the free energy curves such as those shown in Figure 1.

If there are multiple solutions to (11), we should take the one with minimum free

energy.

Above, we had a Gibbs distribution corresponding to the posterior distribution

of a Bayesian inference problem. In this setting, the replica symmetric ansatz is

always correct; this is justified by a phenomenon in statistical physics: ‘‘there is

no static replica symmetry breaking on the Nishimori line’’ (see e.g. [77], [64]).

More generally, one can apply the replica method to a Gibbs distribution that

does not correspond to a posterior distribution (e.g. if the ‘temperature’ of the

Gibbs distribution does not match the signal-to-noise of the observed data). This

is important when investigating computational hardness of random non-planted

or non-Bayesian problems. In this case, the optimal (lowest free energy) saddle

point can take various forms, which are summarized below; the form of the opti-

mizer reveals a lot about the structure of the Gibbs distribution. An important

property of a Gibbs distribution is its overlap distribution: the distribution of the

overlap between two independent draws from the Gibbs distribution (in the large n

limit).

• RS (replica symmetric): The overlap matrix is qaa ¼ 1 and qab ¼ q for some

q a ½0; 1�. The overlap distribution is supported on a single point mass at

value q. The Gibbs distribution can be visualized as having one large cluster

where any two vectors in this cluster have overlap q. This case is ‘‘easy’’ in

the sense that belief propagation can easily move around within the single

cluster and find the true posterior distribution.

• 1RSB (1-step replica symmetry breaking): The r� r overlap matrix takes

the following form. The r replicas are partitioned into blocks of size m. We

have qaa ¼ 1, qab ¼ q1 if a, b are in the same block, and qab ¼ q2 otherwise

(for some q1; q2 a ½0; 1�). The overlap distribution is supported on q1 and q2.
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The Gibbs distribution can be visualized as having a constant number of

clusters. Two vectors in the same cluster have overlap q1 whereas two vectors

in di¤erent clusters have overlap q2. This case is ‘‘hard’’ for belief propaga-

tion (starting from a random initialization) because it gets stuck in one cluster

and cannot correctly capture the posterior distribution. The idea of replica

symmetry breaking was first proposed in a groundbreaking work of Parisi [65].

• 2RSB (2-step replica symmetry breaking): Now we have ‘‘clusters of

clusters.’’ The overlap matrix has sub-blocks within each block. The overlap

distribution is supported on 3 di¤erent values (corresponding to ‘‘same sub-

block’’, ‘‘same block (but di¤erent sub-block)’’, ‘‘di¤erent blocks’’). The

Gibbs distribution has a constant number of clusters, each with a constant

number of sub-clusters. This is again ‘‘hard’’ for belief propagation.

• FSRB (full replica symmetry breaking): We can define kRSB for any k as

above (characterized by an overlap distribution supported on k þ 1 values);

FRSB is the limit of kRSB as k ! l. Here the overlap distribution is a con-

tinuous distribution.

• d1RSB (dynamic 1RSB): This phase is similar to RS and (unlike kRSB for

kb 1) can appear in Bayesian inference problems. The overlap matrix is the

same as in the RS phase (and so the replica calculation proceeds exactly as in

the RS case). However, the Gibbs distribution has exponentially-many small

clusters. The overlap distribution is supported on a single point mass because

two samples from the Gibbs distribution will be in di¤erent clusters with high

probability. This phase is ‘‘hard’’ for BP (or AMP) because it cannot easily

move between clusters. For a Bayesian inference problem, you can tell

whether you are in the RS (easy) phase or d1RSB (hard) phase by looking at

the free energy curve; d1RSB corresponds to the ‘‘hard’’ phase (c) in Figure 1.
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graphs: community detection and non-regular Ramanujan graphs. In Foundations of

Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1347–1357.
IEEE, 2015.

[21] N. Boumal, V. Voroninski, and A. S. Bandeira. The non-convex Burer-Monteiro
approach works on smooth semidefinite programs. NIPS, 2016.

[22] A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborova. Information-theoretic
thresholds from the cavity method. arXiv preprint arXiv:1611.00814, 2016.

[23] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Inference and phase transi-
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