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Bitangents of non-smooth tropical quartics

Heejong Lee and Yoav Len

Abstract. We study bitangents of non-smooth tropical plane quartics. Our main result is
that with appropriate multiplicities, every such curve has 7 equivalence classes of bitangent
lines. Moreover, the multiplicity of bitangent lines varies continuously in families of trop-
ical plane curves.
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1. Introduction

The topic of bitangents to quartics curves has gained renewed attention recently

with the introduction of tropical techniques. As shown in [BLMþ15], every

smooth tropical plane quartic admits seven families of bitangent lines. The rela-

tion between tropical and algebraic bitangents was later studied in [CJ15], [JL16],

[LM17], [Pan15]. The goal of the current note is to begin an examination of the

bitangents when the curve is singular. In this case, the genus of the tropical curve

may not be 3 anymore, and the number of bitangent lines may go down. How-

ever, there is a natural way of assigning a multiplicity to each of them (see Defini-

tion 4.1). Our main result is as follows.

Theorem (4.4). Let G be a tropical plane quartic of genus g. Then G has 2g equiv-

alence classes of bitangent lines. One of them has multiplicity 23�g � 1, and each of

the others has multiplicity 23�g.

When a bitangent has multiplicity 0 it means that it doesn’t exist. In par-

ticular, when g ¼ 3, there are 7 bitangent lines with multiplicity 1, and a single

bitangent with multiplicity 0, in accordance with [BLMþ15], Theorem 3.9.

Non-hyperelliptic smooth algebraic curves of genus 3 are canonically em-

bedded in the plane. Therefore, every line section of the curve gives rise to the

canonical divisor, and their bitangents are in bijection with e¤ective half canonical



divisors. An analogous argument works for smooth tropical quartics. However,

when the tropical curve is no longer smooth, and especially when its genus drops,

this bijection falls apart. To overcome this di‰culty, we parametrize the tropical

quartic using a metric graph of genus 3, which we refer to as the paired metric

graph, and obtain an upper bound on the number of bitangent lines.

On the other hand, to obtain a lower bound on the number of bitangents, we

use a limiting process. Given a non-smooth quartic, we approximate it using a

sequence of smooth quartics. Via upper semicontinuity of intersection numbers,

each of the 7 bitangent lines of the smooth quartic converges in the limit to a

bitangent of our non-smooth quartic.

2. Preliminaries

In this section, we provide a brief overview of some of the basic terms in tropical

geometry that will be used throughout. See [MS15], Chapter 1 for more detail.

2.1. Tropical plane curves. A tropical plane curve G is a planar metric graph

possibly with unbounded edges, together with a weight function wE : E ! Z>0,

such that each edge has a rational slope, satisfying the following balancing condi-

tion: the weighted sum of the outgoing primitive integral vectors emanating from

every vertex is zero. The last condition is called the balancing condition. For the

rest of the paper, G will denote a plane tropical curve.

Every tropical curve is dual to a regular subdivision of a lattice polygon,

known as its subdivided Newton polygon. Each edge of the curve corresponds

to an edge of the Newton polygon, and each vertex corresponds to a face. The

weight of an edge is the lattice length of the corresponding edge of the polygon.

Note that the Newton polygon determines the directions and weights of the edges

of the tropical curve, but not the length.

Definition 2.1. A tropical curve G has degree d if its Newton polygon is a stan-

dard right triangle of edge length d.

In particular, a tropical quartic is dual to a right angled triangle of edge length

4. Note that a general tropical line meets a tropical curve of degree d at d points.

If the Newton polygon consists only of triangles with area 1
2, then the curve is said

to be smooth.

2.2. Singularities of tropical plane curves. Each vertex of G corresponds to a

face of the Newton polygon. The curve is said to be singular at v if the area of

the dual face is strictly greater than 1
2 . The following theorem determines precisely

when that occurs [Pic99].
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Theorem 2.2 (Pick’s theorem). Let P be a lattice polygon with area A. Then

A ¼ b

2
þ i � 1;

where b denotes the number of lattice points on the boundary and i denotes the num-

ber of lattice points in the interior.

Since every polygon has at least three vertices, its area is greater than 1
2 if and

only if it has additional lattice points either on the boundary or in the interior.

Figure 1 shows three di¤erent ways to obtain singularities. In the first case, the

edge adjacent to the vertex has weight 2. In the second case, the vertex is

4-valent. The third type of singularity occurs when the face dual to the vertex con-

tains a lattice point in its interior, which means that the genus of the entire curve

has dropped. We keep track of the lost genus by adding integer weights on the

vertices.

Definition 2.3. The weight function wG : G ! Zb0 assigns to each vertex of G the

number of lattice points in the interior of its dual face, and is zero everywhere else.

Given a tropical plane curve G, we parametrize it with a metric graph S

(possibly with infinite edges). The vertex set of S is the same as G. Every edge

of weight we of G is replaced with we edges of S of the same length. Whenever a

vertex v of G has weight wv > 0, we attach wv loops of length e > 0 based at the

corresponding vertex of S. None of our results below depend on the length of

these loops. We have a natural map f : S ! G which collapses loops and multiple

edges. See Figure 2 for an example.

Definition 2.4. The metric graph S constructed this way is called the paired metric

graph of G, and the map f is called the pairing morphism.

It is straightforward to check that the genus gS of S is exactly
ðd�1Þðd�2Þ

2 .

2.3. Divisor theory on metric graphs. In this section, we briefly recall the theory

of divisors on metric graphs. A detailed discussion can be found in [BJ16],

[GK08].

Figure 1. Singular vertices on tropical plane curve.
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Let S be a metric graph. The divisor group DivðSÞ is the free abelian group

on the points of S. An element D of DivðSÞ is called a divisor. Each divisor has

a unique representation

D ¼ a1 � p1 þ a2 � p2 þ � � � þ an � pn:

When the coe‰cient of p at D is a, we write DðpÞ ¼ a, and say that D has a chips

at P. The degree of D is degðDÞ :¼ a1 þ a2 þ � � � an, and D is said to be e¤ective if

all the coe‰cients are non-negative.

A rational function on S is a continuous piecewise linear function with integer

slopes. For each rational function f on S, we associate a divisor divð f Þ where the
coe‰cient at each point p is equal to the sum of incoming slopes of f at p. Such

divisors are referred to as principal, and together they form a subgroup PrinðSÞ of
DivðSÞ. Divisors D1, D2, are said to be linearly equivalent if D1 �D2 is principal.

The quotient group PicðSÞ :¼ DivðSÞ=PrinðSÞ is called the Picard group of S. The

restriction to divisors of degree zero is the Jacobian of S, denoted JacðSÞ.
A divisor D has rank r if D� E is linearly equivalent to an e¤ective divisor, for

every e¤ective divisor E of degree r, and r is the largest integer with this property.

The canonical divisor is any divisor linearly equivalent to

KS :¼
X

v AS

�
valðvÞ � 2

�
� v:

By a double counting argument, the degree of the canonical divisor is 2g� 2.

From the tropical Riemann–Roch theorem [GK08], its rank is g� 1.

Definition 2.5. A theta characterisctic of a metric graph S is a divisor y which

satisfies 2yPKS.

2.4. Divisor theory on tropical plane curves. For a smooth tropical or algebraic

curve, linear equivalence of divisors is closely related with intersections: the pull-

Figure 2. Paired metric graph and pairing morphism.

70 H. Lee and Y. Len



back of two di¤erent lines gives rise to equivalent divisors. However, this relation

breaks when the curve is not smooth. Therefore, statements of interest to us will

be stated and proved on the paired metric graph and shifted to the tropical plane

curve.

Let G be a tropical plane curve, and let f : S ! G be the paired metric graph.

As usual, DivðGÞ is the free abelian group generated by the set of points of G.

However, linear equivalence of divisors needs to be defined di¤erently. The pair-

ing morphism induces a group homomorphism f� from DivðSÞ to DivðGÞ, by
defining f�ðDÞðPÞ ¼

P
P 0 A f�1ðPÞ DðP 0Þ.

Definition 2.6. The Picard group of G with respect to S is

PicðS;GÞ :¼ DivðGÞ=f�
�
PrinðSÞ

�
:

Similarly, the Jacobian of G with respect to S is

JðS;GÞ :¼ Div0ðGÞ=f�
�
PrinðSÞ

�
:

One easily sees that PicðS;GÞGPicðSÞ=3½Q� � ½Q 0�4fðQÞ¼fðQ 0Þ.
The group PicðS;GÞ can be identified as the usual Picard group of another

metric graph. Let Gw be the non-weighted metric graph obtained from G by re-

scaling every edge e by 1
we

and forgetting the weights. Then there is a natural map

between G and Gw given by rescaling edges accordingly, that is extended by line-

arity to a map on divisors.

Proposition 2.7. The Picard group of Gw is isomorphic to the Picard group

PicðS;GÞ.

Proof. It is clear that the map from G to Gw induces a bijection between DivðGÞ
and DivðGwÞ. We need to show that principal divisors on S give rise to principal

divisor on Gw, and that every principal divisor arises this way. Let D be a prin-

cipal divisor on S such that D ¼ divð f Þ for some f , and let D 0 be the correspond-
ing divisor on Gw. Define a function f 0 on Gw whose slope at every point is the

sum of the slopes at the corresponding points of S. Then f 0 defines a continuous

piecewise linear function with divð f 0Þ ¼ D 0.
Conversely, given a principal divisor E 0 ¼ divðg 0Þ on Gw, we define a function

g on S as follows. Let e be an interval of length lðeÞ where the slope of g 0 is s,
contained in an edge Gw of weight k. Then, by definition, there are k edges

e1; . . . ; ek of S, each of length k � lðeÞ mapping down to e. Divide each of them

into k segments of equal length. For each edge ei, we define the slope of g to be

�s, except for the i-th segment, in which the slope is s � k. Then g is well defined,

continuous, and divðgÞ is a divisor mapping down to E 0. r
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As a result of Proposition 2.7, together with [BF11], Theorem 3.4, the group

JðS;GÞ is a real torus of dimension gG. We define the canonical divisor class of

G as KG ¼ f�ðKSÞ. Note that this is not the same as the canonical divisor of the

underlying metric graph of G.

2.5. Theta characteristics and cycles. Accordingly, we define a theta character-

istic to be any divisor class y satisfying 2yPKG, which yields a bijection with the

2-torsion points of the Jacobian JðS;GÞ. As a result, G has 2gG theta character-

istics, the same as the cardinality of H0ðS;Z2Þ. In [Zha10], Zharkov illustrates a

combinatorial recipe for constructing a theta characteristic from every cycle of S.

The trivial cycle gives rise to a characteristic with �1 chip at every vertex, and a

chip in the midpoint of each edge. This is the non-e¤ective theta characteristic.

For a non-trivial cycle s, an e¤ective theta characteristic ys is constructed as

follows. For every point p, let IðpÞ be the number of incoming edges at p from

the cycle (in other words, it is the number of edges emanating from p along which

the distance from s is decreasing). Then ys ¼ KGþdivðIÞ
2 . Explicitly, if p is in the

cycle, then ys ¼ valsðpÞ�2
2 , where valsðpÞ is the valency of p restricted to s, and

ys ¼ IðpÞ�1
2 otherwise.

To find the theta characteristics of a plane tropical curve G, we use Zhrakov’s

algorithm on the paired metric graph S. Whenever two cycles of S get identified in

G, their di¤erence is in the kernel of the pushforward map f� : JðSÞ ! JðS;GÞ.
Consequently, the corresponding theta characteristics map to the same theta char-

acteristic of G.

Example 2.8. Let S and G be as in Figure 2. Let s1 be the large cycle in the

middle of S, and s2 the union of the large cycle and the cycle above it. Then

ys1 ¼ Pþ R and ys2 ¼ Qþ R. The images of ys1 and ys2 are equivalent divisors

in JðS;GÞ. This is consistent with the fact that the pairing morphism identifies the

cycles s1 and s2.

Definition 2.9. The multiplicity of a theta characteristic class y on a tropical plane

curve is the number of e¤ective theta characteristic classes in its preimage f�1
� ðyÞ.

Note that f� : JðSÞ ! JðS;GÞ is a map of groups. It follows that the fiber of

each theta characteristic of JðS;GÞ consists of 2gS�gG theta characteristics of S.

Therefore,

Lemma 2.10. There is a 2gS�gG : 1 map from the set of theta characteristic classes

on S to the set of theta characteristic classes on G. Furthermore, only one among the

2gG theta characteristic classes on G has 2gS�gG � 1 e¤ective theta characteristic

classes in its preimage, and the others have 2gS�gG e¤ective theta characteristic

classes in its preimage.
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In particular, when gðGÞ ¼ gðSÞ, all the e¤ective theta characteristics of G

have multiplicity 1. On the other hand, when gðGÞ < gðSÞ, the image of the non-

e¤ective theta characteristic is equivalent to an e¤ective divisor. Indeed, it has at

least one e¤ective preimage in S, and the pushforward map sends e¤ective divisors

to e¤ective divisors.

3. Bitangent lines to tropical plane curves

In this section, we prove that every bitangent to a tropical plane curve gives rise

to a theta characteristic. As always G denotes a tropical plane quartic curve, S

denotes the paired metric graph, and f the pairing morphism. Given a tropical

line L, we obtain a divisor

L � G ¼
X

P AG

aP � P

on G, where aP is the multiplicity of the stable intersection of G and L at P. We

remind the reader that to obtain the stable intersection, choose a vector v such that

G and Lþ e � v intersect properly, and take the limit as e goes to zero.

A bitangent of G is, morally speaking, a line that meets the curve with multi-

plicity at least 2 at two or more points, or at one point with multiplicity at least 4.

However, we need to be a bit more careful when dealing with non-transverse

intersections.

Definition 3.1. A tropical line L is bitangent to G at P and Q if there exists a

piecewise linear function f that is constant outside of the intersection, and such

that G �LþDiv f is e¤ective and contains 2Pþ 2Q.

For instance, when a component of LBG is an edge, there is a tangency at the

midpoint of the edge.

Lemma 3.2. All the line sections of a plane tropical curve G are equivalent in

PicðS;GÞ. Their pullbacks are equivalent in PicðSÞ.

Proof. Let L1, L2 be tropical lines with defining equations f1, f2. For each i, con-

sider the function ci on S whose slope at a point p equals the slope of fi at fðpÞ.
Then f� DivðciÞ ¼ Li � G. Moreover, the two line sections L1 � G and L2 � G are

equivalent since their di¤erence is the pushforward of the principal divisor

Divðc2Þ �Divðc1Þ. r

Lemma 3.3. Suppose that a tropical line L passes through a vertex u of a tropical

curve G. Then the stable intersection of G and L contains u. If the weight wGðuÞ is
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positive, then the stable intersection has multiplicity at least 2 at u. Moreover, if the

vertex of L is at u, then the stable intersection has multiplicity at least 3 when the

weight is 1, and at least 4 when the weight is greater than 1.

Proof. We begin with the case where u is in the interior of one of the ends of L.

Without loss of generality we may assume it is the horizontal end. Then the stable

intersection at u equals the width of the polygon dual to u in the Newton sub-

division of G. The weight of u equals the number of lattice points in the interior

of the polygon. This number can be positive only if the width, and therefore the

stable intersection is at least 2.

Now, assume that u is at the vertex of L. Let Gu be the tropical curve con-

sisting of u and the edges emanating from it (so Gu is the star of u). The stable

intersection of L with G at u equals the stable intersection of Gu with a line whose

vertex is at u. By Bézout’s theorem [MS15], Theorem 1.3.2, the degree of the

stable intersection equals the degree of Gu. If the weight of u is 1, then this degree

at least 3, and if the weight of u is 2 or more, then this degree is at least 4. r

Proposition 3.4. A line section of a tropical quartic is equivalent to the canonical

divisor.

Proof. By Bézout’s theorem, L � G has degree 4. Consider a divisor L such that

f�ðLÞ ¼ L � G. By Riemann–Roch, in order to prove that L is canonical, it suf-

fices to show it has rank 2. Let P and Q be points of S. By Lemma 3.2, it su‰ces

to find a tropical line whose pullback to S is equivalent to PþQ. Since the ver-

tices of S are a rank determining set, we can assume that P and Q are either ver-

tices or at the midpoint of loops of S [Luo11]. Therefore, fðPÞ and fðQÞ are not

in the interior of weighted edges of G. Let L be a tropical line that passes through

fðPÞ and fðQÞ. If fðPÞ ¼ fðQÞ choose L to be the line whose vertex is at fðPÞ.
We distinguish between two cases.

(1) fðPÞAfðQÞ. Let m ¼ wG

�
fðPÞ

�
, and denote g ¼ f�1

�
fðPÞ

�
. Then g is a

graph consisting of m loops and a single vertex. By Lemma 3.3, the pullback

of L to g has degree at least 2 when the weight of fðPÞ is positive, and there-

fore has rank at least 1 on g. In particular, it is equivalent to a divisor con-

taining P. A similar argument shows that the pullback of L to f�1
�
fðQÞ

�
is

equivalent to a divisor containing Q.

(2) fðPÞ ¼ fðQÞ. Similarly to the previous case, denote g ¼ f�1
�
fðPÞ

�
. Again g

is a graph consisting of m loops. This time, since the vertex of L is at fðPÞ,
Lemma 3.3 implies that the pullback of L to g has rank at least 2, and is there-

fore equivalent to a divisor that contains both P and Q. r

As an immediate consequence we conclude,
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Corollary 3.5. Let L be a bitangent of a tropical plane quartic G. Then L�G
2 is a

theta characteristic of G.

It is left to show that every e¤ective theta characteristics can be realized as the

intersection with a line. We do that in the next section.

4. Families of bitangent lines

In this section, we study the behaviour of bitangents of tropical quartics in fami-

lies, and interpret the multiplicity of the theta characteristics as the number of

bitangents converging to it from nearby curves (cf. [CS03], Section 3).

In order to discuss families of bitangent lines, we set up some notations.

The combinatorial type of a weighted metric graph is the finite graph obtained by

forgetting the edge lengths. Sequences of plane quartics and their limit are all

taken within the moduli space Mplanar
g of planar tropical curves of genus g (see

[BJMS15]). By Corollary 3.5, every bitangent of a tropical quartic gives rise to a

theta characteristic. We use this to define its multiplicity.

Definition 4.1. Two bitangents are equivalent if they correspond to the same theta

characteristic. The multiplicity of a bitangency class is defined to be the multiplic-

ity of the theta characteristic.

Said di¤erently, two bitangents are equivalent precisely when we can contin-

uously move one of them to the other, while continuously moving the tangency

points.

Example 4.2. Consider the sequence of tropical quartics Gn depicted in Figure 3.

The height of the upper rectangle is 1
n
, and the sequence converges to the tropical

curve G on the right side of the figure. For each Gn, we consider two bitangent

lines L 0
n and L 00

n . To avoid overcrowding the picture, we only sketched the vertex

of each line. Then the two sequences of bitangents converge to L, whose multi-

plicity according to Definition 4.1 is 2.

Figure 3. A converging sequence of tropical quartics.
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Theorem 4.3. Each theta characteristic of G gives rise to a bitangent line L. More-

over, if Gn is a sequence of tropical quartics converging to G, then the multiplicity of

L equals the sum of the multiplicities of the bitangents of Gn converging to it.

Proof. Let Gn be a squence of tropical curves converging to G. We may assume,

perhaps after passing to a subsequence, that their skeletons all have the same

combinatorial type G, and that the combinatorial type of the curve in the limit is

obtained by contracting edges of G. Therefore, they all live in the closure of the

same cone of Mplanar
g . Similarly, if we consider the corresponding paired metric

graphs Sn and S, we may assume that they all live in the same cone of the moduli

space of tropical curves M Trop
g , and have the same combinatorial type H. We

therefore have a canonical identification of the theta characteristics of Sn and S

with cycles of G.

Let Pic2ðH;wÞ be the tropical universal Picard space classifying divisor classes

of degree 2 on all the metric graphs of type H. Then by [Len14], this space is

compact, and the rank of divisors varies upper semicontinuously. In particular,

every sequence of theta characteristics has a subsequence that converges to a theta

characteristic.

Let y be an e¤ective theta characteristic of G of multiplicity k. Then there are

k theta characteristics y1; y2; . . . ; yk of S corresponding to L. Each y i is the limit

of a sequence of theta characteristics y i
n of Sn. By [BLMþ15], Theorem 3.9, each

of them gives rise to a sequence of bitangent lines L i
n of Gn, which converges to

a bitangent of G. Note that the lines L i
n are in fact in distinct bitangency classes

of Gn since they correspond to distinct theta characteristics. Therefore the multi-

plicity of L equals the sum of the multiplicities of the bitangents of Gn converging

to it. r

We are now ready to prove Theorem 4.4.

Theorem 4.4. Let G be a tropical plane quartic curve with genus g. If g is 3, it has

7 equivalence classes of bitangent lines each with multiplicity 1. If g is less than 3,

it has 2g equivalence classes of bitangent lines: only one of them has multiplicity

23�g � 1, and all the others have multiplicity 23�g.

Proof. Let G be a tropical quartic. By Lemma 2.10, it has one e¤ective theta

characteristic of multiplicity 23�g � 1, and all others have multiplicity 23�g. By

Theorem 4.3, each of them corresponds to a bitangent line whose multiplicity

equals the multiplicity of the corresponding theta characteristic. r

Remark 4.5. Most of the ingredients of the proof of [BLMþ15], Theorem 3.9

carry well to the non-smooth case. Therefore, our Theorem 4.4 could also be

proven directly, by making the necessary adjustments.
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We finish by asking about the relation between algebraic and tropical bitan-

gents to quartics. When G is a smooth quartic, there are 4 bitangents of C tropic-

alizing to every bitangency class of G [JL16], [LM17].

Conjecture 1. Let C be an algebraic plane quartic curve over the field of Puiseux

series, and let G ¼ TropðCÞ. Let ½L� be an equivalence class of bitangents of G of

total multiplicity m. Then there are 4m bitangents of C tropicalizing to ½L�.
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