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Nitsche’s method for unilateral contact problems

Tom Gustafsson, Rolf Stenberg and Juha Videman

Abstract. We derive optimal a priori and a posteriori error estimates for Nitsche’s method
applied to unilateral contact problems. Our analysis is based on the interpretation of
Nitsche’s method as a stabilised finite element method for the mixed Lagrange multiplier
formulation of the contact problem wherein the Lagrange multiplier has been eliminated
elementwise. To simplify the presentation, we focus on the scalar Signorini problem and
outline only the proofs of the main results since most of the auxiliary results can be traced
to our previous works on the numerical approximation of variational inequalities. We end
the paper by presenting results of our numerical computations which corroborate the e‰-
ciency and reliability of the a posteriori estimators.
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1. Introduction

Unilateral contact problems are of great engineering interest and they occur in

numerous areas of physics and mechanics; cf. [26]. In mathematical terms, these

problems are expressed as variational inequalities and most often approximated

by the finite element method; cf. [19] and all the references therein.

One of the most common examples of unilateral contact problems is contact

between two deformable elastic bodies. Here, we will consider the Signorini prob-

lem which consists in finding the equilibrium position of an elastic body resting on

a rigid frictionless surface. For simplicity, we consider the scalar version of such

problem, at times referred to as the Poisson–Signorini problem. However, our

results carry over, with minor modifications, to the Signorini problem in linear

elasticity.

The finite element treatment of the Signorini problem has shown to be more

di‰cult than that of the obstacle problem (another archetypical variational in-

equality) due to the Signorini (no-penetration) condition at the boundary, and



has led to a number of papers over the past years; cf. [2–4], [6], [12], [20], [23], [29],

[31] and the review papers [8], [36]. The above mentioned works address primal

and mixed formulations and focus on obtaining optimal a priori estimates based

on Falk’s Lemma [13]. As for the a posteriori error estimates for the Signorini

problem, we refer to [5], [21], [22], [27], [30], [35].

Another approach that, at the same time, imposes the contact boundary con-

ditions weakly, avoids the additional Lagrange multiplier of the mixed formula-

tions and is consistent in contrast to the standard penalty formulations, is the

Nitsche’s formulation, first proposed for the unilateral contact problems by

Chouly and Hild [10], see also [7], [11] for further generalisations. In [7], [10],

[11], optimal a priori estimates were derived but, to our knowledge, the only exist-

ing work on the a posteriori error estimation of unilateral contact problems ap-

proximated by Nitsche’s method is the recent work by Chouly et al. [9].

In this paper, we will continue to advocate (cf. [14–18]) that Nitsche’s method

is most readily analysed as a stabilised finite element method, the relation which

was first suggested in [32]. We will prove optimal a priori estimates for the stabi-

lised mixed formulation and show the reliability and the e‰ciency for the a poste-

riori error estimators without additional saturation assumptions which are needed

when Nitsche’s method is analysed directly (cf. [9]). We do emphasise though that

the stabilised method is best implemented through the Nitsche’s formulation.

The paper is organised as follows. In Section 2, we introduce the Poisson–

Signorini problem, write it in a mixed variational form and state a continuous

stability result. In Section 3, we formulate the stabilised finite element method,

state a discrete stability estimate and prove a priori error estimate. In Section 4,

we introduce residual-based a posteriori error estimators and establish lower and

upper bounds for the error in terms of the estimators. In Section 5, we deduce the

Nitsche’s formulation from the stabilised one and in Section 6 report on our nu-

merical computations.

We note that some of the proofs have been left out since they are formally sim-

ilar to the ones proven in our previous works, in particular in [14], [16].

2. The continuous problem

Let W � Rd , d a f2; 3g, denote a polygonal (or polyhedral) domain and qW its

boundary with qW ¼ GDAGN AG. We assume that the boundary parts GD, GN

and G are all non-empty and non-overlapping and such that GDBG ¼ j, and
that the part G where the contact may occur coincides with one of the sides of

the polygon (or the polyhedron).

The Poisson–Signorini unilateral contact problem can be written as follows:

find u such that
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�Du ¼ f in W;

u ¼ 0 on GD;

qu

qn
¼ 0 on GN ;

ub 0;
qu

qn
b 0; u

qu

qn
¼ 0 on G;

ð2:1Þ

where f a L2ðWÞ is a given load function and n denotes the outer normal vector

to W.

Remark 2.1. For ease of exposition, we consider here the simplest version of

the Signorini problem although we could easily deal with a non-homogeneous

Neumann condition qu
qn
¼ g on GN , with a gap function c defined on G, such that

ubc and ðu� cÞ qu
qn
¼ 0 on G, and also with the linear elastic Signorini problem.

Note also that by assuming that GDBG ¼ j we avoid introducing the Lions–

Magenes space H
1=2
00 ðGÞ; cf. [33].

To give a weak formulation for problem (2.1), we introduce the Hilbert

spaces

V ¼ fv a H 1ðWÞ : v ¼ 0 on GDg; W :¼ fwjG : w a Vg ¼ H 1=2ðGÞ;

endowed with the norms

kvkV ¼ k‘vk0; kwkW ¼ inf
v AV ; vjG¼w

kvkV ;

where k � k0 denotes the L2ðWÞ-norm. Now, defining a non-negative Lagrange

multiplier by

l ¼ qu

qn
; ð2:2Þ

we obtain the following (weak) mixed variational formulation of problem (2.1)

(cf. [24]): find ðu; lÞ a V �L such that

ð‘u;‘vÞ � 3v; l4 ¼ ð f ; vÞ Ev a V ;

3u; m� l4b 0 Em a L:
ð2:3Þ

Above, ð� ; �Þ is the standard L2ðWÞ-inner product,

L ¼ fm a Q : 3w; m4b 0 Ew a W ; wb 0 a:e: on Gg;
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where Q :¼ W 0 is the topological dual of W , and 3� ; �4 : W �Q ! R denotes the

duality pairing. The norm in Q is defined as

kmkQ ¼ sup
w AW

3w; m4

kwkW
:

Remark 2.2. The corresponding primal weak formulation of problem (2.1) reads

as follows: find u a K such that

�
‘u;‘ðv� uÞ

�
b ð f ; v� uÞ Ev a K ; ð2:4Þ

where

K ¼ fv a V : vb 0 a:e: on Gg:

Remark 2.3. It is well-known that problem (2.4), equivalently (2.3), admits a

unique solution u a H 1ðWÞ; cf. [25], [26]. However, even if the boundary is

smooth and the data regular enough, the Signorini conditions limit the regularity

of the solution. In fact, in the two-dimensional case the solution belongs only

to Hr, r < 5=2, in the vicinity of points at G where the constraints change from

binding to non-binding, cf. [28] and the discussion in [2]. If the boundary G has

corners, further singularities may occur; cf. [1].

Defining the bilinear and linear forms, B : ðV �QÞ � ðV �QÞ ! R and

L : V ! R through

Bðw; x; v; mÞ ¼ ð‘w;‘vÞ � 3w; m4� 3v; x4; LðvÞ ¼ ð f ; vÞ;

the mixed variational formulation of (2.3) reads: find ðu; lÞ a V �L such that

Bðu; l; v; m� lÞa ðvÞ Eðv; mÞ a V �L: ð2:5Þ

The proof of the following result is straightforward (see, e.g., [16]):

Theorem 2.4 (Continuous stability). For all ðv; xÞ a V �Q there exists w a V

such that

Bðv; x;w;�xÞl ðkvkV þ kxkQÞ
2 ð2:6Þ

and

kwkV k kvkV þ kxkQ: ð2:7Þ
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Note that above and in the following we write al b (or ak b) when abCb

(or aaCb) for some positive constant C independent of the finite element

mesh.

3. The stabilised method

Our discretisation is based on a conforming shape-regular partitioning Ch of W into

non-overlapping triangles or tetrahedra, with h > 0 denoting the mesh parameter.

We denote the interior edges or facets of Ch by Eh and let Gh and Nh be the parti-

tioning of the boundary parts G and GN , respectively, corresponding to the parti-

tioning Ch, into line segments ðd ¼ 2Þ or triangles ðd ¼ 3Þ. The finite element

spaces

Vh � V ; Qh � Q;

are finite dimensional and consist of piecewise polynomial functions. We also

define

Lh ¼ fmh a Qh : mhb 0 on Gg � L;

and introduce the discrete bilinear form Bh as

Bhðw; x; v; mÞ ¼ Bðw; x; v; mÞ � aShðw; x; v; mÞ;

where a > 0 is a stabilisation parameter and the stabilising term Sh is defined

as

Shðw; x; v; mÞ ¼
X
E AGh

hE x� qw

qn
; m� qv

qn

� �
E

;

with hE denoting the diameter of E a Gh and ð� ; �ÞE the L2ðEÞ-inner product; sim-

ilarly ð� ; �ÞK denotes the L2ðKÞ-inner product and k � k0;E and k � k0;K stand for the

L2ðEÞ and L2ðKÞ-norms, respectively.

The stabilised finite element method is now formulated as follows: find

ðuh; lhÞ a Vh �Lh such that

Bhðuh; lh; vh; mh � lhÞaLðvhÞ Eðvh; mhÞ a Vh �Lh: ð3:1Þ

The proof of stability for method (3.1) is very similar to the one given for the

obstacle problem in [16], Theorem 4.1, see also [14], and is thus omitted. We only

note that to estimate the stabilising term we use the following inverse estimate,

proven by a scaling argument.
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Lemma 3.1. There exists CI > 0, independent of h, such that

CI

X
E AGh

hE
qvh

qn

����
����
2

0;E

a kvhk2V Evh a Vh: ð3:2Þ

Theorem 3.2 (Discrete stability). Let 0 < a < CI . For all ðvh; xhÞ a Vh �Qh,

there exists wh a Vh, such that

Bhðvh; xh;wh;�xhÞl
�
kvhkV þ kxhkQ þ

�X
E AGh

hEkxhk20;E
�1=2�2

ð3:3Þ

and

kwhkV k kvhkV þ kxhkQ: ð3:4Þ

Remark 3.3. The additional stability for xh in a mesh-dependent norm in

Theorem 3.2 will be needed in the proof of Theorem 3.5.

We will need the following Lemma in establishing the a priori error estimate.

Its detailed proof can be found in [14].

Lemma 3.4. Let fh a Vh be the L
2 projection of f , define

oscKð f Þ ¼ hKk f � fhk0;K

and, for each E a Gh, let KðEÞ a Ch denote the element satisfying qKðEÞBE ¼ E.

For any ðvh; mhÞ a Vh �Qh it holds that

�X
E AGh

hE mh �
qvh

qn

����
����
2

0;E

�1=2

k ku� vhkV þ kl� mhkQ þ
�X
E AGh

oscKðEÞð f Þ2
�1=2

: ð3:5Þ

As usual, the a priori estimate follows from the discrete stability estimate.

Theorem 3.5 (A priori error estimate). Let ðu; lÞ a V �L be the solution to the

continuous problem (2.5) and let ðuh; lhÞ a Vh �Lh be its approximation obtained

by solving the discrete problem (3.1). Then the following estimate holds

ku� uhkV þ kl� lhkQ k inf
vh AVh

ku� vhkV þ inf
mh ALh

ðkl� mhkQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u; mh4

p
Þ

þ
�X
E AGh

oscKðEÞð f Þ2
�1=2

:
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Proof. In view of Theorem 3.2, it holds that

��X
E AGh

hEkmh � lhk20;E
�1=2

þ kuh � vhkV þ klh � mhkQ
�2

kBhðuh � vh; lh � mh;wh; mh � lhÞ;

with some wh a Vh satisfying

kwhkV k kuh � vhkV þ klh � mhkQ: ð3:6Þ

It follows that

Bhðuh � vh; lh � mh;wh; mh � lhÞ
¼ Bhðuh; lh;wh; mh � lhÞ �Bhðvh; mh;wh; mh � lhÞ
aLðwhÞ þBðu� vh; l� mh;wh; mh � lhÞ �Bðu; l;wh; mh � lhÞ

þ a
X
E AGh

hE mh �
qvh

qn
; mh � lh �

qwh

qn

� �
E

;

where we have used the bilinearity of B and Bh, and the discrete problem state-

ment (3.1). Observe that

LðwhÞ �Bðu; l;wh; mh � lhÞ ¼ ð f ;whÞ � ð‘u;‘whÞ þ 3wh; l4þ 3u; mh � lh4

a3u; mh � lh4þ 3u; lh � l4 ¼ 3u; mh � l4 ¼ 3u; mh4;

where we have used the problem (2.3) and recalled that 0a3u; m� l4, Em a L.

Moreover

X
E AGh

hE mh �
qvh

qn
; mh � lh �

qwh

qn

� �
E

a

�X
E AGh

hE mh �
qvh

qn

����
����
2

0;E

�1=2�X
E AGh

hEkmh � lhk20;E
�1=2

þ
�X

E AGh

hE mh �
qvh

qn

����
����
2

0;E

�1=2�X
E AGh

hE
qwh

qn

����
����
2

0;E

�1=2

:

The a priori estimate now follows from the continuity of the bilinear form B,

the inverse estimate (3.2) and bound (3.6), Lemma 3.4, and from the triangle

inequality. r
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4. A posteriori error analysis

We will define the local error estimators corresponding to the finite element solu-

tion ðuh; lhÞ as

h2K ¼ h2KkDuh þ f k20;K ; K a Ch;

h2E;W ¼ hEk7‘uh � n8k20;E ; E a Eh;

h2E;G ¼ hE lh �
quh

qn

����
����
2

0;E

; E a Gh;

h2E;GN
¼ hE

quh

qn

����
����
2

0;E

; E a Nh;

where 7‘uh � n8 denotes the jump in the normal derivative across the inter-element

boundaries.

We also define the global error estimators h and S through

h2 ¼
X
K ACh

h2K þ
X
E AEh

h2E;W þ
X
E AGh

h2E;G þ
X
E ANh

h2E;GN
;

S ¼ ku�h kW þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlh; uþh Þ

q
:

where wþ ¼ maxfw; 0g denotes the positive and w� ¼ minfw; 0g the negative part

of w. We will now establish both the e‰ciency and the reliability of the error

estimators.

Theorem 4.1 (A posteriori estimate). It holds that

ku� uhkV þ kl� lhkQ k hþ S ð4:1Þ

and

hk ku� uhkV þ kl� lhkQ þ
�X
K ACh

oscKð f Þ2
�1=2

: ð4:2Þ

Proof. The continuous stability condition (cf. Theorem 2.4) guarantees the exis-

tence of v a V such that

kvkV k ku� uhkV þ kl� lhkQ ð4:3Þ

and

ðku� uhkV þ kl� lhkQÞ
2
kBðu� uh; l� lh; v; lh � lÞ:
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On the other hand, testing in (3.1) with ð�~vv; lhÞ, where ~vv is the Clément inter-

polant of v, we obtain

0a�Bhðuh; lh;�~vv; 0Þ þLð�~vvÞ:

It follows that

ðku� uhkV þ kl� lhkQÞ
2

kBðu; l; v; lh � lÞ �Bðuh; lh; v; lh � lÞ
�Bðuh; lh;�~vv; 0Þ þLð�~vvÞ þ aShðuh; lh;�~vv; 0Þ

kLðv� ~vvÞ �Bðuh; lh; v� ~vv; lh � lÞ þ aShðuh; lh;�~vv; 0Þ;

where we have used the bilinearity of B and the problem statement (2.5).

Observe first that

Lðv� ~vvÞ �Bðuh; lh; v� ~vv; lh � lÞ
¼ ð f ; v� ~vvÞ �

�
‘uh;‘ðv� ~vvÞ

�
þ 3v� ~vv; lh4þ 3uh; lh � l4: ð4:4Þ

After elementwise integration by parts, the first four terms on the right-hand side

of (4.4) read
X
K ACh

ðDuh þ f ; v� ~vvÞK �
X
E AEh

ð7‘uh � n8; v� ~vvÞE

þ
X
E AGh

lh �
quh

qn
; v� ~vv

� �
E

�
X
E ANh

quh

qn
; v� ~vv

� �
E

:

The last term in (4.4) can be estimated as follows

3uh; lh � l4a ðlh; uþh Þ þ 3u�h ; lh � l4a ðlh; uþh Þ þ kl� lhkQku�h kW ;

given that 3uþh ; l4b 0. For the stabilisation term Shðuh; lh;�~vv; 0Þ, we obtain

X
E AGh

hE lh �
quh

qn
;
q~vv

qn

� �
E

a

�X
E AGh

hE lh �
quh

qn

����
����
2

0;E

�1=2�X
E AGh

hE
q~vv

qn

����
����
2

0;E

�1=2

k

�X
E AGh

hE lh �
quh

qn

����
����
2

0;E

�1=2

k~vvkV ;

where in the last step we have used the discrete inverse estimate (3.2).
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For the Clément interpolant ~vv, it holds that

k~vvk2V þ
X
K ACh

h�2
K kv� ~vvk20;K þ

X
E AEhAGhANh

h�1
E kv� ~vvk20;E k kvk2V : ð4:5Þ

The reliability estimate (4.1) can now be established using the Cauchy–Schwarz

inequality together with (4.3) and (4.5).

The e‰ciency follows from standard lower bounds [34] and from Lemma 3.2.

r

5. Nitsche’s method

Nitsche’s formulation can be elegantly derived from the stabilised method fol-

lowing the reasoning suggested in [32]. In fact, testing with ð0; mhÞ in (3.1),

yields

ðuh; mh � lhÞ þ a
X
E AGh

hE lh �
quh

qn
; mh � lh

� �
E

b 0 Emh a Lh:

In particular,

ðuh; lhÞ þ a
X
E AGh

hE lh �
quh

qn
; lh

� �
E

¼ 0:

By a standard argument, we thus obtain locally

lhjE ¼ Ph
quh

qn

				
E

� ðahEÞ�1PhuhjE EE a GC ; ð5:1Þ

where Ph is the L2 projection onto Lh. Assuming equal polynomial order

for both variables, say kb 1, and recalling that the discrete Lagrange multi-

plier is discontinuous from element to element, it follows that Ph ¼ I and we

have

Qh ¼ fmh a Q : mh a PkðEÞ EE a Ghg:

Therefore, using the test function ðvh; 0Þ in (3.1) and substituting (5.1) into the

resulting equation, leads to

198 T. Gustafsson, R. Stenberg and J. Videman



ð‘uh;‘vhÞ þ
X
E AGC

ðahEÞ�1ðuh; vhÞE �
X
E AGC

quh

qn
; vh

� �
E

þ uh;
qvh

qn

� �
E


 �

� a
X

E AGnGC

hE
quh

qn
;
qvh

qn

� �
E

¼ ð f ; vhÞ Evh a Vh:

Defining an L2ðGÞ function h through

h jE ¼ hE EE a Gh;

the discrete Lagrange multiplier can be written globally as

lh ¼
quh

qn

				
G

� ðahÞ�1
uhjG

� �þ
ð5:2Þ

and the discrete contact region becomes

Gh
C ¼ fðx; yÞ a G : lhðx; yÞ > 0g:

Nitsche’s method thus reads as follows: find uh a Vh and Gh
C ¼ Gh

CðuhÞ such that

ð‘uh;‘vhÞW þ a�1ðh�1uh; vhÞG h
C
� quh

qn
; vh

� �
Gh
C

� uh;
qvh

qn

� �
Gh
C

� a h
quh

qn
;
qvh

qn

� �
GnG h

C

¼ ð f ; vhÞ Evh a Vh: ð5:3Þ

Remark 5.1. Note that formulation (5.3) is equivalent to the Nitsche’s method

introduced in [10], with g ¼ ah , and to the symmetric variant ðy1 ¼ �1Þ of the

Nitsche’s method proposed in [11].

For the implementational aspects of the Nitsche’s method (5.3), we refer to [17]

where a similar method was applied to the obstacle problem.

6. Numerical verification

Let us consider problem (5.3) in W ¼ ð0; 1Þ2 with the loading function f ðx; yÞ ¼
x cosð2pyÞ and the boundary qW divided into the parts

GD ¼ fðx; yÞ a R2 : x ¼ 0; 0 < y < 1g;

GN ¼ fðx; yÞ a R2 : 0 < x < 1; y ¼ 0gA fðx; yÞ a R2 : 0 < x < 1; y ¼ 1g;

G ¼ fðx; yÞ a R2 : x ¼ 1; 0 < y < 1g:
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The contact region is now a proper subset of G. There are two points on G where

the constraints change from binding to non-binding and the exact solution belongs

to Hr, r < 5=2, see the comments in Remark 2.3. We employ Nitsche’s method

with the quadratic finite element space

Vh ¼ fw a V : wjK a P2ðKÞ EK a Chg:

Thus, in view of the regularity of u, the convergence rate of the error ku� uhkV
with uniform mesh refinement is limited to OðN�3=4Þ where N is the number of

degrees of freedom. Note that for a uniform mesh the relationship between the

number of degrees of freedom and the mesh parameter is NP h�2 so the optimal

convergence rate, Oðh2Þ, is not attained.
To overcome the limited regularity, we consider also a sequence of adap-

tive meshes. Starting with an initial mesh, we compute the discrete solution

uh, the corresponding Lagrange multiplier through (5.2), and the respective error

indicator

E2
K ¼ h2KkDuh þ f k20;K þ hKk7‘uh � n8k20;qKnqW

þ hK lh �
quh

qn

����
����
2

0;qKBG

þ hK
quh

qn

����
����
2

0;qKBGN

for every K in the initial mesh. The mesh is then improved by splitting the ele-

ments that have large error indicators. This process is performed repeatedly until

a predetermined value of N is reached. Please refer to [14] or [18] for more details

on how to choose and split the elements.

The discrete solution is visualised in Figure 1. The resulting sequence of adap-

tive meshes is given in Figure 2 and the convergence of the global error estimator

hþ S is compared between the uniform and adaptive mesh sequences in Figure 3.

As expected, the adaptive meshes are more refined near the singular points on the

contact boundary. Moreover, the observed convergence rate of the uniform re-

finement strategy is suboptimal, due to the limited regularity of the exact solution,

whereas the adaptive method successfully recovers the optimal rate of conver-

gence, OðN�1Þ.
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Figure 1. The discrete solution after 8 adaptive refinements. The contact region on the
rightmost boundary is highlighted in red.

Figure 2. The initial mesh and the resulting sequence of adaptively refined meshes.
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