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Abstract. We find the critical number of vertices of a convex lattice polygon that guaran-
tees that the polygon contains at least one point of a given square sublattice. As a tool, we
prove Diophantine inequalities relating the number of edges of a broken line and the coor-
dinates of its endpoints.
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1. Introduction

Lattice points in convex sets is a classical subject. It started with Minkowski’s

Convex Body Theorem, which became the foundation of the geometry of num-

bers. The theorem states that if a compact set in Rd is symmetric with respect to

origin and has volume at least 2d , then it contains a point of the integral lattice

Zd . The constant 2d cannot be improved. This theorem has quite a few modifi-

catioins and generalizations, see e.g. the nice short survey [23].

There are numerous results concerning lattice points in various regions, see

e.g. [7], [9], [11], [13]. The regions at issue can be either general convex and non-

convex or polyhedral sets. Among more recent works we note the following that

are close to ours. The papers [2], [6], [18], [19] deal with the largest possible num-

ber of facets of maximal lattice-free polytopes. The papers [3], [15], [17], [20] study

properties of lattice polytopes having a specified (positive) number of interior

lattice points such as upper bounds for the volume and the number of sublattice

points and a classification of such polytopes. The papers [21], [22] deal with sim-

ilar issues for polygons.

Besides, there are other interesting results about lattice polygons, such as [1],

[23], [24], not to mention Pick’s well-known theorem.

In this paper we consider the natural problem of relating the existence of sub-

lattice points in a convex lattice polygon to the number of vertices (or edges) of the

polygon.



In higher dimensions, a large number of faces cannot guarantee that the poly-

tope contains a point of a given sublattice. For instance, there is no upper bound

for the number of vertices and facets of polytopes in R3 free of points of ð2ZÞ3.
Surprisingly, things are di¤erent in two dimensions. It follows from known

results (e.g. [16]) that given an integer n, any convex lattice polygon with enough

vertices contains a point of the lattice ðnZÞ2. It was noticed in [8] that any convex

integral pentagon on the plain contains a point of ð2ZÞ2.
In the spirit of the Minkowski Convex Body Theorem, our main goal is to

explicitly state the critical number of vertices that ensures that the convex lattice

polygon contains a point of ðnZÞ2, where nb 3 is a given integer. The answer is

Theorem 1.1. Given an integer nb 3, any convex integral polygon with 2nþ 3 ver-

tices contains a point of ðnZÞ2.

Clearly, the constant 2nþ 3 is optimal, since it is easy to construct a polygon

with 2nþ 2 vertices lying in the slab fðx1; x2Þ : 0ax2a ng and free from points

of ðnZÞ2.
Curiously, in the case n ¼ 2 the critical value is 5 < 2nþ 3. This apparent ex-

eption is accomodated by the formula nðd; nÞ ¼ 2nþ 2minðd; 3Þ � 3 for the critical

number of vertices ensuring that the lattice polygon contains a point of the ‘rect-

angular’ lattice dZ� nZ, where d divides n. The proof of this generalization of

Theorem 1.1 is out of scope of this paper.

Theorem 1.1 can be alternatively cast as a sharp bound on the number of ver-

tices of sublattice-free polygons:

Theorem 1.2. Given an integer nb 3, any convex integral polygon free from points

of ðnZÞ2 has at most 2nþ 2 vertices.

We prefer to prove it in this formulation. Due to the optimality of the result,

the proof of Theorem 1.2 requires a subtle geometric analysis. It is broken down

into estimating the number of vertices for particular classes of polygons free

from points of ðnZÞ2. The general idea is to break up the boundary of a polygon

into several broken lines and to translate geometrical constraints imposed on

the polygon into Diaphantine inequalities. This translation is carried out by

means of tools developed in Sections 3 and 4. Resulting inequalities relate the

numbers of edges of the broken lines and the coordinates of their endpoints, which

are also the overall dimensions of the polygon. Subsequent analysis of the in-

equalities can prove rather technical owing to the number of parameters and non-

linearities.

The rest of the paper is organized as follows.

In Section 2 we briefly discuss lattices and lattice polygons. In particular, we

define the classes of polygons the proof of Theorem 1.2 can be restricted to.

206 N. Bliznyakov and S. Kondratyev



In Sections 3 and 4 we study a class of broken lines we call slopes. Section 3

gathers core tools used to translate geometric constraints on broken lines into

Diaphantine inequalities. Section 4 contains the proofs missing from the previous

section and is not used in subsequent sections.

In Section 5 we prove the reduction of the general case to several particular

types of polygons. This section uses notation introduced in Section 3 but does

not require more advanced the tools developed there.

In Sections 6–9 we consider particular classes of polygons obtaining bounds

on the number of verties.

Theorem 1.2 is proved in Section 10.

2. Preliminaries

In what follows we use standard notations b�c for the floor function, d�e for the

ceiling function, þ for the positive part, and j � j for the cardinality of a finite set.

By ½a; b� we denote the segment with the endpoints a and b. We always denote the

vectors of the standard basis of R2 by e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ and the standard

coordinates in R2 by x1, x2.

Now we list a few familiar properties of lattices. The proofs can be found in

[7], [9], [12], [13].

Suppose the system of vectors a1; a2 a R2 is linearly independent; then the

set

fu1a1 þ u2a2 : u1; u2 a Zg

is called a lattice spanned by a1, a2, and a1, a2 are called the basis of the

lattice.

Example 2.1. The vectors e1, e2 span the integral lattice denoted by Z2. It is the

set of points with both coordinates integral. Those are called integral points.

Example 2.2. Given n a Z, the vectors ne1, ne2 span the lattice nZ2, alternatively

designated ðnZÞ2.

Note that any lattice is a subgroup of the additive group of the linear space R2

and a free abelian group of rank 2.

A matrix A a M2ðZÞ is called unimodular, if detA ¼e1.

Proposition 2.3. Let ðf1; f2Þ be a basis of a lattice L; then the vectors ai1f j þ ai2f2,

where i ¼ 1; 2, form a basis of L if and only if the matrix ðaijÞ is unimodular.

We use the term ‘L-point’ as a synonym of ‘point of L’.
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A linear transformation of the plane is called a (linear) automorphism of a lat-

tice if it maps the lattice onto itself. It is easily seen that a linear transformation

is an automorphism of a lattice if and only if it maps some (hence, any) basis

of the lattice onto another basis. Consequently, given a matrix A a M2ðRÞ, the
transformation x 7! Ax is an automorphism of Z2 if and only if the matrix A is

unimodular. We call such transformation unimodular. For any positive integer

n, the automorphisms of nZ2 are exactly unimodular transformations.

Clearly, linear automorphisms of a lattice form a group.

Let L be a lattice. A vector f a L is called L-primitive, if any representation

f ¼ ug with g a L and u a Z implies u ¼e1.

Proposition 2.4. Suppose that L is a lattice and f and g are L-primitive vectors;

then there exists an automorphism A of L such that Af ¼ g.

An a‰ne automorphism of a lattice L is an a‰ne transformation of R2 map-

ping L onto itself. It is not hard to see that given A a M2ðRÞ and b a R2, the

mapping x 7! Axþ b is an a‰ne automorphism of L if and only if x 7! Ax is an

automorphism of L and b a L. In particular, a‰ne automorphisms of nZ2, where

n is a positive integer, are exactly the transformations of the form x 7! Axþ b,

where A is unimodular and b a nZ2.

An a‰ne frame of a lattice L is a pair ðo; f1; f2Þ consisting of a point o a L and

a basis ðf1; f2Þ of L. An integral frame is an a‰ne frame of Z2.

Figure 1. Definitions 2.5 and 5.1 (see next section) introduce the types of polygons in terms
of intersection with segments and lines. Here thick segments split polygons of the specified
type, dashed lines do not split them, and dotted lines have no common points with them.
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The convex polygon is a two-dimensional polytope, i.e. the convex hull of

a finite set of points that has nonempty interior. In what follows we only con-

sider convex polygons, so we often drop the word ‘convex’. We assume that

the reader is familiar with basic terminology such as vertex and edge, see [14],

[25] for details. A polygon with N vertices, Nb 3, is called an N-gon. The ver-

tices of an integral polygon belong to Z2. Integral polygons are also called lattice

polygons.

Of course, if P is a convex integral N-gon and j is an a‰ne automorphism

of Z2, the image jðPÞ is still a convex integral N-gon. Obviously, if P is free

from points of a lattice L, then so is its image under any a‰ne automorphism

of L.

We say that a line or a segment splits a polygon, if it divides the polygon into

two parts with nonempty interior.

It is convenient to introduce the following classes of polygons.

Definition 2.5. Let nb 3 be an integer, and P be an integral polygon free of

points of nZ2. We say that P is a

• type In polygon, if no line of the form x1 ¼ jn or x2 ¼ jn where j a Z, splits P,

or, equivalently, if P lies in a slab of the form jnax1a ð j þ 1Þn or jna x2a

ð j þ 1Þn, where j a Z;

• type IIn polygon, if each of the segments ½0; ðn; 0Þ�, ½ðn; 0Þ; ðn; nÞ�, ½ð0; nÞ; ðn; nÞ�,
and ½0; ð0; nÞ� splits P;

• type IIIn polygon, if each of the segments ½0; ðn; 0Þ�, ½ðn; 0Þ; ðn; nÞ�, and ½ðn; nÞ;
ð0; nÞ� splits P, and the line x1 ¼ 0 does not split P;

• type IVn polygon, if each of the segments ½0; ð0; nÞ�, ½0; ðn; 0Þ�, ½ðn; 0Þ; ðn; nÞ�,
and ½ðn; nÞ; ð2n; nÞ� splits P and P has no common points with the lines

x1 ¼ �n and x1 ¼ 2n;

• type Vn polygon, if it lies in the triangle

x1b 0; x2b 0; x1 þ x2a 2n: ð2:1Þ

The types of polygons are illustrated on Figure 1. The following theorem is

proved in Section 5:

Theorem 2.6. Suppose that an integral polygon P is free of points of the lattice

nZ2, where n a Z, nb 2; then there exists an a‰ne automorphism j of nZ2 such

that jðPÞ is a polygon of one of the types In–Vn.

Remark 2.7. It follows from Proposition 2.6 that it su‰ces to prove Theorem 1.2

for polygons of types I–V.
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Remark 2.8. Theorem 1.2 is obvious for type In polygons, since all the vertices

of any such polygon lie on one of nþ 1 lines, and each line can contain at

most two vertices. The rest types require specific tools introduced in Sec-

tion 3.

3. Slopes

3.1. Slopes. Let ðf1; f2Þ be a basis of R2, and let v0; v1; . . . ; vN ðNb 0Þ be a finite

sequence of points on the plane. If Nb 1, set

vi � vi�1 ¼ ai ¼ ai1f1 þ ai2f2 ði ¼ 1; . . . ;NÞ: ð3:1Þ

If

ai1 > 0; ai2 < 0 ði ¼ 1; . . . ;NÞ ð3:2Þ

and

ai1 aiþ1;1

ai2 aiþ1;2

����
���� > 0 ði ¼ 1; . . . ;N � 1Þ; ð3:3Þ

we say that the union Q of the segments ½v0; v1�; ½v1; v2�; . . . ; ½vN�1; vN � is a slope

with respect to the basis ðf1; f2Þ. These segments are called the edges of the slope,

and the points v0; v1; . . . ; vN , its vertices, v0 and vN being the endpoints. If N ¼ 1,

we call the segment ½v0; v1� a slope if (3.2) holds, and if N ¼ 0, we still call the one-

point set fv0g a slope. If all the vertices of Q belong to a lattice G, we call it a

G-slope. A Z2-slope is called integral, and it is the only kind of slopes we are

interested in.

It is not hard to prove that the vertices and edges of a slope are uniquely

defined, and that the basis induces a unique ordering of vertices.

Figure 2 illustrates the concepts of a slope and of an a‰ne frame splitting a

slope, to be considered below.

Remark 3.1. If Q is a slope with respect to a basis ðf1; f2Þ, then it is a slope with

respect to the basis ðf2; f1Þ, too.

Although the following statement is simple, it provides an important tool for

estimating the number of edges of a slope. We are interested in comparing the

doubled number of edges with the ‘width’ of the slope, i.e. its projection on the

axis spanned by f1.
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Proposition 3.2. Let ðf1; f2Þ be a basis of Z2 and v and w be the endpoints of an

integral slope (with respect to ðf1; f2Þ) having N edges. Let

w� v ¼ b1f1 þ b2f2:

Then there exists an integer s such that

2Na jb1j þ s; ð3:4Þ

jb2jb
sðsþ 1Þ

2
; ð3:5Þ

0a saN: ð3:6Þ

Proof. Let v0 ¼ v, v1; . . . ; vN ¼ w be the vertices of the slope and assume that

(3.1)–(3.3) hold. It follows from (3.2) and (3.3) that ai A aj for iA j. Set A ¼
fai : ai1 ¼ 1g and s ¼ jAj. Observe that s satisfies (3.6).

Let us prove (3.4). If ai B A, we have ai1b 2, so

jb1j ¼
XN
i¼1

ai1 ¼
XN
a AA

ai1 þ
XN
a BA

ai1b jAj þ 2ðN � jAjÞ ¼ 2N � s;

and (3.4) follows.

Figure 2. The broken line is a slope with respect to the basis ðf1; f2Þ. It is convex and the
vectors associated with its edges point down and to the right. The frame ðo; f1; f2Þ splits
the slope and forms small angle with it, since there is a supporting line passing through
the point z and forming an anglea p=4 with the axis.
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Let us prove (3.5). It is easily seen that the vectors belonging to A are of the

form f1 � uf2, where u a Z, ub 0. Thus,

jb2j ¼
XN
i¼1

ð�ai2Þb
X
ai AA

ð�ai2Þb 1þ 2þ � � � þ s ¼ sðsþ 1Þ
2

;

as claimed. r

3.2. Splitting frames. Let ðo; f1; f2Þ be an integral frame and Q be a slope with

respect to ðf1; f2Þ.

Definition 3.3. We say that the frame ðo; f1; f2Þ splits the slope Q if

(1) one endpoint v ¼ oþ v1f1 þ v2f2 of Q satisfies

v1 < 0; v2 > 0; ð3:7Þ

while the other endpoint w ¼ oþ w1f1 þ w2f2 satisfies

w1 > 0; w2 < 0; ð3:8Þ

(2) there exists a point on Q having both positive coordinates in the frame

ðo; f1; f2Þ.

Remark 3.4. Obviously, a frame can only split a slope if the slope has at least one

edge.

Remark 3.5. If an integral frame ðo; f1; f2Þ splits a slope Q, it is obvious that Q

has no points in the quadrant foþ l1f1 þ l2f2 : l1; l2a 0g.

Suppose that a frame ðo; f1; f2Þ splits a slope Q and let z be the point where Q

meets the ray foþ lf1 : lb 0g. If there is a supporting line for Q passing through

z that forms an angleap=4 with the ray, we say that the frame ðo; f1; f2Þ forms

small angle with the slope Q.

Proposition 3.6. Suppose that an integral frame ðo; f1; f2Þ splits a slope Q; then

the frame ðo; f2; f1Þ splits it as well, and at least one of the frames forms small angle

with Q. If there exists a point y ¼ oþ y1f1 þ y2f2 a Q such that y2 > 0 and

y1 þ y2a 0, then ðo; f1; f2Þ forms small angle with Q.

The proof is left to the reader.

The following theorem provides a more sophisticated bound of the number of

edges of a slope than Proposition 3.2. This time we are comparing the doubled
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number of edges with the length of the projection of the slope on the positive half-

axes of the frame, where by the projection on a half-axis we mean the intersection

of the projection on the axis with the half-axis. It turns out that the doubled num-

ber of edges is always less then or equal to the total length of the projection.

Theorem 3.7. Suppose that an integral frame ðo; f1; f2Þ splits an integral slope Q

having N edges and the endpoints v ¼ oþ v1f1 þ v2f2 and w ¼ oþ w1f1 þ w2f2 sat-

isfying (3.7) and (3.8). Then there exist s a Z and t a Z such that

0a sa t; ð3:9Þ
v2 � sb 0; ð3:10Þ

�v1 < ts� s2 � s

2
þ ðv2 � sÞðtþ 1Þ; ð3:11Þ

2Na v2 þ w1 � tþ s: ð3:12Þ

Moreover, if ðo; f1; f2Þ forms small angle with Q, we have

2Na v2 þ w1 � tþ s� �w2

2

� �
þ 1: ð3:13Þ

Corollary 3.8. Under the hypotheses of Theorem 3.7,

2Na v2 þ w1;

and if ðo; f1; f2Þ forms small angle with Q, then

2Na v2 þ w1 �
�w2

2

� �
þ 1:

The proof of Theorem 3.7 is rather technical and is deferred to Section 4.

3.3. The boundary of a convex polygon. Let P be a convex integral polygon.

Define

N ¼ maxfx2 : ðx1; x2Þ a Pg; S ¼ minfx2 : ðx1; x2Þ a Pg;
N� ¼ minfx1 : ðx1;NÞ a Pg; S� ¼ minfx1 : ðx1;SÞ a Pg;
Nþ ¼ maxfx1 : ðx1;NÞ a Pg; Sþ ¼ maxfx1 : ðx1;SÞ a Pg;
W ¼ minfx1 : ðx1; x2Þ a Pg; E ¼ maxfx1 : ðx1; x2Þ a Pg;
W� ¼ minfx2 : ðW; x2Þ a Pg; E� ¼ minfx2 : ðE; x2Þ a Pg;
Wþ ¼ maxfx2 : ðW; x2Þ a Pg; Eþ ¼ maxfx2 : ðE; x2Þ a Pg:
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All these are integers. Note that ðS�;SÞ, ðSþ;SÞ, ðN�;NÞ, ðNþ;NÞ,
ðW;W�Þ, ðW;WþÞ, ðE;E�Þ, and ðE;EþÞ are (not necessarily distinct) vertices of P.

There are four slopes naturally associated with a given polygon P.

Let us enumerate the vertices of P starting from v0 ¼ ðW;W�Þ and going

in the positive direction until we come to vN4
¼ ðS�;SÞ. Clearly, the sequence

v0; . . . ; vN4
gives rise to a slope with respect to the basis ðe1; e2Þ. We denote it

by Q4. Obviously, Q4 is an inclusion-wise maximal slope with respect to ðe1; e2Þ
contained in the boundary of P. Likewise, we define the slope Q1 with respect to

ðe2;�e1Þ having the endpoints ðSþ;SÞ and ðE;E�Þ, the slope Q2 with respect to

ð�e1;�e2Þ having the endpoints ðE;EþÞ and ðNþ;NÞ, and the slope Q3 with re-

spect to ð�e2; e1Þ having the endpoints ðN�;NÞ and ðW;WþÞ. We call those

maximal slopes of the polygon P and denote by Nk the number of edges of Qk.

Remark 3.9. In general, Qk is not the only maximal slope with respect to the cor-

respondent basis, because there are other single-point maximal slopes. However,

we single Qk out by explicitly indicating its endpoints. For a given polygon, some

of the maximal slopes Qk may have but one vertex.

Define

M1 ¼
0; if S� ¼ Sþ;

1; otherwise;

�
M2 ¼

0; if E� ¼ Eþ;

1; otherwise;

�

M3 ¼
0; if N� ¼ Nþ;

1; otherwise;

�
M4 ¼

0; if W� ¼ Wþ;

1; otherwise:

�

Proposition 3.10. Let P be an N-gon; then each edge of P either lies on a hori-

zontal or a vertical line or it is the edge of exactly one of the maximal slopes

Figure 3. The edges of a polygon not belonging to the bounding box form four maximal
slopes Qk. These slopes may degenerate into a point, as is the case for the triangle on the
right, which has only two nontrivial maximal slopes.
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of P; thus,

N ¼
X4

k¼1

Nk þ
X4

k¼1

Mk:

The point of Proposition 3.10 is that if we want to estimate the number of

edges of a polygon, we can do so by considering its maximal slopes and applying

the techniques presented above. The following statement is a helpful su‰cient

condition for a frame to split a maximal slope.

Proposition 3.11. Let P be a convex integral polygon and ðo; f1; f2Þ be an integral

frame such that f1; f2 a fee1;ee2g. Suppose that o does not belong to P and the

rays fcþ lf j : lb 0g ð j ¼ 1; 2Þ split P; then ðo; f1; f2Þ splits Qk, where

k ¼

1; if ðf1; f2Þ ¼ ð�e1; e2Þ or ðf1; f2Þ ¼ ðe2;�e1Þ;
2; if ðf1; f2Þ ¼ ð�e2;�e1Þ or ðf1; f2Þ ¼ ð�e1;�e2Þ;
3; if ðf1; f2Þ ¼ ðe1;�e2Þ or ðf1; f2Þ ¼ ð�e2; e1Þ;
4; if ðf1; f2Þ ¼ ðe2; e1Þ or ðf1; f2Þ ¼ ðe1; e2Þ:

8>>><
>>>:

The following simple statement also proves useful.

Proposition 3.12. Let P be an integral polygon; then

Sþ �S�bM1; Eþ � E�bM2;

Nþ �N�bM3; Wþ �W�bM4:

The proofs of Propositions 3.10, 3.11, and 3.12 are left to the reader.

4. Properties of slopes

The aim of this section is to prove Theorem 3.7.

4.1. Preliminaries. Throughout this section ðo; f1; f2Þ is an integral frame split-

ting an integral slope Q. Let v0 ¼ v, v1; . . . ; vN ¼ w be the vertices of Q. We de-

fine ai by (3.1) and assume that (3.2) and (3.3) hold. By ei ¼ ½vi�1; vi� ði ¼ 1; . . . ;
NÞ denote the edges of Q and by E, the set of edges. Set

vi � o ¼ vi1f1 þ vi2f2 ði ¼ 0; . . . ;NÞ:

Note that vij and aij are integers.
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Further, set

k ¼ minfi : vi2 < 0g; a ¼ � ak1

ak2
; t ¼ dae � 1;

S ¼ fei a E : i < k; ai2 ¼ �1g; s ¼ jSj:

All these are well-defined.

Remark 4.1. It is easily seen that ðo; f1; f2Þ forms small angle with Q if and only

if ab 1.

Remark 4.2. Let us define ~aa ¼ �a~kk2=a~kk1, where
~kk ¼ minfi : vi1b 0g. The coe‰-

cient ~aa is related to the frame ðo; f2; f1Þ in the same way as a is to ðo; f1; f2Þ. The

statement of Proposition 3.6 saying that at least one of those frames forms small

angle with Q can be equivalently expressed in the form of the inequality

minfa; ~aagb 1:

Moreover, it is not hard to prove that equality holds if and only if a ¼ ~aa ¼ 1, in

which case k ¼ ~kk, and consequently vk�1;1 < 0 and vk�1;2 > 0.

Lemma 4.3. The cardinality s of S satisfies

sa t; ð4:1Þ

and, moreover,

X
ei AS

ai1a ðt� sÞsþ sðsþ 1Þ
2

: ð4:2Þ

Proof. Let S ¼ fei1 ; . . . ; eisg, where i1 < � � � < is < k. It follows from (3.2) and

(3.3) that

a11

�a12
<

a21

�a22
< � � � < ak1

�ak2
¼ a:

Hence, as aip2 ¼ �1, we see that

0 < ai11 < ai21 < � � � < ais1a dae � 1 ¼ t: ð4:3Þ

This implies (4.1). Moreover, (4.3) implies that aip1a t� sþ p, where p ¼ 1; . . . ;
s, and upon summation, we recover (4.2). r
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Given a segment e ¼ ½p; q�, where

p ¼ p1f1 þ p2f2; q ¼ q1f1 þ q2f2;

define

p1ðeÞ ¼ jpþ1 � qþ1 j;
p2ðeÞ ¼ jpþ2 � qþ2 j;

p̂pðeiÞ ¼ p1ðeiÞ þ p2ðeiÞ � 2:

Observe that these functions take integral values provided that e is an integral

segment. We extend the functions p1, p2, and p̂p to the collection of finite sets of

segments.

Remark 4.4. If F is a finite set of segments, we obviously have

pjðF Þb 0 ð j ¼ 1; 2Þ; ð4:4Þ
p̂pðF Þ ¼ pðFÞ � 2jF j: ð4:5Þ

If F is the set of edges of a (not necessarily integral) slope having the endpoints
~vv ¼ oþ ~vv1f1 þ ~vv2f2 and ~ww ¼ oþ ~ww1f1 þ ~ww2f2, then

p1ðF Þ ¼ j~vvþ1 � ~wwþ
1 j; p2ðFÞ ¼ j~vvþ2 � ~wwþ

2 j:

Set

E1 ¼ fe1; . . . ; ekg; E2 ¼ fekþ1; . . . ; eNg:

Clearly, E1BE2 ¼ j and E1AE2 ¼ E.

4.2. Auxiliary statements.

Lemma 4.5. We have

p̂pðE1Þb ðvþk�1;1 þ vk�1;2 � 1Þ þ dþ ðt� sÞ þ bð�vk2 � 1Þac; ð4:6Þ

where

d ¼ 1; if vk�1;2 > 0 and a a Z;

0; otherwise:

�
ð4:7Þ

Proof. Let us show the inequality

p1ðekÞb dþ 1þ tþ bð�vk2 � 1Þac: ð4:8Þ
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Since the frame ðo; f1; f2Þ splits the slope Q, it follows from the definition

that the ray foþ lf1 : lb 0g meets Q at a point z ¼ oþ z1f1, where z1 > 0.

As vk2 < 0a vk�1;2, it is easily seen that z belongs to the edge ek and either co-

incides with vk�1 or is an inner point of the edge. We consider these cases

separately.

If z ¼ vk�1, then vk�1;2 ¼ 0 and vk�1;1 > 0, so

p1ðekÞ ¼ vk1 � vk�1;1 ¼ ak1 ¼ �aak2 ¼ að�vk2Þ ¼ dae þ bð�vk2 � 1Þac;

and as in this case d ¼ 0, (4.8) follows. The inequality (4.8) is proved.

Assume that z is an interior point of ek, then vk�1;2 > 0. As in this case z is not

the leftmost point of ek, it is clear that p1ðekÞ is strictly greater than vk1 � z1 ¼
að�vk2Þ. Thus,

p1ðekÞb bað�vk2Þc þ 1b bac þ bð�vk2 � 1Þac þ 1 ¼ dae þ dþ bð�vk2 � 1Þac;

and (4.8) follows. The inequality is proved.

Since vk�1;2b 0 and vk2 < 0, we have p2ðekÞ ¼ vk�1;2. This and (4.8) implies

p̂pðekÞb vk�1;2 þ d� 1þ tþ bð�vk2 � 1Þac: ð4:9Þ

Let ~QQ be the subslope of Q with the vertices v0; v1; . . . ; vk�1 and ~EE be the set

of its edges, then ek B ~EE, and ~EEA fekg ¼ E1. As ~QQ lies in the upper half-plane,

for any ei a ~EE we have p2ðeiÞ ¼ vi�1;2 � vi2 ¼ �ai2. Consequently, p2ðeiÞ ¼ 1 if

ei a S and p2ðeiÞb 2 otherwise, whence

p2ð ~EEÞb 2j ~EEj � s: ð4:10Þ

Further, by Remark 4.4, we have p1ð ~EEÞ ¼ vþk�1;1 � vþ01 ¼ vþk�1;1. Combining this

with (4.10) and using (4.5), we obtain

p̂pð ~EEÞb vþk�1;1 � s: ð4:11Þ

As p̂pðE1Þ ¼ p̂pðekÞ þ p̂pð ~EEÞ, we sum (4.9) and (4.11) and obtain (4.6). r

Lemma 4.6. Suppose that ðo; f1; f2Þ forms small angle with Q; then

p̂pðE2Þb
1

2
ðvk2 � w2 � 1Þ: ð4:12Þ

Proof. If E2 ¼ j, we have vk ¼ w and (4.12) is obvious.

Assume that E2A j and take ei a E2. It is easy to see that all the edges

belonging to E2 lie in the right half-plane, so p1ðeiÞ ¼ vi1 � vi�1;1 ¼ ai1, and since
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p2ðeiÞb 0, we obtain

p̂pðeiÞb ai1 � 2

(actually, the equality holds here). Write the last inequality in form

p̂pðeiÞb
�ai2 þ gðai1; ai2Þ

2
; ð4:13Þ

where

gðm1;m2Þ ¼ 2m1 þm2 � 4:

Using (3.3), we see that

a ¼ ak1

�ak2
<

akþ1;1

�akþ1;2
< � � � < aN1

�aN2
;

besides, as ðo; f1; f2Þ forms small angle with Q, we have ab 1 (Remark 4.1); con-

sequently, as i > k, we have

ai1 þ ai2 > 0:

Now it is not hard to check that g takes nonnegative values in all the points of

the set

fðm1;m2Þ a Z2 : m1 > 0;m2 < 0;m1 þm2 > 0g

except ð2;�1Þ, and gð2;�1Þ ¼ �1. Consequently, (4.13) gives

p̂pðeiÞb
�ai2 � di

2
;

where

di ¼
1; if ai ¼ 2f1 � f2;

0; otherwise:

�

The vectors ai are distinct, so at most one di is nonzero. Thus, we have:

p̂pðE2Þ ¼
XN
i¼kþ1

p̂pðeiÞb
1

2

�
�

XN
i¼kþ1

ai2 �
XN
i¼kþ1

di

�
b

1

2
ðvk2 � vN2 � 1Þ;

and (4.12) is proved. r
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4.3. Proof of Theorem 3.7.

Proof of Theorem 3.7. First assume that the frame ðo; f1; f2Þ forms small angle

with Q, or, equivalently, ab 1 (Remark 4.1). We show that in these case inequal-

ities (3.9)–(3.13) hold with t and s defined in Section 4.1.

Inequalities (3.9)–(3.11) follow from Lemma 4.3 and simple combinatorial

arguments, see Figure 4.

Let us prove (3.12). Since the sets E1 and E2 are disjoint and their union is E,

we have p̂pðEÞ ¼ p̂pðE1Þ þ p̂pðE2Þ. Evoking Lemmas 4.5 and 4.6, we obtain

p̂pðEÞ ¼ ðvþk�1;1 þ vk�1;2 � 1Þ þ dþ ðt� sÞ

þ bð�vk2 � 1Þac þ 1

2
ðvk2 � w2 � 1Þ; ð4:14Þ

where d is defined by (4.7). By definition, db 0. The first term on the right-hand

side of (4.14) is nonnegative, since at least one coordinate of vk�1 must be positive

(Remark 3.5). Let us estimate the fourth term on the right-hand side of (4.14). By

the definition of k we have vk2 < 0, so �vk2 � 1b 0, and by assumption, ab 1;

thus, we have:

bð�vk2 � 1Þacb�vk2 � 1b
1

2
ð�vk2 � 1Þ:

Figure 4. The intersection of Q with the upper half-space is a (possibly non-integral) slope
Q 0. The length of the vertical projection of Q 0 is v2 and that of its horizontal projection is
strictly greater than �v1. All the edges belonging to S are edges of Q 0. They all contribute
s to the length of the vertical projection of Q 0, whence (3.10). Also, they all contribute
at most tþ ðt� 1Þ þ � � � þ ðt� sþ 1Þ ¼ ts� sðs� 1Þ=2 to the horizontal projection. The
horizontal contribution of any other edge is less than tþ 1 times its vertical contribution,
totalling at most ðtþ 1Þðv2 � sÞ for all the edges not in S, and (3.11) follows.
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Consequently, from (4.14) we obtain

p̂pðEÞb t� sþ�w2

2
� 1:

As p̂pðEÞ is an integer, this yields

p̂pðEÞb t� sþ �w2

2

� �
� 1:

As p1ðEÞ þ p2ðEÞ ¼ v2 þ w1 by Remark 4.4, now it remains to use (4.5) in order

to obtain (3.12).

Now assume that the frame does not form small angle with Q. Let us check

that in this case (3.9)–(3.12) hold with t ¼ s ¼ 0.

Inequality (3.9) becomes trivial, and (3.10) follows from the definition of a

splitting frame. Inequality (3.11) becomes

�vN1 < vN2:

It is true, since otherwise by Proposition 3.6 the frame would form small angle

with Q. To prove (3.12), it su‰ces to apply the proved part of the theorem to Q

and the frame ðo; f2; f1Þ, which forms small angle with Q by Proposition 3.6.

Indeed, with certain ~tt and ~ss by virtue of (3.12) and (3.9) we have:

2Naw1 þ v2 � ~ttþ ~ssa v2 þ w1;

so (3.12) holds for ðo; f2; f1Þ with t ¼ s ¼ 0 as claimed. r

5. Types of polygons

5.1. Auxiliary types of polygons. This section is devoted to the proof of Theo-

rem 2.6. Throughout the section, nb 3 is a fixed integer.

First, we introduce two more types of polygons (see Figure 1).

Definition 5.1. Let nb 3 be an integer, and P be an integral polygon free of

points of nZ2. We say that P is a

• type VIn polygon, if each of the segments ½0; ð�n; 0Þ�, ½0; ð0; nÞ�, and ½ð0; nÞ;
ðn; nÞ� split P, and the lines x1 ¼en do not split P;

• type VIIn polygon, if each of the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ� splits P,
and the lines x1 ¼ �n and x2 ¼ n do not split P.

221An extremal property of lattice polygons



We start with the following weakened version of Theorem 2.6:

Lemma 5.2. Suppose that an integral polygon P is free of points of the lattice nZ2,

where n a Z, nb 2; then there exists an a‰ne automorphism j of nZ2 such that

jðPÞ is a polygon of one of the types In–VIIn.

The lemma follows from known results on maximal lattice-free sets (see, e.g.

[4], Theorem 3, cf. also [5], [10], [16]).

To complete the proof of Theorem 2.6, it remains to make sure that polygons

of types VI and VII can be mapped onto polygons of types I–V. This is estab-

lished in Lemmas 5.5 and 5.8.

5.2. The lift. Here we introduce the lift transformation for a class of polygons.

Let P be an integral polygon free of nZ2-points, where nb 3 is an integer.

Assume that the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ� split P. Given a a Z, consider

the unimodular transformation

Aa ¼
1 0

�a 1

� �

and the polygon Pa ¼ AaP.

Lemma 5.3. The set of such a a Z that Pa is split by the segment ½0; ð�n; 0Þ� is non-
empty and has a nonnegative maximal element.

Proof. Obviously, P0 ¼ P, so the set in question contains 0 and its maximal ele-

ment, if it exists, is nonnegative. To prove the lemma, it remains to show that

the set is bounded from above, i.e. that the segment ½0; ð�n; 0Þ� does not split the
polygon Pa for large a.

As P does not contain the point 0 a nZ2, there exists a linear form lðx1; x2Þ ¼
a1x1 þ a2x2 such that

lðxÞ > 0; x a P: ð5:1Þ

Choosing points �xx a PB ½0; ð0; nÞ� and x̂x a PB ½0; ð�n; 0Þ�, so that �xx ¼ ð0; �xx2Þ,
�xx2 > 0, and x̂x ¼ ðx̂x1; 0Þ, x̂x1 < 0 and computing lð�xxÞ and lðx̂xÞ, we see that in view

of (5.1),

a1 < 0; a2 > 0: ð5:2Þ

Fix an integer a such that

ab� a1

a2
: ð5:3Þ
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Consider the linear form

~llð~xx1; ~xx2Þ ¼ ða1 þ aa2Þ~xx1 þ a2~xx2:

It is easy to check that lðxÞ ¼ ~llð~xxÞ whenever x ¼ A�1
a ~xx. In particular, if ~xx a Pa,

we have x ¼ A�1
a0

~xx a P, and according to (5.1), we obtain

~llð~xxÞ > 0; ~xx a Pa: ð5:4Þ

On the other hand, if ~xx ¼ ð~xx1; 0Þ a ½0; ð�n; 0Þ�, then ~xx1a 0, and

~llð~xxÞ ¼ ða1 þ aa2Þ~xx1 < 0; ~xx a ½0; ð�n; 0Þ� ð5:5Þ

according to the choice of a. Comparing (5.4) and (5.5), we see that Pa has no

common points with the segment ½0; ð�n; 0Þ�. This is true for any a satisfying

(5.3), so the set in question is bounded from above, as claimed. r

Let a0b 0 be the greatest integer such that Pa0 is split by the segment

½0; ð�n; 0Þ�. We say that the polygon P̂P ¼ Pa0 is the lift of P and that Aa0 is the

lift transformation of P.

Lemma 5.4. Let that P̂P be the lift of P; then the segment ½0; ð0; nÞ� splits P̂P and the

segment ½0; ð�n;�nÞ� does not. If the segment ½ð0; nÞ; ðn; 2nÞ� does not split P, it

does not split P̂P either.

Proof. The operator Aa0 leaves the points of the segment ½0; ð0; nÞ� fixed. The seg-

ment splits P, so it splits Aa0P ¼ P̂P as well.

By the definition of a0, the segment ½0; ð�n; 0Þ� does not split the polygon

Aa0þ1P ¼ A1P̂P. Consequently, the segment ½0; ð�n;�nÞ� ¼ A�1
1 ½0; ð�n; 0Þ� does

not split P̂P, as claimed.

Suppose that the segment ½ð0; nÞ; ðn; 2nÞ� does not split P. The intersection

PB f0a x1a ng lies in the half-plane x2ax1 þ n. It su‰ces to check that the

intersection P̂PB f0ax1a ng lies in the same half-plane. Indeed, let ðx̂x1; x̂x2Þ a P̂P

and 0a x̂x1a n; then x̂x1 ¼ x1 and x̂x2 ¼ �a0xþ x2 for some ðx1; x2Þ a PB f0a
x1a ng, so x̂x2ax2ax1 þ n ¼ x̂x1 þ n, as claimed. r

5.3. Type VI polygons.

Lemma 5.5. Suppose that P is a type VIn polygon; then there exists an a‰ne auto-

morphism c of nZ2 such that cðPÞ is a polygon of one of the types In, IIn, IIIn, or

VIIn.
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Proof. The polygon P is split by the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ�, so its lift P̂P

is well-defined. The polygon P̂P is split by the segment ½0; ð�n; 0Þ� by the definition

of the lift and by the segment ½0; ð0; nÞ� by Lemma 5.4. By the same lemma, the

segment ½0; ð�n;�nÞ� does not split P̂P. The lines x1 ¼en are invariant under

the lift transformation, so they do not split P̂P either. Besides, P̂P has points in the

slab

�nax1a n; ð5:6Þ

(e.g. on the segment ½0; ð0; nÞ�), so we conclude that it is contained in this slab.

If the line x2 ¼ n does not split P̂P, the latter is a type VIIn polygon. Otherwise,

P̂P is split by one of the segments ½ð�n; nÞ; ð0; nÞ� and ½ð0; nÞ; ðn; nÞ�, since their

union is exaclty the set of common points of the line x2 ¼ n and the slab (5.6).

Suppose that the segment ½ð�n; nÞ; ð0; nÞ� splits P̂P. Let T be the translation by

the vector ðn; 0Þ a nZ2. The polygon TP̂P is split by the segments

½ð0; nÞ; ðn; nÞ� ¼ T ½ð�n; nÞ; ð0; nÞ�;
½ðn; 0Þ; 0� ¼ T ½0; ð�n; 0Þ�;
½ðn; 0Þ; ðn; nÞ� ¼ T ½0; ð0; nÞ�

and is not split by the line x1 ¼ 0 being the image of x1 ¼ �n under T . In other

words, TP̂P is a type IIIn polygon, and we are done.

It remains to consider the case of the segment ½ð0; nÞ; ðn; nÞ� splitting P̂P. Let j

be an a‰ne automorphism of nZ2 defined by

jðx1; x2Þ ¼ ð�x1; n� x2Þ;

which is the symmetry with respect to ð0; n=2Þ, and set P 0 ¼ jðP̂PÞ. The polygon P 0

lies in the slab (5.6), which is invariant under j; also P 0 is split by the segments

½ð�n; 0Þ; 0� ¼ j
	
½ðn; nÞ; ð0; nÞ�



;

½0; ð0; nÞ� ¼ j
	
½ð0; nÞ; 0�




and is not split by the segment

½ð0; nÞ; ðn; 2nÞ� ¼ j
	
½0; ð�n;�nÞ�



:

Thus, the lift P̂P 0 is well-defined. By the definition of the lift and by Lemma 5.4, the

polygon P̂P 0 is split by the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ� and is not split by the

segments ½0; ð�n;�nÞ� and ½ð0; nÞ; ðn; 2nÞ�; moreover, P̂P 0 lies in the slab (5.6). Con-

sequently, the line x1 ¼ �n does not split P̂P 0. If the line x2 ¼ n does not split it

either, it is a type VIIn polygon, and we are done. Otherwise, as before, we infer
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that either ½ð�n; nÞ; ð0; nÞ� splits P̂P 0, and we conclude by noticing that TP̂P 0 is a type

IIIn polygon, or ½ð0; nÞ; ðn; nÞ� splits P̂P 0, which we assume in what follows.

The intersection of the line x1 � x2 ¼ �n and the slab (5.6) is the union of the

segments ½ð�n; 0Þ; ð0; nÞ� and ½ð0; nÞ; ðn; 2nÞ�. The latter segment does not split P̂P 0,
the line x1 � x2 ¼ �n splits P̂P 0 if and only if the segment ½ð�n; 0Þ; ð0; nÞ� does so.
Likewise, the line x1 � x2 ¼ 0 splits P̂P 0 if and only if the segment ½0; ðn; nÞ� does so,
for P̂P 0 is not split by ½ð�n;�nÞ; 0�. Thus, we have four logical possibilities.

Case 1. The lines x1 � x2 ¼ �n and x1 � x2 ¼ 0 do not split P̂P 0.
Case 2. The segments ½ð�n; 0Þ; ð0; nÞ� and ½0; ðn; nÞ� split P̂P 0.
Case 3. The segment ½ð�n; 0Þ; ð0; nÞ� splits P̂P 0 and the line x1 � x2 ¼ 0 does

not.

Case 4. The segment ½0; ðn; nÞ� splits P̂P 0 and the line x1 � x2 ¼ �n does not.

In Case 1 define the a‰ne automorphism of nZ2 by

c1ðx1; x2Þ ¼ ð�x1 þ x2; x2Þ

and consider the polygon c1ðP̂P 0Þ. It is not split by the lines x1 ¼ 0 and x1 ¼ n,

being the images of x1 � x2 ¼ 0 and x1 � x2 ¼ �n, respectively, and c1ðP̂P 0Þ has

points inside the slab 0ax1a n, e.g. on the segment

½ðn; 0Þ; ð0; nÞ� ¼ c1ð½0; ð0; nÞ�Þ:

Consequently, c1ðP̂P 0Þ is a type In polygon.

In Cases 2 and 3 we use the same automorphism c1. It is not hard to check

that in Case 2, c1ðP̂P 0Þ is a type IIn polygon and in Case 3, it is a type IIIn polygon.

In Case 4, define the automorphism of nZ2 by

c2ðx1; x2Þ ¼ ðx1 � x2 þ n; x2Þ:

It is easily seen that c2ðP̂P 0Þ is a type IIIn polygon. r

5.4. Type VII polygons. It follows from the definition that any type VIIn poly-

gon is split by the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ�, so its lift is well-defined.

Lemma 5.6. Let P be a type VIIn polygon and P̂P be its lift; then SðP̂PÞbSðPÞ and
SðP̂PÞ ¼ SðPÞ if and only if P ¼ P̂P.

Proof. Let Aa0 be the lift transformation. If a0 ¼ 0, we have P ¼ P̂P, so SðP̂PÞ ¼
SðPÞ. It remains to show that

a0b 1 ð5:7Þ
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implies

SðP̂PÞ > SðPÞ: ð5:8Þ

As the segments ½0; ð�n; 0Þ� and ½0; ð0; nÞ� split both P and P̂P, by Proposition 3.11

the frame ð0;�e1; e2Þ splits the slopes Q1ðPÞ and Q1ðP̂PÞ, whence

SþðPÞa�1; SþðP̂PÞa�1:

Thus,

SðPÞ ¼ minfx2 : ðx1; x2Þ a P; x1a�1g;
SðP̂PÞ ¼ minfx2 : ðx1; x2Þ a P̂P; x1a�1g:

Using these representations and (5.7), we get

SðP̂PÞ ¼ minfx̂x2 : ðx̂x1; x̂x2Þ a P̂P; x̂x1a�1g
¼ minf�a0x1 þ x2 : ðx1; x2Þ a P; x1a�1g
bminfx2 þ 1 : ðx1; x2Þ a P; x1a�1g ¼ SðPÞ þ 1;

so (5.8) is proved. r

Lemma 5.7. Let P be a type VIIn polygon and P̂P be its lift. Then either P̂P is

a type VIIn polygon, or the translation of P̂P by the vector ðn; 0Þ is a type IIIn
polygon.

Proof. Let T be the translation by the vector ðn; 0Þ. Note that P̂P and TP̂P are ob-

tained by applying a‰ne automorphisms of nZ2 to P, so they are free of points of

this lattice.

The polygon P̂P is split by the segments ½0; ð0; nÞ� (by Lemma 5.4) and

½0; ð�n; 0Þ� (by the definition of lift), but not by the line x1 ¼ �n (because by the

definition of a type VIIn polygon this line does not split P and it is invariant under

the lift transformation). Assume for a moment that the segment ½ð0; nÞ; ð�n; nÞ�
splits P̂P. Then the segments

½0; ðn; 0Þ� ¼ T ½ð�n; 0Þ; 0�;
½ðn; 0Þ; ðn; nÞ� ¼ T ½0; ð0; nÞ�;

½ð0; nÞ; ðn; nÞ� ¼ T ½ð�n; nÞ; ð0; nÞ�:

split TP, while the line x1 ¼ 0, being the image of x1 ¼ �n under T , does not.

Consequently, TP is a type IIIn polygon.
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It remains to show that if the segment ½ð0; nÞ; ð�n; nÞ� does not split P̂P, the

latter is a type VIIn polygon. We know already that the segments ½0; ð�n; 0Þ� and
½0; ð0; nÞ� split P̂P, while the line x1 ¼ �n does not, so we only need to show that the

line x2 ¼ n does not split P̂P either, or, equivalently, that P̂P lies in the half-plane

x2a n. Indeed, as P̂P lies in the half-plane x1b�n and the segment ½ð�n; nÞ; ð0; nÞ�
does not split P̂P, it is clear that

maxfx2 : ðx1; x2Þ a P̂P; x1a 0ga n: ð5:9Þ

On the other hand,

maxfx2 : ðx1; x2Þ a P̂P; x1b 0g
¼ maxf�a0x

0
1 þ x 0

2 : ðx 0
1; x

0
2Þ a P; x1a 0g

amaxfx 0
2 : ðx 0

1; x
0
2Þ a P; x1a 0ga n: ð5:10Þ

Bounds (5.9) and (5.10) imply that P̂P lies in the half-plane x2a n, as claimed.

r

Lemma 5.8. For any type VIIn polygon there exists an a‰ne automorphism of nZ2

mapping it onto a type IIIn or a type Vn polygon.

Proof. Take a type VIIn polygon P0, and let P̂P0 be its lift. If the translation by

the vector ðn; 0Þ maps P̂P0 onto a type IIIn polygon, we are done. Otherwise, by

Lemma 5.7, P̂P0 is a type VIIn polygon. Let P 0
0 be the reflection of P̂P0 about the

line x1 þ x2 ¼ 0. It is easy to check that it is again a type VIIn polygon. Let P̂P 0
0

be its lift. As before, either the translation of P̂P 0
0 by ðn; 0Þ is a type IIIn polygon

and we are done, or P̂P 0
0 is a type VIIn polygon, in which case we define the type

VIIn polygon P1 to be the reflection of P̂P 0
0 about the line x1 þ x2 ¼ 0.

Iterating this procedure, we either find an a‰ne automorphism of nZ2 map-

ping P0 onto a type IIIn polygon, or construct the sequences of type VIIn polygons

fPkg, fP̂Pkg, fP 0
kg, and fP̂P 0

kg. In the latter case consider the sequence of integers

fSðPkÞglk¼0. As Pk are type VIIn polygons, it is easily seen that the members of

this sequence are negative (this follows e.g. from the fact that by Proposition 3.11

the frame ð0;�e1;�e2Þ splits any type VIIn polygon). Observe that the sequence

increases. Indeed, it is easy to check that

SðPkþ1Þ ¼ �EðP̂P 0
kÞ ¼ �EðP 0

kÞ ¼ SðP̂PkÞ;

furthermore, by Lemma 5.6 we have

SðP̂PkÞbSðPkÞ:
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Thus, we see that the sequence fSðPkÞg increases; moreover, we have SðPkþ1Þ ¼
SðPkÞ if and only if SðP̂PkÞ ¼ SðPkÞ, which by Lemma 5.6 is equivalent to

P̂Pk ¼ Pk.

The sequence of integers fSðPkÞg increases and is bounded from above, so

it stabilizes. We show in the same way that the sequence fSðP 0
kÞg stabilizes,

too. Consequently, there exists k0 such that Pk0 ¼ P̂Pk0 and P 0
k0
¼ P̂P 0

k0
. Then also

Pk0 ¼ Pk0þ1. Set P̂P ¼ Pk0 .

We claim that P̂P lies in the triangle D being the solution set of the system

x1b�n;

x2a n;

x1 � x2a 0:

8<
:

Since P̂P is a type VIIn polygon, it lies in the angle

x1b�n;

x2a n:

�

The intersection of the line x1 � x2 ¼ 0 with this angle is the segment ½ð�n;�nÞ;
ðn; nÞ�, so we only need to show that neither of the segments I1 ¼ ½ð�n;�nÞ; 0�
and I2 ¼ ½0; ðn; nÞ� splits P̂P. It the case of the former this is true by Lemma 5.4,

as P̂P is the lift of Pk0 . Likewise, I1 does not split P̂P
0
k0
, so I2, being the reflection of

I1 about the line x1 þ x2 ¼ 0, does not split Pk0þ1 ¼ P̂P, as claimed.

By construction, P̂P ¼ BP, where B is a unimodular transformation. The a‰ne

automorphism of nZ2 defined by

cðx1; x2Þ ¼ ðx1 þ n;�x2 þ nÞ

maps D onto the triangle defined by (2.1). Consequently, the polygon cðBPÞ is of
type Vn, i.e. j ¼ cB is the required automorphism. r

6. Type II polygons

In this section we prove Theorem 1.2 for type II polygons.

Lemma 6.1. Suppose that nb 3 is an integer and P is a type IIn polygon; then

(i)
	
ðn; 0Þ;�e1; e2



splits Q1;

(ii)
	
ðn; nÞ;�e1;�e2



splits Q2;

(iii)
	
ð0; nÞ; e1;�e2



splits Q3;

(iv) ð0; e1; e2Þ splits Q4;
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Proof. Statements (i)–(iv) immediately follow from the definition of a type IIn
polygon and Proposition 3.11. r

Proof of Theorem 1.2 for type II polygons. Assume that P is a type IIn N-gon. We

begin by translating the geometrical constraints on P into inequalities.

Evoking Corollary 3.8 for the maximal slopes of P and correspondent frames

indicated in Lemma 6.1, we obtain:

2N1a�Sþ þ E� þ n;

2N2a�Nþ � Eþ þ 2n;

2N3aN� �Wþ þ n;

2N4aS� þW�:

Further, by Proposition 3.12 we have

Sþ �S�bM1;

Eþ � E�bM2;

Nþ �N�bM3;

Wþ �W�bM4:

Using the above inequalities, we obtain:

2N ¼
X4

k¼1

2Nk þ
X4

k¼1

2Mk

a ð�Sþ þ E� þ nÞ þ ð�Nþ � Eþ þ 2nÞ þ ðN� �Wþ þ nÞ
þ ðS� þW�Þ þ 2M1 þ 2M2 þ 2M3 þ 2M4

¼ 4nþ
	
M1 � ðSþ �S�Þ



þ
	
M2 � ðEþ � E�Þ



þ
	
M3 � ðNþ �N�Þ



þ
	
M4 � ðWþ �W�Þ



þ ðM1 þM2 þM3 þM4Þ

a 4nþ 4;

so Na 2nþ 2, as claimed. r

7. Type III polygons

In this section we prove Theorem 1.2 for type III polygons.

Lemma 7.1. Given an integer nb 3 and a type IIIn polygon P, the following asser-

tions hold:
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(i) The frame
	
ðn; 0Þ; e2;�e1



splits Q1.

(ii) The frame
	
ðn; nÞ;�e2;�e1



splits Q2.

(iii) We have

Wb 0: ð7:1Þ

Proof. Assertions (i) and (ii) follow from the definition of a type IIIn polygon and

Proposition 3.11. Assertion (iii) is obvious. r

Proof of Theorem 1.2 for type II polygons. Let P be a type IIIn N-gon. We begin

by translating the geometrical constraints on P into inequalities.

The frame
	
ðn; 0Þ; e2;�e1



splits Q1, so by Theorem 3.7 there exist integers s1

and t1 such that

2N1aE� �Sþ þ n� t1 þ s1; ð7:2Þ
�Sþ þ n� s1b 0; ð7:3Þ

�S < t1s1 �
s21 � s1

2
þ ð�Sþ þ n� s1Þðt1 þ 1Þ; ð7:4Þ

0a s1a t1: ð7:5Þ

Likewise,
	
ðn; nÞ;�e2;�e1



splits Q2, so there exist integers s2 and t2 such that

2N2a�Eþ �Nþ þ 2n� t2 þ s2; ð7:6Þ
�Nþ þ n� s2b 0; ð7:7Þ

N� n < t2s2 �
s22 � s2

2
þ ð�Nþ þ n� s2Þðt2 þ 1Þ; ð7:8Þ

0a s2a t2: ð7:9Þ

As Q3 is a slope with respect to ðe1;�e2Þ, by Proposition 3.2 there exists s3 a Z

such that

2N3aN� �Wþ s3; ð7:10Þ

N�Wþb
1

2
s3ðs3 þ 1Þ; ð7:11Þ

0a s3aN3: ð7:12Þ

Likewise, applying Proposition 3.2 to Q4 and ðe1; e2Þ, we conclude that there

exists s4 a Z such that
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2N4aS� �Wþ s4; ð7:13Þ

W� �Sb
1

2
s4ðs4 þ 1Þ; ð7:14Þ

0a s4aN4: ð7:15Þ

Further, by Proposition 3.12,

Sþ �S�bM1; ð7:16Þ
Eþ � E�bM2; ð7:17Þ
Nþ �N�bM3; ð7:18Þ
Wþ �W�bM4: ð7:19Þ

Arguing by contradiction, we assume that

2Nb 4nþ 6: ð7:20Þ

Summing (7.2), (7.6), (7.10), and (7.13) and subsequently using (7.16)–(7.19),

we obtain:

2N ¼
X4

k¼1

2Nk þ
X4

k¼1

2Mk

a 3nþ s1 þ s2 þ s3 þ s4 � t1 � t2

� ðSþ �S�Þ � ðEþ � E�Þ � ðNþ �N�Þ
� 2Wþ 2M1 þ 2M2 þ 2M3 þ 2M4

a 3nþ s1 þ s2 þ s3 þ s4 � t1 � t2 þM1 þM2 þM3 þ 2M4:

Comparing this with (7.20), we deduce

n� s1 � s2 � s3 � s4 þ t1 þ t2 �M1 �M2 �M3 � 2M4 þ 6a 0: ð7:21Þ

Now we use (7.4) and (7.8) to estimate N�S from above:

N�S < nþ t1s1 �
s21 � s1

2
þ t2s2 �

s22 � s2

2
þ ð�Sþ þ n� s1Þðt1 þ 1Þ

þ ð�Nþ þ n� s2Þðt2 þ 1Þ: ð7:22Þ

Let us estimate Sþ and Nþ. Using (7.16), (7.13), (7.15), and (7.1), we obtain

SþbS� þM1b 2N4 þW� s4 þM1b s4 þWþM1b s4 þM1;
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whence

�Sþ þ n� s1a n� s1 � s4 �M1: ð7:23Þ

Incidentally, note that the left-hand side is nonnegative by virtue of (7.3), so

n� s1 � s4 �M1b 0: ð7:24Þ

Likewise, from (7.18), (7.11), (7.12), and (7.1) we derive

�Nþ þ n� s2a n� s2 � s3 �M3; ð7:25Þ

which together with (7.7) implies

n� s2 � s3 �M3b 0: ð7:26Þ

As t1 þ 1 > 0 and t2 þ 1 > 0, we can use (7.23) and (7.25) to obtain from

(7.22)

N�S < nþ t1s1 �
s21 � s1

2
þ t2s2 �

s22 � s2

2
þ ðn� s1 � s4 �M1Þðt1 þ 1Þ

þ ðn� s2 � s3 �M3Þðt2 þ 1Þ: ð7:27Þ

Now we estimate N�S from below by summing (7.11), (7.14), and (7.19):

N�SbM4 þ
1

2
s3ðs3 þ 1Þ þ 1

2
s4ðs4 þ 1Þ: ð7:28Þ

Consider the second term on the right-hand side. Inequality (7.21) gives

s3 � 1b ðn� s1 � s4 þ t1 �M1Þ þ ðt2 � s2Þ þ ð5�M2 �M3 � 2M4Þ:

The second term on the right-hand side is nonnegative by virtue of (7.9) and the

third one is also nonnegative (even positive). Consequently, we have

s3 � 1b n� s1 � s4 þ t1 �M1: ð7:29Þ

By virtue of (7.24) we have n� s1 � s4 þ t1 �M1b t1b 0, so using (7.29), we

get

1

2
s3ðs3 þ 1Þ ¼ s3 þ

1

2
s3ðs3 � 1Þ

b s3 þ
1

2
ðn� s1 � s4 þ t1 �M1 þ 1Þðn� s1 � s4 þ t1 �M1Þ:
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Set

A ¼ n� s1 � s4 �M1; B ¼ t1 þ 1

(A and B are integers) and continue as follows:

1

2
s3ðs3 þ 1Þb s3 þ

1

2
ðAþ BÞðAþ B� 1Þ

¼ s3 þ
1

2
ðA2 � AÞ þ 1

2
ðB2 � BÞ þ ABb s3 þ

1

2
ðB2 � BÞ þ AB:

For the terms on the right-hand side we have

1

2
ðB2 � BÞ ¼ 1

2
ðt21 þ t1Þ ¼ t1s1 �

s21 � s1

2
þ 1

2
ðt1 � s1Þðt1 � s1 þ 1Þ

b t1s1 �
s21 � s1

2

(since t1 � s1b 0 according to (7.5)), and

AB ¼ ðn� s1 � s4 �M1Þðt1 þ 1Þ;

and we finally obtain

1

2
s3ðs3 þ 1Þb s3 þ t1s1 �

s21 � s1

2
þ ðn� s1 � s4 �M1Þðt1 þ 1Þ: ð7:30Þ

One can estimate the third term on the right-hand side of (7.28) in the same

way by making use of (7.5), (7.26), and (7.9). Eventually,

1

2
s4ðs4 þ 1Þb s4 þ t2s2 �

s22 � s2

2
þ ðn� s2 � s3 �M3Þðt2 þ 1Þ: ð7:31Þ

Now, using (7.30) and (7.31), we derive from (7.28) the following bound:

N�SbM4 þ s3 þ s4 þ t1s1 �
s21 � s1

2
þ t2s2 �

s22 � s2

2

þ ðn� s1 � s4 �M1Þðt1 þ 1Þ þ ðn� s2 � s3 �M3Þðt2 þ 1Þ: ð7:32Þ

Comparing (7.27) with (7.32), we obtain

�nþ s3 þ s4 þM4 < 0:
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Summing this inequality with (7.21), we get

ðt1 � s1Þ þ ðt2 � s2Þ þ ð6�M1 �M2 �M3 �M4Þ < 0:

However, the summands on the left-hand side are nonnegative. Indeed, in the

case of the first and the second ones it follows from (7.5) and (7.9), respectively,

and the third one isb2. Contradiction. r

8. Type IV polygons

In this section we prove Theorem 1.2 for type IV polygons.

Lemma 8.1. Suppose that the line x1 � x2 ¼ n splits a type IVn polygon; then so

does one of the segments ½ð0;�nÞ; ðn; 0Þ� and ½ðn; 0Þ; ð2n; nÞ�.

Proof. All the points of the line x1 � x2 ¼ n belonging to the slab �nþ 1ax1a

2n� 1 lie on the segments ½ð�n;�2nÞ; ð0;�nÞ�, ½ð0;�nÞ; ðn; 0Þ�, and ½ðn; 0Þ; ð2n; nÞ�,
and as the polygon is free of nZ2-points, exactly one of the segments splits it.

However, it cannot be the first one, because then P would contain the origin. r

Figure 5. The segments splitting the polygon in the hypothesis of Lemma 8.2 are thick, and
P does not intersect dotted lines. The inequalities (8.3)–(8.6) are obvious.
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Lemma 8.2. Suppose that P is a type IVn polygon and the segment ½ð0;�nÞ; ðn; 0Þ�
splits it. Then the following assertions hold:

(i) The intersection of P with the half-plane x1b n lies in the slab

�n < x2 � x1 < 0: ð8:1Þ

(ii) The frame
	
ðn; 0Þ; e2;�e1



splits the slope Q1 and forms small angle with

it.

(iii) The frame
	
ðn; nÞ; e1;�e2



splits the slope Q3 and forms small angle with

it.

(iv) The frame ð0; e1; e2Þ splits the slope Q4.

(v) The slope Q1 has a vertex v ¼ ðv1; v2Þ satisfying

v2 � v1a�n� 1: ð8:2Þ

(vi) The following inequalities hold:

n < NþaEa 2n� 1; ð8:3Þ
n < NaNþ � 1; ð8:4Þ
�n < W < 0; ð8:5Þ
0 < Wþ < n: ð8:6Þ

Proof. To prove (i), it su‰ces to observe that P cannot have common points with

the segments ½ðn; 0Þ; ð2n; nÞ� and ½ðn; nÞ; ð2n; 2nÞ�. Indeed, if P had common points

with the former segment, by convexity it would containt the point ðn; 0Þ; if it had
common points with the latter, it would contain the point ðn; nÞ. Thus, the part of

P contained in the half-plane x1b n must lie between the lines x2 � x1 ¼ �n and

x2 � x1 ¼ 0.

Let us prove (v). Clearly, the functional x2 � x1 attains its maximum on P on

a vertex v a Q1. As the line x2 � x1 ¼ �n splits P, this minimum is less than n,

and (v) follows.

The fact that the frames split correspondent slopes in assertions (ii)–(iv)

follows from Proposition 3.11. To prove that
	
ðn; 0Þ; e2; e1



forms small angle

with Q1, we apply Proposition 3.6 taking the vertex from assertion (v) as y.

To prove that
	
ðn; nÞ; e1;�e2



splits Q3, we use the same theorem with y ¼

ðW;WþÞ.
The inequalities in (vi) are fairly intuitive, see Figure 8. r

Proof of Theorem 1.2 for type IV polygons. First, assume that the segment

½ð0;�nÞ; ðn; 0Þ� splits P, so that we can apply Lemma 8.2.
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The frame
	
ðn; 0Þ; e2;�e1



forms small angle with the slope Q1, so by Corol-

lary 3.8 we have

2N1aE� �Sþ þ n� E� n

2

� �
þ 1: ð8:7Þ

Likewise, as
	
ðn; nÞ; e1;�e2



forms small angle with Q3, we obtain

2N3aN� �Wþ � N� n

2

� �
þ 1: ð8:8Þ

Applying Proposition 3.2 to the basis ð�e1;�e2Þ and the slope Q2, we see that

there exists an integer s2 such that

2N2aE�Nþ þ s2; ð8:9Þ

N� Eþb
s22 þ s2

2
; ð8:10Þ

0a s2aN2: ð8:11Þ

As the frame ð0; e1; e2Þ splits Q4, by Corollary 3.8 we have

2N4aS� þW�: ð8:12Þ

Finally, by Proposition 3.12 we have

Sþ �S�bM1; ð8:13Þ
Eþ � E�bM2; ð8:14Þ
Nþ �N�bM3; ð8:15Þ
Wþ �W�bM4: ð8:16Þ

We estimate 2N by means of (8.7)–(8.9), and (8.12):

2N ¼
X4

k¼1

2Nk þ
X4

k¼1

2Mk

a nþ 2� E� n

2

� �
þ E� N� n

2

� �
þ s2 þ E� þ 2M2 � ðSþ �S�Þ

� ðNþ �N�Þ � ðWþ �W�Þ þ 2M1 þ 2M3 þ 2M4:
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Dropping the ceilings, using (8.3) and (8.13)–(8.16) and subsequently estimating

Mk a 1, we obtain

2Na 3nþ 9

2
þ �N

2
þ s2 þ E� þ 2M2

� �
: ð8:17Þ

Let us estimate the term in parentheses on the right-hand side. From (8.10)

and (8.14) we get

NbEþ þ s22 þ s2

2
; E�aEþ �M2;

whence

�N

2
þ s2 þ E� þ 2M2a

Eþ
2

� s22 � 3s2
4

þM2: ð8:18Þ

It follows from assertion (iv) of Lemma 8.2 that the vertex ðEþ;EÞ of P lies in

the half-plane x1b n, so using assertion (i) and (8.3), we get EþaE� 1a 2n� 2.

Moreover, M2a 1 and s22 � 3s2b�2, since s2 is an integer, so from (8.18) we

obtain

�N

2
þ s2 þ E� þ 2M2a nþ 1

2
:

Combining this with (8.17), we get

2Na 4nþ 5:

Dividing both sides by 2 and taking the floor, we obtain Na 2nþ 2, as claimed.

To conclude the proof, we show that if the segment ½ð0;�nÞ; ðn; 0Þ� does not

split P, there exists an a‰ne automorphism of Z2 mapping P on a type IIn or a

type IIIn polygon.

Define the automorphism j by

jðx1; x2Þ ¼ ð�x1 þ x2 þ n; x2Þ:

By definition, the segments ½0; ðn; 0Þ� and ½ðn; nÞ; ð2n; nÞ� split the polygon P,

and so does ½0; ðn; nÞ� by virtue of Lemma 8.1. Consequently, the images of those

segments under j – i.e., the segments ½ðn; 0Þ; 0�, ½ðn; nÞ; ð0; nÞ�, ½ðn; nÞ; ðn; 2nÞ� – split

jðPÞ. If P is also split by ½ðn; 0Þ; ð2n; nÞ�, then jðPÞ is split by ½0; ð0; nÞ�, and con-

sequently, jðPÞ is a type IIn polygon. Otherwise, the line x1 � x2 ¼ n does not
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split P, so the line x1 ¼ 0 does not split jðPÞ either, and the latter is a type IIIn
polygon. r

9. Type V polygons

In this section we prove Theorem 1.2 for type V polygons.

We will denote by Dn the triangle with the vertices 0, ð2n; 0Þ, and ð0; 2nÞ de-

fined by (2.1).

Lemma 9.1. Suppose that P is an N-gon of type Vn and that the frame
	
ðn; nÞ;

�e2;�e1


splits the slope Q2 and forms small angle with it. Suppose that either

Sþa n ð9:1Þ

or

Sþb nþ 1 and Wþa n: ð9:2Þ

Then

Na 2nþ 2: ð9:3Þ

Proof. As Q1 is a slope with respect to the basis ðe2;�e1Þ, by Proposition 3.2 there

exists an integer s1 such that

2N1aE� �Sþ s1; ð9:4Þ

E�Sþb
1

2
s1ðs1 þ 1Þ; ð9:5Þ

0a s1aN1: ð9:6Þ

The same proposition applied to Q3 and ðe1;�e2Þ ensures the existence of an

integer s3 such that

2N3aN� �Wþ s3; ð9:7Þ

N�Wþb
1

2
s3ðs3 þ 1Þ; ð9:8Þ

0a s3aN3: ð9:9Þ

As Q4 is a slope with respect to the bases ðe1; e2Þ and ðe2; e1Þ, by the same prop-

osition there exist integers s and s 0 such that
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2N4aS� �Wþ s; ð9:10Þ

W� �Sb
1

2
sðsþ 1Þ; ð9:11Þ

0a saN4; ð9:12Þ
2N4aW� �Sþ s 0; ð9:13Þ

S� �Wb
1

2
s 0ðs 0 þ 1Þ; ð9:14Þ

0a s 0aN4: ð9:15Þ

The frame
	
ðn; nÞ;�e2;�e1



forms small angle with Q2, so by Corollary 3.8

2N2a 2n�Nþ � Eþ � E� n

2

� �
þ 1: ð9:16Þ

By Proposition 3.12,

Sþ �S�bM1; ð9:17Þ
Eþ � E�bM2; ð9:18Þ
Nþ �N�bM3; ð9:19Þ
Wþ �W�bM4: ð9:20Þ

Moreover, as the points of P satisfy (2.1), we have

Wb 0; ð9:21Þ
Sb 0: ð9:22Þ

Assume that (9.3) does not hold. Then

2Nb 4nþ 6: ð9:23Þ

First, assume that (9.1) holds.

Let us estimate 2N from above. First, estimate the sum 2N1 þ 2N2 þ 2M2.

Using (9.4), (9.16), (9.18), and (9.22), we have

2N1 þ 2N2 þ 2M2a 2nþ s1 �Nþ þM2 �
E� n

2

� �
þ 1: ð9:24Þ

Estimating the ceiling by means of (9.5), we obtain:

E� n

2

� �
b�nþSþ þ s1 þ

n�Sþ
2

þ 1

4
ðs21 � 3s1Þ

� �
: ð9:25Þ

239An extremal property of lattice polygons



It follows from (9.1) that ðn�SþÞ=2b 0, and because s1 is an integer, we have

1=4ðs21 � 3s1Þb�1=2, so we get

n�Sþ
2

þ 1

4
ðs21 � 3s1Þ

� �
b � 1

2

� �
¼ 0:

Combining this with (9.25), we get

E� n

2

� �
b�nþSþ þ s1;

and further combining this with (9.24) and the inequality M2a 1, we obtain

2N1 þ 2N2 þ 2M2 ¼ 3n�Nþ �Sþ þM2 þ 1a 3n�Nþ �Sþ þ 2:

By means of the last bound and (9.7), (9.10), (9.17), (9.19), and (9.21), we

obtain

2N ¼ ð2N1 þ 2N2 þ 2M2Þ þ 2N3 þ 2N4 þ 2M1 þ 2M3 þ 2M4

a ð3n�Nþ �Sþ þ 2Þ þ ðN� �Wþ s3Þ
þ ðS� �Wþ sÞ þ 2M1 þ 2M3 þ 2M4

a 3nþ 2þ s3 þ sþM1 þM3 þ 2M4a 3nþ 3þ s3 þ sþM3 þ 2M4:

Comparing this bound with (9.23), we get

3nþ 3þ s3 þ sþM3 þ 2M4b 4nþ 6;

whence

na s3 þ sþM3 þ 2M4 � 3: ð9:26Þ

As M � Dn, we have

Nþ þNa 2n:

Let us estimate the terms on the left-hand side. Using (9.21), (9.7), (9.9), and

(9.19), we get

Nþ ¼ Wþ ðN� �WÞ þ ðNþ �N�Þb 2N3 � s3 þM3b s3 þM3:

Using (9.22), (9.11), (9.20), and (9.8), we obtain
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N ¼ Sþ ðW� �SÞ þ ðWþ �W�Þ þ ðN�WþÞ

b
1

2
sðsþ 1Þ þM4 þ

1

2
s3ðs3 þ 1Þ:

Thus,

ðs3 þM3Þ þ
1

2
sðsþ 1Þ þM4 þ

1

2
s3ðs3 þ 1Þ

� �
a 2n;

or, equivalently,

1

2
ðs23 þ 3s3Þ þ

1

2
ðs2 þ sÞ þM3 þM4a 2n: ð9:27Þ

Now we use (9.26) to estimate n on the right-hand side of (9.27):

1

2
ðs23 þ 3s3Þ þ

1

2
ðs2 þ sÞ þM3 þM4a 2ðs3 þ sþM3 þ 2M4 � 3Þ:

Hence

1

2
ðs23 � s3Þ þ

1

2
ðs2 � 3sÞaM3 þ 3M4 � 6a�2;

so

s23 � s3 þ s2 � 3sa�4:

Completing the squares, we obtain a contradiction:

s3 �
1

2

� �2

þ s� 3

2

� �2

a� 3

2
;

Thus, we have proved (9.3) provided that (9.1) holds.

Now assume that (9.2) holds.

Let us estimate 2N from above starting with the sum 2N1 þ 2N2 þ 2M1 þ
2M2. Using (9.4), (9.16), (9.18), and (9.5), we obtain

2N1 þ 2N2 þ 2M1 þ 2M2

a ðE� �Sþ s1Þ þ 2n�Nþ � Eþ � E� n

2

� �
þ 1

� �
þ 2M1 þ 2M2

a 2n�Nþ �Sþ 2M1 þM2 þ 1� Sþ � n

2
þ s21 � 3s1

4

� �
:
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Estimating ðs21 � 3s1Þ=4b�1=2, we get

2N1 þ 2N2 þ 2M1 þ 2M2

a 2n�Nþ �Sþ 2M1 þM2 þ 1� Sþ � n� 1

2

� �

¼ 2n�Nþ �Sþ 2M1 þM2 þ 1� Sþ � n

2

� �
:

Write the bound in the form

2N1 þ 2N2 þ 2M1 þ 2M2a 2n�Nþ þM1 þM2 þ 1

� Sþ � n

2

� �
þS�M1

� �
: ð9:28Þ

Let us show that

Sþ � n

2

� �
þS�M1b 0: ð9:29Þ

Assume that M1 ¼ 1. According to (9.2), we have either Sþb nþ 2 or Sþ ¼
nþ 1. In the former case we use (9.22) and obtain (9.29). In the latter case by

(9.17) we have S�aSþ �M1 ¼ n, so the edge ½ðS�;SÞ; ðSþ;SÞ� of P contains

the point ðn;SÞ. Thus, we cannot have S ¼ 0, since P is free of points of nZ2.

Thus, we must have Sb 1, and (9.29) follows.

If M1 ¼ 0, inequality (9.29) follows from (9.2) and (9.22).

Thus, we have proved (9.29) for all possible cases. Combining it with (9.28),

we obtain

2N1 þ 2N2 þ 2M1 þ 2M2a 2n�Nþ þM1 þM2 þ 1:

Now estimate 2N using the last inequality and (9.7), (9.13), (9.19), (9.20),

(9.21), and (9.22):

2N ¼ ð2N1 þ 2N2 þ 2M1 þ 2M2Þ þ 2N3 þ 2N4 þ 2M3 þ 2M4

a ð2n�Nþ þM1 þM2 þ 1Þ þ ðN� �Wþ s3Þ
þ ðW� �Sþ s 0Þ þ 2M3 þ 2M4

a 2nþ 1þ s3 þ s 0 þ
	
M3 � ðNþ �N�Þ



þ ðW� þM4Þ þM1 þM2 þM3 þM4

a 2nþ 1þ s3 þ s 0 þWþ þM1 þM2 þM3 þM4:
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Comparing this bound with (9.23) we obtain

Wþb�s3 � s 0 þ 2nþ 5�M1 �M2 �M3 �M4: ð9:30Þ

Together with (9.2) this implies

na s3 þ s 0 � 5þM1 þM2 þM3 þM4: ð9:31Þ

The triangle Dn lies in the half-plane x1a 2n, so we have

Sþa 2n: ð9:32Þ

We can estimate the left-hand side by means of (9.21), (9.14), and (9.17) as

follows:

Sþ ¼ Wþ ðS� �WÞ þ ðSþ �S�Þb
1

2
s 0ðs 0 þ 1Þ þM1:

Using this bound and (9.31), we obtain from (9.32):

1

2
s 0ðs 0 þ 1Þ þM1a 2s3 þ 2s4 � 10þ 2M1 þ 2M2 þ 2M3 þ 2M4;

whence

2s3b
1

2
ðs 02 � 3s 0Þ þ 10�M1 � 2M2 � 2M3 � 2M4

b
1

2
ðs 02 � 3s 0Þ þ 3 ¼ 1

2
ðs 02 � 3s 0 þ 6Þ;

and finally

s3b
1

4
ðs 02 � 3s 0 þ 6Þ: ð9:33Þ

The vertices of P solve (2.1), so

Nþ þNa 2n: ð9:34Þ

Using (9.21), (9.7), (9.9), and (9.19), we deduce

Nþ ¼ Wþ ðN� �WÞ þ ðNþ �N�Þb 2N3 � s3 þM3b s3 þM3;
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while by virtue of (9.30) and (9.8) we obtain

N ¼ Wþ þ ðN�WþÞ

b ð�s3 � s 0 þ 2nþ 5�M1 �M2 �M3 �M4Þ þ
1

2
s3ðs3 þ 1Þ:

Combining (9.34) with two last bounds, we get

s 0b
1

2
s3ðs3 þ 1Þ þ 5�M1 �M2 �M4b

1

2
s3ðs3 þ 1Þ þ 2 ¼ 1

2
ðs23 þ s3 þ 4Þ;

and finally

s 0b
1

2
ðs23 þ s3 þ 4Þ: ð9:35Þ

It is not hard to check that the inequalities (9.33) and (9.35) are incompatible.

This contradiction proves (9.3) in case (9.2) holds. r

Definition 9.2. We call an integral polygon minimal if it does not contain other

integral polygon with the same number of vertices.

We note two simple properties of minimal polygons.

Proposition 9.3. Any edge of a minimal polygon contains precisely two interger

points – its endpoints.

Proof. If v1; . . . ; vN are the vertices of an integral N-gon and its edge ½v1; v2� con-
tains an integral point v di¤erent from v1 and v2, then it is easily seen that the con-

vex hull of the points v; v2; . . . ; vn is an integral N-gon contained in the original

one and di¤erent from it. This means that the original polygon is not minimal.

r

Proposition 9.4. A‰ne automorphisms of the integral lattice map minimal poly-

gons onto minimal polygons.

This proposition is obvious.

Proof of Theorem 1.2 for type V polygons. Let P be a type Vn polygon having N

vertices. We must prove that

Na 2nþ 2: ð9:36Þ
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We can certainly assume that P is minimal, for if not, we replace P by a min-

imal polygon contained in P (of course, this minimal polygon is of type Vn as

well).

First, assume that P satisfies either

Sþa n ð9:37Þ

or

Sþb nþ 1; Wþa n: ð9:38Þ

If P lies in a slab of the form

0ax1a n; nax1a 2n; 0ax2a n; nax2a 2n;

it is a type In polygon, and the bound (9.37) follows from Theorem 1.2 for type I

polygons (Remark 2.8). Otherwise, P is split by the segments ½ðn; 0Þ; ðn; nÞ� and
½ð0; nÞ; ðn; nÞ�, which are the intersections of the lines x1 ¼ n and x2 ¼ n with Dn.

Therefore, by Proposition 3.11 the frame
	
ðn; nÞ;�e2;�e1



splits the slope Q2. If

this frame forms small angle with the slope, Lemma 9.1 provides (9.36). If not,

it follows from Proposition 3.6 that the frame
	
ðn; nÞ;�e1;�e2



forms small angle

with Q2. Let P 0 be the reflection of P about the line x1 ¼ x2. It is not hard to

check that
	
ðn; nÞ;�e2;�e1



forms small angle with Q2ðP 0Þ; moreover, P 0 is a min-

imal type Vn polygon, and since

SþðP 0Þ ¼ WþðPÞ; WþðP 0Þ ¼ SþðPÞ;

we see that P 0 satisfies (9.37) or (9.38). Applying the established part of the lemma

to P 0, we obtain (9.36).

Now suppose that P satisfies neither (9.37), nor (9.38). Thus, in particular,

SþðPÞb nþ 1:

Consider the a‰ne automorphism of nZ2 given by

jðx1; x2Þ ¼ ð�x1 � x2 þ 2n; x2Þ:

By Proposition 9.4, the polygon jðPÞ is minimal. Moreover, it lies in the triangle

Dn, since Dn ¼ jðDnÞ. Obviously, we have

S
	
jðPÞ



¼ SðPÞ:
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A straightforward computation gives

S�
	
jðPÞ



¼ �SþðPÞ �SðPÞ þ 2n:

As the points of P satisfy system (2.1), we have SðPÞb 0, so

S�
	
jðPÞ



a�SþðPÞ þ 2na n� 1:

By Proposition 9.3,

Sþ
	
jðPÞ



aS�

	
jðPÞ



þ 1;

so we have

Sþ
	
jðPÞ



a n:

Thus, the polygon jðPÞ satisfies (9.37), and applying the established part of the

lemma to jðPÞ, we obtain (9.36). r

10. Proof of the main theorem

Proof of Theorem 1.2. Suppose that P is a convex integral N-gon free of points of

nZ2. By Theorem 2.6 in can be mapped onto an N-gon of one of the types In–Vn

by a suitable a‰ne transformation. The bound Na 2nþ 2 is obvious for type

In polygons (see Remark 2.8) and in Sections 6–9 this bound is established for

polygons of types IIn–Vn. The theorem is proved. r
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