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Accuracy of a coupled mixed and Galerkin finite element
approximation for poroelasticity

Sı́lvia Barbeiro

Abstract. In this paper, we consider a combined mixed finite element and continuous
Galerkin finite element formulation for a coupled flow and geomechanics model. We use
the lowest order Raviart–Thomas finite elements for the spatial approximation of the flow
variables and continuous piecewise linear finite elements for the deformation variable. This
numerical approach appears to be a common choice in the existing reservoir engineering
simulators. We focus on deriving error estimates in a discrete-in-time setting. Previous a
priori error estimates described in the literature e.g. [2], [19], which are optimal, show first
order convergence in space with respect to the L2-norm for the pressure and for the aver-
age fluid velocity and also first order convergence in space with respect to the H 1-norm for
the displacement. Here we prove one extra order of convergence for the displacement ap-
proximation with respect to the L2-norm. We also demonstrate that, by including a post-
processing step in the scheme, the order of convergence of the approximation of pressure
can be improved. Even though this result is critical for deriving the L2-norm error esti-
mates for the approximation of the deformation variable, surprisingly the corresponding
gain of one convergence order holds independently of including or not the post-processing
step in the method.
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1. Introduction

Poroelasticity theory is used to model the interaction of fluid flow and the mechan-

ical response in fluid-saturated porous media. The deformation of the medium in-

fluences the flow of fluid and vice versa. The development of the coupled geome-

chanics and flow models emerged in the context soil mechanics, in particular with

the seminal work of Karl von Terzaghi [25] and the theory proposed by Maurice

Anthony Biot [4], [5], known as Biot Theory.



Poroelasticity models are widely used in geomechanics and reservoir engineer-

ing, and they have relevance in diverse other fields as, for example, biomechanics

and environmental engineering. Due to the high importance of the applications,

there is an ever-growing demand for reliable models and numerical tools. Appli-

cations range from reservoir simulation [9], [20], [23], [24], modelling carbon

sequestration [12], estimating the mechanical behaviour of fluid-saturated living

bone tissue [11], among others as highlighted in [18].

As a prototype of the geomechanical coupling between the single-phase flow of

pore fluids and the deformation of the solid skeleton, we consider in this paper the

linear poroelastic Biot Theory. The flow (pressures and fluxes) and deformations

(displacements) in the poroelastic medium are modeled based on the Darcy’s law

and on the momentum and mass conservation principles. The momentum equa-

tion is similar to the linear elasticity equation, with a fluid pressure term acting as

a force.

We summarize the governing equations below. Let W � Rd , d ¼ 2 or 3, de-

note the domain of interest. The coupled balance equations are written as follow:

find ðu; pÞ such that

�ðlþ mÞ‘ð‘ � uÞ � m‘2uþ a‘p ¼ f in W� ð0;T �
q

qt
ðco pþ a‘ � uÞ � 1

mf
‘ � Kð‘p� rf gÞ ¼ sf in W� ð0;T �

p ¼ pD on Gp � ð0;T �

� 1

mf
Kð‘p� rf gÞ � h ¼ q on Gf � ð0;T �

u ¼ uD on G0 � ð0;T �
~ssh ¼ rN on GN � ð0;T �

pð0Þ ¼ p0 in W;

ð1Þ

where qW ¼ GpAGf and qW ¼ G0AGN , with measðG0Þ > 0. The symbol h repre-

sents the outward normal vector on qW. The primary variables are the pressure p

and the deformation u. The physical parameters of the model are: l, m, the Lamé

constants, co, the constrained specific storage coe‰cient, a, the Biot–Willis con-

stant, mf , the fluid viscosity, rf , the fluid mass density and g, the body force per

unit of mass. The e¤ective stress s, is the standard stress tensor from elasticity,

sðuÞ ¼ 2meðuÞ þ l tr
�
eðuÞ

�
I ;

where

eðuÞ ¼ 1

2

�
grad uþ ðgrad uÞ t

�
;
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I is the identity matrix in Rd � Rd , and the total stress, ~ss, is given by

~ssðu; pÞ ¼ sðuÞ � apI :

K denotes the symmetric permeability tensor. We require the existence of the

inverse of the operator K and we assume that K�1 is uniformly bounded and posi-

tive definite, that is, there exists a positive constant z such that, for all s a�
L2ðWÞ

�d
,

�
K�1ðx; tÞs; s

�
b zkskL2ðWÞ; Ex a W; t a ½0;T �: ð2Þ

We assume the storage coe‰cient to be strictly positive and uniformly bounded,

0 < gca coðxÞaLc; Ex a W; ð3Þ

and the Biot–Willis constant with a range of values 0 < aa 1:

In practice, if the initial condition p0 is unknown, it can be found by consider-

ing ‘pð0Þ ¼ rf g. And then the first equation of (1) is used to obtain uð0Þ.
The complete system (1) can be solved either simultaneously, in a fully coupled

approach, or sequentially, in a loosely coupled scheme. The analysis of the fully

coupled numerical method, combining a mixed method and a continuous or dis-

continuous Galerkin method, was considered e.g. in [2], [13], [19]. The iteratively

coupled methods were considered e.g. in [14], [16], [28].

In this paper we focus on the fully coupled method which combines lowest

order Raviart–Thomas mixed finite elements for the Darcy flow and Galerkin

piecewise linear finite elements for elasticity. We analyze the e¤ect on conver-

gence of considering a post-processing step in the scheme and we prove second

order of convergence in space for the pressure approximation. Moreover we

derive L2-error estimates for the approximation of the deformation and we also

obtain second order of convergence in space. Both results, which are here proved

for the fully coupled approach, are also useful to analyse the iteratively coupled

schemes which converge to fully coupled schemes [28].

2. The coupled variational formulation

In order to introduce the mixed formulation [17], [21], we consider the variable for

the flux z ¼ � 1
mf
Kð‘p� rf gÞ.

The function space for pressure is L2ðWÞ. The space used for the flux variable

is

HðdivÞ :¼
�
s a

�
L2ðWÞ

�d
: ‘ � s a L2ðWÞ

�
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and we define its subset

S0 :¼ fs a HðdivÞ : s � hjGf
¼ 0g:

The function space for the deformation is

V0 :¼
�
v a

�
H 1ðWÞ

�d
: vjG0

¼ 0
�
:

Associated to this space, we define the bilinear form auð: ; :Þ by

auðu; vÞ :¼
ð
W

sðuÞ : eðvÞ dx;

or equivalently

auðu; vÞ ¼
ð
W

�
2m

�
eðuÞ : eðvÞ

�
þ lð‘ � uÞð‘ � vÞ

�
dx:

The bilinear form is continuous and coercive in V0 � V0 ([7]); therefore, for some

positive real numbers Ccont and Ccoer holds

auðu; vÞaCcontkukH 1ðWÞkvkH 1ðWÞ; Eu; v a V0; ð4Þ
auðv; vÞbCcoerkvk2H 1ðWÞ; Ev a V0:

The space V0 is endowed with the norm k:kau , where kvk
2
au
:¼ auðv; vÞ.

We define the linear functionals

l1ðvÞ :¼
ð
W

f � vþ
ð
GN

rN � v; v a V0;

l2ðwÞ :¼
ð
W

sf w; w a L2ðWÞ;

l3ðsÞ :¼ �
ð
Gp

pDs � hþ
ð
W

rf g � s; s a S0:

Since the boundary conditions are allowed to be inhomogeneous, we need

to select, for each t a ½0;T �, a function udð:; tÞ a
�
H 1ðWÞ

�d
such that udð:; tÞjG0

¼
uDð:; tÞ and a function zdð:; tÞ a HðdivÞ such that zdð:; tÞjGf

� h ¼ qð:; tÞ:
The variational problem becomes: find u a ud þH 1ð½0;T �;V0Þ, p a H 1

�
½0;T �;

L2ðWÞ
�
and z a zd þ L2ð½0;T �;S0Þ such that
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auðu; vÞ � að‘ � v; pÞ ¼ l1ðvÞ; ð5Þ

co
qp

qt
;w

� �
þ a

q

qt
‘ � u;w

� �
þ ð‘ � z;wÞ ¼ l2ðwÞ; ð6Þ

mf ðK�1z; sÞ � ðp;‘ � sÞ ¼ l3ðsÞ ð7Þ

holds for all ðv;w; sÞ a V0 � L2ðWÞ � S0 and t a ½0;T �.
We also make the following smoothness assumptions, in order the above varia-

tional formulation makes sense:

f a C1
�
½0;T �;

�
H�1ðWÞ

�d�
;

sf a C
�
½0;T �;L2ðWÞ

�
;

pD a C
�
½0;T �;L2ðGpÞ

�
;

q a Cð½0;T �;TrSÞ; TrS ¼ fs � hjGf : s a HðdivÞg;

uD a C1
�
½0;T �;

�
H 1=2ðG0Þ

�d�
;

rN a C1
�
½0;T �;

�
H�1=2ðGNÞd

��
;

g a C
�
½0;T �;

�
L2ðWÞ

�d�
;

u0 a
�
H 1ðWÞ

�d
;

p0 a L2ðWÞ:

For the study of the error, we assume that the weak solution of the prob-

lem (5)–(7) is su‰ciently regular: u a W 2;l
�
½0;T �;

�
H 2ðWÞ

�d�
, p a W 2;l

�
½0;T �;

H 1ðWÞ
�
, and z a L2

�
½0;T �;

�
H 1ðWÞ

�d�
.

In order to approximate the variational problem (5)–(7) with a finite element

scheme we need to provide some definitions.

Let Eh and EH be two nondegenerate partitions of the polyhedral domain W,

with maximal element diameter h and H, respectively. The elements of Eh and

EH are triangles, if d ¼ 2, and tetrahedra, if d ¼ 3.

Let ðWh;ShÞ � L2ðWÞ �HðdivÞ denote a standard mixed finite element space

on Eh, called lowest order Raviart–Thomas approximating space (RT0) (e.g. [8],

[21]) and

Sh;0 :¼ fs a Sh : s � hjGf ¼ 0g:

We consider the linear operators Ph : HðdivÞ ! Sh and Ih : L
2ðWÞ ! Wh which

satisfy the following properties:
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�
‘ � ðs�PhsÞ;w

�
¼ 0; Es a HðdivÞ; w a Wh;

ks�PhskL2ðWÞaCPhkskH 1ðWÞ; Es a
�
H 1ðWÞ

�d
;

‘ �Ph ¼ Ih‘�;

ð‘ � sh; p� Ih pÞ ¼ 0; Esh a Sh; p a L2ðWÞ;

kp� Ih pkL2ðWÞaCIhkpkH 1ðWÞ; Ep a H 1ðWÞ:

Let VH �
�
H 1ðWÞ

�d
be the space of continuous piecewise polynomials of

degree 1 defined on EH and

VH;0 :¼ fv a VH : vjG0
¼ 0g:

The elliptic projector EH :
�
H 1ðWÞ

�d ! VH is defined by

auðu� EHu; vHÞ ¼ 0; Eu a
�
H 1ðWÞ

�d
; vH a VH ; ð8Þ

and satisfies (see [7])

ku� EHukau aCEHkukH 2ðWÞ; Eu a
�
H 2ðWÞ

�d
: ð9Þ

The fully discrete method is derived by discretizing the time derivatives. Here

we considered the backward Euler method. We define Dt ¼ T=N, where N

denotes the number of time steps and tn ¼ nDt. In what follows, we will use the

notation gn ¼ gð:; tnÞ.
Let udHðx; tÞ ¼ EHudðx; tÞ and zdhðx; tÞ ¼ Phzdðx; tÞ. The complete numeri-

cal formulation becomes: find un
H a un

dH þ VH;0, pn
h a Wh, znh a zndh þ Sh;0 such

that

auðun
H ; vÞ � aðpn

h ;‘ � vÞ ¼ ln
1 ðvÞ; ð10Þ

co
pn
h � pn�1

h

Dt
;w

� �
þ a ‘ � u

n
H � un�1

H

Dt
;w

� �
þ ð‘ � znh ;wÞ ¼ ln

2 ðwÞ; ð11Þ

mf
�
ðKnÞ�1

znh ; s
�
� ðpn

h ;‘ � sÞ ¼ ln
3 ðsÞ; ð12Þ

for all ðv;w; sÞ a ðVH;0;Wh;Sh;0Þ.
Additionally, we consider the initial conditions u0H a u0dH þ VH;0, p0h a Wh,

such that
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auðu0H ; vÞ ¼ auðu0; vÞ; Ev a VH ;

ðp0h ;wÞ ¼ ðp0;wÞ; Ew a Wh:

The fully coupled scheme involves calculating un
H , p

n
h and znh simultaneously.

The convergence result in the next theorem can be found in [2], [19].

Theorem 2.1. Let ðu; p; zÞ be the solution of (5)–(7) and ðuH ; ph; zhÞ be the solution
of (10)–(12). Then, for Dt small enough, there exists C > 0 such that

ku� uHkLlðH 1Þ þ kp� phkLlðL2Þ þ kz� zhkL2ðL2ÞaCðH þ hÞ þ OðDtÞ; ð13Þ

where C depends on the model parameters and on the solution of the continuous

model (5)–(7) but is not dependent on H, h and Dt.

3. Post-processing step for pressure

The objective of this section is to obtain a higher order approximation for pres-

sure. To improve accuracy, a post-processing step can be included in the numeri-

cal scheme, following the idea proposed by Arbogast and Wheeler in [1].

To simplify the notation, we use k:k0 and k:k1, respectively, for the L2ðWÞ and
H 1ðWÞ norms. When we consider a subset R � W, the L2ðRÞ inner product is

denoted by ð: ; :ÞR and the corresponding norm by k:k0;R.
We start by defining the space ~WWh consisting of functions that are discontinu-

ous and piecewise linear over the grid Eh. We locally post-process the pressure by

finding ~pph a ~WWh such that on each element of R a Eh,

�
coð~ppn

h � pn
h Þ;w

�
R
¼ 0 Ew a Wh; ð14Þ

ðKn‘~ppn
h þ znh ;‘wÞR ¼ 0 Ew a ~WWh: ð15Þ

We will demonstrate that this post-processing technique improves the approx-

imation pn
h so that the L2-error between ~ppn

h and pn is of second order in

space.

In the error analysis we will compare the post-processed finite element solu-

tion to an elliptic projection of the solution of (5)–(7). We define the projection

ðPh;ZhÞ a Wh � Sh of ðp; zÞ [1], [27], by
�
coðPh � pÞ;w

�
þ
�
‘ � ðZh � zÞ;w

�
¼ 0 Ew a Wh; ð16Þ

mf
�
K�1ðZh � zÞ; s

�
¼ ðPh � p;‘ � sÞ Es a Sh; ð17Þ

and on each element R a Eh we define ~PPh a ~WWh by
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�
coð ~PPh � PhÞ;w

�
R
¼ 0 Ew a Wh; ð18Þ

ðK‘ ~PPh þ Zh;‘wÞR ¼ 0 Ew a ~WWh: ð19Þ

For convenience, we now introduce some additional notation, in particular for

auxiliary and projection errors:

xn ¼ pn
h � Pn

h a Wh; ~xxn ¼ ~ppn
h � ~PPn

h a ~WWh; zn ¼ znh � Zn
h a Sh;

and

hn ¼ Pn
h � pn; ~hhn ¼ ~PPn

h � pn:

Lemma 3.1. The following inequalities hold

k
ffiffiffi
c

p
ox

nk0a k
ffiffiffi
c

p
o
~xxnk0; ð20Þ�

coð~xxn � xnÞ; ~xxn
�
aQkðKnÞ�1=2znk20h2; ð21Þ

where the constant Q depends on the positive upper and lower bounds of co and K.

Proof. For any element R a Eh, by (14), (15), (18) and (19) we deduce that

�
coð~xxn � xnÞ; 1

�
R
¼ 0 ð22Þ

and

ðKn‘xn þ zn;‘wÞR ¼ 0; w a ~WWh: ð23Þ

Since xn is constant on R, from (22) we have that
�
coðxn � ~xxnÞ; xn

�
R
¼ 0.

Then

ðcoxn; xnÞR ¼ ðco~xxn; xnÞR;

and (20) follows.

Using approximation properties ([22], Theorem 2.6), for a good choice of the

constant Cx we get

�
coð~xxn � xnÞ; ~xxn � xn

�
R
¼

�
coð~xxn � xnÞ; ~xxn

�
R
¼

�
coð~xxn � xnÞ; ~xxn � Cx

�
R

aCLk
ffiffiffi
c

p
oð~xxn � xnÞk0;Rk‘~xxnk0;Rh

where CL depends on the upper bound of co. Then

k
ffiffiffi
c

p
oð~xxn � xnÞk0;R aCLk‘~xxnk0;Rh:
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Taking w ¼ ~xxn in (23) results

kðKnÞ1=2‘~xxnk0;Ra kðKnÞ�1=2z
n
k0;R;

and we obtain (21). r

The detailed arguments for proving the next lemma can be found in [1], Theo-

rem 2.

Lemma 3.2. Assume su‰cient regularity of data and of the solution of (5)–(7). For

each t a ð0;T � and for h su‰ciently small, holds

khk0 ¼ kPh � pk0aC1kzk1h; ð24Þ
k~hhk0 ¼ k ~PPh � pk0aC2ðkzk1 þ k‘ � zk1Þh2; ð25Þ

kð~hhÞtk0 ¼ kð ~PPh � pÞtk0aC3

�
kzk1 þ k‘ � zk1 þ kðzÞtk1 þ k‘ � ztk1

�
h2; ð26Þ

where C1, C2 and C3 are independent of t, p, h and Dt.

The next result will be central in the convergence analysis.

Lemma 3.3. Let EH be defined by (8). The following estimate holds

k‘ � EHu� ‘ � uHk0a
a

l
kp� phk0: ð27Þ

Proof. For any element R a EH we have

lk‘ � ðEHu� uHÞk20;Ra auðEHu� uH ;EHu� uHÞ

¼ a
�
p� ph;‘ � ðEHu� uHÞ

�
R

¼ a
�
p� ~pph;‘ � ðEHu� uHÞ

�
R

a akp� ~pphk0;Rk‘ � ðEHu� uHÞk0;R: r

The convergence result for the post-processed numerical solution for pressure

is given in the next theorem.

Theorem 3.4. Consider that Eh and EH coincide or Eh to be a refinement of EH.

Assume su‰cient regularity of the solution of (5)–(7) and that the initialization error

satisfy

k~pp0h � p0k0aC0h
2;
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for some constant C0 depending on p0. Let Dt satisfy Dt
mf
2 > Qh2 and Dt ¼ c 0H 2

for some positive constant c 0. If a2

l
< 1

4 gc, then for h and H su‰ciently small,

max
n

kpn � ~ppn
hk0aCpðh2 þH 2Þ; ð28Þ

where Cp depends on p but not on h, H or Dt.

Proof. For convenience, we use the notation

l4ðu;wÞ ¼ a
q

qt
‘ � u;w

� �
;

l4ðun
H ;wÞ ¼ a ‘ � u

n
H � un�1

H

Dt
;w

� �
:

Combining (6), (11) and (14), we obtain, for all w a Wh,

�
coð~ppn

h � pnÞ;w
�
�
�
coð~ppn�1

h � pn�1Þ;w
�
þ Dtð‘ � znh ;wÞ �

ð t n

t n�1

ð‘ � z;wÞ dt

¼ Dt
�
l2ðwÞ � l4ðun

H ;wÞ
�
�
ð t n

t n�1

�
l2ðwÞ � l4ðu;wÞ

�
dt:

Then

�
coð~xxn þ ~hhnÞ;w

�
�
�
coð~xxn�1 þ ~hhn�1Þ;w

�
þ Dtð‘ � zn;wÞ

þ Dtð‘ � Zn
h ;wÞ �

ð t n

t n�1

ð‘ � z;wÞ dt

¼ Dt
�
l2ðwÞ � l4ðun

H ;wÞ
�
�
ð tn

t n�1

�
l2ðwÞ � l4ðu;wÞ

�
dt;

and by (16) we get

�
coð~xxn þ ~hhnÞ;w

�
�
�
coð~xxn�1 þ ~hhn�1Þ;w

�
þ Dtð‘ � zn;wÞ

þ
ð t n

t n�1

�
l2ðwÞ � l4ðu;wÞ

�
dt

¼ Dt
�
l2ðwÞ � l4ðun

H ;wÞ
�
þ
ð t n

t n�1

ð‘ � z;wÞ dt

� Dtð‘ � zn;wÞ þ Dtðcohn;wÞ: ð29Þ
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Combining (7), (12) and (17), we have

mf ðK�1zn; sÞ

¼ ðpn
h ;‘ � sÞ þ ðl3; sÞ � mf

�
K�1ðZn

h � znÞ; s
�
� mf

�
ðKnÞ�1zn; s

�
¼ ðpn

h ;‘ � sÞ þ ðl3; sÞ � ðPn
h ;‘ � sÞ � mf

�
ðKnÞ�1zn; s

�
þ ðpn;‘ � sÞ

¼ ðxn;‘ � sÞ: ð30Þ

Taking in (29) and (30) w ¼ xn and s ¼ zn, respectively, we obtain

�
coð~xxn þ ~hhnÞ; xn

�
�
�
coð~xxn�1 þ ~hhn�1Þ; xn

�
þ Dtð‘ � zn; xnÞ

þ
ð t n

t n�1

�
l2ðxnÞ � l4ðu; xnÞ

�
dt

¼ Dt
�
l2ðxnÞ � l4ðun

H ; x
nÞ
�
þ
ð t n

t n�1

ð‘ � z; xnÞ dt

� Dtð‘ � zn; xnÞ þ Dtðcohn; xnÞ

and

mf ðK�1zn; znÞ ¼ ðxn;‘ � znÞ: ð31Þ

Using (18) we get

ðco~xxn; xnÞ � ðco~xxn�1; xnÞ þ Dtmf ðK�1zn; znÞ

¼
ð t n

t n�1

ð‘ � z� ‘ � zn; xnÞ dtþ
ð t n

t n�1

l4ðu; xnÞ dt� Dtl4ðun
H ; x

nÞ

� ð1� DtÞðco~hhn; xnÞ þ ðco~hhn�1; xnÞ: ð32Þ

Since

ðco~xxn�1; xnÞa 1

2
ðco~xxn�1; ~xxn�1Þ þ 1

2
ðcoxn; xnÞ

then

ðco~xxn; xnÞ � ðco~xxn�1; xnÞb ðco~xxn; xnÞ � 1

2
ðco~xxn�1; ~xxn�1Þ � 1

2
ðcoxn; xnÞ:

From (14) and (18) we obtain ðco~xxn; xnÞ ¼ ðcoxn; xnÞ and consequently,
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ðco~xxn; xnÞ � ðco~xxn�1; xnÞb 1

2
ðco~xxn; xnÞ � 1

2
ðco~xxn�1; ~xxn�1Þ

¼ 1

2
ðco~xxn; ~xxnÞ � 1

2
ðco~xxn�1; ~xxn�1Þ

� 1

2

�
coð~xxn � xnÞ; ~xxn

�
: ð33Þ

We will now analyze the right-hand side of (32). Bramble-Hilbert Lemma (e.g.

[10]) implies that

���
ð t n

t n�1

‘ � z� ‘ � zn dt
���
0
aC4ðDtÞ3=2

���
ð t n

t n�1

ð‘ � zÞt dt
���
0
;

where C4 is independent of t and Dt. Hence,

ð t n

t n�1

ð‘ � z� ‘ � zn; xnÞ dta 1

2
kxnk20Dtþ

C2
4

2

ð t n

t n�1

kð‘ � zÞtk
2
0 dtðDtÞ

2: ð34Þ

Summing and subtracting ðEHuÞn, where EH is the elliptic projector defined by (9),

we have that

ð tn

t n�1

l4ðu; xnÞ dt� Dtl4ðun
H ; x

nÞ ¼
ð tn

t n�1

l4ðu� EHu; x
nÞ dt

þ Dtl4
�
ðEHuÞn � un

H ; x
n
�
: ð35Þ

Let us now consider the first term of the right-hand side of (35). For any e > 0,

holds

ð t n

t n�1

l4ðu� EHu; x
nÞ dtaCEDtHkutkLlðH 2Þkxnk0

a
C2

E

4e
DtH 4kutk2LlðH 2Þ þ eDtH�2kxnk20 :

Since we have assumed that Dt ¼ c 0H 2, we obtain

ð t n

t n�1

l4ðu� EHu; x
nÞ dta C2

E

4e
DtH 4kutk2LlðH 2Þ þ ec 0kxnk20 : ð36Þ

For the other term, we use Lemma 3.3 and (25) to obtain the estimate
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Dtl4ðEHu� un
H ; x

nÞa a2

l
ðkpn � ~ppn

hk0 þ kpn�1 � ~ppn�1
h k0Þkxnk0

a
a2

l
ðk~hhnk0 þ k~hhn�1k0 þ k~xxnk0 þ k~xxn�1k0Þkxnk0

aC2ðkzkLlðH 1Þ þ k‘ � zkLlðH 1ÞÞh2k~xxnk0

þ 3

2

a2

l
k~xxnk20 þ

1

2

a2

l
k~xxn�1k20 : ð37Þ

It remains to analyze the last two terms of the right-hand side of (32). Using

Lemma 3.2 we deduce that

�ðco~hhn; xnÞ þ ðco~hhn�1; xnÞ ¼ �
ð t n

t n�1

ðco~hht; xnÞ dt

a
L2
c

2

ð t n

t n�1

k~hhtk
2
0 dtþ

1

2
kxnk20Dt

a
ðLcC3Þ2

2
h4

ð t n

t n�1

�
kzk1 þ k‘ � zk1 þ kðzÞtk1

þ k‘ � ztk1
�2

dtþ 1

2
kxnk20Dt; ð38Þ

and

Dtðco~hhn; xnÞa ðLcC2Þ2

2
h4Dtðkznk1 þ k‘ � znk1Þ

2 þ 1

2
kxnk20Dt: ð39Þ

Combining (32) with (33) and using (21), (34), (36), (37), (38) and (39) we

obtain

1

2

�
ðco~xxn; ~xxnÞ � ðco~xxn�1; ~xxn�1Þ

�
þ
�
ðKnÞ�1zn; zn

�
Dtmf �

1

2
Qh2

� �

a

	3
2
k~xxnk20 þ

C2
4

2

ð t n

t n�1

kð‘ � zÞtk
2
0 dtDt



Dtþ C2

E

4e
DtH 4kutk2Llððt n�1; t nÞ;H 2Þ

þ ec 0kxnk20 þ
3

2

a2

l
k~xxnk20 þ

1

2

a2

l
k~xxn�1k20

þ ðLcC3Þ2

2
h4

ð t n

t n�1

�
kzk1 þ k‘ � zk1 þ kðzÞtk1 þ k‘ � ztk1

�2
dt

þ ðLcC2Þ2

2
h4Dtðkznk1 þ k‘ � znk1Þ

2: ð40Þ
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Provided that Dt is su‰ciently small, a summation on n, and an application

of Gronwall’s inequality yield to

max
n

k~xxnk20 aC
	
k~xx0k20 þ h4

ðT

0

kzk21 þ k‘ � zk21 þ kðzÞtk
2
1 þ k‘ � ztk21 dt

þ h4ðkzk2LlðH 1Þ þ k‘ � zk2LlðH 1ÞÞ þH 4kutk2LlðH 2Þ



; ð41Þ

for some constant C independent of h, H and Dt. r

Remark 3.5. It is interesting to observe that equation (10) remains unaltered

if we replace ~ppn
h by pn

h , under the assumption that Eh and EH coincide or that

Eh is a refinement of EH . In fact, for any test function v a VH;0 we have that

‘ � v is constant in every element R a Eh and consequently ðpn
h ;‘ � vÞR ¼

ð~ppn
h ;‘ � vÞR:

4. The L2 estimates for deformation

The objective of this section is to derive the convergence order for the displace-

ment approximation error with respect to the L2-norm. The estimate we will be

obtained using duality techniques.

Let enH ¼ un � un
H . We will restrict our study to the case eH a V0, which is sat-

isfied for example when the Dirichlet condition for u on G0 is homogeneous. For

the general case of inhomogeneous Dirichlet data for u on G0, the analysis re-

quired is more involving. We refer the paper [3] for some insight in this question,

even though therein the study is restricted to the Laplace equation.

Consider the dual problem: find f a V0, such that

auðf; vÞ ¼ ðenH ; vÞ; Ev a V0: ð42Þ

For the derivation of L2 error estimates we assume that the problem (42) is

H 2-regular, that is, f a H 2ðWÞ and

kfkH 2ðWÞaCregkenHk0; ð43Þ

where Creg is a positive constant which depends on the domain W. A su‰cient

condition for the H 2 regularity estimate (43) to hold is that the domain W is a

convex polygonal domain in R2 and that (42) is a pure displacement problem

ðG0 ¼ qWÞ [6]. Other conditions which guarantee (43) to be true are discussed

for instance in [15] and [26].

In the next theorem we present the L2-estimates.
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Theorem 4.1. Under the foregoing assumptions of this section and the same condi-

tions as in Theorem 3.4, the following estimate holds:

ku� uHkLlðL2ÞaCðH 2 þ h2Þ; ð44Þ

where C is independent of h, H and Dt.

Proof. Let IHf a VH;0 be the nodal interpolation of f. It is well known that

kf� IHfk1aCinterpHkfkH 2ðWÞ: ð45Þ

Since eH a V0 then,

kenHk
2
0 ¼ auðf; enHÞ ¼ auðenH ; f� IHfÞ þ auðenH ; IHfÞ
¼ auðenH ; f� IHfÞ þ að‘ � IHf; pn � pn

h Þ
¼ auðenH ; f� IHfÞ þ a

�
‘ � ðIHf� fÞ; pn � pn

h

�
þ að‘ � f; pn � pn

h Þ:

Now, the trick is to sum and subtract the post-processed approximation for

pressure. We get

kenHk
2
0 ¼ auðenH ; f� IHfÞ þ a

�
‘ � ðIHf� fÞ; pn � ~ppn

h

�
þ að‘ � f; pn � ~ppn

h Þ:

Using (4), (43) and (45), we obtain

kenHk
2
0 aCcontCinterpCregHkenHk1kenHk0 þ aCcontCinterpCregHkenHk0kpn � ~ppn

hk0
þ aCregkenHk0kpn � ~ppn

hk0; ð46Þ

and consequently,

kenHk0aCðHkenHk1 þHkpn � ~ppn
hk0 þ kpn � ~ppn

hk0Þ: ð47Þ
r

5. Conclusion

In this paper we have analyzed the convergence of a fully discrete numerical ap-

proximation for a coupled flow and geomechanics model. The numerical scheme

combines lowest order mixed finite elements and Galerkin piecewise linear finite

elements. We proposed a post-processing procedure to increase the order of con-

vergence of the numerical approximation of pressure. Moreover, we were able

to gain one order of convergence for the numerical approximation of displace-

ment, estimating the error in the L2-norm when compared to the error in the

H 1-norm.
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