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1. Introduction

The aim of this paper is to give an accessible review to recent results on rigidity for

perimeter inequalities in symmetrization theory. We start with a brief premise.

The first goal of symmetrization theory is establishing the monotonicity of the total

energy of a physical system under some geometric procedure, which replaces a

generic state of the system with a symmetric one. In this way one shows the exis-

tence of global energy minimizers enjoying some natural symmetry properties, and

that can therefore be (more or less) explicitly characterized. The rigidity problem

amounts to understanding whether this symmetrization procedure is strictly mono-

tone when applied to initial states that are not symmetric. Another important

problem is the study of stability, which consists in quantitatively controlling the

degree of asymmetry of such initial states in terms of the energy they lose after

symmetrization. In this paper we will only focus on the study of rigidity problems.

We start by mentioning an important example, related to the isoperimetric in-

equality (see (1.2) below). The celebrated proof of this inequality given by Ennio

De Giorgi (see [19], and [20] for an English translation) relies on the solution of a

rigidity problem for Steiner’s inequality (see (SI) below). More precisely, a crucial

step in De Giorgi’s proof consists in showing that convex extremals of Steiner’s

inequality are symmetric.

In this paper we discuss the most recent results on rigidity for Steiner’s inequal-

ity and for its Gaussian analogue, Ehrhard’s inequality (see (EI) below), and we



conclude by stating some open problems. Let us also mention that the study of

rigidity for Steiner’s inequality in the anisotropic setting, and for the perimeter in-

equality under spherical symmetrization, are addressed in the forthcoming papers

[12] and [30], respectively.

The reader will note that we will devote most of our attention to the study of

rigidity for Steiner’s inequality. This is because the characterization for the rigid-

ity of Ehrhard’s inequality can be stated in a very simple way (see Theorem 4.3),

despite the very delicate proof (for which we direct the reader to [11], Theorem

1.3). In addition, the study of rigidity for Steiner’s inequality is rich enough to

highlight various key ideas.

1.1. Steiner’s symmetrization. For n a N and 1a ka n, we will denote by Hk

the k-dimensional Hausdor¤ measure. Then, the perimeter of a measurable set

E � Rn can be defined as

PðEÞ :¼ Hn�1ðqeEÞ a ½0;l�:

We recall that the essential boundary qeE of E is defined as

qeE ¼ RnnðE ð0ÞAE ð1ÞÞ; ð1:1Þ

where, given t a ½0; 1�, E ðtÞ denotes the set of points of (n-dimensional) density t

of E,

E ðtÞ ¼
n
x a Rn : lim

r!0þ

Hn
�
EBBðx; rÞ

�
onrn

¼ t
o
;

and on is the volume of the Euclidean unit ball of Rn (see Section 2 for more

details). When E is an open set with Lipschitz boundary, qeE coincides with the

topological boundary qE, and thus PðEÞ extends to a general setting the notion of

‘‘surface measure’’ of the boundary. The Euclidean isoperimetric inequality can

then be written as

PðEÞbPðBrÞ for every measurable set E � Rn; ð1:2Þ

where r > 0 is such that HnðBrÞ ¼ HnðEÞ. In addition, equality in (1.2) holds

if and only if E is (Hn-equivalent to a) ball. As already mentioned, a funda-

mental tool used in De Giorgi’s proof of (1.2) is the Steiner symmetrization for

sets, which is defined as follows. For every point x a Rn we write x ¼ ðx 0; yÞ,
with x 0 ¼ ðx1; . . . ; xn�1Þ a Rn�1 and y a R. For any E � Rn, we define the ‘‘ver-

tical section’’ of E at x 0 a Rn�1 as

Ex 0 :¼ fy a R : ðx 0; yÞ a Eg: ð1:3Þ
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Then, the Steiner symmetral of E with respect to the hyperplane fy ¼ 0g is the

set Es � Rn given by

Es :¼ ðx 0; yÞ a Rn : jyj < H1ðEx 0 Þ
2

� �
:

Thus, Es is the only set which is symmetric by reflection with respect to fy ¼ 0g
and such that, for every x 0 a Rn�1, the vertical section Es

x 0 is a segment such that

H1ðEs
x 0 Þ ¼ H1ðEx 0 Þ, see Figure 1.1.

By Fubini Theorem, one can see that Steiner symmetrization preserves the

volume, i.e. HnðEsÞ ¼ HnðEÞ for every measurable set E. More in general, sev-

eral quantities are not increased under Steiner symmetrization as, for instance:

• the diameter (see [29], Formula (3.9));

• the perimeter: PðEsÞaPðEÞ, see (SI) below;

• the anisotropic perimeter, when the Wul¤ shape is symmetric with respect to

fy ¼ 0g (see for instance, [30]).

Each of the above inequalities leads to a rigidity problem, which amounts to

answer the following question: If E is an extremal of the considered inequality,

is it true that E ¼ Es (up to vertical translations)? We will consider here the im-

portant case study of the perimeter functional.

1.2. Steiner’s inequality. Given a measurable function v : Rn�1 ! ½0;l�, we

will say that a set E � Rn is v-distributed if

vðx 0Þ ¼ H1ðEx 0 Þ; for Hn�1-a:e: x 0 a Rn�1: ð1:4Þ

Figure 1.1. Steiner symmetrization with respect to fy ¼ 0g.
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Observe now that the Steiner symmetral of a v-distributed set only depends on the

function v. In order to emphasize this fact, in the following we modify our nota-

tion, by setting:

Fv :¼ ðx 0; yÞ a Rn : jyj < vðx 0Þ
2

� �
:

In this way, we have Es ¼ Fv for every v-distributed set E. Steiner’s inequality

then states that the perimeter does not increase under Steiner symmetrisation [29],

Theorem 14.4:

PðEÞbPðFvÞ; for every E � Rn v-distributed: ðSIÞ

In order to properly formulate the rigidity problem for (SI) we first need to ad-

dress the regularity properties of the function v defined in (1.4), when E is a set of

finite perimeter. These are made precise by the following lemma, see [15], Lemma

3.1.

Lemma 1.1 (Chlebı́k, Cianchi, and Fusco). Let E be a v-distributed set of finite

perimeter in Rn, for some measurable function v : Rn�1 ! ½0;l�. Then, one and

only one of the following two possibilities is satisfied:

(a) vðx 0Þ ¼ l for Hn�1-a.e. x 0 a Rn�1 and E s is Hn-equivalent to Rn;

(b) vðx 0Þ < l for Hn�1-a.e. x 0 a Rn�1 and HnðEÞ < l.

Remark 1.2. Case (a) is satisfied, for instance, when E is the complement of a

bounded set with smooth boundary.

Note now that Steiner’s inequality (SI) in particular implies that, if E is a

v-distributed set of finite perimeter, then Fv is also a set of finite perimeter.

Combining this fact together with Lemma 1.1, it follows that it is not restric-

tive to assume that both the volume and the perimeter of Fv are finite. Next

lemma explains when this happens, in terms of the function v (see [10], Proposi-

tion 3.2).

Lemma 1.3. Let v : Rn�1 ! ½0;l� be measurable. Then, we have HnðFvÞ < l
and PðFvÞ < l if and only if

v a BVðRn�1Þ and Hn�1ðfv > 0gÞ < l; ð1:5Þ

where BVðRn�1Þ denotes the space of functions of bounded variation in Rn�1, see

Section 2.
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Given v as in (1.5), we denote the class of those sets whose perimeter is pre-

served under Steiner symmetrization by

MðvÞ :¼ fE � Rn : PðEÞ ¼ PðFvÞg:

In this context, we say that rigidity is satisfied if the only elements of MðvÞ are the
trivial equality cases of (SI), that is, if MðvÞ ¼ ften þ Fv; t a Rg (here we denote

by e1; . . . ; en the canonical basis in Rn). More precisely, since we do not distin-

guish between Hn-equivalent sets, we will say that rigidity holds true for Steiner’s

inequality if

MðvÞ ¼
�
E a Rn : Hn

�
EDðten þ FvÞ

�
¼ 0 for some t a R

�
; ðSRÞ

where D denotes the symmetric di¤erence of sets. By the translational invariance

of the perimeter, the inclusion � in (SR) is always satisfied, but the opposite inclu-

sion may fail. In [19], De Giorgi showed that (SR) holds true when Fv is convex,

and used this fact to prove the isoperimetric inequality. When Fv is not convex,

one can find simple examples in which (SR) fails. In Figure 1.2, for instance,

rigidity fails because the (projection of the) set Fv is disconnected. In Figure 1.3

instead, the fact that qeFv contains ‘‘flat vertical parts’’ allows to violate (SR).

When trying to study (SR) in full generality the situation can become very compli-

cated, and will discuss this in detail in Section 3.

1.3. Gaussian perimeter and the Gaussian isoperimetric problem. Another

important rigidity problem arises when considering the Gaussian analogous of

Figure 1.2. Fv is not connected: (SR)
fails.

Figure 1.3. A connected set Fv for which
(SR) fails.
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Steiner symmetrization. In order to describe the problem we first need some

notation. We denote the Gaussian volume of a Lebesgue measurable set E � Rn

by

gnðEÞ :¼
1

ð2pÞn=2
ð
E

e�jxj2=2 dx:

Moreover, whenever 1a ka n, the k-dimensional Gaussian-Hausdor¤ measure

of a Borel set S � Rn is given by

Hk
g ðSÞ :¼

1

ð2pÞk=2
ð
S

e�jxj2=2 dHkðxÞ:

The Gaussian perimeter of a measurable set E is then defined as

PgðEÞ :¼ Hn�1
g ðqeEÞ ¼ 1

ð2pÞðn�1Þ=2

ð
q eE

e�jxj2=2 dHn�1ðxÞ; ð1:6Þ

where qeE is given by (1.1). In the Gaussian setting an important role is played

by half-spaces. If we define the function F : RA felg ! ½0; 1� as

FðtÞ :¼ 1ffiffiffiffiffiffi
2p

p
ðl
t

e�s2=2 ds; t a RA felg; ð1:7Þ

then FðtÞ is the Gaussian volume of a half-space whose ‘‘signed distance’’ from the

origin is t, that is, FðtÞ ¼ gnðfx1 > tgÞ for every t a R. Let us now set C :¼ F�1

so that, for any l a ð0; 1Þ, e�CðlÞ2=2 gives the Gaussian perimeter of a half-space

with Gaussian volume l. The Gaussian isoperimetric inequality states that half-

spaces are the sets that minimize the Gaussian perimeter at fixed Gaussian vol-

ume, that is,

PgðEÞb e�CðgnðEÞÞ2=2 for every measurable set E � Rn: ð1:8Þ

Equality in (1.8) holds true if and only if (up to rotations keeping the origin fixed)

E is a half-space. Inequality (1.8) was proved by many authors with di¤erent

techniques [3], [6], [7], [8], [22], [23], [24], [28], [31], while the first characterization

of equality cases is due to Carlen and Kerce [14]. After that, a characterization

of equality cases, together with a stability result with sharp exponent, has been

obtained by Cianchi, Fusco, Maggi and Pratelli [18], where the authors use a sym-

metrization technique introduced by Ehrhard [22]. Let us mention that the di‰-

cult problem of proving a sharp stability inequality, with a constant which is inde-
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pendent of the dimension, has recently been solved by Barchiesi, Brancolini and

Julin [4].

1.4. Ehrhard’s symmetrization. While studying the Gaussian isoperimetric in-

equality [22], [23], [24], Ehrhard introduced a symmetrization procedure that is

the natural analogous of Steiner’s symmetrization in the Gaussian setting. Given

a Lebesgue measurable function w : Rn�1 ! ½0; 1�, we say that E is w-distributed

in the Gaussian space if H1
g ðEx 0 Þ ¼ wðx 0Þ for Hn�1-a.e. x 0 a Rn�1, where Ex 0 is

defined by (1.3). Moreover, we denote by

Fg;w :¼
�
ðx 0; yÞ a Rn : y > C

�
wðx 0Þ

��
ð1:9Þ

the set that is w-distributed in the Gaussian space and whose vertical sections are

positive half-lines in the y-direction. If E is a w-distributed set, then the Ehrhard

symmetral E s
g of E is defined as

Es
g :¼ Fg;w;

see Figure 1.4.

Thanks to Fubini’s theorem, one can see that gnðEÞ ¼ gnðFg;wÞ, that is, Gaus-

sian volume is preserved under Ehrhard’s symmetrization. Ehrhard’s inequality

states that Gaussian perimeter does not increase under Ehrhard’s symmetrization:

if PgðFg;wÞ < l, then

PgðEÞbPgðFg;wÞ; for every E � Rn w-distributed in the Gauss space: ðEIÞ

Figure 1.4. Ehrhard’s symmetrization in the case of a rectangle.
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A proof of (EI) can be found in [18], Section 4.1. We now turn to the rigidity

problem related to the Ehrhard inequality. For every Lebesgue measurable func-

tion w : Rn�1 ! ½0; 1� with PgðFg;wÞ < l we set

MgðwÞ :¼ fE � Rn : E is w-distributed in the Gauss space and PgðEÞ ¼ PgðFg;wÞg:

Denoting by q : Rn ! Rn the reflection with respect to fy ¼ 0g, that is

qðxÞ ¼ ðx 0;�yÞ; x ¼ ðx 0; yÞ a Rn;

we will say that rigidity holds true for Ehrhard’s inequality when

E a MgðwÞ () either HnðEDFg;wÞ ¼ 0 or Hn
�
EDqðFg;wÞ

�
¼ 0: ðERÞ

Simple examples show that (ER) may fail if we allow w to take the values 0 or 1,

see Figure 1.5 and Figure 1.6. However, Figure 1.7 seems to suggest that the sit-

uation is a bit more complicated, since one needs to take into account for possible

‘‘discontinuities’’ of w. We will give in Section 4 the complete characterization of

(ER) proved in [11], based on the notion of essential connectedness.

1.5. Plan of the paper. In Section 2 we introduce some notions from geo-

metric measure theory, and give the definition of essential connectedness. The

study of the rigidity for Ehrhard’s and Steiner’s inequality are the subject of Sec-

tion 4 and Section 3, respectively. Finally, in Section 5 we discuss some open

problems.

Figure 1.5. Rigidity fails: this is due to the fact that wðOÞ ¼ 0.
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2. Notions from Geometric Measure Theory and essential connectedness

In this section we introduce some tools from Geometric Measure Theory. The

interested reader can find more details in the monographs [2], [25], [29] and in the

papers [10], [11].

2.1. General notation in Rn. We denote by Bðx; rÞ and Bðx; rÞ the open and

closed Euclidean balls of radius r > 0 and center x a Rn. For x a Rn and

n a Sn�1, we will denote by Hþ
x; n and H�

x; n the closed half-spaces whose boundaries

are orthogonal to n:

Figure 1.6. Rigidity fails: this is due to the fact that wðOÞ ¼ 1.

Figure 1.7. Rigidity fails: this is due to the fact that w4ðOÞ ¼ 1.
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Hþ
x; n :¼ fy a Rn : ðy� xÞ � nb 0g;

H�
x; n :¼ fy a Rn : ðy� xÞ � na 0g:

ð2:1Þ

If fEhgh AN is a sequence of Lebesgue measurable sets in Rn and E � Rn is also

measurable, we say that fEhgh AN locally converges to E, and write

Eh �!
loc

E; as h �! l;

provided Hn
�
ðEhDEÞBK

�
! 0 as h ! l for every compact set K � Rn. Ac-

cordingly, we say that fEhgh AN converges to E as h ! l, and write Eh ! E, if

HnðEhDEÞ ! 0 as h ! l. In the following, we will denote by wE the character-

istic function of a measurable set E � Rn.

2.2. Density points. Let E � Rn be a Lebesgue set and let x a Rn. We define

the upper and lower n-dimensional densities of E at x as

y�ðE; xÞ :¼ lim sup
r!0þ

Hn
�
EBBðx; rÞ

�
onrn

; y�ðE; xÞ :¼ lim inf
r!0þ

Hn
�
EBBðx; rÞ

�
onrn

;

respectively. Note that y�ðE; �Þ and y�ðE; �Þ are Borel functions on Rn that agree

a.e. on Rn. Thus, the n-dimensional density of E at x

yðE; xÞ :¼ lim
r!0þ

Hn
�
EBBðx; rÞ

�
onrn

¼ lim
r!0þ

Hn
�
EBBðx; rÞ

�
onrn

;

is defined for Hn-a.e. x a Rn, and yðE; �Þ is a Borel function on Rn. Setting

E ðtÞ :¼ fx a Rn : yðE; xÞ ¼ tg for every t a ½0; 1�, by the Lebesgue di¤erentiation

theorem we have that fE ð0Þ;E ð1Þg is a partition of Rn up to a Hn-negligible set.

The set qeE :¼ RnnðE ð0ÞAE ð1ÞÞ is called the essential boundary of E. Note that, if

E is a measurable set, we only have HnðqeEÞ ¼ 0, and in general qeE may not be

‘‘ðn� 1Þ-dimensional’’.

Let f : Rn ! RA felg be a Lebesgue measurable function. We define the

approximate upper limit f4ðxÞ and the approximate lower limit f5ðxÞ of f at

x a Rn as

f4ðxÞ ¼ infft a R : x a f f > tgð0Þg; ð2:2Þ

f5ðxÞ ¼ supft a R : x a f f < tgð0Þg: ð2:3Þ

Note that f4 and f5 are Borel functions defined at every point of Rn, with values

in RA felg. Moreover, if f1 ¼ f2 Hn-a.e. on Rn, then f41 ¼ f42 and f51 ¼ f52
everywhere on Rn. Therefore, the approximate discontinuity set of f , Sf ¼
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f f5< f4g, satisfies HnðSf Þ ¼ 0. Note that, even if f5 and f4 may take infinite

values on Sf , the di¤erence f4ðxÞ � f5ðxÞ is well defined in RA felg for

every x a Sf . We then define the approximate jump of f as the Borel function

½ f � : Rn ! ½0;l� given by

½ f �ðxÞ :¼
f4ðxÞ � f5ðxÞ; if x a Sf ;

0; if x a RnnSf ;

�

so that Sf ¼ f½ f � > 0g. Let A � Rn be a Lebesgue measurable set. We say that

t a RA felg is the approximate limit of f at x with respect to A, and write

t ¼ ap limð f ;A; xÞ, if

yðfj f � tj > egBA; xÞ ¼ 0; Ee > 0; ðt a RÞ;
yðf f < MgBA; xÞ ¼ 0; EM > 0; ðt ¼ þlÞ;
yðf f > �MgBA; xÞ ¼ 0; EM > 0; ðt ¼ �lÞ:

We say that x a Sf is a jump point of f if there exists n a Sn�1 such that

f4ðxÞ ¼ ap limð f ;Hþ
x; n; xÞ; f5ðxÞ ¼ ap limð f ;H�

x; n; xÞ:

If this is the case, we say that nf ðxÞ :¼ n is the approximate jump direction of f

at x. If we denote by Jf the set of approximate jump points of f , we have that

Jf � Sf and nf : Jf ! Sn�1 is a Borel function. Finally, we say that f is approxi-

mately di¤erentiable at x a Sc
f ¼ RnnSf provided f5ðxÞ ¼ f4ðxÞ a R and there

exists x a Rn such that

ap limðgx;Rn; xÞ ¼ 0;

where gxðyÞ :¼
�
f ðyÞ � ~ff ðxÞ � x � ðy� xÞ

�
=jy� xj for y a Rnnfxg, and ~ff ðxÞ :¼

f5ðxÞ ¼ f4ðxÞ. If this is the case, then x is uniquely determined, we set

‘f ðxÞ :¼ x, and call ‘f ðxÞ the approximate di¤erential of f at x.

2.3. Rectifiable sets. Let 1a ka n, k a N. Here and in the following, when

A;B � Rn are Borel sets, we say that A �Hk B if HkðBnAÞ ¼ 0 and A ¼Hk B if

HkðADBÞ ¼ 0. A Borel set M � Rn is said countably Hk-rectifiable if there exist

Lipschitz functions fh : R
k ! Rn ðh a NÞ such that M �Hk

S
h AN fhðRkÞ. We

further say that M is locally Hk-rectifiable if HkðMBKÞ < l for every com-

pact set K � Rn, or, equivalently, if Hk
O
M is a Radon measure on Rn. Let

M be a locally Hk-rectifiable set in Rn, let x a Rn, and let L be a k-dimensional

subspace of Rn. We say that L is the approximate tangent plane of M at x if

Hk
O
ðM � xÞ=r * Hk

O
L as r ! 0þ weakly-star in the sense of Radon measures.

If this is the case, we set TxM :¼ L. It turns out that TxM exists and is uniquely
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defined at Hk-a.e. x a M. Moreover, given two locally Hk-rectifiable sets M1

and M2 in Rn, we have TxM1 ¼ TxM2 for H
k-a.e. x a M1BM2.

A Lebesgue measurable set E � Rn is said of locally finite perimeter in Rn if

there exists an Rn-valued Radon measure mE , called the Gauss–Green measure of

E, such that

ð
E

‘jðxÞ dx ¼
ð
Rn

jðxÞ dmEðxÞ; Ej a C1
c ðRnÞ:

The relative perimeter of E in A � Rn is then defined by setting PðE;AÞ :¼ jmE jðAÞ
for any Borel set A � Rn, while PðEÞ :¼ PðE;RnÞ is the perimeter of E. The

reduced boundary of E is the set q�E of those x a Rn such that

nEðxÞ ¼ lim
r!0þ

mE
�
Bðx; rÞ

�
jmE j

�
Bðx; rÞ

� exists and belongs to Sn�1:

The Borel function nE : q�E ! Sn�1 is called the measure-theoretic outer unit

normal to E. When x a q�E, we will use the decomposition nEðxÞ ¼
�
nEx 0 ðxÞ;

nEy ðxÞ
�
, with nEx 0 ðxÞ ¼

�
nE1 ðxÞ; . . . ; nEn�1ðxÞ

�
a Rn�1, and nEy ðxÞ a R. One can show

that q�E is a locally Hn�1-rectifiable set in Rn [29], Corollary 16.1, with mE ¼
nEHn�1

O
q�E, and

ð
E

‘jðxÞ dx ¼
ð
q�E

jðxÞnEðxÞ dHn�1ðxÞ; Ej a C1
c ðRnÞ:

In particular, PðE;AÞ ¼ Hn�1ðAB q�EÞ for every Borel set A � Rn. We say

that x a Rn is a jump point of E, if there exists n a Sn�1 such that (here we set

Ex; r :¼ E�x
r
)

Ex; r �!
loc

Hþ
0; n; as r �! 0þ; ð2:4Þ

and we denote by qJE the set of jump points of E. Notice that we always have

qJE � E ð1=2Þ � qeE. In fact, if E is a set of locally finite perimeter and x a q�E,
then (2.4) holds with n ¼ �nEðxÞ, so that q�E � qJE. Therefore, if E is a set of

locally finite perimeter we have

q�E � qJE � E ð1=2Þ � qeE: ð2:5Þ

Moreover, by Federer’s theorem (see [2], Theorem 3.61 and [29], Theorem 16.2)

Hn�1ðqeEnq�EÞ ¼ 0;

so that the essential boundary qeE of E is locally Hn�1-rectifiable in Rn.
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2.4. Functions of bounded variation. Given a Lebesgue measurable function

f : Rn ! R and an open set W � Rn we define the total variation of f in W

as

jDf jðWÞ ¼ sup
nð

W

f ðxÞ divTðxÞ dx : T a C1
c ðW;RnÞ; jT ja 1

o
:

We say that f belongs to the space of functions of bounded variations, f a
BVðWÞ, if jDf jðWÞ < l and f a L1ðWÞ. Moreover, we say that f a BVlocðWÞ if
f a BVðW 0Þ for every open set W 0 compactly contained in W. Therefore, if f a
BVlocðRnÞ the distributional derivative Df of f is an Rn-valued Radon measure.

In particular, E is a set of locally finite perimeter if and only if wE a BVlocðRnÞ,
and in this case mE ¼ �DwE . Sets of finite perimeter and functions of bounded

variation are related by the fact that, if f a BVlocðRnÞ, then, for a.e. t a R,

f f > tg is a set of finite perimeter, and the coarea formula,

ð
R

Pðf f > tg;GÞ dt ¼ jDf jðGÞ; ð2:6Þ

holds (as an identity in ½0;l�) for every Borel set G � Rn. If f a BVlocðRnÞ,
then the Radon–Nykodim decomposition of Df with respect to Hn is denoted

by Df ¼ Daf þDsf , where Dsf and Hn are mutually singular, and where

Daf fHn. The density of Daf with respect to Hn is by convention denoted

as ‘f , so that ‘f a L1ðW;RnÞ with Daf ¼ ‘f dHn. Moreover, for a.e. x a Rn,

‘f ðxÞ is the approximate di¤erential of f at x. If f a BVlocðRnÞ, then Sf is

countably Hn�1-rectifiable, with Hn�1ðSf nJf Þ ¼ 0, ½ f � a L1
locðHn�1

O
Jf Þ, and the

Rn-valued Radon measure D jf defined as

D jf ¼ ½ f �nf dHn�1
O
Jf ;

is called the jump part of Df . Since Daf and D jf are mutually singular, by setting

Dcf ¼ Dsf �D jf we come to the canonical decomposition of Df into the sum

Daf þD jf þDcf . The Rn-valued Radon measure Dcf is called the Cantorian

part of Df , and it has the property that jDcf jðMÞ ¼ 0 for every M � Rn which is

s-finite with respect to Hn�1.

2.5. Generalized functions of bounded variation. Given a Lebesgue measurable

function f : Rn ! R we say that f is a function of generalized bounded variation

on Rn, f a GBVðRnÞ, if c � f a BVlocðRnÞ for every c a C1ðRÞ with c 0 a C0
c ðRÞ,

or, equivalently, if tMð f Þ a BVlocðRnÞ for every M > 0, where

tMðsÞ :¼ maxf�M;minfM; sgg; s a RA felg: ð2:7Þ
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Notice that, if f a GBVðRnÞ, then we do not even ask that f a L1
locðRnÞ, so that

the distributional derivative Df of f may even fail to be defined. Nevertheless,

the structure theory of BV functions holds for GBV functions too. Indeed, if

f a GBVðRnÞ, then (see [2], Theorem 4.34), f f > tg is a set of finite perimeter

for a.e. t a R, f is approximately di¤erentiable Hn-a.e. on Rn, Sf is countably

Hn�1-rectifiable and Hn�1-equivalent to Jf , and the coarea formula (2.6) takes

the form

ð
R

Pðf f > tg;GÞ dt ¼
ð
G

j‘f j dHn þ
ð
GBSf

½ f � dHn�1 þ jDcf jðGÞ; ð2:8Þ

for every Borel set G � Rn, where jDcf j denotes the Borel measure on Rn defined

as the least upper bound of the Radon measures
��Dc
�
tMð f Þ

���, and we have

jDcf jðGÞ ¼ lim
M!l

��Dc
�
tMð f Þ

���ðGÞ ¼ sup
M>0

��Dc
�
tMð f Þ

���ðGÞ; ð2:9Þ

whenever G is a Borel set in Rn (see [2], Definition 4.33).

2.6. A measure-theoretic notion of connectedness. Let m a N. We would like

to describe in a rigorous way the situation in which a ‘‘full dimensional’’ set

G � Rm is disconnected by an ‘‘ðm� 1Þ-dimensional’’ set K � Rm. Roughly

speaking, when G is an open set and K is a smooth hypersurface in Rm, we have

that K disconnects G if the following is true: One can find two disjoint non-

empty open sets Gþ an G� such that G ¼ GþAG� (up to a set of Hm-measure

zero) and such that the set qGþB qG�BG lies inside K , see Figure 2.1 and Figure

2.2.

In the following, given a Borel set G � Rm, we will say that fGþ;G�g is a non-

trivial Borel partition of G modulo Hm if Gþ, G� are Borel sets and

HmðGþBG�Þ ¼ 0; Hm
�
GDðGþAG�Þ

�
¼ 0;

HmðGþÞHmðG�Þ > 0: ð2:10Þ

Figure 2.1. The set K disconnects G. Figure 2.2. K does not disconnect G.
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The previous considerations suggest the following definition (see [11], Section 1.5).

Given two Borel sets K and G in Rm, we say that K essentially disconnects G if

there exists a non-trivial Borel partition fGþ;G�g of G modulo Hm with

Hm�1
�
ðG ð1ÞB qeGþB qeG�ÞnK

�
¼ 0: ð2:11Þ

Accordingly, we say that K does not essentially disconnect G if for every non-trivial

Borel partition fGþ;G�g of G modulo Hm we have

Hm�1
�
ðG ð1ÞB qeGþB qeG�ÞnK

�
> 0: ð2:12Þ

Finally, we say that G is essentially connected if j does not essentially disconnect

G. Note that the above definition is stable under modifications of K by Hm�1-

negligible sets, and of G by Hm-negligible sets. We also mention that, when ap-

plied to sets of finite perimeter, essential connectedness coincides with the notion

of indecomposability (see [11], Remark 2.3). We recall that a set of finite perim-

eter G � Rm is indecomposable (see [21], Definition 2.11 or [1], Section 4), if for

every non-trivial partition of G into sets of finite perimeter fGþ;G�g modulo Hm,

we have that PðGÞ < PðGþÞ þ PðG�Þ.
We conclude this section by observing that the notion of essential connected-

ness allows to express the indecomposability of Fv in terms of properties of its

orthogonal projection fv > 0g on Rn�1, see Theorem 3.17.

3. Characterization of (SR)

This section is devoted to the study of rigidity for Steiner’s inequality. In the fol-

lowing, W will denote the orthogonal projection of Fv on fy ¼ 0g, that is, we set

W :¼ fv > 0g.

3.1. Some auxiliary results. We start by recalling some results that will be use-

ful in the sequel. The following formula is a particular case of the coarea formula,

see [2], formula (2.72).

Theorem 3.1 (Coarea formula). Let E be a set of finite perimeter in Rn and let g

be any Borel function from Rn to ½0;l�. Then

ð
q �E

gðxÞjnEy ðxÞj dHn�1ðxÞ ¼
ð
Rn�1

dx 0
ð
ðq�EÞx 0

gðx 0; tÞ dH0ðtÞ:

We now state an adaptation of a theorem of Vol’pert [32] to the present setting

(see [15], Theorem G, and [5], Theorem 2.4 for the case of higher codimensions).
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Theorem 3.2 (Vol’pert). If E is a set of finite perimeter in Rn, then for Hn�1-a.e.

x 0 a Rn�1:

(1) Ex 0 is a set of finite perimeter in R;

(2) ðq�EÞx 0 ¼ q�ðEx 0 Þ;
(3) for every t such that ðx 0; tÞ a ðq�EÞx 0 B q�ðEx 0 Þ:

(3a) nEy ðx 0; tÞA 0;

(3b) nEy ðx 0; tÞ ¼ nEx 0 ðtÞjnEy ðx 0; tÞj;

In particular, if E is v-distributed for some measurable function v : Rn�1 ! ½0;l�
satisfying (1.5), there exists a Borel set GE � fv > 0g such that Hn�1ðfv > 0gn
GEÞ ¼ 0 and properties (1)–(3) are satisfied foe every x 0 a GE.

Next lemma (see [15], Lemma 3.2) gives the explicit expression of the absolutely

continuous part of Dv.

Lemma 3.3 (Cianchi, Chlebı́k, and Fusco). Let v : Rn�1 ! ½0;l� be a measurable

function satisfying (1.5), and let E � Rn be a v-distributed set. Then,

‘vðx 0Þ ¼
ð
ðq�EÞx 0

nEx 0 ðx 0; tÞ
jnEy ðx 0; tÞj dH

0ðtÞ; for Hn�1-a:e: x 0 a GE :

3.2. Necessary conditions for equality cases. De Giorgi was the first to address

necessary conditions for equality cases of (SI). In [19] he showed that, if PðEÞ ¼
PðFvÞ, then for Hn�1-a.e. x 0 a fv > 0g the vertical section Ex 0 is a segment. Such

result was later refined by Chlebı́k, Cianchi and Fusco, with the following theorem

(see [15], Theorem 1.1).

Theorem 3.4 (Chlebı́k, Cianchi, and Fusco). Let v : Rn�1 ! ½0;l� be a measur-

able function satisfying (1.5), and let E a MðvÞ. Then, for Hn�1-a.e. x 0 a W the

following conditions are satisfied:

(1) Ex 0 is H1-equivalent to a segment
�
y1ðx 0Þ; y2ðx 0Þ

�
, for some y1ðx 0Þa y2ðx 0Þ;

(2)
�
x 0; y1ðx 0Þ

�
;
�
x 0; y2ðx 0Þ

�
a q�E with

nEx 0
�
x 0; y1ðx 0Þ

�
¼ nEx 0

�
x 0; y2ðx 0Þ

�
and nEy

�
x 0; y1ðx 0Þ

�
¼ �nEy

�
x 0; y2ðx 0Þ

�
:

Proof. This proof is essentially a repetition of the steps in the proof of (SI), with

a careful inspection of the equality cases. To ease the notation, we set F ¼ Fv. By

coarea formula, and using the fact that nF is a unit vector
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P
�
F ; ðGF BGEÞ � R

�
¼
ð
GFBGE

dx 0
ð
ðq �F Þx 0

1

jnFy ðx 0; tÞj dH
0ðtÞ

¼
ð
GFBGE

dx 0
ð
ðq �F Þx 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn�1

i¼1

nFi ðx 0; tÞ
nFy ðx 0; tÞ

 !2
vuut dH0ðtÞ

¼
ð
GFBGE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ j‘vðx 0Þj2

q
dx 0

¼
ð
GFBGE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ

Xn�1

i¼1

	ð
q�ðEx 0 Þ

nEi ðx 0; tÞ
jnEy ðx 0; tÞj dH

0ðtÞ

2vuut dx 0;

where we used Lemma 3.3 two times (once for F , and once for E). Then, applying

first the isoperimetric inequality in R and then Jensen’s inequality

P
�
F ; ðGF BGEÞ � R

�

a

ð
GFBGE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ð
q �ðEx 0 Þ

dH0ðtÞ

2

þ
Xn�1

i¼1

	ð
q�ðEx 0 Þ

nEi ðx 0; tÞ
jnEy ðx 0; tÞj dH

0ðtÞ

2vuut dx 0

a

ð
GFBGE

dx 0
ð
q�ðEÞx 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn�1

i¼1

nEi ðx 0; tÞ
nEy ðx 0; tÞ

 !2
vuut dH0ðtÞ

¼
ð
GFBGE

dx 0
ð
ðq�EÞx 0

1

jnEy ðx 0; tÞj dH
0ðtÞ

¼ PðE;GF BGEÞ;

where we used again coarea formula and the fact that nE is a unit vector. Observe

now that, combining (SI) and the assumption PðEÞ ¼ PðFÞ, we obtain

PðE;B� RÞ ¼ PðF ;B� RÞ for every Borel set B � Rn�1:

In particular, using the above equality with B ¼ GF BGE , we infer that all the

inequalities in the previous chain have to be equalities. Since the only equality

cases for the isoperimetric inequality in R are segments, we obtain (1). More-

over, Jensen’s inequality above becomes an equality if and only if for Hn�1-a.e.

x 0 a GE

t 7! nEi ðx 0; tÞ
jnEy ðx 0; tÞj is constant in q�ðEx 0 Þ; for every i ¼ 1; . . . ; n� 1:
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Since by (1) it is Ex 0 ¼
�
y1ðx 0Þ; y2ðx 0Þ

�
, we have

nEi
�
x 0; y1ðx 0Þ

���nEy �x 0; y1ðx 0Þ
��� ¼ nEi

�
x 0; y2ðx 0Þ

���nEy �x 0; y2ðx 0Þ
��� for every i ¼ 1; . . . ; n� 1: ð3:1Þ

Using the fact that nE is a unitary vector,

1��nEy �x 0; y1ðx 0Þ
���2 ¼ 1þ

Xn�1

i¼1

nEi
�
x 0; y1ðx 0Þ

�
nEy
�
x 0; y1ðx 0Þ

�
 !2

¼ 1þ
Xn�1

i¼1

nEi
�
x 0; y2ðx 0Þ

�
nEy
�
x 0; y2ðx 0Þ

�
 !2

¼ 1��nEy �x 0; y2ðx 0Þ
���2 ;

which gives

��nEy �x 0; y1ðx 0Þ
��� ¼ ��nEy �x 0; y2ðx 0Þ

���; for Hn�1-a:e: x 0 a GE : ð3:2Þ

Plugging this in (3.1) we get

nEi
�
x 0; y1ðx 0Þ

�
¼ nEi

�
x 0; y2ðx 0Þ

�
:

Finally, from (3b) of Theorem 3.2 we have nEx 0
�
y1ðx 0Þ

�
< 0 < nEx 0

�
y2ðx 0Þ

�
(recall

that nEx 0 denotes the exterior unit normal to Ex 0 ), and

nEy
�
x 0; y1ðx 0Þ

�
¼ nEx

�
y1ðx 0Þ

���nEy �x 0; y1ðx 0Þ
��� < 0;

nEy
�
x 0; y2ðx 0Þ

�
¼ nEx

�
y2ðx 0Þ

���nEy �x 0; y2ðx 0Þ
��� > 0;

(

which, together with (3.2), gives

nEy
�
x 0; y1ðx 0Þ

�
¼ �nEy

�
x 0; y2ðx 0Þ

�
: r

3.3. Su‰cient conditions for (SR) by Chlebı́k, Cianchi, and Fusco. In this

subsection we discuss the su‰cient conditions for rigidity in Steiner’s inequality

given in [15]. We start by showing that rigidity can fail even when the necessary

conditions of Theorem 3.4 are satisfied. This can happen for three main reasons:

(i) the projection W of Fv could be disconnected;

(ii) the boundary of Fv may contain ‘‘flat vertical parts’’;

(iii) the set fv ¼ 0g disconnects W.

Let us start by commenting on situation (i). Figure 1.2 shows the example of a set

E a MðvÞ which is not obtained by a vertical translation of Fv. This is possible
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because the projection W of Fv is the union of two disjoint intervals. To prevent

this from happening, one can impose the following:

(A) the projection W of Fv is H
n�1-equivalent to an open and connected set.

Although (A) certainly avoids counterexamples as the ones shown in Figure 1.2,

this is not enough to have rigidity. In Figure 1.3, the projection of Fv is equivalent

to an open bounded interval, so (A) is satisfied. However, the presence of ‘‘flat

vertical parts’’ in the boundary of Fv allows to vertically shift a subset of Fv (the

triangle on the right end of Fv, in this case), without modifying its perimeter. In

a more rigorous way, one can identify the flat vertical parts of the boundary of

Fv with the set of those points ðx 0; yÞ a q�Fv such that the exterior unit normal

nFvðx 0; yÞ to q�Fv is horizontal:

fðx 0; yÞ a q�Fv : n
Fv
y ðx 0; yÞ ¼ 0g:

Note that, in order to rule out the last counterexample, we only need to focus on

the open stripe W� R (in fact, the flat vertical parts on the left side of q�Fv are

‘‘harmless’’). Therefore, one is lead to impose the condition

Hn�1
�
ðW� RÞB fðx 0; yÞ a q�Fv : n

Fv
y ðx 0; yÞ ¼ 0g

�
¼ 0: ð3:3Þ

Interestingly, condition (3.3) is equivalent to asking that the function v (which,

as mentioned in Lemma 1.3, is in general only BV ) belongs to the Sobolev space

W 1;1ðWÞ (see [15], Proposition 1.2). In the situation depicted in Figure 1.3, such

condition is violated, since the jump part D jv of Dv is nonzero, and is concen-

trated at the point x. Therefore, the second condition we will impose is

(B) v a W 1;1ðWÞ.

Observe that condition (B) can also be violated when Dv has a nontrivial Cantor

part, that is, when DcvA 0, as explained in the next example.

Example 3.5. Let n ¼ 2, and let v : R ! ½0;lÞ be given by

vðx 0Þ ¼ 2
�
1� cðjx 0jÞ

�
if jx 0j < 1;

0 otherwise;

�
ð3:4Þ

where c : ½0; 1� ! ½0; 1� is the standard Cantor function. Then,

Fv ¼ fðx 0; yÞ a R2 : jx 0j < 1 and jyj < 1� cðjx 0jÞg:

One can check that if Fv is the set given above rigidity is violated, since

PðEÞ ¼ PðFvÞ;
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where E is the v-distributed set given by

E ¼
�
ðx 0; yÞ a R2 : jx 0j < 1 and 0 < jyj < 2

�
1� cðjx 0jÞ

��
:

In this case, even though the jump part D jv of Dv vanishes, the set q�Fv still

exhibits ‘‘infinitesimal flat vertical parts’’. More precisely one could prove that,

if v is given by (3.4), then (here K denotes the Cantor set in ½0; 1�):

H1
��
ð�1; 1Þ � R

�
B fðx 0; yÞ a q�Fv : n

Fv
y ðx 0; yÞ ¼ 0g

�
¼ H1

���
x 0;e

�
1� cðx 0Þ

��
: x 0 a K

�
A
��

�x 0;e
�
1� cðx 0Þ

��
: x 0 a K

��
¼ 4 > 0;

so that (3.3) (and therefore (B)) is violated.

Even when (A) and (B) are satisfied, it is still possible to violate rigidity. In Figure

3.1, the projection W ¼ fv > 0g of Fv is H
1-equivalent to a connected segment (so

(A) is satisfied) and the boundary of Fv does not contain flat vertical parts (so that

(B) holds true). However, we have vðx̂xÞ ¼ 0, for some point x̂x that lies inside W.

This allows to ‘‘disconnect’’ the set Fv into two sets, without changing its perim-

eter. In order to prevent such situation, one could try to impose the following:

v > 0 in W: ð3:5Þ

Unfortunately, condition (3.5) is not stable under change of the representative of v.

Indeed, we can make sure that (3.5) holds true by simply modifying the function v

of the previous example at the point x̂x, see Figure 3.2. As shown in the figure, also

Figure 3.1. An example when situation
(iii) occurs. Figure 3.2. v > 0 in W, but rigidity fails.

348 F. Cagnetti



in this case rigidity is violated. This problem can be overcome by taking advan-

tage of condition (B). Indeed, whenever v a W 1;1ðWÞ there exists a Lebesgue rep-

resentative ~vv of v, which is defined Hn�2-a.e. in W. Therefore, we can state condi-

tion (3.5) in a more rigorous way, by requiring

(C) ~vvðx 0Þ > 0 for Hn�2-a.e. x 0 a W.

Note that condition (C) rules out the counterexamples in Figure 3.1 and Figure

3.2. Indeed, one can check that in these cases ~vvðx̂xÞ ¼ 0, with H0ðx̂xÞ ¼ 1 > 0.

In 2005, Chlebı́k, Cianchi and Fusco showed that (A), (B), and (C) are su‰-

cient conditions for rigidity (see [15], Theorem 1.3).

Theorem 3.6 (Chlebı́k, Cianchi, and Fusco). Suppose conditions (A), (B), and (C)

are satisfied. Then, (SR) holds true.

3.4. Comments on conditions (A), (B), and (C). As the examples given in Fig-

ure 1.3, Figure 3.1, and Figure 3.2 show, conditions (A), (B), and (C) seem to be

quite reasonable requirements in order to have rigidity. We are therefore natu-

rally lead to ask the following question:

Are ðAÞ; ðBÞ; and ðCÞ also necessary for rigidity?

Let us first address condition (B). Figure 3.3 shows a polyhedron Fv � R3 whose

boundary has ‘‘flat vertical parts’’. As we have already observed, this is equivalent

to having v B W 1;1ðWÞ. In particular, in this example condition (B) is violated

since the jump part D jv of Dv is non zero, and is supported in the set Sv depicted

in the (right part of the) figure. One can check that in this case (SR) still holds

true, and this shows that condition (B) is not necessary for rigidity. We therefore

need to understand how to treat rigidity in presence of jumps or Cantorian parts

of Dv.

Figure 3.3. For the set Fv above condition (B) fails, but rigidity is still true. This shows that
(B) is not necessary. The right part of the figure shows the projection W of Fv, and the jump
set Sv of v.
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Let us now discuss condition (C). Figure 3.4 shows a polyhedral set Fv for

which (C) fails (since H1ðWB f~vv ¼ 0gÞ > 0), but rigidity holds true. Therefore,

condition (C) is not necessary for rigidity.

Finally, note that also condition (A) is not necessary. Indeed, the projection W

of Fv is given by the superlevel set fv > 0g of the function v. If v satisfies the min-

imal assumption (1.5), we can only expect fv > 0g to be a Borel subset of Rn�1,

and there is no reason for it to be Hn�1-equivalent to an open set. Note also

that, if we remove the assumption that fv > 0g is open, it is not even clear how

to require this set to be connected.

3.5. The barycenter function. The comments above show that, when looking

for necessary and su‰cient conditions for rigidity, one needs to refine conditions

(A), (B) and (C). To this aim, let us start by making an impotant observation.

Thanks to Theorem 3.4, in order to study equality cases of (SI), one needs to focus

on sets E whose vertical sections Ex 0 are segments for Hn�1-a.e. x 0 a Rn�1. In

order to give a description of the fine properties of these sets, we introduce the

barycenter function.

Definition 3.7. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5),

and let E � Rn be a v-distributed set satisfying condition (1) of Theorem 3.4.

We define the barycenter of E as

bEðx 0Þ :¼
1

vðx 0Þ

ð
Ex 0

t dH1ðtÞ if 0 < vðx 0Þ < l;

0 otherwise:

8<
:

The importance of the barycenter function lies in the fact that, once v satisfying

(1.5) is given, condition (1) of Theorem 3.4 implies that every set E a MðvÞ is

uniquely determined by its barycenter function bE . In particular, showing rigidity

Figure 3.4. A polyhedron for which condition (C) fails, but rigidity still holds true.
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amounts to show the following implication:

E a MðvÞ ¼) bE is constant Hn�1-a:e: in fv > 0g:

To prove that bE is Hn�1-a.e. constant, one could try to show that its (distribu-

tional) gradient vanishes in fv > 0g. This strategy has been followed in [5], under

assumptions (A), (B), and (C). More precisely, in [5], Theorem 4.3 the following

regularity result is proved (a weaker result is shown to hold for the Steiner sym-

metrisation in higher codimension).

Theorem 3.8. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5), and

let E � Rn be a v-distributed set satisfying condition (1) of Theorem 3.4. Suppose

that (A), (B), and (C) are satisfied. Then, bE a W
1;1
loc ðfv > 0gÞ and for Hn�1-a.e.

x 0 a fv > 0g

‘bEðx 0Þ ¼ 1

vðx 0Þ

ð
q�Ex 0

�
y� bEðx 0Þ

� nEx 0 ðx 0; yÞ
jnEy ðx 0; yÞj dH

0ðyÞ:

Once the formula above is established, thanks to (2) of Theorem 3.4 one obtains

that ‘bE C 0 for every E a MðvÞ, thus showing rigidity. In particular, this gives

an alternative proof of Theorem 3.6.

When conditions (A), (B), and (C) are not satisfied the barycenter can be quite

irregular, as the next two examples shows (see [5], Remark 3.5).

Example 3.9. Let n ¼ 2 and let E � R2 be given by

E ¼
[
h AN

ðx 0; yÞ a R2 :
1

hþ 1
< jx 0j < 1

h
; jy� ð�1Þhj < 1

h2

� �
:

In this case, the vertical sections of E are segments, PðEÞ < l, and bE a LlðRÞ.
However, bE B BVðRÞ.

Example 3.10. Let n ¼ 3, and let E � R3 be given by

E ¼
[
h AN

ðx 0; yÞ a R3 :
1

ðhþ 1Þ2
< jx 0j < 1

h2
; jy� h4j < 1

2

( )
:

In this case, the vertical sections of E are segments, and PðEÞ < l. However,

we have bE B L1
locðR2Þ, since

bEðx 0Þ ¼
X
h AN

wððhþ1Þ�2;h�2Þðjx
0jÞh4:

Thus, bE does not admit distributional derivative.
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In Example 3.9 the barycenter loses regularity because it oscillates very rapidly

when the independent variable x 0 approaches the set fv ¼ 0g. Instead, in Example

3.10 problems arise since the set E is allowed to ‘‘escape’’ at infinity still keeping

the perimeter finite. The optimal regularity of the barycenter is given by the fol-

lowing result, see [10], Theorem 1.7.

Theorem 3.11. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5),

and let E � Rn be a v-distributed set satisfying condition (1) of Theorem 3.4.

Then,

bEwfv>dg a GBVðRn�1Þ;

for every d > 0 such that fv > dg is a set of finite perimeter in Rn�1.

Using the theorem above, it is possible to prove a formula for the perimeter

of sets whose vertical sections are segments, in terms of v and bE , see [10], Theo-

rem B.1.

Theorem 3.12. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5),

and let E � Rn be a v-distributed set satisfying condition (1) of Theorem 3.4.

Then,

PðEÞ ¼
ð
fv>0g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘u1j2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘u2j2

q
dHn�1

þ
ð
SvASbE

minfv4þ v5;maxf½v�; 2½bE �gg dHn�2

þ jDcu1jþðfv5> 0gÞ þ jDcu2jþðfv5> 0gÞ; ð3:6Þ

where u1 ¼ bE � 1
2 v, u2 ¼ bE þ 1

2 v and, for every Borel set G � Rn�1,

jDcuijþðGÞ :¼ lim
h!l

jDcðwSh
uiÞjþðGÞ i ¼ 1; 2:

In the formula above, Sh :¼ fdh < v < Lhg where ðdhÞh AN and ðLhÞh AN are se-

quences such that dh ! 0, Lh ! l, and fv > dhg and fv < Lhg are sets of finite

perimeter in Rn�1 for every h a N.

3.6. Characterisation of equality cases and a su‰cient condition for (SR).
Theorem 3.12 can now be used to characterise the equality cases of (SI). Indeed,

denoting the right hand side of (3.6) by Fðv; bEÞ, and using the fact that bFv
C 0,
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we have

E a MðvÞ () Fðv; bEÞ ¼ Fðv; 0Þ:

Imposing the equality above we obtain the following result, which gives a com-

plete characterisation of MðvÞ in full generality.

Theorem 3.13. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5),

and let E be a v-distributed set of finite perimeter. Then, E a MðvÞ if and

only if

Ex 0 is H1-equivalent to a segment; for Hn�1-a:e: x 0 a Rn�1; ð3:7Þ

‘bEðx 0Þ ¼ 0; for Hn�1-a:e: x 0 a Rn�1; ð3:8Þ

2½bE �a ½v�; Hn�2-a:e: on fv5> 0g; ð3:9Þ

DcðbM
d ÞðGÞ ¼

ð
GBfv>dgð1ÞBfjbE j<Mgð1Þ

fdðDcvÞ;
for every bounded Borel

set G � Rn�1 and for

H1-a:e: d> 0 and M > 0;

ð3:10Þ

where f : Rn�1 ! ½�1=2; 1=2� is a Borel function, and we set bM
d ¼ tMðbEwfv>dgÞ.

In particular, E a MðvÞ implies that

2jDcbE jþðGÞa jDcvjðGÞ; for every Borel set G � Rn�1; ð3:11Þ

where

jDcbE jþðGÞ :¼ lim
h!l

jDcðwfv>dhgbEÞj
þðGÞ

for every Borel set G � Rn�1 and the sequence ðdhÞh AN is as in Theorem 3.12.

In order to clarify the conditions above, we give now some examples. Figure

3.5 and Figure 3.6 show two sets that violate (3.7) and (3.8), respectively, while

Figure 3.7 clarifies why condition (3.9) is needed.

Note that inequality 2½bE �a ½v� is not required at those points where v5¼ 0,

see Figure 3.8. An inequality similar to (3.9) holds for the Cantor parts of the

measures associated to bE and v, see (3.11). More precisely, the measure jDcbE jþ
is absolutely continuous with respect to Dcv

O
fv5> 0g. Note that, in partic-

ular, if E a MðvÞ and bE 2 BV , there is no control on the Cantor part of DbE
in the set fv5¼ 0g, as explained in Example 3.14 below (see also [10], Remark

1.31).
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Example 3.14. We show now an example in which Dcv ¼ 0, but there exists a set

E a MðvÞ whose barycenter is a function of bounded variation with non trivial

Cantor part. Thanks to condition (3.11) and recalling the definition of jDcbE jþ,
this is only possible if DcbE is concentrated in the set fv5¼ 0g. Let n ¼ 2, let

Figure 3.5. E B MðvÞ, since (3.7) is
violated.

Figure 3.6. E B MðvÞ, since (3.8) is
violated.

Figure 3.7. In order to have E a MðvÞ we need ½bE �a ½v�=2. The set E in the left hand side
is such that ½bE � ¼ ½v�=2 (the dashed line represents bE), and we still have PðEÞ ¼ PðFvÞ.
In the right hand side, the set E is such that ½bE � > ½v�=2, and therefore PðEÞ > PðFvÞ.
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K � R be the standard Cantor set and let c : ½0; 1� ! R denote the Cantor func-

tion in ½0; 1�. We set

vðx 0Þ :¼ 2 distðx 0;KÞ if x 0 a ð0; 1Þ;
0 otherwise;

�

where ‘‘dist’’ stands for the distance function. Note that v is Lipschitz contin-

uous, and in particular Dcv ¼ 0. Consider now the v-distributed set E such that

bEðx 0Þ ¼ cðx 0Þ. A pictorial idea of the sets Fv and E is given in Figure 3.9. In this

case, E a MðvÞ and DcbE is non trivial (in fact, DbE is purely Cantorian), despite

Dcv ¼ 0. This is obtained by concentrating DcbE in the set fv5¼ 0g. More pre-

cisely, we have DcbEOfv5¼ 0gA 0, but jDcbE jþ ¼ 0. In this way, conditions

(3.10) and (3.11) are not violated.

We conclude this subsection with a su‰cient condition for rigidity that im-

proves Theorem 3.6.

Theorem 3.15. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5),

and suppose that the Cantor part Dcv of Dv is concentrated on a Borel set K such

that

fv5¼ 0gASvAK does not essentially disconnect fv > 0g: ð3:12Þ

Then, (SR) holds true.

Figure 3.8. Inequality 2½bE �a ½v� is not required in fv5¼ 0g. The set E in the picture sat-
isfies 2½bE � > ½v� at a point x a fv5¼ 0g, but we still have E a MðvÞ.
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Remark 3.16. Note that assumptions (A), (B), and (C) of Theorem 3.6 imply that

Sv ¼Hn�2 j; and fv5¼ 0gB fv > 0gð1Þ ¼Hn�2 j;

and that one can choose K ¼ j, so that (3.12) is trivially satisfied.

3.7. Geometric Characterizations of (SR). Theorem 3.13 turns out to be a very

useful tool to show geometric characterizations of rigidity in several situations.

First of all, let us observe that the notion of essential connectedness is fundamental

if one wants to express the indecomposability of Fv in terms of properties of its

orthogonal projection on Rn�1 (see [10], Remark 1.17).

Theorem 3.17. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5).

Then the following are equivalent:

(i) Fv is indecomposable;

(ii) fv5¼ 0g does not essentially disconnect fv > 0g.

We can now start studying geometric characterizations of (SR). We start

by considering the case in which there are no ‘‘flat vertical parts’’ in q�Fv. In full

generality, such situation is described by condition (3.13) below, which is more

Figure 3.9. A pictorial idea of the set described in Example 3.14. In this case v is Lipschitz
continuous, and therefore Dcv ¼ 0. However, there exists a set E a MðvÞ with DcbE A 0.
This does not violate the characterization Theorem 3.13 (and, in particular, conditions
(3.10) and (3.11)), since DcbE is concentrated in the set fv5¼ 0g.

356 F. Cagnetti



general than (B) (since it does not require fv > 0g to be open). Next result shows

that, under this assumption, rigidity fails if and only if Fv is decomposable (see

Figure 3.1 and Figure 3.2). For a proof, see [10], Theorem 1.16.

Theorem 3.18. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5).

Suppose, in addition, that

Dsv
O
fv5> 0g ¼ 0: ð3:13Þ

Then the following are equivalent:

(i) (SR) holds true;

(ii) Fv is indecomposable;

(iii) fv5¼ 0g does not essentially disconnect fv > 0g.

Remark 3.19. Note that, as already clarified by Theorem 3.17, conditions (ii) and

(iii) are always equivalent, even when (3.13) is not safistied.

We now consider a situation more general than the one discussed in Theorem

3.18. Roughly speaking, we will assume that Fv is a finite union of ‘‘regular’’ sets.

A rigorous argument requires the following definition.

Definition 3.20. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5).

The set Fv is said to be a generalized polyhedron if there exists a finite disjoint fam-

ily of indecomposable sets of finite perimeter and volume fAjgj A J in Rn�1, and a

family of functions fvjgj A J � W 1;1ðRn�1Þ, such that

v ¼
X
j A J

vj1Aj
; ð3:14Þ

ðfv5¼ 0gnfv ¼ 0gð1ÞÞASv �Hn�2

[
j A J

qeAj: ð3:15Þ

Remark 3.21. Roughly speaking, the set fv ¼ 0gð1Þ represents the complement

of the (orthogonal) projection of Fv on Rn�1. Therefore, condition (3.15) makes

sure that the function v can only vanish or jump on the essential boundaries of the

sets Aj.

We are now ready to state a geometric characterisation of rigidity when Fv is

a generalized polyhedron, see [10], Theorem 1.20.

Theorem 3.22. If v : Rn�1 ! ½0;lÞ is such that Fv is a generalized polyhedron,

then the following two statements are equivalent:
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(i) (SR) holds true;

(ii) for every e > 0 the set fv5¼ 0gA f½v� > eg does not essentially disconnect

fv > 0g.

Remark 3.23. The theorem above shows that, when Fv is ‘‘piecewise regular’’,

requiring that Sv essentially disconnects fv > 0g is not su‰cient for the failure

of (SR). This is clarified by Figure 3.3 where, although Sv essentially disconnects

fv > 0g, we still have rigidity. This is because there is no e such that fv5¼ 0gA
f½v� > eg essentially disconnects fv > 0g, and so condition (ii) above is satisfied.

Figure 3.10 instead shows an example in which rigidity fails, since there exists

e > 0 such that the set f½v� > eg (so, in particular, fv5¼ 0gA f½v� > eg) essentially
disconnects fv > 0g.

The previous two theorems seem to suggest that rigidity fails if and only if one

can exhibit a set E a MðvÞ obtained by performing a single vertical translation of

a proper subset of Fv, see for instance Figure 3.1 and Figure 3.10. However, in

more general situations things can be much more complicated. Indeed, one can

have loss of rigidity even when condition (ii) of Theorem 3.22 is satisfied. That

is, rigidity can fail even if there is no e > 0 such that the set fv5¼ 0gA f½v� > eg
essentially disconnects fv > 0g. The example below (see [10], Example 1.22),

shows a set E a MðvÞ that can be obtained by performing infinitely many vertical

translations, each on a di¤erent subset of Fv. Note that in this example it is not

possible to construct a set E � MðvÞ by vertically translating only a finite number

of proper subsets of Fv.

Example 3.24. We will now show that we can have loss of rigidity even when

condition (ii) of Theorem 3.22 is satisfied. For each t a R and l > 0, we denote

Figure 3.10. Fv is a (generalized) polyhedron and rigidity fails, since condition (ii) of The-
orem 3.22 is violated.
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by Qðt; lÞ the open square in R2 centered at ðt; 0Þ, with sides parallel to the di-

rections ð1; 1Þ and ð1;�1Þ, and whose diagonal has length 2l. We now define

the sequence ðukÞk AN of piecewise constant functions in the following way. We

set u1 ¼ wQð0;1Þ and then

u2 ¼ u1 �
1

2
wQð�3=4;1=4Þ þ

1

2
wQð3=4;1=4Þ;

u3 ¼ u2 �
1

4
wQð�15=16;1=16Þ þ

1

4
wQð�9=16;1=16Þ �

1

4
wQð9=16;1=16Þ þ

1

4
wQð15=16;1=16Þ;

and so on by induction, see Figure 3.11. We then define v : R2 ! ½0;lÞ as the

pointwise limit of the sequence ðukÞk AN:

vðx 0Þ :¼ lim
k!l

ukðx 0Þ for H2-a:e: x 0 a R2:

One can check that condition (ii) of Theorem 3.22 is satisfied. However, setting

E :¼ fðx 0; tÞ a R3 : 0 < t < vðx 0Þg

Figure 3.11. The level sets of the function u3 in Example 3.24.
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we have E a MðvÞ, so that rigidity fails. Note that this example does not satisfy

the assumptions of by Theorem 3.22, since Fv is not a generalized polyhedron.

In order to tackle situations as the one described in Example 3.24 above, we

need the following definitions (see [10], Definition 1.23 and Definition 1.25).

Definition 3.25. Let G � Rn�1 be a set of finite perimeter, and let fGhgh A I be an

at most countable Borel partition of G modulo Hn�1. We say that fGhgh A I is a

Caccioppoli partition of G, if
P

h A I PðGhÞ < l.

Definition 3.26. Let v a BV
�
Rn�1; ½0;lÞ

�
, and let fGhgh A I be an at most count-

able Borel partition of fv > 0g. We say that fGhgh A I is a v-admissible partition of

fv > 0g, if fGhBBR B fv > dggh A I is a Caccioppoli partition of fv > dgBBR, for

every d > 0 such that fv > dg is of finite perimeter and for every R > 0.

We are now ready to introduce a property that turns out to be equivalent to

rigidity, when v is a special function of bounded variation with locally finite jump

set.

Definition 3.27. Let v a BV
�
Rn�1; ½0;lÞ

�
. We say that v satisfies the mis-

matched stairway property if the following holds: If fGhgh A I is a v-admissible par-

tition of fv > 0g and if fchgh A I � R is a sequence with chA ck whenever hA k,

then there exist h0; k0 a I with h0A k0, and a Borel set S with

S � qeGh0 B qeGk0 B fv5> 0g; Hn�2ðSÞ > 0; ð3:16Þ

such that

½v�ðzÞ < 2jch0 � ck0 j; Ez a S: ð3:17Þ

Remark 3.28. The mismatched stairway property rules out the possibility of a

counterexample as the one given in Example 3.24. On can check that this prop-

erty implies condition (ii) of Theorem 3.22 and, in turn, condition (iii) of Theorem

3.18. The interested reader can find more information about this in [10], Remark

1.27 and Remark 1.28.

The following result gives a geometric characterization of rigidity in a very

general setting, when v is a special function of bounded variation with locally finite

jump set.

Theorem 3.29. Let v : Rn�1 ! ½0;l� be a measurable function satisfying (1.5). If,

in addition, v a SBV
�
Rn�1; ½0;lÞ

�
and SvB fv5> 0g is locally Hn�2-finite, then

the following are equivalent:
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(i) (SR) holds true;

(ii) v has the mismatched stairway property.

We conclude this section with a complete geometric characterization of rigidity

in dimension 2, which can be proved due to the simple topology of the real line

(see [10], Theorem 1.30).

Theorem 3.30. Let n ¼ 2 and let v : R ! ½0;l� be a measurable function satisfy-

ing (1.5). Then, the following are equivalent:

(i) (SR) holds true;

(ii) fv > 0g is H1-equivalent to a bounded open interval ða; bÞ, v a W 1;1ða; bÞ, and
v5> 0 on ða; bÞ;

(iii) Fv is indecomposable set that has no vertical boundary above fv5> 0g, i.e.

H1
�
fðx 0; yÞ a q�Fv : n

Fv
y ðx 0; yÞ ¼ 0; v5ðx 0Þ > 0g

�
¼ 0:

4. Characterization of (ER)

In this section we give a complete characterization of rigidity in the Gaussian set-

ting. We start by giving some information about epigraphs of locally finite perim-

eter. We stress the fact that we need to consider epigraphs of functions with values

in extended real numbers. Indeed, the Ehrhard’s symmetral Fg;w associated to a

given measurable function w : Rn�1 ! ½0; 1� is the supergraph of a function that

might take the values þl (when w ¼ 1) and �l (when w ¼ 0).

4.1. Epigraphs of locally finite perimeter and the space GBV�. For any mea-

surable function f : Rn�1 ! RA felg, we denote the epigraph of f by

Sf :¼ fx ¼ ðx 0; yÞ a Rn : y > f ðx 0Þg:

We are going to discuss under which conditions Sf is a set of locally finite

perimeter. To this aim, we introduce the following function space. We say that

a Lebesgue measurable function f : Rn�1 ! RA felg is a function of gener-

alized bounded variation with values in extended real numbers, f a GBV�ðRn�1Þ, if
tMð f Þ a BVlocðRn�1Þ for every M > 0 (recall (2.7)), or, equivalently, if cð f Þ a
BVlocðRn�1Þ for every c a C1ðRÞ with c 0 a C0

c ðRÞ. In the definition above, we

used the convention

cðþlÞ :¼ lim
t!þl

cðtÞ and cð�lÞ :¼ lim
t!�l

cðtÞ:
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The importance of the space GBV�ðRn�1Þ is given by the following proposition

(see [11], Proposition 3.1).

Proposition 4.1. If f : Rn�1 ! RA felg is Lebesgue measurable, then f a
GBV�ðRn�1Þ if and only if Sf is of locally finite perimeter in Rn; moreover, in this

case, for a.e. t a R, we have that f f < tg is a set of locally finite perimeter in Rn�1.

Remark 4.2. Note that E � Rn is a set of locally finite perimeter in Rn if and only

if E is a set of locally finite Gaussian perimeter.

In the following, we will make the minimal assumption on w that PgðFg;wÞ <
l, so that the rigidity problem makes sense. By Proposition 4.1, this in particular

implies that the Lebesgue measurable function C � v : Rn�1 ! RA felg belongs

to GBV�ðRn�1Þ.

4.2. Characterization of (ER). We can now state a complete characterization

of rigidity for Ehrhard’s inequality.

Theorem 4.3. If w : Rn�1 ! ½0; 1� is a Lebesgue measurable function such that

PgðFg;wÞ < l, then the following two statements are equivalent:

(i) (ER) holds true;

(ii) the set fw5¼ 0gA fw4¼ 1g does not essentially disconnect f0 < w < 1g.

Despite the simplicity of the statement above, the proof of Theorem 4.3 is very

long and technical. We refer the reader to [11], Theorem 1.3 for more details. In

dimension n ¼ 2, the topology of the real line allows to give an easier characteriza-

tion of rigidity (see [11], Theorem 1.6).

Theorem 4.4. Let n ¼ 2, and let w : R ! ½0; 1� be a Lebesgue measurable function

such that PgðFg;wÞ < l. Then the following two statements are equivalent:

(i) (ER) holds true;

(ii) f0 < w < 1g is H1-equivalent to an open interval I , with 0 < w5 and w4< 1

on I.

The statements above might suggest that an equivalent condition for rigidity in

the Gauss space might be that both Fg;w and its complement RnnFg;w are indecom-

posable. In dimension n ¼ 2 it turns out that if both Fg;w and RnnFg;w are inde-

composable, then (ER) holds true (see [11], Theorem 4.2). The opposite implica-

tion, however, is false, see Figure 4.1. In dimension higher than 2 instead, even if

both Fg;w and RnnFg;w are indecomposable, it might happen that (ER) fails. We

direct the interested reader to [11], Remark 1.7 for a more detailed discussion.
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5. Open problems

The results highlighted in this paper show that the theory of rigidity for sym-

metrization inequalities is quite rich. We would now like to mention some of the

several problems that are still open. First of all, it is well known that Steiner’s in-

equality is also true when one considers the Steiner symmetrization in codimension

k a N, with 1a ka n� 1 (see, for instance, [5], Theorem 1.1). In this context,

su‰cient conditions for rigidity are proved in [5], Theorem 1.2, in the spirit of

Theorem 3.6, but no characterizations are known. Note that solving this problem

might require to tackle very delicate coarea regularity issues, which are peculiar of

the case of codimension larger than 1 (see, [5], Remark 3.2). Using a suitable ver-

sion of Ehrhard’s symmetrization, once can also consider the analogous problem

in higher codimension for the Gaussian setting. In this case, it is not clear whether

the notion of essential connectedness will allow a complete and simple character-

ization of rigidity, as in Theorem 4.3.

Another important problem is the study of rigidity for Pólya-Szegö inequality.

We recall that Pólya-Szegö inequality states that the Lp norm of the gradient of

a Sobolev function does not increase under spherically symmetric rearrangement.

More precisely, if n a N and nb 2, pb 1:

k‘u�kL pðRn�1Þa k‘ukL pðRn�1Þ for every u a W 1;p
�
Rn�1; ½0;lÞ

�
: ð5:1Þ

Here, u� is the Sobolev function whose subgraph if obtained by considering the

(ðn� 1Þ-codimensional) Steiner symmetrisation of the subgraph of u. Extremals

of (5.1) were firstly studied in [27] (see also [26]). After that, Brothers and Ziemer

[9] and Cianchi and Fusco [16] gave su‰cient conditions for rigidity, in the

Figure 4.1. Rigidity (ER) holds true, but R2nFg;w is decomposable.

363Rigidity for perimeter inequalities under symmetrization



class of Sobolev and BV functions, respectively. Still su‰cient conditions were

given Cianchi and Fusco in codimension 1 [17], and by Capriani in codimen-

sion greater than 1 [13]. To date, a characterization of rigidity for (5.1) is still

missing.
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École Norm. Sup. (4), 17 (1984), pp. 317–332.
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