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Abstract. We study the homogenization of obstacle problems in Orlicz–Sobolev spaces for
a wide class of monotone operators (possibly degenerate or singular) of the pð�Þ-Laplacian
type. Our approach is based on the Lewy–Stampacchia inequalities, which then give access
to a compactness argument. We also prove the convergence of the coincidence sets under
non-degeneracy conditions.
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1. Introduction

In this paper, we analyse the homogenization of obstacle problems in the frame-

work of Orlicz–Sobolev spaces.

Homogenization is a general procedure in the analysis of partial di¤erential

equations that concerns the e¤ect of rapidly oscillating coe‰cients upon its solu-

tions. It is often expected that in the limit, as the period of the oscillation goes to

zero, the high-frequency behaviour disappears and the limiting function solves a

simpler, ‘‘homogenized’’ equation. Many authors have contributed to the study

of homogenization for di¤erent di¤erential operators including unilateral prob-

lems; see, for instance, [4], [5], [6], [12], [21], [25] and the books [7], [18] for more

references.

Obstacle problems, on the other hand, usually arise as classic unilateral con-

strained problems in the study of variational inequalities and in free boundary

problems. Roughly, in stationary problems, the typical example consists in find-

ing the equilibrium position of an elastic membrane constrained to lie above a

given obstacle, and whose boundary is held fixed. Typically, given an obstacle

c, one wishes to minimize an energy functional over a set of the form K ¼



fu a F; ubcg, where the function space F must be suitably chosen. For the

classical theory of obstacle problems, we refer to [16], [19].

Here, we address the homogenization for variational inequalities of obstacle

type in the Orlicz–Sobolev framework, as follows.

Let W � Rn be a bounded domain with Lipschitz boundary and p : W ! R be

a measurable function such that

1 < aa pðxÞa b <l a:e: in W; ð1:1Þ

where a and b are constants. The following variable exponent Lebesgue space is

an Orlicz space:

Lpð�ÞðWÞ :¼
n
u : W ! R measurable with rðuÞ :¼

ð
W

juðxÞjpðxÞ dx <l
o
:

This Orlicz space is a separable reflexive Banach space with the following

(Luxemburg) norm:

kukL pð�ÞðWÞ :¼ inf l > 0; r
juj
l

� �
a 1

� �
:

We define an Orlicz–Sobolev space by

W 1;pð�ÞðWÞ :¼
�
u a Lpð�ÞðWÞ; ‘u a

�
Lpð�ÞðWÞ

�n�
;

with the norm

kukW 1; pð�ÞðWÞ :¼ kukL pð�ÞðWÞ þ k‘ukL pð�ÞðWÞ; k‘ukL pð�ÞðWÞ ¼
Xn

i¼1

qu

qxi

				
				
L pð�ÞðWÞ

:

This Orlicz–Sobolev space is also a separable and reflexive Banach space. We also

define

W
1;pð�Þ
0 ðWÞ :¼ fu a W

1;1
0 ðWÞ; rðj‘ujÞ <lg:

The latter is a Banach space endowed with the norm

kuk
W

1; pð�Þ
0

ðWÞ :¼ k‘ukL pð�ÞðWÞ:

In this paper, we study the periodic homogenization of obstacle problems in

Orlicz–Sobolev spaces. We consider

aðx; xÞ : W� Rn ! Rn

268 D. Marcon, J. F. Rodrigues and R. Teymurazyan



to be a Carathéodory vector function, that is, we assume it is continuous with re-

spect to x, for almost every x a Rn, and that it is measurable with respect to x, for

every x. Moreover, the functions að�; xÞ and pð�Þ are assumed to be periodic with

period 1 in each argument x1; x2; . . . ; xn. We denote the periodicity cell by Q,

i.e. Q :¼ ð0; 1�n. Additionally, we assume that the following structural conditions

(monotonicity, coercitivity and boundedness) hold:

�
aðx; xÞ � aðx; hÞ

�
� ðx� hÞ > 0; for a:e: x; xA h;

aðx; xÞ � xbC1ðjxjpðxÞ � 1Þ;
jaðx; xÞjaC2ðjxjpðxÞ�1 þ 1Þ;

8>><
>>:

ð1:2Þ

where C1;C2 > 0 are constants. For e > 0, we define

aeðx; xÞ :¼ a
x

e
; x

� �
; x a W; x a Rn ð1:3Þ

and peðxÞ ¼ pðx=eÞ. The Orlicz–Sobolev spaces of periodic functions, de-

noted by W
1;pð�Þ
per ðQÞ, is defined as the set of periodic functions u from W 1;1

per ðQÞ
with

ð
Q

uðxÞ dx ¼ 0 and

ð
Q

j‘uðxÞjpðxÞ dx <l:

For the homogenized functional defined by

hðxÞ :¼ min
v AW 1; pð�Þ

per ðQÞ

ð
Q

jxþ ‘vðxÞjpðxÞ

pðxÞ dx; ð1:4Þ

we introduce also the Orlicz–Sobolev spaces

WhðWÞ :¼ fu a W 1;1ðWÞ; hð‘uÞ a L1ðWÞg;
Wh

0 ðWÞ :¼ fu a W
1;1
0 ðWÞ; hð‘uÞ a L1ðWÞg;

with the norm, kukW h
0
ðWÞ :¼ k‘ukLhðWÞ, and the vector Orlicz space

LhðWÞ :¼ fx a ½L1ðWÞ�n; hðxÞ a L1ðWÞg;

normed by

kxkLhðWÞ :¼ inf

�
l > 0;

ð
W

h
x

l

� �
dxa 1

�
:
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By the properties of h, as it was observed in [25], we have the continuous em-

beddings

LbðWÞ � LhðWÞ � LaðWÞ;

Fix e > 0. We define

Aeu :¼ �div
�
aeðx;‘uÞ

�
and A0u :¼ �div

�
a0ð‘uÞ

�
;

where ae is given by (1.3), and a0 is the homogenized operator given by (1.10)

below. For given functions f and1 ce, we assume Aece is a measure, such that

f and ðAece � f Þþ a LsðWÞ; ð1:5Þ
kðAece � f ÞþkLsðWÞaC; ð1:6Þ

where C > 0 is a constant independent of e and that

ce a W 1;peð�ÞðWÞ; c0 a WhðWÞ; cþ
e a W

1;peð�Þ
0 ðWÞ; cþ

0 a Wh
0 ðWÞ; ð1:7Þ

where a 0 ¼ a=ða� 1Þ, uþ is the positive part of u and s > na 0

nþa 0 if a < n, s > 1, if

a ¼ n and s ¼ 1 for a > n. We show (see Theorem 3.1) that, under assumptions

(1.5)–(1.7) and suitable assumptions on the convergence of the obstacles, the

unique solution ue a Ke of the obstacle problem

ð
W

aeðx;‘ueÞ � ‘ðv� ueÞ dxb
ð
W

f ðv� ueÞ dx; Ev a Ke; ð1:8Þ

where

Ke :¼ fv a W
1;peð�Þ
0 ðWÞ; vbce a:e: in Wg;

converges, as e ! 0, to the unique solution u0 a K0 of the following homogenized

obstacle problem

ð
W

a0ð‘u0Þ � ‘ðv� u0Þ dxb
ð
W

f ðv� u0Þ dx; Ev a K0; ð1:9Þ

where

K0 :¼ fv a Wh
0 ðWÞ; vbc0 a:e: in Wg:

1The subscript " that appears in  " is not necessarily to be understood as scalings of other function.
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The homogenized operator a0 : R
n ! Rn is given in terms of the weighted average

of a as in [25], that is,

a0ðxÞ :¼
ð
Q

a
�
x; xþ ‘vðxÞ

�
dx; ð1:10Þ

with v a W
1;pð�Þ
per ðQÞ, such that,

ð
Q

aðx; xþ ‘vÞ � ‘j dx ¼ 0; Ej a W 1;pð�Þ
per ðQÞ;

where Q is the periodicity cell.

Note that, due to the Lavrent’ev e¤ect, if instead of W
1;pð�Þ
per ðQÞ, we take j a

Cl
perðQÞ, we may end up with a di¤erent homogenized operator, since in general

the space Cl
perðQÞ is not dense in W

1;pð�Þ
per ðWÞ. These homogenized operators, re-

ferred to as W and H solutions in [25], respectively, in general may be di¤erent,

but our results hold for both solutions, with minor modifications for the space

framework of the H solutions. Although we prefer to work with W solutions,

that is due to the fact that [25], Theorem 3.1 (see Theorem 2.1 below) is true for

both types of solutions. Observe that we do not impose any regularity assumption

on pð�Þ. However, in the particular case when p is log-Lipschitz continuous, i.e.,

when for a constant L > 0

�jpðxÞ � pðyÞj logjx� yjaL; Ex; y a W; jx� yj < 1=2;

the notion of W and H solutions coincide (see [11], [15]), since then the smooth

functions are dense in the Orlicz–Sobolev space.

Our approach is a development of the classical methods [7], [12] (see also [21],

[22], [25]) combined with the Lewy–Stampacchia inequalities

f aAeuea f þ ðAece � f Þþ;

in the Orlicz–Sobolev framework (see, for instance, Step 2 of the proof of

Theorem 3.1), in accordance with [20], which then allows the use of a Rellich-

Kondrachov compactness argument.

The result generalizes, in part, that of [5], which covers the case when p is con-

stant (and hence the homogenization is in usual Sobolev spaces). The latter, in

turn, implies the case of p ¼ 2 obtained in [4]. Nonetheless, we observe that the

structural assumptions (1.2) allow us to consider a wider range of monotone oper-

ators, which cover these cases and include other interesting quasilinear operators,

some of which we list below.
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(1) If aðx; xÞ ¼ jxjpðxÞ�2
x, we deal with the obstacle problem for the pðxÞ-Laplace

operator.

(2) We can also consider perturbations of the p-Laplace (p constant) and of the

pðxÞ-Laplace operators, taking

aðx; xÞ ¼ gðxÞjxjp�2x and aðx; xÞ ¼ gðxÞjxjpðxÞ�2x

for any non-negative bounded periodic function gðxÞ.
(3) It is possible to consider functions which are essentially di¤erent from these

previous ‘‘power like’’ functions. One general example can be

aðx; xÞ ¼ g1ðxÞjxj
pðxÞ�1x log

�
g2ðxÞjxj þ g3ðxÞ

�
;

where g3ðxÞ, pðxÞ > 1 and g1ðxÞ, g2ðxÞ > 0 a.e. in W are bounded periodic

functions.

The paper is organized as follows: in Section 2, we state some preliminaries

facts, which then serve to prove our main result in Section 3 (Theorem 3.1). In

Section 4, we prove the convergence of the coincidence sets (Theorems 4.1 and

4.2).

2. Preliminaries

In this section we give some preliminaries. In particular, we provide the concept

of G-convergence of operators in our framework, as well as convergence of sets in

Mosco sense. We also recall some results from [23] and [25] for future reference.

We start by setting some notations, which will be used throughout the paper:

peðxÞ ¼ pðx=eÞ; a 0 ¼ a
a�1 ; * denotes the weak convergence;

Aeu :¼ �div
�
aeðx;‘uÞ

�
and A0u :¼ �div

�
a0ð‘uÞ

�
;

where ae is defined by (1.3), and a0 is defined by (1.10). Next, we define the notion

of G-convergence of ae to a0. Observe, that most definitions of G-convergence

that can be found in the literature (see, for example, [2], [3], [8], [18]), allow a0
to depend on x as well, just as ae depends. However, in some particular cases,

more information can be said about the limiting operator. One example is that

of operators with rapidly oscillating ‘‘coe‰cients’’. Since our assumptions ensure

that aðx; xÞ and pð�Þ are periodic with respect to x in each of the arguments

x1; x2; . . . ; xn, there is no loss in generality to impose a0 to be independent of x in

the definition of G-convergence, which is more relevant for our purposes.
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Definition 2.1. Consider ae : W� Rn ! Rn and a0 : R
n ! Rn as above. We say

that ae G-converges to a0 when, considering the unique solution ue a W
1;peð�Þ
0 ðWÞ of

�div
�
aeðx;‘ueÞ

�
¼ f ; f a W�1;a 0 ðWÞ in D 0ðWÞ

and u0 a Wh
0 ðWÞ the unique solution of

�div
�
a0ð‘u0Þ

�
¼ f in D 0ðWÞ;

there holds:

(1) ue * u0 in W 1;a
0 ðWÞ, as e ! 0;

(2) aeðx;‘ueÞ* a0ð‘u0Þ in
�
Lb 0 ðWÞ

�n
, as e ! 0.

Note that the choice of s in (1.5) guarantees, in particular, f a W �1;a 0 ðWÞ.
Additionally, aðx; xÞ is assumed to be continuous with respect to x, for almost

every x a Rn.

Next, we state a theorem from [25], Theorem 3.1 that insures the G-

convergence of ae to a function a0, as e ! 0, given explicitly in terms of a. Its

proof is based on a compensated compactness argument from [24], [25], which,

in the case of pð�Þ ¼ constant, resembles the well known result of Tartar-Murat

(see [17]).

Theorem 2.1. Let aðx; xÞ be a Carathéodory vector function, which is periodic with

respect to x in each argument and satisfy (1.2). Let also p be periodic, measurable

and satisfy (1.1). If structural conditions (1.2) hold, then ae G-converges to a0, where

a0 is defined by (1.10). Moreover,

ð
W

aeðx;‘ueÞ � ‘ue dx !
ð
W

a0ð‘u0Þ � ‘u0 dx;

as e ! 0.

As it is shown in [25], the vector function a0ðxÞ is strictly monotone, i.e.,

�
a0ðxÞ � a0ðhÞ

�
� ðx� hÞ > 0; xA h;

and coercive, that is,

a0ðxÞ � x > c0
�
hðxÞ � 1

�
;

where c0 > 0 is a constant, and the homogenized functional hðxÞ is defined by

(1.4). Moreover, h satisfies the so-called D2 condition, [25], Proposition 2.1, which
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implies that the Orlicz space LhðWÞ is reflexive. As it is observed in [25], hðxÞ be-
ing defined by (1.4), is convex on Rn and satisfies the following two-sided estimate:

c1jxja � 1a hðxÞa c2jxjb þ 1;

for a c1 > 0 constant. As a consequence, we have

W
1;b
0 ðWÞ � Wh

0 ðWÞ � W
1;a
0 ðWÞ;

which implies that

K0 � W
1;a
0 ðWÞ:

The following result is from [23], and it provides more information on the homo-

genized functional.

Lemma 2.1. If ue is a sequence uniformly bounded in W
1;peð�Þ
0 ðWÞ, such that,

ue * u0 in W
1;a
0 ðWÞ as e ! 0, then hð‘u0Þ a L1ðWÞ.

Observe that Lemma 2.1 guarantees that, within G-convergence, the weak

limits of ue in W 1;a
0 ðWÞ belong to Wh

0 ðWÞ, and therefore, if also ue a Ke then

u0 a K0.

In order to state our main result, we will also need to redefine the Mosco con-

vergence of sets.

Definition 2.2. The sequence of closed convex sets Ke � W
1;peð�Þ
0 ðWÞ, is said to

converge to the set K0 � Wh
0 ðWÞ in the Mosco sense, if

• for any v0 a K0 there exists a sequence ve a Ke, such that, ve ! v0 in W
1;a
0 ðWÞ;

• weak limits in W
1;a
0 ðWÞ of any sequence of elements in Ke, that is uniformly

bounded in W
1;peð�Þ
0 ðWÞ, belong to K0.

Remark 2.1. Since W
1;peð�Þ
0 ðWÞ is continuously embedded into W

1;a
0 ðWÞ (see, for

example, [11]), then ce ! c0 in W 1;bðWÞ provides Ke ! K0 in the Mosco sense,

where Ke and K0 are as in (1.8) and (1.9) respectively.

3. Homogenization of the obstacle problem

We are now ready to prove our main result, which states as follows.

Theorem 3.1. Let aðx; xÞ be a Carathéodory vector function satisfying (1.2) and

periodic with respect to x in each argument. Let pð�Þ be periodic, measurable and

satisfying (1.1). Assume further that (1.5)–(1.7) hold. If Ke ! K0 in the Mosco
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sense, then the unique solution of (1.8) converges weakly in W
1;a
0 ðWÞ, as e ! 0, to

the unique solution of (1.9), where a0 is given by (1.10).

Proof. We divide the proof into five steps.

Step 1 (Apriori estimates). Existence and uniqueness of the solution of (1.8) (and

(1.9)) is a classical result (see, for instance, [10], [19], [20]). As in the proof of [5],

Theorem 2.3 (see also [19], page 145), the coercitivity and boundedness assump-

tions from (1.2) imply that ue is bounded in W
1;peð�Þ
0 ðWÞ by a constant depending

only from C1, C2 but independent of e. For the details we refer the reader to [13].

As a consequence we obtain that ue is bounded also in W
1;a
0 ðWÞ, since W 1;peð�Þ

0 ðWÞ
� W

1;a
0 ðWÞ. Set

se :¼ aeðx;‘ueÞ; me :¼ �div
�
aeðx;‘ueÞ

�
� f : ð3:1Þ

The boundedness condition from (1.2) implies that se and me are bounded (see [5],

[25]), therefore we can extract weakly convergent subsequence (still denoted by e)

from each one of them. Thus, there exist u�, s�, m� such that

ue * u� in W 1;a
0 ðWÞ and ue ! u� in LaðWÞ; ð3:2Þ

se * s� in
�
Lb 0 ðWÞ

�n
; ð3:3Þ

me * m� in W �1;b 0 ðWÞ: ð3:4Þ

Note that

m� ¼ �div s� � f : ð3:5Þ

Moreover, using Lemma 2.1 and since Ke ! K0 in the Mosco sense, then

u� a K0: ð3:6Þ

Step 2 (Compactness). Note that our assumptions provide the Lewy–Stampacchia

inequalities (see [20]), that is, we have

f a f þ mea ðAece � f Þþ þ f ;

which implies, by a Rellich-Kondrachov compactness argument,

me ! m� in W �1;a 0 ðWÞ: ð3:7Þ

Step 3. In this step we prove that s� ¼ a0ð‘u�Þ, where a0 is defined by (1.10). To

see this, let w0 a DðWÞ and we a W
1;peð�Þ
0 ðWÞ be the unique solution of

div
�
aeðx;‘weÞ

�
¼ div

�
a0ð‘w0Þ

�
in D 0ðWÞ: ð3:8Þ
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From Theorem 2.1, we have that ae G-converges to a0, as e ! 0, where a0ðxÞ is

defined by (1.10). In particular,

we * w0 in W 1;aðWÞ
aeðx;‘weÞ* a0ð‘w0Þ in

�
Lb 0 ðWÞ

�n
:

�
ð3:9Þ

Fix now j such that

j a DðWÞ; 0aja 1: ð3:10Þ

From the monotonicity of ae one has

ð
W

j
�
aeðx;‘ueÞ � aeðx;‘weÞ

�
� ð‘ue � ‘weÞ dxb 0: ð3:11Þ

Since u� a K0, and Ke ! K0 in the Mosco sense, there exists a sequence ue, such

that,

ue a Ke and ue ! u� in W
1;a
0 ðWÞ: ð3:12Þ

Next, we write (3.11) as

ð
W

jse � ð‘ue � ‘ueÞ dxþ
ð
W

jse � ‘ue dx�
ð
W

jse � ‘we dx

�
ð
W

jaeðx;‘weÞ � ‘ðue � weÞ dx

:¼ I1 þ I2 þ I3 þ I4: ð3:13Þ

Since 0aja 1 on W, and Ke is convex, then the function v ¼ jue þ ð1� jÞue can
be used as a test function in (1.8), which gives

ð
W

se � ‘
�
jðue � ueÞ

�
dxb

ð
W

f jðue � ueÞ dx ð3:14Þ

and so

I1 ¼
ð
W

se � ‘
�
jðue � ueÞ

�
dx�

ð
W

ðue � ueÞse � ‘j dx

a

ð
W

f jðue � ueÞ dx�
ð
W

ðue � ueÞse � ‘j dx:
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Since ue and ue converge to u� weakly in W
1;a
0 ðWÞ (and strongly in LaðWÞ), we

obtain

lim sup
e!0

I1a 0: ð3:15Þ

As we know from (3.12), ue ! u� in W
1;a
0 ðWÞ, which gives

lim
e!0

I2 ¼
ð
W

js� � ‘u� dx: ð3:16Þ

Note that

I3 ¼ �
ð
W

se � ‘ðjweÞ dxþ
ð
W

wese � ‘j dx:

From (3.7) and (3.12), we pass to the limit in the first term of I3. Using (3.3) and

(3.12), we pass to the limit also in the second term of I3, arriving at

lim
e!0

I3 ¼ �
ð
W

js�‘w0 dx: ð3:17Þ

Observe that

I4 ¼ �
ð
W

aeðx;‘weÞ � ‘
�
jðue � weÞ

�
dxþ

ð
W

ðue � weÞaeðx;‘weÞ � ‘j dx;

and recalling (3.2) and (3.9) and passing to the limit we obtain

lim
e!0

I4 ¼ �
ð
W

ja0ð‘w0Þ � ‘ðu� � w0Þ dx: ð3:18Þ

Combining (3.13), (3.15)–(3.18), one has

ð
W

j
�
s� � a0ð‘w0Þ

�
� ‘ðu� � w0Þ dxb 0 for w0 a DðWÞ: ð3:19Þ

By density, (3.19) is true also for any w0 in W 1;a
0 ðWÞ. Consider w0 ¼ u� þ tj, with

tb 0 and j a W
1;a
0 ðWÞ. Letting t ! 0 and using Minty’s trick as in [5], page 94

(see also [16]), we conclude

s� ¼ a0ð‘u�Þ: ð3:20Þ
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Step 4 (Lower semicontinuity of the energy). From (3.11) and (3.13) one has

ð
W

jse � ‘ue dxb
ð
W

jse � ‘we dxþ
ð
W

jaeðx;‘weÞ � ‘ðue � weÞ dx

¼ �I3 � I4:

From (3.17), (3.18) and (3.20) for any w0 a DðWÞ we have

lim inf
e!0

ð
W

jse � ‘ue dxb
ð
W

ja0ð‘u�Þ � ‘w0 dx

þ
ð
W

ja0ð‘w0Þ � ‘ðu� � w0Þ dx: ð3:21Þ

Letting w0 go to u� in W
1;a
0 ðWÞ, one gets from (3.21)

lim inf
e!0

ð
W

jse � ‘ue dxb
ð
ja0ð‘u�Þ � ‘u� dx; ð3:22Þ

Ej a DðWÞ such that 0aja 1.

Step 5. Finally, we claim that u� is the unique solution u0 of (1.9).

Let v0 a K0 and since Ke ! K0 in the Mosco sense, then there is a sequence

ve a Ke such that ve ! v0 in W
1;a
0 ðWÞ. Using ve as a test function in (1.8) for

j a DðWÞ, 0aja 1, one gets

ð
W

se � ‘ve dx�
ð
W

f ðve � ueÞ dxb
ð
W

se � ‘ue dxb
ð
W

jðse � ‘ueÞ dx: ð3:23Þ

Recalling (3.22) and passing to the limit in e in (3.23), we obtain

ð
W

a0ð‘u�Þ � ‘v0 dx�
ð
W

f ðv0 � u�Þ dxb
ð
W

ja0ð‘u�Þ � ‘u� dx:

Letting j ! 1 in the last inequality, one gets

ð
W

a0ð‘u�Þ � ‘ðv0 � u�Þ dx�
ð
W

f ðv0 � u�Þ dxb 0; Ev0 a K0:

The latter, combined with (3.6), allow us to conclude that u� coincides with the

unique solution u0 of (1.9) and the whole sequence ue * u0 in W 1;a
0 ðWÞ. r
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Remark 3.1. One can also show the convergence of the energies. More precisely,

ð
W

aeðx;‘ueÞ � ‘ue dx !
ð
W

a0ð‘u0Þ � ‘u0 dx: ð3:24Þ

Proof. For any j a DðWÞ such that 0aja 1 from (3.14) we have

ð
W

jse � ‘ue dxa
ð
W

se � ‘ðjueÞ dx�
ð
W

uese � ‘j dx�
ð
W

f jðue � ueÞ dx;

which gives

lim sup
e!0

ð
W

jse � ‘ue dxa
ð
W

a0ð‘u0Þ � ‘u0 dx: ð3:25Þ

The latter, combined with (3.22), implies

se � ‘ue ! a0ð‘u0Þ � ‘u0 in D 0ðWÞ:

Since Ke ! K0 in the Mosco sense, then taking v0 ¼ u0 in (3.23), we get

ð
W

a0ð‘u0Þ � ‘u0 dxb lim sup
e!0

ð
W

se � ‘ue dx

b lim inf
e!0

ð
W

se � ‘ue dx

b

ð
W

ja0ð‘u0Þ � ‘u0 dx;

and letting j ! 1, we obtain (3.24). r

Remark 3.2. If in (1.8) we have fe instead of f and fe * f in LsðWÞ, then the

conclusion of the Theorem 3.1 still holds.

Remark 3.3. Since there are Lewy–Stampacchia inequalities also for the two ob-

stacles problem (see [20]), the Theorem 3.1 can be extended for two obstacles

problems with similar assumptions.

4. Convergence of the coincidence sets

In this section, using the Lewy–Stampacchia inequalities, we prove a stability re-

sult for the coincidence sets as it was done, for example, in Theorem 6:6.1 in [19].
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Theorem 4.1. Let the conditions of Theorem 3.1 hold. If, as e ! 0,

ue � ce ! u0 � c0 in L1ðWÞ; ð4:1Þ
ðAece � f Þþ ! ðA0c0 � f Þþ in L1ðWÞ; ð4:2Þ

Aeue ! A0u0 in D 0ðWÞ; ð4:3Þð
S

dðA0c0 � f ÞA 0; ES � W such that jSj > 0; ð4:4Þ

and

A0u0 � f ¼ ðA0c0 � f Þw0 a:e: in W; ð4:5Þ

where w0 is the characteristic function of the set I0 :¼ fu0 ¼ c0g, then the coinci-

dence sets Ie :¼ fue ¼ ceg converge in measure, i.e.,

we ! w0 in LpðWÞ; Ep a ½1;lÞ;

where we is the characteristic function of Ie.

Proof. From the Lewy–Stampacchia inequalities we have

f aAeuea f þ ðAece � f Þþ a:e: in W:

Hence, there exists a function qe a LlðWÞ, such that,

Aeue � f ¼ qeðAece � f Þþ a:e: in W; ð4:6Þ

and

0a qea wea 1 a:e: in W: ð4:7Þ

Then for a subsequence (still denoted by e), one has

qe * q and we * w� in LlðWÞ-weak� ð4:8Þ

for functions q, w� a LlðWÞ. The inequalities (4.7) imply

0a qa w�a 1 a:e: in W: ð4:9Þ

Using (4.2), (4.3) and (4.8), we pass to the limit, as e ! 0, in (4.6) and obtain

A0u0 � f ¼ qðA0c0 � f Þþ a:e: in W:
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The latter, combined with (4.5) provides

qðA0c0 � f Þþ ¼ ðA0c0 � f Þw0 a:e: in W: ð4:10Þ

Note that in the region fA0c0 > f g, (4.10) and (4.4) imply that q ¼ w0, while

in fA0c0a f g, w0 ¼ 0. Therefore, qb w0 a.e. in W. Consequently, from (4.9)

we get

w0a w� a:e: in W:

On the other hand, from (4.1) and (4.8) one has

0 ¼
ð
W

weðue � ceÞ dx !
ð
W

w�ðu0 � c0Þ dx ¼ 0;

thus w�ðu0 � c0Þ ¼ 0 a.e. in W. Consequently, if u0 > c0, then w� ¼ 0, and since

0a w�a 1, one obtains

w0b w� a:e: in W:

Therefore, w0 ¼ w�, and the whole sequence we converges to w0 as e ! 0, first

weakly, and since they are characteristic functions, also strongly in any LpðWÞ,
for any p a ½1;lÞ. r

Remark 4.1. If c0 ¼ 0 and the right hand side is regular enough, the condition

(4.5) holds automatically, since in this particular case one has porosity of the free

boundary from [10] (hence, the free boundary has Lebesgue measure zero), which

provides (4.5).

Remark 4.2. The assumption (4.4) for measures is a weaker version of the

condition

A0c0 � f A 0 a:e: in W; when A0c0 a L1ðWÞ:

Theorem 4.2. Assume the conditions of Theorem 3.1 and also s > n=2. If ce ! c0,

uniformly, c0jqW < 0 and

intfu0 ¼ c0g ¼ fu0 ¼ c0g ¼ I0;

then the coincidence sets Ie :¼ fue ¼ ceg converge in the Hausdor¤ distance to I0.

Proof. Using [14], Theorem 3.2, we obtain the uniform Hölder continuity of

solutions. The uniform Hölder continuity of the obstacles then implies, as e ! 0,

the convergence ue ! u0, uniformly in compact subsets of W. This, in turn, pro-
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vides the convergence of the coincidence sets in Hausdor¤ distance as in [9] and

[19], Theorem 6:6.5. r
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