
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 75, Fasc. 3-4, 2018, 285–311 6 European Mathematical Society

DOI 10.4171/PM/2020

Three-dimensional registration and shape reconstruction
from depth data without matching: A PDE approach

Diogo A. Gomes, João Costeira and João Saúde

Abstract. The widespread availability of depth sensors like the Kinect camera makes it
easy to gather three-dimensional (3D) data. However, accurately and e‰ciently merging
large datasets collected from di¤erent views is still a core problem in computer vision.
This question is particularly challenging if the relative positions of the views are not known,
if there are few or no overlapping points, or if there are multiple objects. Here, we develop
a method to reconstruct the 3D shapes of objects from depth data taken from di¤erent
views whose relative positions are not known. Our method does not assume that common
points in the views exist nor that the number of objects is known a priori. To reconstruct
the shapes, we use partial di¤erential equations (PDE) to compute upper and lower bounds
for distance functions, which are solutions of the Eikonal equation constrained by the depth
data. To combine various views, we minimize a function that measures the compatibility of
relative positions. As we illustrate in several examples, we can reconstruct complex objects,
even in the case where multiple views do not overlap, and, therefore, do not have points
in common. We present several simulations to illustrate our method including multiple ob-
jects, non-convex objects, and complex shapes. Moreover, we present an application of our
PDE approach to object classification from depth data.

Mathematics Subject Classification (primary; secondary): 65D18, 68U10; 94A08

Keywords: Computer Vision, Eikonal Equation, registration, reconstruction, 3D point
cloud

1. Introduction

By watching their environment from several perspectives, humans e¤ortlessly con-

struct three-dimensional (3D) models of their surroundings by relating di¤erent

views of partially visible complex objects. A significant amount of research in

computer vision aims at giving computers the visual abilities of humans. The reg-

istration problem in computer vision consists of finding the relation (translation

and rotation transformation) between di¤erent views of the same object. Here,

we address this fundamental problem and develop a method to reconstruct the



3D shape of objects from depth data taken from various views. These data can be

easily acquired using consumer products such as the Kinect camera. As we illus-

trate in several examples, our method reconstructs complex shapes, non-convex

objects and multiple objects, and it does not need the views to overlap.

The reconstruction of 3D objects using visual data is a widely studied problem,

see, for example, [3]. Here, we are interested in reconstruction of object shapes

from depth maps. Due to the development of range or depth sensors, such as the

Kinect camera, depth maps can easily be obtained. Before such devices were avail-

able, state-of-the-art reconstruction methods inferred depth relationships using

intensity data. Earlier intensity-based methods were investigated in [11], [14],

and [24]. However, these techniques lacked robustness and their results could

be influenced by illumination, presence of shadows, or reflections. One advantage

of depth sensors is that they are immune to such interferences because depth data

depend only on the object’s geometry.

Here, we use partial di¤erential equations (PDE) to find the transformations

relating 3D point clouds and to reconstruct a 3D model from depth data. We

are given di¤erent views whose relative positions are unknown and corresponding

depth data. The first step in our algorithm is to construct two distance functions

for each view. The first one, the upper distance function, encodes the smallest

possible body compatible with the data, a thin shell. The second one, the lower

distance function, represents an object that occupies all the volume occluded by

its visible surface. These distance functions solve the Eikonal equation [26]. The

next step involves estimating the relative position of the views. We pick two views,

estimate their relative position, merge them, and iterate this procedure until all

views are merged. Given a rigid transformation relating two views, we consider

the transformed distance functions and measure their mismatch. Our mismatch

criterion compares the upper and lower distance functions from two views taking

into account that the smallest possible body from one view is contained in the

largest possible body from the other view. Finally, we minimize the mismatch

and, thus, obtain the relative position of the views, after which the reconstruction

is straightforward. To combine the lower distance functions, we intersect the two

largest objects from each of the views and compute the distance to this body. Sim-

ilarly, to combine the upper distance functions, we join the two smallest objects.

Our method is ‘‘lossless’’ because representing objects by their distance func-

tions uses all information in the point cloud. Thus, our results depend only on

the object’s geometry. Another advantage of our algorithm is how it deals with

occlusions: by merging di¤erent views, we can reconstruct parts of the object oc-

cluded in some of the images.

We end this introduction with an outline of the paper. We begin by reviewing

previous work in Section 2. Next, in Section 3, we describe the building blocks of

our method. We first address the theoretical foundations of the algorithm and dis-

286 D. A. Gomes, J. Costeira and J. Saúde



cuss how to use depth data corresponding to di¤erent views to construct distance

functions. Then, we describe how to combine di¤erent distance functions to

compute the transformation mismatch between di¤erent views and how to merge

them. Subsequently, we discuss the implementation of the algorithm, the numeri-

cal scheme, which uses a finite-di¤erences fast-marching method. In Section 4, we

present two-dimensional (2D) simulated experiments. We test our method with

convex objects, non-convex objects, and a scene with two objects with partial

occlusions. In Section 5, we use 3D point clouds from the Stanford scanning

repository [13] to model a depth sensor and test our method. The objects chosen

from the repository are intricate and nonconvex; thus occlusion phenomena occur.

In Section 6 we use our method to automatically integrate real depth data ac-

quired with a RGB-D camera, made available by the authors of [6]. Finally, we

present an application to the partial-view clustering problem, where views from

di¤erent objects must be clustered and classified.

2. Previous work

An earlier method to merge point clouds given by partial views of an object was

proposed by Potmesil [21]. Starting with one of the point clouds, Potmesil looked

at the surfaces that likely matched the original and chose the one with the best

surface-segmented match. Then, by selecting points with specific features (such

as maximum curvature), he estimated the relative position. Finally, by matching

and merging surfaces iteratively, he obtained a 3D reconstruction. This method

requires substantial pairwise overlapping of the views.

The Space Carving algorithm [12] recovers 3D shapes from images taken from

multiple known viewpoints. These images determine constraints that the object

satisfies. Next, starting with a volume containing the object, the algorithm checks

each voxel (3D pixel) for consistency and removes (carves) all inconsistent voxels.

Here, we work with distance functions rather than voxels, and we use depth data,

not 2D images. Nevertheless, our algorithm behaves somewhat like a carving

method because voxels at a positive distance from the body are carved out. How-

ever, our setting is more complex than the one in [12] because the relative positions

of the views are unknown.

In [22], [23] the authors propose a method for registering 3D data points to a

CAD (Computer-Aided-Design) model using local quadratic approximates to the

squared distance function. In their method, for each data point from the 3D data,

they first determine the closest point on the surface of the CAD model and deter-

mine the tangent plane at that point. Then, they use the squared distance to that

tangent plane to that closest point on the CAD model surface. They minimize a

quadratic objective function that uses the fact that the closest point to the tangent

287Registration and shape reconstruction without matching



plane in the surface of CAD model is along the normal of that point. After, as

in ICP, they update the data points, by applying the determined transformation

along the determined vector field, and iterate the procedure until some threshold

is attained. Other variations and improvements of the previous described tech-

nique can be found in [15] and [9]. Unlike, our method, this procedure needs to

have both the 3D data points and the CAD object model.

The Di¤eomorphic Point Matching method [10] splits the 3D reconstruction

problem into two problems. In the first, the Landmark Matching Problem, the

point clouds have the same cardinality and their correspondences are known.

In this case, the method selects a map that minimizes an energy functional to get

a correspondence between the clouds. In the second problem, the Point Shape

Matching Problem, the cardinality is distinct and the matches are unknown. To

address this case, the points cluster and the solution to the first problem is used to

find a one-to-one correspondence between the clusters.

The Iterative Closest Points (ICP) algorithm [29] aims at identifying the trans-

formation that best aligns two datasets. The ICP algorithm consists of an itera-

tion between two steps. First, an initial transformation is applied to a subset of

a point cloud. Next, for each transformed point, the algorithm finds the closest

point on the other point cloud. Finally, the transformation is refined using the

correspondence between the points. This procedure is repeated until no further

improvement is possible.

The partial matching of rigid shapes consists of merging distinct shapes with

several similar parts. This happens, for example, if data acquisition is imperfect,

there is occlusion, or there are scanning artifacts. To solve this problem, Bronstein

and Bronstein [5] proposed the regularized partial matching algorithm. There, in-

stead of using the ICP algorithm with rejection of dissimilar points, they introduce

a multicriteria optimization problem to select two parts of two di¤erent objects

that are regular, similar, and as large as possible. The solution to this problem is

of Pareto-optimal type and uniqueness is not assured. Therefore, they look for a

solution that maximizes a partial similitude measure. First, they find a rotation

and translation that minimizes misalignment of two point clouds. Finally, for

each point in both clouds, they find a membership function that minimizes a mis-

alignment functional.

In [17] and [20], the authors use methods that estimate the motion and pose

of a depth sensor to reconstruct 3D shapes. In [17], the algorithm merges depth

data and constructs a 3D model in real time. To carry this out, Newcombe et al.

track the camera’s motion and, simultaneously, integrate depth data into a global

model. First, they generate a vertex and a normal map from the depth data.

Afterward, the pose of the sensor is estimated in real time using a multi-scale

ICP alignment of current data and the previously predicted surface. Then, the

current data are incorporated in the global model, which uses a truncated signed

288 D. A. Gomes, J. Costeira and J. Saúde



distance function representation. Finally, they create a prediction of the surface.

In this method, with a large displacement of the camera, drift can occur and re-

construction issues can arise. In [17], the merging of depth information relies

on the continuous estimation of the camera’s position and orientation using

Simultaneous Localization and Mapping (SLAM) methods. To track the camera,

these algorithms need depth data to overlap. In our approach, there is no camera

tracking and overlap is not needed. State-of-the-art approaches like ICP and

its variants, namely [17], assume or resort to other methods, like SLAM, so that

they perform ICP on close/aligned enough 3D point clouds with common points.

And then carry out local optimization to find the best possible rigid trans-

formation. Our method is not directly comparable to those mentioned, since our

approach, not only perform registration of 3D depth data (or point clouds) with

common points but also successfully register 3D point clouds with no common

points.

Recently, a probabilistic approach to the joint rigid registration of 3D point

clouds was proposed in [8]. There, Evangelidis and Horaud assume that an arbi-

trary number of point clouds is generated from a single Gaussian Mixture Model

(GMM). Hence, each point, after rotation and translation is produced from a

Gaussian component. To register the point clouds, they estimate the rigid trans-

formation (rotation matrices plus a translation vector) and the GMM parameters

(mixing coe‰cients, mean vectors, and covariance matrices) with a maximum

likelihood formulation using an expectation conditional maximization (ECM)

algorithm.

3. The partial view matching problem

Our aim is to reconstruct 3D objects using depth data like the data that can be

obtained using a Kinect camera. For that, we address the partial-view matching

problem, which consists of finding the relation between incomplete views of an ob-

ject, merge these views, and build a 3D reconstruction. Here, we are given two or

more depth datasets obtained from distinct points of view. The correspondence

between these, the rotation and translation relation, is not known a priori. More-

over, we do not assume that the object viewed is connected (thus, multiple objects

are allowed) nor that there are common points in the di¤erent views. Next, we

outline a PDE-based method to identify the correspondence between the views

and to reconstruct the 3D model.

3.1. Depth data and the Eikonal equation. The first step in our 3D reconstruc-

tion is to use raw depth data to build an upper and lower bounds of the distance

function. Then, we use those bounds to compute two solutions to the Eikonal

equation. These solutions correspond to the distance to the largest and to the

289Registration and shape reconstruction without matching



smallest possible objects compatible with the depth data. Finally, we explain how

to merge the data from di¤erent views, how to compute the relation between

them, and how to reconstruct a 3D model of the object.

Depth data. A commonly used sensor in computer vision is the Kinect camera

that, alongside with a standard RGB image, gives the depth of points of an ob-

ject’s surface. The depth is the distance obtained by ray-tracing from the sensor

to the first point on the object’s surface. If, for a cell on the sensor, there is no

obstacle along a straight line departing from that cell, the depth is infinity (or,

in practice, a large number). Consider a ray, R, with its origin at the sensor. A

point, x a R, is non-occluded if it lies between the sensor and the surface of the

object. The remaining points in R are occluded points. We define two functions,

ce in the following way:

• If x is a non-occluded point in a ray, R, then ceðxÞ is simply the distance

along R to the surface of the object.

• If x is an occluded point, c�ðxÞ ¼ 0, then cþðxÞ ¼ þl.

These two functions contain all information given by the depth data. Moreover,

c� is an upper bound to the distance function to the largest possible body compat-

ible with the depth data, whereas cþ is an upper bound to the distance function to

the smallest possible body.

The Eikonal equation and the distance function. Given an object, W � R3, the

distance function from a point, x, to W solves the Eikonal equation:

jDuj ¼ 1; x a Wc;

where u : R3 ! Rþ
0 vanishes in W and Du is the gradient of u. Given a non-

negative function, C, the Eikonal obstacle problem is

jDuðxÞj ¼ 1; on u > 0

0a uðxÞaCðxÞ:

�
ð1Þ

We use (1) to compute the upper and lower distance functions. The upper distance

function, uþ, gives the smallest body possible from the depth data, using C ¼ cþ

as an upper bound. The lower distance function u� corresponds to C ¼ c� and

determines the largest possible body.

Merging two distance functions. Given two views, indexed by i ¼ 1; 2, we com-

pute the lower and upper distance functions, u�i and uþi . Then, we want to merge

the information encoded by them. First, we assume that the relation between the

two views is a known rigid motion map, T . This map consists of a rotation fol-

290 D. A. Gomes, J. Costeira and J. Saúde



lowed by a translation. We fix the lower and upper distance functions for one

view, u�1 and uþ1 . Then, we pick the lower and upper functions of the second

view, u�2 and uþ2 , and compose them with T . To merge the lower functions,

u�1 ðxÞ and u�2 ðTxÞ, we start by computing their pointwise maximum, u�max ¼
maxxfu�1 ðxÞ; u�2 ðTxÞg. The zero level sets of u�1 ðxÞ and u�2 ðTxÞ are the largest

possible bodies compatible with each view. Hence, the zero level set of u�max is

the intersection of these two bodies. In general, u�max is not a distance function;

that is, it is only a solution to the Eikonal equation on the set u�max > 0. However,

it is an upper bound for the distance. Therefore, we compute the largest solution

to the Eikonal equation that is below u�max, which we call ~uu�T . This is done by

solving

jDuTðxÞj ¼ 1; on u > 0

0a uT a u�max:

�

To merge the upper distance functions, the process is simpler. We first rotate the

distance function of the second view, and then we compute the pointwise mini-

mum, uþmin ¼ minxfuþ1 ðxÞ; uþ2 ðTxÞg. The zero level sets of uþ1 ðxÞ and uþ2 ðTxÞ are
the smallest possible bodies compatible with each view. Thus, the zero level set of

uþmin is the union of those two sets. Moreover, the resulting minimum is still a dis-

tance function. Therefore, ~uuþT ¼ uþmin.

Error Function. To measure the mismatch between views, we observe that for

the correct rigid motion, T , the lower distance function, ~uu�T ðxÞ, must be below its

upper distance function, ~uuþT ðxÞ; that is, the smallest possible object corresponding

to the views must be contained in the largest possible object. For a given transfor-

mation, T , we look for the region where this condition is not satisfied. Then, we

integrate the squared di¤erence of the upper and lower function over that region

to get the error function,

EðTÞ ¼
ð
A

�
~uu�T ðxÞ � ~uuþT ðxÞ

�2
dx; ð2Þ

where A ¼ fx : ~uu�T b ~uuþT g. By minimizing EðTÞ, we obtain a rigid transformation

that minimizes the mismatch between two views.

Object Reconstruction. Let T � be a minimizer of (2). Then, the reconstruction

of the objects from two di¤erent views is straightforward. The smallest possible

object compatible with the data is given by the upper distance function, ~uuþT � ðxÞ.
More precisely, it is the points of the zero-level set of ~uuþ : fx : ~uuþT � ðxÞ ¼ 0g. We

obtain the largest object in a similar way, as the zero level set of the lower distance

function, fx : ~uu�T �ðxÞ ¼ 0g.

291Registration and shape reconstruction without matching



Integrating multiple views. To reconstruct an object, we may need to merge

multiple views. The process described before can be extended by integrating mul-

tiple views iteratively. We merge the first two views and obtain upper and lower

distance functions, ~uuþ2 , ~uu
�
2 . Then, we proceed inductively by merging ~uuþn , ~uu

�
n with

uþnþ1 and u�nþ1, according to the method described before.

3.2. Implementation. Here, we discuss the numerical implementation of our

method.

Discretized depth data. Consider a subset, Wi � Rd , containing the point cloud.

Here, d ¼ 2; 3 is the space dimension, and i ¼ f1; . . . ;Ng are the di¤erent views of

a given object or scene. We call Wi the ambient space associated with the i-th

measurement. We assume Wi to be the product of d intervals, Wi ¼ Pd
j¼1Ij. For

simplicity, we suppose that all Ij have the same length. The point cloud, C i, is

gathered by a depth sensor, such as a Kinect camera, or given by synthetic data.

We discretize the ambient space uniformly. In the 2D setting, this results in a

square grid, whereas in the 3D case, it results in a cubic grid. Then, we proceed

by inserting the depth values in that grid. In the 2D and 3D cases, we assume that

the sensor is placed on an edge or a face of the square or cubic grid, respectively.

Next, we fix a view, i, and let z be the length of the square or cubic grid. The

discretization of the ambient space for this view is Wh
n , where n is the number of

points in each dimension of the grid, and h ¼ z
n
is the discretization step. In what

follows, we discuss the 2D setting, d ¼ 2, since the 3D case is analogous. For each

view, we generate a depth matrix, c a M2nðRþ
0 Þ, that assigns a depth value to

each point of the discretization. Let C, as before, denote the depth information

simulated or retrieved by a depth sensor. The grid values for the upper depth

matrix are given by

cþ
kl ¼ jCk � lhj; for l ¼ 0; . . . ; n

cþ
kl ¼ l; Cjk > z;

�
ð3Þ

where we assign the value l (in practice, a large enough number) to points on

a ray, R, with its origin at the sensor that does not intersect the object’s surface.

This procedure gives a depth grid on which the values of zero depth correspond to

the visible surface of the object. Because we do not have information beyond that

surface, we do not know if the object fulfills, partially or entirely, the space beyond

those points. Thus, we consider a second matrix, the lower depth matrix, c�, that
assigns a zero depth to occluded points,

c�
kl ¼ Ck � lh; Ck � lh > 0

c�
kl ¼ 0; Ck � lha 0

c�
kl ¼ l; Ck > z

8><
>: ð4Þ

292 D. A. Gomes, J. Costeira and J. Saúde



for l ¼ 0; . . . ; n. These two depth functions encode two limit situations. The first,

given by (3), occurs if the object is only a thin shell. The second case, encoded in

(4), corresponds to an object filling all the space beyond the visible surface. All

possible objects that have surfaces consistent with the observations lie between

these two cases.

Numerical implementation of the Eikonal equation. Now, we describe the

monotonic scheme we use to compute uþ and u�. This scheme is closely related

to the fast-marching method in [26]. We recall that ue solve the Eikonal obstacle

problem (1) with the constraints given by ce. Because both solve the same prob-

lem, in what follows, we omit the e signs. Moreover, to simplify the discus-

sion, we present the scheme for the 2D case; for 3D problems, the procedure is

analogous. The coordinates of the grid points are ðxi; yjÞ, and we set uij :¼
uðxi; yjÞ. We consider a nine-point stencil around any grid point. We use a mon-

otonic numerical method as follows: we sort the n� n entries of the depth cube in

increasing order. Next, we start with the point with a smaller depth value and

proceed in increasing order. At each step, for a point ði; jÞ, we consider its eight

stencil neighbors. Then, we compute an auxiliary function, ûu, given by

ûu1 ¼ cij

ûup ¼ ckl þ h; kl ¼ fðie 1; jÞ; ði; je 1Þg; p ¼ 2; . . . ; 5

ûup ¼ ckl þ
ffiffiffi
2

p
h; kl ¼ fðie 1; je 1Þg; p ¼ 6; . . . ; 9:

8><
>:

The distance function is calculated as

uij ¼ min
n¼1;...;P

ûun;

where P is the number of points in the stencil, in this case P ¼ 9. This procedure

is repeated for n� n points in the discretization.

The preceding scheme is monotonically decreasing; any decrease in the neigh-

bor’s values leads to a decrease or to no change in the value of the solution at

points ði; jÞ. Thus, we can compute the distance function by visiting each point

of the grid once.

Rigid transformations. Because we do not know the rigid body transformation

that aligns both point clouds, we discretize the rotation angles, y, and the transla-

tion, t. To select the correct rigid body transformation, we compare the resulting
~uu�

�
Tiðy; tÞ

�
and ~uuþ

�
Tiðy; tÞ

�
using a mismatch criterion as before.

In our examples, we assume that the rigid transformation is a 2D rotation.

The same procedure works for rigid motions, including translations and 3D rota-

tions, at the expense of a higher computational cost.

293Registration and shape reconstruction without matching



Merging distance functions. Now, we explain how to merge two distance

functions.

To merge two upper distance functions, we start by taking the pointwise mini-

mum, which corresponds to the union of the shapes:

uþmin; ij ¼ minfu1;þij ; u2;þij g:

As discussed in Section 3.1, the resulting function, uþmin, is a distance function.

Note, in particular, that

uþminðxiÞ ¼ minfuþ1 ðxiÞ; uþ2 ðTxiÞg
¼ min

�
min
j A I

uþ1 ðxjÞ;min
j A I

uþ2 ðTxjÞ
�

¼ min
j A I

fminfuþ1 ðxjÞ; uþ2 ðTxjÞgg;

where I is the set of points in the stencil.

To merge two lower distance functions, we take the intersection of both

objects, which corresponds to the pointwise maximum,

u�max; ij ¼ maxfu1;�ij ; u2;�ij g:

This time, the resulting function may not be a distance function. We therefore

look for the largest lower distance function, ~uu�, that is below u�max; ij.

For this, we solve a discretized version of the following obstacle-type problem:

jDuj ¼ 1

ua ûu�max:

�

To compute the solution, we cannot use the previous scheme because we are look-

ing for the largest lower distance function that is smaller than u�max. We therefore

use the following modified version:

u�p ¼ ~uu�ij
u�p ¼ ~uu�kl � h; kl ¼ fðie 1; jÞ; ði; je 1Þg
u�p ¼ ~uu�kl �

ffiffiffi
2

p
h; kl ¼ fðie 1; je 1Þg:

8><
>:

Then, the merged lower distance function is given by

~uu�ij ¼ max
p¼1;...;P

u�p ;

where P is the number of points in the stencil.

294 D. A. Gomes, J. Costeira and J. Saúde



Merging the views and reconstructing the 3D model. To determine the trans-

formation angles between the views, we first compute the lower and upper distance

functions of the first view, u�1 and uþ1 , in its own frame and do the same for the

second view in its own frame. Next, we rotate the distance functions of the second

view, u�2 , u
þ
2 , for each fyi; i ¼ 1; . . . ;Ng, a discretization of the possible rotation

angles. Then, we merge the upper distance function of the first view, uþ1 , with
the rotated upper distance function, uþ2 ðyÞ, and proceed similarly with the lower

distance functions, u�1 and u�2 ðyÞ. We perform this procedure for each y a fyi;
i ¼ 1; . . . ;Ng.

As discussed in Section 3.1, the merged lower distance function, ~uu�ðyÞ, must be

below the merged upper distance function, ~uuþðyÞ. To measure the mismatch, for

each yi, we determine the set of points where this does not hold:

Ai ¼ fxkl : ~uu�kl > ~uuþklg;

where i ¼ 1; . . . ;N indexes a discretization of rotation angles.

We evaluate the error function (2) for each i a f1; . . . ;Ng as

EðyiÞ ¼
X
xkl AAi

�
~uu�ðxklÞ � ~uuþðxkl ; yiÞ

�2
: ð5Þ

Then, the correct angles of rotation between the views correspond to the mini-

mum of the components of E:

y� :¼ argminEðyiÞ:

The object reconstruction is then immediate; the smallest and largest pos-

sible objects are given by the zero-level sets of the upper and lower distance

functions, respectively. To approximate the zero-level sets, we choose a small

value, e > 0, and find the points that satisfy ~uuþðxkl ; y�Þa e and ~uu�ðxkl ; y�Þ
a e.

3.3. Complexity. Now, we discuss the complexity of our algorithm. Let P be

the number of points in the grid and let k be the number of discretizations of

the rigid transformations. Then, the complexity of the algorithm is kOðP logPÞ
as shown in Table 1. An advantage of our method is that the steps to solve the

Eikonal equation and compute the rigid body transformations are fully paralleliz-

able. For each view, we solve the Eikonal equation twice. To integrate two views,

we apply k rigid-body transformations to one of the views and superpose them.

This can be done in parallel for all k transformations.

295Registration and shape reconstruction without matching



4. 2D simulations

To visualize how our algorithm works, we begin with the two-dimensional case

(2D). We start with a single convex object. Then, we increase the complexity of

the objects, and, finally, we deal with multiple objects. We only consider rotated

views around the object/scene for simplicity; translations can be handled similarly

at a higher computational cost.

4.1. Single convex object. We consider the 2D object, whose boundaries are

drawn in red, shown in Figure 1. In blue, we show the rotation of the image by

�100 degrees. We assume that the depth sensor is positioned at the bottom of the

square and that it captures the depth information shown on the right-hand side of

the views. In Figure 1b, we see both views superposed in the same frame.

Table 1. Complexity of our algorithm for each view.

Step Complexity

Compute upper/lower depth matrices OðPÞ
Solve Eikonal equation (with FMM) OðP logPÞ
Merge upper distance functions OðPÞ
Merge lower distance functions OðP logPÞ
Compute transformation, merging and reconstruction kOðP logPÞ

Total kOðP logPÞ

Figure 1. In the left figure, the red and blue plots are two di¤erent views of the same object.
In blue, the object is rotated by �100 degrees relative to the red one. In green, we represent
the depth data from the bottom to the top of the square. On the right hand side, both views
are placed together in the same frame.

296 D. A. Gomes, J. Costeira and J. Saúde



Using the algorithm from Section 3 and the information from each view (Fig-

ure 1a), we compute two possible reconstructions of the object. The first is given

by the upper distance function, ~uuþT � (Figure 2a), and it is the smallest possible ob-

ject compatible with both views. The second reconstruction (Figure 2b), uses the

lower distance function, ~uu�T � , and represents the largest object compatible with the

data. The real object is between the largest and the smallest reconstruction.

In Figure 3, we show the error for each rotation of the second view. We see

that the minimum cost is achieved when the rotation is �100 degrees.

4.2. Scenes with occlusions. The aim of this section is to demonstrate two im-

portant features of our method. The first is that our algorithm correctly handles

Figure 2. Two possible object reconstructions, using two di¤erent views.

Figure 3. Cost function, EðyÞ, for y a ½�p; p�, in blue. In green, we see the true rotation
value, �100 degrees.

297Registration and shape reconstruction without matching



occlusions, as we show in the first experiment (Figure 4). The second is that it can

handle views that do not overlap, but, nevertheless, it can reconstruct the object

correctly (Figure 6).

We see that, even with occlusions, our algorithm successfully reconstructs the

smallest possible object (Figure 5a) as well as the biggest possible object (Figure

5b) that satisfies the constraints determined by the views.

Figure 4. The red and blue plots are two di¤erent views of the same object. The blue one
was rotated by 50 degrees. In green, we represent the depth data from the bottom to the
top of the square. On the right-hand side, we show both views superposed.

Figure 5. Two possible object reconstructions, using two di¤erent views.

298 D. A. Gomes, J. Costeira and J. Saúde



Now, we present an example where there is no overlap between the views. Yet,

we reconstruct the 2D object correctly. In Figure 6, we show the object, its rota-

tion, and the simulated captured views. In Figure 7, we see that our algorithm

correctly computed the smallest and biggest possible objects compatible the views.

Figure 6. Both views of the object.

Figure 7. Object 2D reconstruction.

299Registration and shape reconstruction without matching



4.3. Two objects. As a last 2D example, we consider two objects (a circle and a

rectangle). Two views are simulated as shown in Figure 9. Running our algo-

rithm with the simulated data, we reconstruct the smallest and largest objects

that are compatible with the views. We show our results in Figure 10.

5. 3D simulations

Now, we discuss 3D simulations. Both simulations, the Stanford Bunny and the

Happy Buddha, use point clouds from the Stanford 3D scanning repository [13].

Figure 8. Cost Function.

Figure 9. On the left, of ðaÞ, the red and blue plots represent two di¤erent views of the
same object. The blue one, shows, the object rotated by �80 degrees. On the right hand
of ðaÞ, in green, we represent the depth data from the bottom to the top of the square. In
ðbÞ we show both views superposed.

300 D. A. Gomes, J. Costeira and J. Saúde



First, we present an experiment using the Stanford Bunny point cloud. In

this experiment, we reconstruct the object using two views rotated by 180 de-

grees (Figures 11a to 11c). The reconstructed 3D object is shown in Figure

12.

Next, we perform an experiment using the Happy Buddha point cloud. In

Figures 13a to 13c, we see the two views of the Buddha used for the object’s

reconstruction.

After applying our algorithm and using the data from the partial views

showed in Figure 13a, we get the largest and smallest possible objects that

comply with the constraints. In Figure 14, we show the former and in Figure 15

the latter.

In these two examples, we obtain an excellent reconstruction of the objects

even though the overlap of the views is minimal.

Figure 10. Reconstructions of two possible objects using the data from two di¤erent
views.

Figure 11. Stanford Bunny and its simulated views.

301Registration and shape reconstruction without matching



Figure 12. Two possible object reconstructions using two di¤erent distance functions.

Figure 13. Happy Buddha and simulated views.

Figure 14. Reconstructed 3D object, lower distance function, ~uu�T � , from di¤erent per-
spectives.

302 D. A. Gomes, J. Costeira and J. Saúde



6. Merging partial views using real data

In this section we use our method to automatically fuse real depth data, that was

obtained with a RGB-D camera. The real data we use was acquired by the

authors of [6], and is publicly available in the website referred therein. In this ex-

periment we automatically integrate two views of a car, see Figure 16 for the RGB

pictures. Note that we show the pictures just for visualization, we do not use any

RGB information to fuse the, corresponding, depth data.

We also tested the ICP using the same data and it failed to align the point-

clouds correctly. We used the Matlab implementation of ICP (pcregrigid ), with

and without outlier rejection and did not get acceptable results.

For both images we use the corresponding depth data that generate the 3D

point clouds in Figure 17.

We fix the first partial view and use our method to automatically find the rigid

transformation that correctly maps the second view to the referential of the first

Figure 16. Partial views of a car acquired with a RGB-D Camera.

Figure 15. Reconstructed object, upper distance function, ~uuþT � , from di¤erent perspectives.

303Registration and shape reconstruction without matching



one. This, fuses both depth maps and construct a 3D point cloud that correctly

integrates the information from both views, see Figure 18.

To fuse the depth maps from both partial views, we discretize the space of rigid

transformations, T , composed by a 3� 3 rotation matrix, R and a translation vec-

tor t. We consider that the rotation angles ðyx; yy; yzÞ take values in the interval

� p
4 ;

p
4

� �3
. Regarding the discretization for the translation vector, we consider

the interval ½�2; 2� � ½�0:5; 0:5� � ½�0:5; 0:5� (in meters). Regarding the ambient

space W we considered the discretization of the cube ½�1:25; 1:25�2 � ½0; 2� in a

grid of N ¼ 1003 equally spaced points.

Figure 17. Point clouds for the partial views of the car acquired with a RGB-D camera.

Figure 18. Di¤erent views for the automatically integrated 3D point cloud of a car using
real depth data, acquired with a RGB-D camera.

304 D. A. Gomes, J. Costeira and J. Saúde



We first look for a coarse discretization of space of transformations, say
~NN1 ¼ 2M for M a N (we use M ¼ 18, hence we divided in 8 equally spaced points

each of the 6 intervals of possible rotations and translations). Then we chose half

of the ~NN1 initial points, that held the lower error (2), and compute ~NN2 ¼
~NN1

2 addi-

tional points in the neighborhood of the previous ones, using a smaller step size

than the previous one, say half of it. In the k step of the iteration we compute
~NNk ¼ ~NN1

k
points. Repeat this step M � 2 times to find the best transformation.

We used M ¼ 18, and therefore search for about 500 thousand di¤erent trans-

formations. We run our experiments on MATLAB 2016, using an Intel Xeon

ES-2650 v2 processor with 16 cores and base frequency of 2.0 GHz. It took

around two and a half hours to obtain the result.

We obtained the following solution: ðyx; yy; yzÞ ¼ ð0:1571; 0:4712; 0:3142Þ ra-
dians, for the angles of rotation and ðtx; ty; tzÞ ¼ ð�1:624;�0:333; 0:208Þ meters,

for the translation vector.

In the same real data repository, [6], we use the depth data from the flower pot,

that do not contain any common points see Figure 19.

Using the same methodology as previously, we search on 500 thousand dif-

ferent translations and automatically register the views in two hours and a half

(156 minutes), see Figure 20.

We obtained the reconstructions depicted in Figure 21 and 22. The pictures in

Figure 21, correspond to the upper distance function reconstruction, obtained in

the N ¼ 1003 grid, so it is not as good as using the computed transformation and

merge the original datasets, as in Figure 20.

Figure 19. Real data acquired with a RGB-D camera.

Figure 20. Fused real data for the flower pot.

305Registration and shape reconstruction without matching



7. An application

Now, we apply our methods to the clustering problem of partial views. The

problem is as follows: we are given N di¤erent views (or point clouds) from M

di¤erent objects and we would like to cluster the views that belong to the same

object. To perform this task, we compare all views by computing the minimum

of EðTÞ in (2). This procedure determines a similarity matrix, which is then used

for clustering.

For illustration, consider the four 2D objects shown in Figure 23.

We simulate twelve views of each object as follows. For each object, the first

view is taken from the bottom to the top. Then, we successively rotate each image

by thirty degrees to obtain the new view, as shown in Figure 24.

Figure 21. Reconstructed flower pot, using the upper distance function.

Figure 22. Reconstructed flower pot, using the lower distance function.

Figure 23. 2D objects.

306 D. A. Gomes, J. Costeira and J. Saúde



Given the views, the mismatch between views i and j is

Ei; j ¼ min
ym

X
xkl AAm

�
~uu�i ðxklÞ � ~uuþðxkl ; ymÞ

�2
; ð6Þ

where Am ¼ fxkl : ~uui;kl > ~uuj;klg, and ym belongs to a discretization of ½0; 2pÞ.
In Table 2, we show the twelve closest views to the view in the first column

sorted by the value in (6). We choose to show the results for only the first view

of each object due to space restrictions. The percentage of correct results is

89.8%. The numbers in red correspond to the views that does not belong to the

correct object. In blue, we show the closest view. Of all 48 views, only in one case

Figure 24. Several simulated views of the first object. Each view is rotated by 30 degrees,
clockwise, from the previous one.

Figure 25. Several simulated views of the second object. Each view is rotated by 30
degrees, clockwise, from the previous one.

307Registration and shape reconstruction without matching



did the closest view not belong to the correct object: the closest view to view 28

in Figure 26 was view 37 in Figure 27. Hence, the percentage of correct results

is 97.9%.

Finally, we assume that the number of objects is given. With this extra infor-

mation, we perform spectral clustering [18] to identify which views belong to each

four objects. For that, we construct the adjacency matrix, A, as follows

Aij ¼ Eij

kEk

	 
�1

; iA j

Aii ¼ 1:

(

With the spectral clustering, we correctly identified the correspondence of all but

one view. The algorithm mistakenly identified view 28 in Figure 26 as belonging

to the object 4 in Figure 23. Thus, we achieved a success rate of 97.9%.

Figure 26. Several simulated views of the third object. Each view is rotated by 30 degrees,
clockwise, from the previous one.

View number Closest views

1 2 3 6 8 9 10 11 12 21 20 27

13 14 15 16 17 18 4 19 20 9 21 3

25 34 36 33 35 32 26 27 30 31 5 1

37 43 39 45 47 41 40 46 38 44 48 42

Table 2. Closest views to the view in the first column sorted in descending order of
similitude. The numbers in blue indicate that the closest view belongs to the same object
as the one in the first column; the views in red correspond to a distinct object from the one
in the first column.

308 D. A. Gomes, J. Costeira and J. Saúde



8. Concluding remarks

Our algorithm can reconstruct complex shapes from 2D and 3D depth data.

Moreover, extensions such as the one discussed in Section 7 may prove relevant

to object recognition and our methods may allow computer vision systems to learn

object shapes autonomously. Recognition using intensity images is sensitive to

factors external to the object; such factors include illumination, light source, and

reflection. In contrast, recognition using range data is not sensitive to these fac-

tors. Furthermore, there are no smoothness requirements on the object surface.

Finally, it may be possible to combine our methods with other approaches. For

example, the recognition method proposed in [4] uses invariant surface character-

istics such as the Gaussian and mean curvatures. To find a match, these quantities

are compared to a library of objects. If several matches are found for the same

object, a depth map is used for further verification. This last step can be carried

out by our algorithm.

Acknowledgments. D. Gomes was partially supported by baseline and start-up

funds from King Abdullah University of Science and Technology (KAUST). J.

Saúde was partially supported by the Portuguese Foundation for Science and

Technology through the Carnegie Mellon Portugal Program under the Grant

SFRH/BD/52162/2013. The authors contributed equally to this work.

References

[1] M. Agrawal, A. Mittal and L. Davis. Multi-view reconstruction of static and dynamic
scenes. In Handbook of Mathematical Models in Computer Vision, pages 405–422.
Springer, 2006.

Figure 27. Several simulated views of the third object. Each view is rotated by 30 degrees,
clockwise, from the previous one.

309Registration and shape reconstruction without matching



[2] Paul Besl and Ramesh Jain. Intrinsic and extrinsic surface characteristics. In Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, San Francisco, California, pages 226–233, 1985.

[3] Paul J. Besl and Ramesh C. Jain. Three-dimensional object recognition. ACM Com-

puting Surveys (CSUR), 17(1):75–145, 1985.

[4] Paul J. Besl and Ramesh C. Jain. Invariant surface characteristics for 3d object recog-
nition in range images. Computer Vision, Graphics, and Image Processing, 33(1):33–80,
1986.

[5] Alexander M. Bronstein and Michael M. Bronstein. Regularized partial matching
of rigid shapes. In European Conference on Computer Vision, pages 143–154. Springer,
2008.

[6] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset
of object scans. arXiv preprint arXiv:1602.02481, 2016.

[7] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, pages 303–312. ACM, 1996.

[8] Georgios Evangelidis and Radu Horaud. Joint registration of multiple point sets.
arXiv preprint arXiv:1609.01466, 2016.

[9] Natasha Gelfand, Niloy J. Mitra, Leonidas J. Guibas, and Helmut Pottmann. Robust
global registration. In Symposium on Geometry Processing, volume 2, page 5, 2005.

[10] Hongyu Guo, Anand Rangarajan, and S. Joshi. Di¤eomorphic point matching. In
Handbook of Mathematical Models in Computer Vision, pages 205–219. Springer, 2006.

[11] Berthold K. P. Horn and Michael J. Brooks. Shape from shading. MIT Press, 1989.

[12] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of shape by space carving.
International Journal of Computer Vision, 38(3):199–218, 2000.

[13] Marc Levoy, J. Gerth, B. Curless, and K. Pull. The Stanford 3d scanning repository.
http://www.graphics.stanford.edu/data/3dscanrep, 2005.

[14] Pierre-Louis Lions, Elisabeth Rouy, and A. Tourin. Shape-from-shading, viscosity
solutions and edges. Numerische Mathematik, 64(1):323–353, 1993.

[15] Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registra-
tion of point cloud data from a geometric optimization perspective. In Proceedings

of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
pages 22–31. ACM, 2004.

[16] James Mure-Dubois and Heinz Hügli. Real-time scattering compensation for time-of-
flight camera. In Proceedings of ICVS, 2007.

[17] Richard A. Newcombe, Andrew J. Davison, Shahram Izadi, Pushmeet Kohli, Otmar
Hilliges, Jamie Shotton, David Molyneaux, Steve Hodges, David Kim, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In 10th

IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011,
pages 127–136. IEEE, 2011.

[18] Andrew Y. Ng, Michael I. Jordan, Yair Weiss, et al. On spectral clustering: Analysis
and an algorithm. Advances in Neural Information Processing Systems, 2:849–856,
2002.

310 D. A. Gomes, J. Costeira and J. Saúde

http://arxiv.org/abs/1602.02481
http://arxiv.org/abs/1609.01466
http://www.graphics.stanford.edu/data/3dscanrep


[19] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational

Physics, 79(1):12–49, 1988.

[20] Marc Pollefeys. 3d from image sequences: Calibration, motion and shape recovery.
In Handbook of Mathematical Models in Computer Vision, pages 389–403. Springer,
2006.

[21] Michael Potmesil. Generating octree models of 3d objects from their silhouettes in
a sequence of images. Computer Vision, Graphics, and Image Processing, 40(1):1–29,
1987.

[22] Helmut Pottmann and Michael Hofer. Geometry of the squared distance function to
curves and surfaces. In Visualization and Mathematics III, pages 221–242. Springer,
2003.

[23] Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. Registration without
ICP. Computer Vision and Image Understanding, 95(1):54–71, 2004.

[24] Emmanuel Prados and Olivier Faugeras. Shape from shading. In Handbook of Math-

ematical Models in Computer Vision, pages 375–388. Springer, 2006.

[25] Elisabeth Rouy and Agnès Tourin. A viscosity solutions approach to shape-from-
shading. SIAM Journal on Numerical Analysis, 29(3):867–884, 1992.

[26] J. A. Sethian. Level set methods and fast marching methods: Evolving interfaces in com-

putational geometry, fluid mechanics, computer vision, and materials science. Volume 3
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, second edition, 1999.

[27] James A. Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[28] James Albert Sethian. Level set methods and fast marching methods: evolving interfaces

in computational geometry, fluid mechanics, computer vision, and materials science, vol-
ume 3. Cambridge university press, 1999.

[29] C. Stewart. Uncertainty-driven, point-based image registration. In Handbook of Math-

ematical Models in Computer Vision, pages 221–235. Springer, 2006.

Received September 13, 2018; revision received February 5, 2019

D. A. Gomes, CEMSE Division, King Abdullah University of Science and Technology
(KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia

E-mail: diogo.gomes@kaust.edu.sa

J. Costeira, LARSyS, Instituto Superior Técnico, Ave. Rovisco Pais 1, 1049-001 Lisboa,
Portugal

E-mail: jpc@isr.tecnico.ulisboa.pt

J. Saúde, ECE Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh,
PA 15213, USA

E-mail: jsaude@cmu.edu

311Registration and shape reconstruction without matching


	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29

