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Slowly non-dissipative equations with oscillating growth
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Abstract. The goal of this paper is to construct explicitly the global attractors of semilinear
parabolic equations when the reaction term has an oscillating growth. In this case, solution
can also grow-up, and hence the attractor is unbounded and induces a flow at infinity.
In particular, we construct heteroclinic connections between bounded and/or unbounded
hyperbolic equilibria when the reaction term is asymptotically linear.
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1. Main results

Consider the scalar parabolic di¤erential equation

ut ¼ uxx þ bðx; uÞuþ f ðx; u; uxÞ ð1:1Þ

with initial data uð0; xÞ ¼ u0ðxÞ and x a ð0; pÞ has Neumann boundary. Suppose

that b; f a C2 are bounded, b is strictly positive, that is 0 < ea bðx; uÞaB for

some e > 0 and all ðx; uÞ a ½0; p� � R.

The equation (1.1) defines a semiflow denoted by ðt; u0Þ 7! uðtÞ in a Banach

space X a :¼ H 2að½0; p�Þ, where a a ð0; 1Þ denotes the fractional power. We sup-

pose that a > 3=4 so that solutions are at least C1ð½0; p�Þ. The appropriate func-

tional setting is described in Section 2.1.

We are interested in the asymptotic behaviour of solutions of (1.1) when grow-

up can occur, namely, when solutions grow unboundedly as t!l. A su‰cient

condition for grow-up to occur is b > 0, as we will prove later in Lemma 2.1. This

class of asymptotics is also known as slowly non-dissipative. In this setting, there

does not exist a global attractor in the usual sense, namely a maximal compact

invariant set that attracts all bounded sets. Omitting the compactness condition,

there is an unbounded global attractor A � X a, defined as the minimal invariant



non-empty set in X a attracting all bounded sets, firstly introduced by Chepyzhov

and Goritskii [3].

The choice of slowly non-dissipative settings in (1.1) is motivated by the

following. For the analogous equation ut ¼ uxx þ gðuÞ it is known that the larger

the limit below, in case it exists,

lim
juj!l

gðuÞ
u
¼ ~bb;

the more non-dissipative the semiflow becomes. More precisely, one can prove

that if k2 < ~bb < ðk þ 1Þ2 then on the k-dimensional eigenspace Ek, spanned by

the k first eigenvalues, the energy functional goes to �l as the norm of u in-

creases, see for instance [15]. In addition, we know that negative values of ~bb yields

dissipative flows, while if ~bb ¼l superlinear nonlinearities arise and, therefore,

solutions with finite time blow-up. Then, a crucial assumption to ensure slowly

non-dissipativity in this setting is that 0 < ~bb < l. In our original case (1.1), this

translates into

0 < lim
juj!l

bðx; uÞ þ f ðuÞ
u

< l

which is equivalent to suppose that f grows sublinearly, and the regular function

b to be positive and bounded in u, even though it might oscillate without a limit

at infinity. Although we believe that the same results proved in this paper are true

for sublinear functions f , we restricted ourselves to the bounded ones.

The goal of this paper is to decompose A into smaller invariant sets, describe

them and show how they are related.

This geometric description of the attractor A in the semilinear dissipative case

was carried out by Brunovský and Fiedler [2] for f ðuÞ, by Fiedler and Rocha [4]

for f ðx; u; uxÞ, for periodic boundary conditions by Fiedler, Rocha and Wolfrum

[5], and for quasilinear equations by Lappicy [9]. Such attractors are known as

Sturm attractors. When solutions can grow-up, the semilinear case was previously

studied by Hell [7] in order to give an understanding of the structure at infinity,

Ben-Gal [1] for f ðuÞ, Pimentel and Rocha [14] for f ðx; u; uxÞ. The case of periodic

boundary condition was treated separately in Pimentel [13]. Such attractors are

known as unbounded Sturm attractors.

Despite non-dissipativity, there still exist a Lyapunov function constructed by

Matano [11]. Hence, the following dichotomy hold: either solutions converge to a

bounded equilibrium as t!l, or it is a grow-up solution.

In the latter case, Hell [7] viewed such grow-up solutions as heteroclinic orbits

to infinity. In order to describe the dynamics of unbounded solutions, Hell added

an infinite dimensional sphere S at infinity with an appropriate flow to it, which
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is compatible with the dynamics outside arbitrarily large sets. From now on, we

abuse notation and extend the flow to infinity by X aAS in order to add such dy-

namics at the sphere S, and hence the global attractor A � X aAS consists of

such unbounded dynamics at infinity as well. This extension is made by rescaling

the solution u of (1.1), which becomes unbounded, through the compactified re-

scaled variable w which has a converging limit. In our case, the limit of grow-up

solutions lie in S and are isolated, so that such limiting objects are called equilib-

ria at infinity, denotedeFj. Moreover, there is a Lyapunov function at infinity,

and hence its associated flow is gradient. This decomposes the attractor as the the-

orem below, and its rigorous description is carried in Section 2.2 for the general

case, and in Section 2.3 in a particular setting.

Since the flow at the sphere at infinity is generally nonlinear and complicated,

we suppose that the reaction term b converges uniformly to a bounded function

blðx; uÞ in this compactification, and hence there exists a well defined limiting

flow at S. Mathematically, for any d > 0 su‰ciently small, there exists an

R > 0 such that

jbðx; uÞ � blðx; wÞja d ð1:2Þ

for all x a ½0; p� and any u a X anBRð0Þ, where BRð0Þ is the ball of radius R in X a;

and w a L2 is such that kwk ¼ 1.

Below we present the first main theorem that decomposes the attractor. In

particular, we show that the dynamics at infinity S is gradient, and hence only

consists of equilibria and connections between them.

Theorem 1.1 (Decomposition of the unbounded Sturm attractor). Consider

b; f a C2 with b, f bounded, and bðx; uÞb e > 0 satisfying (1.2). Suppose that all

bounded equilibria are hyperbolic. Then, the unbounded attractor A of (1.1) can be

decomposed as

A ¼ EAH

where the set of equilibria E consists of elements which are bounded Eb ¼ fejgNj¼1
and unbounded El; and the set of heteroclinics H contains bounded connections

Hb, grow-up solutions Hup from bounded to unbounded elements, and unbounded

connections Hl between unbounded equilibria. Mathematically,

A ¼ EbAElAHbAHupAHl:

The bounded equilibria and their bounded heteroclinic connections can be com-

puted similarly as [9]. In the upcoming Theorem 1.2, we describe how the set of

equilibria E is connected to itself, namely we will give necessary and su‰cient con-
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ditions so that a heteroclinic orbit exist. Before that, we need to introduce a new

hypothesis on bl and some particular notions.

As mentioned before, the flow at the sphere at infinity S is generally non-

linear and we do not know the complications of the dynamics at infinity, even

though we proved in the last theorem that S has gradient structure. Therefore,

we restrict the possibilities in the case b is asymptotically linear with limiting

growth bl a Rþ outside arbitrarily large sets, so that we can compute the flow at

S. Mathematically, for any d > 0 su‰ciently small, there exists an R > 0 such

that

jbðx; uÞ � blja d ð1:3Þ

for all x a ½0; p� and any u a X anBRð0Þ, where BRð0Þ is the ball of radius R in

X a.

Alternatively, one can rewrite the assumption (1.2) as

lim
kuk!l

jbðx; uÞ � blj ¼ 0 ð1:4Þ

for all x a ½0; p�.
An example that satisfies such condition and monotonically grows to a con-

stant bl is bðuÞ ¼ bl arctanðkuk þ 1Þ with bl a Rþ, since limkuk!l bðuÞ ¼ bl.

Another example is a small oscillating function close to linear with smaller ampli-

tude as u grows, namely bðuÞ ¼ bl þ sin2ðkukÞ=½kuk þ 1� with bl > 0. The case

when bðx; uÞ converges to two di¤erent constants bl1 and bl2 in di¤erent directions

could also possibly be treated in a similar fashion as the uniform convergence

to bl.

Denote by the zero number 0a zðu�Þal the number of strict sign changes

of a function u� : ½0; p� ! RA felg, rigorously defined as

zðu�Þ :¼ sup
k

There is a partition fxjgkj¼1 of ½0; p�
such that u�ðxjÞu�ðxjþ1Þ < 0 for all j

( )
ð1:5Þ

and zðu�Þ ¼ �1 if uC 0. Note we allow discontinuous and unbounded functions

u�. Nevertheless, the importance of the zero number lies in the sign changes, even

though the function might have jumps or attain value l or �l.

Recall that the Morse index iðu�Þ of an equilibrium u� a E is given by the num-

ber of positive eigenvalues of the linearized operator of the right hand side of (1.1)

at such equilibrium, that is, the dimension of the unstable manifold of said equi-

librium. Also, an equilibrium u� is hyperbolic if such linearized operator has no

eigenvalue being zero.

We say that two di¤erent equilibria u� a Eb and uþ a E ¼ EbAEl of (1.1)

are adjacent if there does not exist an equilibrium u� a Eb of (1.1) such that u�ð0Þ
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lies between u�ð0Þ and uþð0Þ, and

zðu� � u�Þ ¼ zðu� � uþÞ ¼ zðuþ � u�Þ:

This notion was firstly described by Wolfrum [16].

Both the zero number and Morse index can be computed from a permutation

of the equilibria, as it was done in [6] and [4] for the semilinear dissipative case.

For the unbounded structure, a permutation can be computed as Pimentel and

Rocha [14]. Such permutation is called the Sturm Permutation.

Next, we present the connections in case of an asymptotic linear di¤usion,

yielding a linear structure at infinity of Chafee–Infante type.

Theorem 1.2 (Connections within the unbounded Sturm attractor). Consider

b; f a C2 with b, f bounded, and bðx; uÞb e > 0 satisfying (1.3). Suppose that all

bounded equilibria are hyperbolic. Then, there are finitely many equilibria at infinity

given by El ¼ feFjgN
l

j¼0 where Nl ¼ b
ffiffiffiffiffiffi
bl
p

c, and the following holds:

(1) There is a heteroclinic uðtÞ a Hb between two equilibria ej; ek a Eb so that

ej  ���t!�l
uðtÞ ���!t!l

ek

if, and only if, ej and ek are adjacent and iðejÞ > iðekÞ.
(2) There is a heteroclinic uðtÞ a Hup between equilibria ej a Eb and Fk a El so

ej  ���t!�l
uðtÞ ���!t!l

eFk

if, and only if, ej and Fk are adjacent.

(3) There is an heteroclinic FðtÞ a Hl between two equilibria Fj;Fk a El so

Fj  ���t!�l
FðtÞ ���!t!l

Fk

if, and only if, j > k.

The remaining is organized as follows. In Section 2.1 we provide necessary

background theories and introduce the proper notation. In Section 2.2 we find

the flow at infinity and prove it is gradient, and hence the attractor is composed

of equilibria El and heteroclinics Hl. In Section 2.3, under the assumption

(1.3) and describe the sets Hup and Hl.

2. Proof of main results

2.1. Background. In the abstract setting, we consider the Hilbert space X ¼
L2ð½0; p�Þ with norm k � k and the sectorial operator A ¼ q2x with domain DðAÞ ¼
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H 2ð½0; p�Þ. For a a ð0; 1Þ, we consider the fractional power spaces X a :¼ DðAaÞ
with graph norm kuka :¼ kAauk in case u a X a, which interpolates between X

and DðAÞ. We take a > 3=4 so that X að½0; p�Þ � C1ð½0; p�Þ.
Therefore, the solution uðtÞ generates a semiflow in the underlying space X a

for tb 0. Since f is bounded, the dynamical system uðtÞ generated by (1.1) is

globally defined. Indeed, kuðtÞka is bounded for each t a ð0;lÞ and a a ð3=4; 1Þ,
where uðtÞ has initial data in u0 a X a. If Tðu0Þ denotes the maximal time of exis-

tence of the solution through u0, then it follows from [8] that Tðu0Þ ¼ þl for all

u0 a X a. This implies that blow-up in finite time does not occur.

Consider the orthonormal basis fjjðxÞgj AN0
of L2ð½0; p�Þ comprised of eigen-

functions of A with Neumann boundary conditions, i.e., jjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2p�1
p

cosð jxÞ
for j a N and j0ðxÞ ¼

ffiffiffiffiffiffiffiffi
p�1
p

. We further denote by lj ¼ �j2 the corresponding

eigenvalues, for each j a N0.

Lemma 2.1. The semiflow uðtÞ generated by (1.1) is slowly non-dissipative.

Proof. Firstly, note that since b, f are bounded, then the semigroup uðtÞ is

bounded for any given time. Therefore, one can extend such solution indefinitely

and its maximal time of existence is T ¼l. Hence, finite time blow-up can not

occur.

Decompose a solution uðtÞ of (1.1) into its Fourier modes as uðtÞ ¼
P

j ujðtÞjj.
Then we can project such semiflow in its j-component given by ujðtÞ :¼ 3uðtÞ; jj4,
yielding

_uuj ¼ 3uxx þ bðx; uÞu; jj4þ 3 f ðx; u; uxÞ; jj4:

Let fjðtÞ :¼
�
f
�
x; uðtÞ; uxðtÞ

�
; jj

�
. The strict positivity of bðx; uÞb e > 0 im-

plies

_uuj b ½lj þ e�uj þ fjðtÞ

The variation of constants formula yield

ujðtÞb eðljþeÞtujð0Þ þ
ð t

0

eðljþeÞ�½t�s�fjðsÞ ds: ð2:1Þ

Choose the particular initial data given by

ujð0Þ ¼ u�j ð0Þ �
ðl
0

e�ðljþeÞsfjðsÞ ds:
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Note f is bounded, and so is the integral above. The variation of constants (2.1)

yield

ujðtÞb eðljþeÞtu�j ð0Þ �
ðl
t

eðljþeÞ�½t�s�fjðsÞ ds:

The linear part grows exponentially as t!l, if lj þ e > 0 and the initial data

ujð0Þ2 0 for some index j, whereas the integral term with fjðtÞ term stays

bounded. At least for j ¼ 0 this condition is satisfied, since lj þ e ¼ e > 0, and

hence the lemma is proved. 9

2.2. Unbounded Sturm structure. To characterize the maximal compact attrac-

tor within the unbounded attractor, one can use a cut-o¤ function and obtain a

dissipative system. Therefore, the study of bounded trajectories, namely the com-

putation of the bounded equilibria Eb and their heteroclinics Hb is the same as the

dissipative case. This is done in [14]. Therefore, we focus on the behaviour of the

semiflow at infinity, which is a homothety of the vector field of the equation (1.1)

emphasized as

LðuÞ :¼ uxx þ bðx; uÞuþ f ðx; u; uxÞ: ð2:2Þ

In order to compactify X a, [7] used a Poincaré projection in order to identify it

with the upper hemisphere of an infinite dimensional sphere in L2 � R. We ex-

plain the ideas of such construction. Consider the phase-space X a of (1.1), iden-

tified with X a � f1g and a subspace of L2 � f1g, as the tangent space at the north
pole of an unitary northern hemisphere within an infinite dimensional sphere Sl

in L2 � R given by

Sl
þ ¼ fðw;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kwk2

q
Þ a L2 � ½0; 1�g:

Then for each point in u a X a, as a point in L2, consider a line that passes through

u and the origin ð0; 0Þ a L2 � R. The intersection of the line with the point within

the upper hemisphere of Sl
þ is the projection P of the phase space X a, as a sub-

space of L2. Its coordinates are given by

ðw; zÞ :¼ Pðu; 1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kuk2

q ðu; 1Þ: ð2:3Þ

Note that z ¼ 1 if, and only if wC 0. Hence, the north pole of Sl
þ is the origin of

X a. Also, z decreases to 0 if, and only if, the norm kuk increases to l. When

z ¼ 0, the projection P transforms the limit of grow-up solutions into the equator

Sl
þ jz¼0 of Sl, which is denoted by the normalized kwk ¼ 1. Hence, w denote co-

ordinates of the unitary sphere in L2 which is capable of determining the dynamics
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of grow-up solutions. For such reason, this is was called sphere at infinity denoted

by S.

The induced flow of L2 � f1g into Sl
þ through the projection P is given by

di¤erentiating (2.3) with respect to time, yielding

wt ¼LzðwÞ � w3LzðwÞ; w4 ð2:4Þ
zt ¼ �3LzðwÞ; w4 � z: ð2:5Þ

where the projected vector field is described by LzðwÞ :¼ zLðz�1wÞ, which is a

homothety of the original vector field (2.2) with scale factor z :¼ ð1þ kuk2Þ�1=2.
In other words, LzðwÞ ¼ wxx þ bzðwÞwþ fzðwÞ where bzðwÞ :¼ bðx; z�1w; z�1wxÞ and
fzðwÞ :¼ zf ðx; z�1w; z�1wxÞ are homoteties of b and f respectively.

Note that the equator at infinity is invariant since zt ¼ 0 in the limit z! 0.

Indeed, we firstly prove that the following is bounded,

3LzðwÞ; w4a kwxk
2 þ Bkwk2 þ 3 fzðwÞ; w4: ð2:6Þ

We only need to prove that w and wx have bounded L2 norms. By definition of w in

(2.3), it follows that kwk is bounded. If we decompose u as the sum of a bounded

finite dimensional term and an unbounded one, as it is done in [3], we can reduce

the analysis to a finite dimensional space and use the norms equivalence to con-

clude that kwxk is also bounded. See [10] for the same argument in a di¤erent

setting.

Therefore, the term in the right hand side of (2.6) is bounded, and in the limit

z! 0, the equation in the equator Sl
þ jz¼0 is given by zt ¼ 0, showing that the

equator is invariant.

We want to comprehend the flow in the equator z ¼ 0, that describes the dy-

namics at infinity Sl
þ jz¼0. Note that the limit bzðwÞ exists as z tends to 0, due to

(1.2). The corresponding flow at the sphere at infinity z ¼ 0 is given by

wt ¼ wxx þ blðwÞw� w3wxx þ blðwÞw; w4: ð2:7Þ

Alternatively, each coordinate wj ¼ 3w; jj4 satisfies

ðwjÞt ¼ ljwj þ 3blðwÞw; jj4� wj3wxx þ blðwÞw; w4: ð2:8Þ

This flow acts on the sphere at infinity Sl
þ jz¼0, which consists of bounded trajec-

tories. Since uðtÞ becomes unbounded, we define the actual sphere at infinity S

as the preimage of Sl
þ jz¼0 through P. In particular, the grow-up solutions uðtÞ

actually converge to the unbounded functions in S. Similarly, any compactified

solution wðtÞ a Sl
þ jz¼0 of the equation (2.7) corresponds to an actual unbounded

solution FðtÞ :¼ P�1
�
wðtÞ

�
a S.
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Therefore, we obtain a nonlinear flow at infinity at S, which is complicated

to study without further information on bl. Nevertheless, we can construct a

Lyapunov function at the sphere at infinity, and obtain a gradient structure within

S: equilibria points and their heteroclinic connection.

Indeed, the Lyapunov function El : Sl
þ jz¼0 ! R is given by

El ¼
ð p

0

jwxj
2

2
þ
ð w

0

blðvÞv dv dx ð2:9Þ

which yields after integration by parts, and plugging a solution w of (2.7),

dEl

dt
¼ �

ð p

0

3wt; wxx þ blðwÞw4 dx ð2:10Þ

¼ �
ð p

0

kwxx þ blðwÞwk2 � 3w; wxx þ blðwÞw42 dxa 0: ð2:11Þ

where the last inequality holds due to Cauchy-Schwartz and that w lies in the

sphere at infinity, i.e., kwk ¼ 1. Moreover, _EEl vanishes if, and only if w is an

equilibria.

Lastly, the dynamics in the attractor A � X a is contained in a finite dimen-

sional inertial manifold, as in [12], which exists in case we have a spectral gap con-

dition. This is satisfied for instance if we assume f has small Lipschitz constant

in ux. That ensures compactness for trajectories in the upper hemisphere, which

implies grow-up solutions converge to equilibria at the sphere at infinity.

2.3. Linear unbounded Sturm structure. In this section, we explore the case

when the reaction term b is asymptotically linear, yielding a linear flow at the

sphere at infinity. We gather all the tools developed in the previous sections,

in order to construct the heteroclinics within the unbounded structure S of the

unbounded attractor A for the parabolic equation (1.1). Firstly we describe

the unbounded equilibria El. Secondly, we use the y-map to describe grow-up

solutions Hup, which are seen as heteroclinics from bounded to unbounded

equilibria. Thirdly, we describe the dynamics between unbounded equilibria given

by Hl.

The next result describes El and Hl.

Lemma 2.2. There are finitely many unbounded equilibria within the attrator, de-

noted by El ¼ feFjgN
l

j¼0 where Nl :¼ b
ffiffiffiffiffiffi
bl
p

c and zðeFjÞ ¼ j. Moreover, they

are connected through a Chafee–Infante type structure.

Proof. Let’s describe the objects feFjgN
l

k¼0 and show it plays the role of equilibria

at infinity. As in Section 2.2, we want to compactify such infinite dimensional

space so that it is easier to study the behaviour of grow-up solutions.
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Let uðtÞ be a grow solution, then the following limit holds in L2-norm

lim
t!l

uðtÞ
kuðtÞk ¼ jj ð2:12Þ

if, and only if, limt!l
ujðtÞ
kuðtÞk ¼ 1. This follows from direct calculation,

uðtÞ
kuðtÞk � jj

����
����2

¼ 2� 2
ujðtÞ
kuðtÞk : ð2:13Þ

From now on, we study the growth of each uj and compare with its adjacent mode

ujþ1 so that we know for which indices j we have ujðtÞ=kuðtÞk ! 1 as t!l.

We take d > 0 su‰ciently small that will be specified later. Then, since uðtÞ
grows-up, for su‰ciently big times the solution lies outside a ball of radius R and

hence

uxx þ ðbl � dÞuþ f ðx; u; uxÞa ut a uxx þ ðbl þ dÞuþ f ðx; u; uxÞ: ð2:14Þ

We follow the idea from Lemma 2.1 together with the assumption (1.3) in order to

project a grow-up solution in the jj direction, namely uj :¼ 3u; jj4. Then,

e½ljþb
l�d�tuh;�

j ð0Þ þ I�j ðtÞa ujðtÞa e½ljþb
lþd�tuh;þ

j ð0Þ þ Iþj ðtÞ ð2:15Þ

where Iej ðtÞ :¼
Ð t

l e½ljþb
led�½t�s�fjðsÞ ds is the integral term in the variation

of constants formula, fjðtÞ :¼ 3 f ðx; u; uxÞ; jj4 and u
h;e
j ð0Þ :¼ ujð0Þ þÐl

0 e�½ljþb
led�sfjðsÞ ds.

Now choose the indices j such that lj þ bl � d > 0 and we compare the

growth rates of uj and ujþ1. This is done by checking that the lower bound of

uj is greater than the upper bound of ujþ1. Note that the integral terms Iej ðtÞ are
bounded and will not contribute to the growth. Hence, we prove that

ljþ1 þ bl þ d < lj þ bl � d: ð2:16Þ

Indeed, we can take d > 0 su‰ciently small so that

d <
lj � ljþ1

2
¼ 2j þ 1

2
ð2:17Þ

which is equivalent to (2.16). Note that there exists such d because we only con-

sider the indices j that guarantee grow-up, namely the ones such that lj þ bl �
d > 0, which is then implies that the lower bound of (2.15) has growth. There

are finitely many j so that the modes lj imply growth. Those are precisely jaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl � d
p

, i.e., the ones that ja b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl � d
p

c ¼: Nl.
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Therefore, the limit of (2.12) for a grow-up solutions only holds for one fixed

index j � which is the smallest index j such that u�j �ð0ÞA 0.

We can then simplify the equation (2.8) and obtain

ðwjÞt ¼ ½lj þ kwnk�wj: ð2:18Þ

The last term in equation (2.18) is nonlocal, and understanding such dynamics in

the sphere at infinity is inviable. This is due to the projected flow lies in a curved

space. So, we consider a secondary projection so that the induced flow lies in a

planar space.

Consider a grow-up solution uðtÞ such that its fastest growing mode with non-

zero initial data is j �. Consider also the hyperplane Cj � which is tangent to the

equator Sl
þ jz¼0 at the eigenfunction ðjj � ; 0Þ a L2 � R.

Similarly to the projection P, we consider any point u a X a � L2 and a line

that passes through ðu; 1Þ and the origin ð0; 0Þ, in L2 � R. The intersection of the

line with the plane Cj � is the projection ~PPk of the phase space X a. The coordi-

nates of the projection ~PPkðu; 1Þ are ðx; zÞ and can be computed as

ðx; zÞ :¼ ~PPkðu; 1Þ ¼
1

3u; jk4
ðu; 1Þ: ð2:19Þ

The plane Cj � can be written in its own coordinates ðx; zÞ as

Cj � :¼ fðx; zÞ a L2 � R j xj � ¼ þ1; xj a R for all j a N0g: ð2:20Þ

We di¤erentiate (2.19) with respect to t to obtain the flow in the plane Cj �

xt ¼LzðxÞ � 3LzðxÞ; jj �4x ð2:21Þ

zt ¼ �3LzðxÞ; jj �4z: ð2:22Þ

Since we are interested in the semiflow at infinity, we take the limit of (2.21) and

(2.22) as z! 0. Note that the right hand side of the equation (2.22) vanishes, be-

cause the inner product is bounded:

3LzðxÞ; jj �4a3xxx þ Bxþ fzðxÞ; jj �4

a lj � þ Bþ 3 fzðxÞ; jj �4 ð2:23Þ

using that b is bounded; in Cj � we have that xj � ¼ 1 since uj �ðtÞ is the mode that

grows the most; and f is bounded. Hence, the right hand side of (2.22) vanishes as

z! 0 and the equation in the plane Cj � jz¼0 is given by zt ¼ 0, showing that this

plane is invariant.
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In order to study the flow of the equation (2.21), we alternatively write each

coordinate xj :¼ 3x; jj4 and its induced flow in Cj � as

ðxjÞt ¼ 3xxx þ bzðxÞxþ fzðxÞ; jj4� 3xxx þ bzðxÞxþ fzðxÞ; jj �4xj : ð2:24Þ

In the limit as z! 0, we obtain

ðxjÞt ¼ ðlj � lj �Þxj; ð2:25Þ

since in (1.3) we assumed that b! bl a Rþ outside large balls in X a, which im-

plies that bz ! bl as z! 0; fzðxÞ ! 0 since f is bounded; and xj � ¼ 1 in the

plane Cj � .

Therefore, the asymptotic grow-up behaviour of the solutions uðtÞ in the pro-

jected coordinates ðx; zÞ within the planes Cj � yield the linear flow (2.25). In par-

ticular, it can be seen that the unbounded equilibria within the sphere at infinity

in the ðx; zÞ coordinates are exactly the eigenfunctions

efj � ¼ fðx; 0Þ a Sl : xj � ¼e1 and xj ¼ 0 EjA j �g; ð2:26Þ

for all j � a N0.

Using colinearity, we can relate the coordinates ðw; zÞ to the corresponding

coordinates ðx; zÞ through

ðx; zÞ ¼ 1

3w; fk4
ðw; zÞ: ð2:27Þ

In particular, the equilibria in both coordinates ðw; zÞ and ðx; zÞ coincide:

efj � ¼ fðw; 0Þ a Sl : wj � ¼e1 and wj ¼ 0 EjA j �g; ð2:28Þ

Note the linear flow (2.7) in the hyperplanes Cj � jz¼0 and the nonlinear flow (2.25)

in the sphere at infinity Sl
þ jz¼0 are topologically equivalent through the di¤eomor-

phism (2.27), since the flow of ðw; zÞ and ðx; zÞ are projections of the same semiflow

uðtÞ. Hence, P � ~PP
�1
j � : Cj � ! Sl

þ is an equivalence relation of the flows. There-

fore, they display the same dynamics. In particular, if there is a heteroclinic in the

Cj � jz¼0 hyperplanes, there is also a heterolinic in the sphere at infinity Sl
þ jz¼0.

Note that the compactified sphere at infinity Sl
þ jz¼0 consists of bounded trajec-

tories. Since uðtÞ becomes unbounded, we define the actual sphere at infinity S as

the preimage of Sl
þ jz¼0 through P. In particular, the grow-up solutions uðtÞ actu-

ally converge to the unbounded functions

FkðxÞ :¼ lim
t!l

t � jkðxÞ a S ð2:29Þ
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which is unbounded in all points that jkðxÞA 0, and has the same zeros as jk.

Similarly, any solution wðtÞ a Sl
þ jz¼0 of the equation (2.7) corresponds to an

actual unbounded solution FðtÞ :¼ P�1
�
wðtÞ

�
a S.

Note that the zero numbers ofeFk are well defined, even though they are all

unbounded in the boundary. Moreover, one can define the zero number of a dif-

ference of unbounded equilibria Fk �Fj as the zero number of the di¤erence of its

corresponding eigenfunctions jk � jj .

We now discuss the intra-infinite heteroclinics Hl in the attractor. Given an

equilibrium with j a f1; . . . ;Nlg, we want to show that there is a heteroclinic

connections from equilibriaeFj toeFk for each k a f0; 1; . . . ; j � 1g.
Indeed, we look at the evolution of xkðtÞ at the plane Cj restricted to z ¼ 0,

which is tangent to the equator Sl
þ jz¼0. This yields an expansion in the xk direc-

tion of the equilibriaeFj a Cj, since its flow is given by

ðxkÞt ¼ ðlk � ljÞxk

and lk > lj. Since this is a linear expansion, for some t�, we have that xkðt�Þ ¼ 1,

that is, xkðt�Þ intersects the plane Ck.

On the other hand, the evolution of xjðtÞ in the plane Ck restricted to z ¼ 0

yields a contraction in the xj direction of the equilibriaeFk a Ck, since its flow

is given by

ðxjÞt ¼ ðlj � lkÞxj

and lk > lj.
Lastly, note these expansion and contraction occur in the Cj and Ck planes

when z ¼ 0, respectively. Moreover, those are projections of the flow that occur

in the equator Sl
þ jz¼0, since it is obtained through the projection ~PPj that describes

the dynamics in sphere at infinity given by such equator Sl
þ jz¼0, and where intra-

infinity heteroclinics actually occur. 9

Next we address that grow-up orbits Hup. We first prove that those with a

fixed number of zeros for larges times, cannot have zero dropping at t ¼l. In

particular, a grow-up solution uðtÞ converges to a solution with a fixed number

of zeros. Later we recall the blocking and liberalism principles for unbounded

solutions.

Lemma 2.3. Let uðtÞ be a grow-up solution in the unstable manifold of an equilib-

rium ej a Eb. Suppose the following conditions hold

z
�
uðtÞ � ej

�
¼ k; sign

�
uðt; 0Þ � ejð0Þ

�
¼e1 ð2:30Þ

for all su‰ciently large times t. Then uðtÞ converges toeFk a El.

325Slowly non-dissipative equations with oscillating growth



Proof. Without loss of generality, we suppose that sign
�
uðt; 0Þ � ejð0Þ

�
¼ þ1.

Comparison implies that uðt; 0Þ > ejð0Þ for all t > 0. Therefore, limt!l uðt; 0Þ >
0. Hence, uðtÞ has to converge to some Fl a El, that is

lim
t!l

uðtÞ
kuðtÞkL2

� jl

����
����
L2

¼ 0 ð2:31Þ

by (2.12).

In order to obtain the desired statement, it is su‰cient to prove that the con-

vergence above also holds in the C1-norm. Indeed, if such convergence (2.31)

holds, then by hypothesis (2.30), the limit of uðtÞ has a constant number of zeros

for large time t, given by z
�
uðtÞ

�
¼ z

�
uðtÞ � ej

�
, and does not drop at t ¼l, since

the convergence is in C1. Hence, l ¼ k.

Any solution u lies on the finite dimensional inertial manifold and, as conse-

quence, we can apply again norm equivalence to conclude that (2.31) implies

lim
t!l

uðtÞ
kuðtÞkL2

� jl

����
����
C 1

¼ 0:

Then, the lemma is proved. 9

Similarly to the particular case of constant bðx; uÞ, we can establish blocking

and liberalism results for unbounded solutions. Those results are stated below,

and we refer to [14] for the proofs.

Lemma 2.4 (Infinite blocking). If the equilibria ej a Eb and eFk a El are not

adjacent, then they are not connected by a heteroclinic orbit.

Lemma 2.5 (Infinite Liberalism). If the equilibria ej a Eb and eFk a El are

adjacent, then they are connected by a heteroclinic orbit.
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