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mean-field games
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Abstract. In this note, we develop Fourier approximation methods for the solutions of
first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion tech-
niques, we approximate a given MFG system by a simpler one that is equivalent to a
convex optimization problem over a finite-dimensional subspace of continuous curves.
Furthermore, we perform a time-discretization for this optimization problem and arrive at
a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a
variant of a primal dual hybrid gradient method.
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1. Introduction

The mean-field game (MFG) framework [28], [29], [30], [31], [32] models systems
with a huge number of small identical rational players (agents) that play non-
cooperative differential games. In this framework, a generic player aims at
minimizing a cost functional that takes the distribution of the whole popula-
tion as a parameter. Consequently, the problem is to find a Nash equilibrium
where a generic player cannot unilaterally improve his position. For a detailed
account on MFG systems we refer the reader to [12], [15], [18], [19], [24], [25],
[27], [34].

In this note, we introduce Fourier approximation techniques for first-order
nonlocal MFG models. More precisely, we consider the system

—du+ H(x,Vu) = F|x, m]
om — le(mVpH( Vu)) = (x,0) € TY x [0, 1], (1)
m(x,0) = M(x), u(x,1)= U(x)7 xe T
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Here, u: T? % [0,1] = R and m: T x [0,1] — R, are the unknown functions.
Furthermore, H € C*(T“ x R?) is a Hamiltonian, and F : T¢ x 2(TY) — Ris a
nonlocal coupling term between the Hamilton—Jacobi and Fokker—Planck equa-
tions. Above, T is the d-dimensional flat torus, and 2(T¢) is the space of Borel
probability measures on T¢. Next, U € C*(T%) and M € L*(T?) n2(T") (with
a slight abuse of notation we identify the absolutely continuous measures with
their densities) are terminal-initial conditions for u and m, respectively.

In (1), u represents the value function of a generic agent from a continuum
population of players, whereas m represents the density of this population. Each
agent aims at solving the optimization problem

1
u(x, 1) = inf J L(y(5),7(s)) + F(y(s),m(-,9) ds + U (y(1)), (2)

yeH ([t,1]).9()=x J;
where L is the Legendre transform of H; that is,

L(x,v) =sup—v-p—H(x,p), (x,v)eT?xR
p

Hence, U is a terminal cost function. Since a generic agent is small and her ac-
tions on the population distribution can be neglected, we assume that m is fixed,
but unknown, in (2). Consequently, # must solve a Hamilton—Jacobi equation;
that is, the first PDE in (1) with terminal data U.

Furthermore, given u, optimal trajectories of agents are determined by

§(s) = =VpH (7(s), Vu(3(s) ).

Therefore, m, being the population density, must satisfy the Fokker—Planck equa-
tion; that is, the second PDE in (1) with initial data M. Hence, M is the popula-
tion density at time z = 0.

The existence, uniqueness and stability theories for (1) are well understood
[14], [15], [32]. Here, we are specifically interested in approximation methods
for the solutions of (1) that can be useful for numerical solution and modeling
purposes.

Currently, there are number of effective approximation methods for solutions
of MFG systems. We refer to [1], [2], [3], [4] for finite-difference schemes, [16], [17]
for semi-Lagrangian methods, [6], [9], [10], [11], [13] for convex optimization tech-
niques, [5], [26] for monotone flows, and [22] for infinite-dimensional Hamilton—
Jacobi equations. Although general, the majority of methods above are particu-
larly advantageous when F in (1) depends locally on m. The reason is that local
F yield analytic pointwise formulas for infinite-dimensional operators involved
in the algorithms. Instead, nonlocal F do not yield such formulas. Additionally,
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fixed-grid methods suffer from dimensionality issues. Also, the number of inter-
nodal couplings grows significantly for nonlocal F which leads to an increased
complexity of such schemes. Hence, we are interested in developing approxima-
tion methods that specifically suit nonlocal F' and are grid-free.

Our approach is based on a Fourier approximation of F and is inspired by the
methods in [35]. Here, we use the classical trigonometric polynomials as an ap-
proximation basis. Nevertheless, our method is flexible and allows more general
bases. For instance, one may consider (1) on different domains and boundary con-
ditions and choose a basis accordingly.

Additionally, our approach yields a grid-free numerical approximation of u
and m. More precisely, we directly recover the optimal trajectories of the agents
rather than the values of u and m on a given grid. In particular, our methods may
blend well with recently developed ideas for fast and curse-of-the-dimensionality-
resistant solution approach for first-order Hamilton—Jacobi equations [21], [33],
[36]. Hence, our techniques may lead to numerical schemes for nonlocal MFG
that are efficient in high dimensions.

To avoid technicalities, we consider a linear F. More precisely, we assume that

Flx,m] = JW K(x, y)ym(y,t)dy, xeT9 me2(TY),

where K € C*(T“ x T%). Thus, here we deal with the system

—0u+ H(x,Vu) = [ K(x, y)m(y,1)dy,
dim — div(mV,H (x,Vu)) = 0, (x,0) e TY x [0, 1], (3)
m(x,0) = M(x), u(x,1)=U(x), x¢€ T,

Our basic idea is to show that when K is a generalized polynomial in a given
basis then (3) is equivalent to a fixed point problem, in a space of continuous
curves, that has nice structural properties. In particular, when K is symmetric
and positive semi-definite, (3) is equivalent to a convex optimization problem in
the space of continuous curves.

Furthermore, we discuss how to construct generalized polynomial kernels that
approximate a given K. Additionally, we observe that for translation invariant K
the approximating kernels have a particularly simple structure. Consequently, for
such K the aforementioned optimization problem is much simpler to solve.

The paper is organized as follows. In Section 2, we present standing assump-
tions and some preliminary results. In Section 3, we prove the equivalence of
(3) to a fixed point problem over the space of continuous curves when K is a gen-
eralized polynomial. Next, in Section 4, we discuss approximation methods for
a general kernel. Furthermore, in Section 5, we construct a discretization for the
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optimization problem from Section 3 and devise a variant of a primal dual hybrid
gradient algorithm for the discrete problem. Finally, in Section 6, we study sev-
eral numerical examples.

2. Assumptions and preliminary results

We denote by T¢ the d-dimensional flat torus. Furthermore, throughout the
paper, we assume that H € C>(T¢ x RY), and

! 2 d d
Eld <V, H(x,p) <Cls, V(x,p) e T xR, @
~C(1+|pl) <ViH(x,p) - p,  V¥(x,p) e T!x RY,

for some constant C > 0. Next, we assume that M € L*(TY) n2(T9), U e
C*(T), K e C*(T? x TY), and

M| o rays Ul 2y 1K coparay < C (5)
(

Additionally, we suppose that K is positive semi-definite; that is,

|, KGrero)asar =0 e (T ©)

We call K symmetric if
K(x,y)=K(y,x), Vx,yeT" (7)

Next, we denote by Q(Td) the space of Borel probability measures on T¢. We
equip 2(T“) with the Monge—Kantorovich distance that is given by

s =g = sup{ | | 83) (msC) = () s Uy < 1) (9

In the rest of this section, we present some preliminary results and formulas.
For the optimal control and related Hamilton—Jacobi equations theory we refer
o [8], [23]. We begin by the definition of a solution for (3).

Definition 2.1. A pair (1, m) is a solution of (3) if u € W (T x [0, 1]) is a vis-
cosity solution of

{ —Ou+ H(x,Vu) = [;. K v, ) dy, (x,1) e T¢x[0,1], o)

ulx,1)=U(x), xe€ '[Fd,
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and m e L*(T“ x [0,1]) n C([0,1); 2(T“)) is a distributional solution of

(10)

om — div(mV,H(x,Vu)) =0, (x,t) e T? x [0,1],
m(x,0) = M(x), xeT9

The following theorem [14], [15], [32] asserts that (3) is well-posed.

Theorem 2.2. (i) Under assumptions (4) and (5), system (3) admits a solution
(u,m). Moreover, there exists a constant C1(C) > 0 such that

Vet lullyr llmll < €, (11)

for any solution (u,m). Additionally, if (6) holds then (u,m) is unique.

(1) Solutions of (3) are stable with respect to variations of U, M and K in respective
norms. Particularly, suppose that {K,}*, C C*(T¢ x T%) is such that

lim [[K — K| copaepa) = 0, (12)

r—0o0
and {(uy,m,)}2, are solutions of (3) corresponding to kernel K,. Then, the

sequence {(uy,m;)};~, is precompact in C(T* x [0,1]) x C([0,1]; 2(T%)) with
all accumulation points being solutions of (3). Consequently, if (6) holds then

lim w,(x, 1) = u(x,1),  uniformly in (x,1) € T¢ x [0,1],

rlin%v [lm,(-, 1) —m(-, t)|| ;¢ =0,  uniformly in t € [0, 1], 13)
where (u,m) is the unique solution of (3).
Next, consider an arbitrary basis of smooth functions
O ={¢.¢.....4,} C CHTY). (14)
Fora = (aj,as,...,a;) € C([0,1]; R") we denote by u, the viscosity solution of
{ ~oln )+ H 5 Valn ) = a0, (w0 e Tx 01 o
u(x,1)=U(x), xeT

From the optimal control theory, we have that

yeH'([1,1]),()=x J;

1 r
wien= it (L06):56) + Y alh06)) d+ UG), (16)
i=1
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for all (x,7) € T? x [0, 1], where

L(x,v) = sup —v-p — H(x, p). (17)
peRd

Moreover, for all (x,7) € T x [0, 1] there exists Vera € CH([1,1]; T) such that

1
ua(x’ t) :J (L(yx,t,a< yxta +Z:al yrra ))) dS+ U(yx.,t,u(l))’ (18>

t

and
d .
%VUL(yx,t,a(S)?yx. t.a(s))
:VxL(Vx,t,a( yvra Zal V¢ y‘cta )) selr1]. (19)
Additionally,

—VoL(x, 7, ,.4(1) € Viug(x,1),
_VUL(yx,Iva(SL))x,t,a(s)) = qua(VxA,t.a(s)as)v se(41], (20)
_?x‘t,a(s) = V}JH(Vx,t,a(S):qua(yx,t,a(s)vs))v s e (t,1].

In fact, this previous equation is also sufficient for (18) to hold. For lighter nota-
tion, we denote y, o , by 7, -

In general, u, is not everywhere differentiable. Nevertheless, u, is semicon-
cave and hence V' u,(x, ) # 0 for all (x,7), and V' u,(x, 1) = {Vu,(x,1)} for a.e.
(x,£). In fact, points (x,¢) where u, is not differentiable are precisely those for
which (16) admits multiple minimizers. Thus, at points x € T where u,(x,0) is
not differentiable we choose 7, , in such a way that the map (x,?) — y, ,(?) is
Borel measurable.

Furthermore, we denote by m,, the distributional solution of
om — div(mV,H(x,Vu,)) =0, (x,7) e T x [0,1], 1)

m(x,0) = M(x), xeT9

One can show that m,, is given by the push-forward of the measure M by the map
7..4(2); that is,

ma(- 1) = 7. (O#M. (22)



Fourier approximation methods for first-order nonlocal mean-field games 373

We equip C([0, 1]; R") with the L* norm

lall,, = max sup |a;(7)].
tel0,1]
Then, one has that
lim 174, (-, 2) — mu (-, )|l )k =0,  uniformly in ¢ € [0, 1], (23)

if lim ||a, —al|,, = 0. For a detailed discussion on m, see Chapter 4 in [15].
n—oo

Finally, we denote by

G(a) = Ld us(x,0)M(x)dx, ae C([0,1];R"). (24)

Our first theorem addresses the properties of G.

Theorem 2.3. The functional a — G(a) is concave and everywhere Fréchet differ-
entiable. Moreover,

04,G = J ¢ (xX)my(x,-)dx, 1<i<r. (25)
"ﬂ"[
Proof. We denote by
pla) = (JW ¢;(x)my(x, ) dx)::1’ ae C([0,1]; R").

We prove that for every a € C([0, 1]; R")
0= G(b) - G(a) = (b—a) - pla) = o(||b - al.,)-
We have that

G(b) — G(a) = (b —a) - p(a)

1
N .LI“ M(x)dxjo (L(be yrb +Zb be )dl‘F U(Vx,b(l))
- er M (x) dx J; (LOral®): a0 + Z i (70.a ) dt+ U(p, (1))

(bi(1) — ai(1)) dtj b:(x)my(x, 1) dx.

T d
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From (22) we have that

J ) ¢.(x)my(x, 1) dx = J I¢l~(yx7a(t))M(x) dx, tel0,1,1<i<r.
T T

Hence,

G(b) — G(a) — (b —a) - p(a)
1
= | M | LO0:500(0) = LOwal0).Feal0)
+J de Zb (¢ ( Pan(t ¢i(yx,a(t)))dt
+ Ld M(x)(U(755(1) = U(py.0(1))) dx.

By definition, we have that

1
JO L(yxb yxb +Zb yvb dZ+U(y>cb(1))

1
< J L(an Yxa +Zb y‘ca dt"i'U(yx a(l)) Vxe—ﬂ—d.
0

Hence,
G(b) — G(a) — (b —a) - pla) <0, Va,be C([0,1];TY).

This previous inequality yields the concavity of G. On the other hand, we have
that

G(b) — G(a) — (b —a) - p(a)

| M) dxj SO Bi(0) = () (4, (72.5(0)) — 1 (7.a(0))) .

0 =1
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Therefore, again by the definition of y, , and y, ,, we have that
G(b) = G(a) = (b —a) - p(a)

1 r
= [ M) [ S0 = a0) (8, 0) = )

0 =1

r

zwwwuzﬂmymmeww—j@mﬁmwmﬂm

i1 T
=—|b—adl, zr: JOI ’Ld ¢;(x)mp(x, t) dx — JV &;(x)my(x, 1) dx‘ dt

i=1

—||b—a\|mZLlp JHmb 1) = ma (-, 1) ||y dt

Hence, by (23) the proof is complete. ]

3. The optimization problem

In this section, we assume that K is a generalized polynomial in the basis ®;
that is,

X)) =Y kigi(0)8,(»),  x,yeT (26)
Q=1

where K = (k;); =1 € M, »(R) is a matrix of coefficients. For such K, (3) takes
form '

—0u+ H(x,Vu) = 2’:¢l 2’: kij IT” ;1) dy,

i=1 j=1
dim — div(mV,H (x,Vu)) = O (x,0) e TY x [0, 1],
m(x,0) = M(x), u(x,1)=U(x), xeT9

(27)

Our main observation is the following theorem.

Theorem 3.1. (i) 4 pair (u,m) is a solution of (27) if and only if (u,m) =
(tty=,my-) for some a* € C([O7 1}; R") such that

a* =Ko, G(a"). (28)
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(i) If K is positive-definite then (28) is equivalent to finding a 0 of a monotone
operator a — K~ 'a — 0,G(a), a e C([0,1]; R").

(iii) Additionally, if K is symmetric, (28) is equivalent to the convex optimization
problem

1
inf  —(K! -G
aeC(llgl];R">2< a,ay = Gla)

1
= inf —<K! — “ M . 2
aeC(l[l(;l,l];R’)2< a,ay Lﬂu (x,0)M (x) dx (29)

Proof. Items (ii) and (iii) follow immediately from (i) by the concavity of G.

Thus, we just prove (i).
By Theorem 2.2 (27) admits a solution (u,m). Furthermore, define a* as

Zk,,J . (V)m(y, ) dy, tel0,1]. (30)

Then a* € C([0,1]; R"), and by the definition of u, and m, we have that (u,m) =
(tq+,my+). Hence, by Theorem 2.3, we have that

04,G(a") = J di(x)m(x,-)dx, 1<i<r.

T d

Consequently, from (30) obtain
ai =Y kyly,G(a®). O
=1

Remark 3.2. The optimization problem (29) is equivalent to the optimal control
of Hamilton—Jacobi PDE pointed out in [32] (equations (58)—(59) in Section 2.6).
One can think of (29) as (58)—(59) of [32] written in Fourier coordinates.

4. Approximating the kernel

In this section, we show that one can construct suitable approximations for an
arbitrary K. We begin by a simple lemma.

Lemma 4.1. Suppose that K is given by (26). Then K is positive semi-definite if
and only if K = (k) 2:1 is positive semi-definite.
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Proof. Fix an arbitrary (£;)!_; € R". Then there exists a unique (4;);_, € R" such
that

§= 4| 4wed 1<isn
=T

because {¢,} are linearly independent. Therefore, for

/= Z 2i9;
j=1

we have that

¢i= J S (x)¢;(x) dx, I<i<r.
T

Hence,

|, KGrer)adr = 3 ke
TxT =1

that yields the proof. O
Now, we fix our basis to be the trigonometric one:
¢, (x) =™ xeT! aez? (31)

Remark 4.2. Unlike in (14), here it is more practical to use multi-dimensional
indexes to enumerate the trigonometric functions in higher dimensions. Addition-
ally, it is more economical in terms of notation to use the complex-valued trigono-
metric functions. Nevertheless, our discussion is always about real valued K, and
the reader can think of the end results as expansions in terms of {cos(2zx - x),
sin(27o - x) b, e 5.

For o = (01,02, ...,04) € Z, we denote by
lof = (ou], o2l - - s [otal)
and for o, r € Z¢

u<r <= o<r, 1<j<d
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Forry,r € Ng we denote by

Krlrz (X, y) = Z f{aﬂeﬁn(wx-!—/i-y)’ X,V € —l]—da

o] <ri, Bl <r2

where
Ky = J K(x, y)e 2m0xtbY) dx dy, o, e 79,
‘H'd

Furthermore, for r,r; € Ng we denote by

1

K. (x,y) x,yeT?
d 112\ V') )
Hj:l(l + rl./)(l + sz) la| <11, Bl <12

Zrlrl (X, Y) =

Remark 4.3. The function K,,,, is the rectangular partial Fourier sum of K.
Correspondingly, %, ,, is the rectangular Fejér average of K. Additionally, if K
is real valued then X,,,, and %, ,, are real valued for any ry,r; € Ng .

Proposition 4.4. If K is positive semi-definite (symmetric) then, K,, and X,, are also
positive semi-definite (symmetric) for all r € Nod. Moreover,

lim [[Z — K| oo ey =0, (32)

min; rj— o0
Additionally, if K € C3(T x T?) then

lim ||Ky = K| copaypay = 0. (33)

min; rj— 00

Proof. The convergence properties (32), (33) are classical results in Fourier analy-
sis. Thus, we will just prove that K, and Z,, are positive semi-definite (symmetric).
For that, we use the representation formulas

K. (x,y) = J K(z,w)D;(x — z, y — w) dz dw,
T%T4

Y.(x,y) = J o K(z,W)Fy(x —z,y —w)dzdw, x,ye T
TxT

where D,, and F,, are, respectively, the 2d-dimensional rectangular Dirichlet and
Fejér kernels. A crucial feature of D,, and F,, is that they are symmetric and
decompose into lower dimensional kernels:

D, (z,w) = D,(2)D,(w),  Fy(z,w) = F,(2)F.(w), z,we T,
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where D, and F, are the corresponding d-dimensional kernels. In particular, K,,,
%, are symmetric if K is such. Furthermore, for an arbitrary f € L= (T“) we have
that

|, Kelenror() axar
TOxTe

= K(z,w)d=z de f(X)f(y)Dp(x —z, vy —w)dxdy

TIxT9

= K(z,w)d=z de f(xX)f(y)D(x —z)D,(y — w) dxdy

TIxT9

= K(z,w)f(2) fr(w)dzdw > 0.

TIxT4

Thus, K,, is positive semi-definite if K is such. The proof for Z,, is identical.

Remark 4.5. By Proposition 4.4, kernels K,,, ,, are positive semi-definite. There-
fore, their coefficients matrices with respect to basis {cos(2zx - x), sin(27na - x)} are
also positive semi-definite by Lemma 4.1. Nevertheless, to take full advantage
of Theorem 3.1 one would need these matrices to be positive definite (invertible).
To solve this problem one can add &/ regularization term, where / is the iden-
tity matrix of the suitable dimension and ¢ > 0 is a small constant. However, as
discussed below, this regularization is not necessary for translation invariant
kernels.

Suppose that
K(x,y):n(x—y), xJGTJ’

where 7 is a periodic function. Then, we have

JW K(x,y)cos(2ra - y)dy
= J {n(x — y)cos(2ma - y)dy = J /n(y) cos(2nor- (x — y)) dy
T T

= cos(2no. - X) JW n(y)cos(2zmo - y) dy

+ sin(2no: - x) Ld n(y)sin(2no - y) dy. (34)

Similarly, we obtain that
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J K(x,y)sin(2no. - y) dy
-ﬂ—d
= Jw n(x — y)sinQra - y) dy = Jw n(y)sin(2no - (x — y)) dy

= sin(27na - x) J n(y)cos(2mo - y) dy
Td

— cos(2no. - x) er n(y)sin(2na - y) dy. (35)

Therefore, we have that

J K(x, y)cos(2ra - x) cos(2ma - y) dx dy :J n(y)cos(2mo - y) dy,
Td T4

J K(x, y)sin(2zna - x) cos(2na - y) dx dy :J n(y)sin(2na - y) dy,
-H'd -H'z[

J K(x,y)cos(2ro - x)sin(2na - y) dx dy = —J n(y)sin(2na - y) dy,
T4 T!

J K(x,y)sin(2na - x) sin(2zo. - y) dx dy :J n(y)cos(2mo - y) dy.
-ﬂ'd -H'(l

Hence, the coefficients matrices of partial Fourier sums (and their linear combina-
tions) of K consist of 2 x 2 blocks that correspond to expansion terms with a fre-
quency o € Z9; that is,

A, — < Jyan(y)cosua- y)dy — [ran(y)sin2ua- y) dy)l

— Jyan(y)sin2ro- y)dy  [an(y)cos(2na- y)dy (36)

Thus, the coefficient matrix will be degenerate if det(A,) = 0 for some «. But we
have that

2

det(8) = (| n(v)eostans- y) ) + (JW (y) sin(2mz - ) dy)

-H—tl

Hence, det(A,) = 0 if and only if A, = 0 or, equivalently, there are no expansion
terms with frequency «. But then, we can simply ignore these terms in our basis
and obtain a non-degenerate matrix.

Moreover, to invert the coefficients matrix one just has to invert the 2 x 2
blocks. Additionally, if K is symmetric; that is, #(y) = n(—y), we get that

J n(y)sinQno- y)dy =0, Voe 2z
Td



Fourier approximation methods for first-order nonlocal mean-field games 381

Hence, the coefficient matrices are simply diagonal. Therefore, we have proved
the following proposition.

Proposition 4.6. If K is translation invariant then all partial Fourier sums of K and
their linear combinations, such as K, and X,,, contain only cos(2zo. - x) cos(2zmo - ),
cos(2zma - x) sin(2ze - y), sin(2zo - x) cos(2no - y), sin(2zo - x) sin(2z7a - y) expan-
sion terms. Therefore, coefficient matrices of such approximations with respect to
trigonometric basis consist of 2 x 2 blocks that are multiples of A, in (36). Addition-
ally, if K is symmetric these coefficient matrices are diagonal.

Remark 4.7. In general, if {¢,,¢,,...,¢,,...} is an orthonormal basis consisting
of eigenfunctions of Hilbert—Schmidt integral operator f(-) — [ K(-, y)f(y)dy;
that is,

| K ar =0, xeThaen,
'ﬂ'(

for some {4,} C R. Then, one has that

o = | K 0 (05(0) ey = i

Consequently, for arbitrary / C N x N we have that

Ki(x, ) = Y kupby(bs(0) = D by (), (p).

(a, ) el (o,0) €1

Therefore, all partial Fourier sums of K in basis {¢,(x)¢z(»)} contain only terms
#,(x)¢,(v) and yield diagonal coefficient matrices consisting of corresponding
eigenvalues of the Hilbert—Schmidt integral operator.

In general, it is not easy to calculate the eigenfunctions of a given Hilbert—
Schmidt integral operator. Nevertheless, as we saw above, for translation invari-
ant symmetric periodic K these eigenfunctions are precisely the trigonometric
functions.

5. A numerical method

In this section we propose a numerical method to solve (3) for a symmetric and
positive semi-definite K. We assume that an approximation K, of the form (26)
is already constructed with a symmetric and positive definite K. Thus, we devise
an algorithm for the solution of (27).
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By Theorem 3.1 we have that (27) is equivalent to (29). Therefore, in what
follows, we present a suitable discretization of (29). We rewrite latter as

inf S 37
acc(O:RY) (@) 37
where
1
S(a) = §<Ja7a> - G(a)7
and J =K L.

5.1. Discretization of the u,. We start with the discretization of u,. For that,
we discretize the representation formula (16). We can rewrite latter as

1

us(x,0) = irﬁf Jo L, (x(s),b(s),s) ds + U(x(1)), (38)

where x satisfies the following controlled ODE
x(s) =b(s), x(0)=x, se]0,1]. (39)
Recall that
Lo(x,b,5) = L(x,b) + > _ar(s)g(x),  (x,b,5) € T/ x RY % [0,1].
k=1
We choose a uniform discretization of the time interval:
O=sp<si<$H<---<sy=1,

with a step size i, = ﬁ, hence s; = ih, = ﬁ We denote the values of x and b at
time s; by x(s;) = x;, b(s;) = b;. Using a backward Euler discretization of (39)

we have

Xi — Xi—1

o ie{l,...,N}.

u;, =

Discretizing the integral (38) with a right point quadrature rule and using the
above discretization we get

— 1 , N . XiTXie .
] (5,0) = inf o 2% L (30,5550 ) + Uy, 40)
subject to:  xp = x.
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5.2. Discretization of G. We start by discretizing the initial measure M using a
convex combination of Dirac ¢ distributions. Denoting the discretized measure
[M], we have

0
M) = Z €40y,
=1
or, in the distributional sense,
. d
| voianm =Y et e (41)
o=1

for some {y“}ocQ:l c T4 and {c, > O}aQ:1 such that Zagzl ¢, = 1. Then, G is dis-
cretized as follows

Cx[tta] (Y2, 0)- (42)

I
K
[)e

5.3. Discretization of S. Now, we discretize (37). We first discretize ay-s by
taking their values at times s;, that we denote by:

lal, = (ar(s0), .., ak(sn)) = (axo, ... akv), k=1,2,....r.
Recall that
r 1
Ja,ay = Z JHJ ar(s)ay(s) ds.
k,i=1 0
We discretize this previous quadratic form by a simple right point quadrature rule.
[Ja,ay] = hy Z Jklzakzah
k=1 =l

So the discretization of S is

l\)\}‘

[S]< kl Z Aaiidj —
k,I=

ZZ ;Zak,ah Zc, [t4a] (¥4, 0), (43)

I=1 o=1

| =
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where we used (42). Therefore, the discretization of (37) is

o N oo
. _ o(i—1)
{12f} [S](@) = inf  sup g J E ariay — hy g E ¢y L (Xm—ht )

{at} {xyxa0=y.} kl 1 i=1 a=1 i=1

N
- hl Z Z C akl¢k xocl Z Cac xocN (44)
k=

o=l i=1

5.4. Primal-dual hybrid-gradient method. Now, we specify the Lagrangian to
be quadratic and devise a primal-dual hybrid-gradient algorithm [20] to solve
(37). More precisely, we assume that
b 2
L(x,b) :%7 (x,b) e T? x R,

and therefore (44) becomes

N 2

. |xxl_ Xo(i )|
inf [S](a) = inf  su J araj; —_
ORI D S WD

(@i} {XuiXa0=Yx} 2 k,l1=1 i=1 o=1 i=1

- ht Z Z Z caakz¢k xm Z Cx xacN (45)

o=l i=1 k=

Now, we describe the algorithm For each iteration time v > 0 we have three
groups of variables: a" = {a};}, kl X ={x, }M 1o-and z" = {z} }M 1.0- Fur-
thermore, we fix 4, w > 0 that are prox1ma1 step parameters for variables ¢ and x,
respectively. Additionally, we take 0 < 0 < 1.

Step 1. Given a’, x", z" the first step of the algorithm is to solve the proximal
problem

‘2
g;lf 3 Z JMZ%% ZZ
i} a=1 i=
O N r 1 < N
R0 ) N WTTACIE FRENESE 9 ST
a=1 i=1 k=1 k=1 i=1
that is equivalent to
O N r 1< N
{lﬁf} > Z szzak,a/, —h Y D ity (2, i)t 55 (axi — ajy)’

k=1 i=1 o=1 i=1 k=1 k=1 i=1
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Thus, we obtain the following update of the a-variable.

aLJrl a11+}'hf29< ICOC¢1(Z )
ay! ay.+ Ah Cyhr(z
ol = hd1d) | tzf‘l #2(2) . 1<i<N. (46)
a’t! a’, +ih,2% | Catho(21)

Remark 5.1. Although the number of variables {a}/" kiz1.1 18 7 x N, the calcu-
lations of {a;;} for different i-s are mutually independent. Therefore, the only
complexity is in the inversion of an r x r matrix AgJ + Id, that can be computed
beforehand and used throughout the scheme. Moreover, as seen in Section 4,
translation invariant symmetric kernels yield diagonal matrices that extremely
simplify the calculations.

Step 2. Given a"*!,x”,z" we update x-variable by solving the proximal
problem

N |x _ H 9 N
. ol oc i— 1
inf E E +ht E E E Cyd l+ ¢k xoa
{XuiXa0=yx} o=l i= a=1 i=1 k=

+anU(xaN)+%ZZ|xm_x .
=1

o=1 i=1

Solving this previous problem may be a costly operation. Hence, we just perform
a one step gradient descent. Therefore, we obtain

v+l v WCy WCy v+l
Xy =X — —— (X1 — Yu) — —— (X1 — X2) — wChy E a; Vi (Xa1),

2l T I,
xovfl =Xy — a;li“ (Xoi = Xa(i-1)) — wh—ia (Xui = Xa(it1))s
— wegh; Za,i”Vgék Xyi), 1<i<N-1, (47)
I Wy

Xoy = Xyy — T ~(Xan — Xy(v—1)) — @ VU (X))

r
— weyhy ZaZX,IV@C(xaN).
=1

Step 3. In the final step we update the z-variable by

ZV-+1 _ t+1 +0( v+1 xv'% l<oa< Q7 l1<i<N. (48)

ol ol
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Remark 5.2. Note that the updates for {x,;}, {z,;} variables are mutually inde-
pendent for different o-s. Therefore, our a-updates are parallel in time, and x, z-
updates are parallel in space.

Remark 5.3. Strictly speaking, one cannot simply apply the primal-dual hybrid
gradient method to (45) because the coupling between a¢ and x is not bilinear,
and there is no concavity in x. Nevertheless, our calculations always yield solid
results. Therefore, there is a natural problem of rigorously understanding the con-
vergence properties of the aforementioned algorithm. We plan to address this
problem in our future work.

6. Numerical examples

In this section, we present several numerical experiments. We first look into one-
dimensional case, in Section 6.1, and after we consider the two-dimensional case,
in Section 6.2.

For our calculations, we choose the periodic Gaussian kernel that is given
by

d
Uﬂ (x,») H o1 (Xiy Vi) x,ye T (49)
i1
where
1 K - —y—k)?/2(c/2)*
Ka ,u(xa y) = 2 Z e—(,\—}— )'/2ef2) ) X,V € T, (50)
(g i

and o, > 0 are given parameters. Here, ¢ models how spread is the kernel.
The smaller ¢ the more weight agents assign to their immediate neighbors —
this translates into crowd-aversion in the close neighborhood only. Further-
more, u is the total weight of the agents. Therefore, ¢ measures how sensitive
is a generic agent to the total population, the bigger the more averse is the
agent to others. As we observe in the numerical experiments, the less ¢ and the
larger u the more separated are the agents. This phenomenon was also observed
in [7].
Throughout the section we denote by

1, k=1,
$r(x) = V2cosn(k — 1)x, if kis odd, and k > 0, (51)
V2 sin ke, if kiseven, x e T.
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Therefore, we have
{1, 05, 45,...} = {1,V2sin2nx, V2cos2nx, ...}

6.1. One-dimensional examples. For all simulations we use the same initial-
terminal conditions

1 5. .
M(x):6+§s1n27zx, U(x)—1+s1n<47zx—|—g>, xeT,

that are depicted in Figure 1.
We also use the same time and space discretization for all one dimensional
experiments, and the same parameters for the numerical scheme. We discretize

the time using a step size At = % For the discretization of M we use

i o = M(ys)
O+1 7 M(yp)

l<a<Q.

We choose N = 20, Q = 50 and use eight basis functions, r = 8. Additionally, we
set the numerical scheme parameters to 4 =3, o = 11—2 and 0 = 1.

Remark 6.1. For the standard primal-dual hybrid gradient method, one must
have wl < %, where A is the norm of the bilinear-form matrix. As we mentioned
in Remark 5.3, here we do not have a bilinear coupling between a and x. Thus, we
estimate 4 by an upper bound on the (4, ;) Lipschitz norm of the mapping

Q
Fa(x) =h Y expp(xa), 1<I1<r, 1<i<N.
a=1

M(x)
201 e

0.5+

0.0 L L L L ' x L L L L L
0.0 0.2 0.4 0.6 08 1.0 0.2 0.4 0.6 0.8 1.0

(a) Initial distribution of agents, M (z). (b) Terminal cost function, U(x).

Figure 1. Initial distribution of agents, M (x).
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More precisely, we have that

Lip(F)> =sup sup »_ Za )
L} gl <1 %7 Xpi

=sup sup (Z h,CﬂV¢k(X/}j)Wﬂ[)2

Lxgd gl <1 7% 5

< h’sup sup Z(Z C§|\V¢k(x/fi)”§ : Z W/Zﬁ)

{xg}t wgilla <1735

<h? sup ZLIP br) (Zcﬂ ZW!)
7

[wgill, <1 k,i p

= [2 sup ZLlp(ék ZC%ZW/%
B.i

gl <1
=h7 Y Lip(¢)* Y <.
k B

Thus, we take

0
—hzlep ) Z

p=1

The trigonometric expansion of K(}‘ 4 18 given by

K; WX,y (1 + ZZe ™7)"/2 cos 2mn(x — y)), x,yeT,

or
o0
K;,,u(xﬂ y) = Z,u (1/2)(mefhk/2)7 ¢ ( )¢k( ) X,V € —l]—a
k=1
in our notation. Therefore, for a given r, the matrices K, J are given by

M - o 2 r
K = diag(ue~ /202y
J = diag(u eV

(52)

(53)

(54)

In Figure 2 we plot the Gaussian kernels we used, for r = 8 and different values of
wand g. We see the influence of these values in Figure 3. In the first column of

Figure 3 we compare the results regarding for different values of 1 and o.
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Koux, y) Kloux, y)

(a) Gaussian kernel, K&Q,Oﬁ(x,y). (b) Gaussian kernel, K{ o1 5(z, y).
K'gu(x, ¥)

K'op(x, 0)

0=0.8{p=0.

_—

0.4

(¢) Gaussian kernel, K{ g0.5(2,y). (d) Comparison of kernels on K ,(z,0).

Figure 2. Plots of the three Gaussian kernels in (a)—(c), and a comparison of their sections
in (d).

Comparing the first and the second columns of Figure 3, we see that the tra-
jectories of the agents in the first column are closer than in the second one.
This is due to the fact that 4 = 0.5 in the first kernel and x4 = 1.5 in the second
one, hence the second kernel (higher value of u) penalizes more high density of
agents. Therefore, the agents spread out more before the final time when they
converge to the points of low-cost near minima of the terminal cost function, U,
see Figure 1(b).

In the last column the value of o = 0.8 is higher, this means that agents are
indifferent to the distances between them — they just feel the total mass. Hence,
they minimize the travel distances from initial positions to low-cost locations of
U ignoring the population density. In fact, in this case Kal‘ « X 1, and therefore
Jt Kl},o(x, y)m(y,t)dy ~ u. Thus, in this case (3) approximates a decoupled sys-
tem of Hamilton—Jacobi and Fokker—Planck equations. But the optimal trajec-
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Klay(x,0) K'o(x,0) K'ou(x,0)
[ {1

Y 2 0 0z 04 04 oz 00 0z 04 EX) 0z o0 0z 04

(a) K&.Q,oﬁ(ﬂf,o)- ) (b) K&.2,145($10)~ ) (c) K&.8,045($:0)~

¢ - '
02 04 [ 08 10 02 04 05 08 10

(d) Trajectories, x(t, ya)-

_my _mixy _mxy

(e) Density, m(z,t).

mec)

(f) M(z) — blue, m(z,1) —
green, U(x) — orange.

Figure 3. Simulations using Gaussian kernels with different parameters, (o, 1) € {(0.2,0.5),
(0.2,1.5),(0.8,0.5)}, for each column. In the first row, we show a section of each kernel.
In the second row, we plot the trajectories of the agents, {x(¢, y,)} ag= |- attime ¢ € [0,1] and
initial positions { ya}aQ: . C T. In the third row, we plot the time evolution of the distribu-
tion of players, m(¢,x). Each plot of the last row displays the initial-terminal conditions,

M (x) and U(x), and the final distribution, m(x, 1).

tories of the decoupled system are straight lines by Hopf-Lax formula. As we can
see in Figure 3(d), this fact is consistent with the straight-line trajectories that we
obtain.

6.2. Two-dimensional examples. Here, we consider the case of two-dimensional
state space. The initial distribution of players and the terminal cost function
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U1, x2)

(a) Initial distribution of agents, M (z1,x2). (b) Terminal cost function, U(z1, z2).

Figure 4. Initial-terminal conditions.

are given by

1 .
M(x1,x3) = 1 4= cos(m + 27(x1 — x2)) +§ s1n<g + 27 (x + x2)>,

+ = (cos(6mx1) + cos(2mx2)),  (x1,x2) € T2,

N W
N = N =

U(x1,x2) =

that are depicted in Figure 4.
The corresponding expansion of the kernel is given by

K7 (x1, %25 y1, 2)

o0

_ 7'[2:72 2 ’ 2
= Z e T DRI gy (1) e (1) o (32) e (12)
k=1
2 (0 2) (2P 2P
= Z we Dk (X1, X2) (Y1, 12), (55)
k=1
where
b (X1, X2) = G (x1) o (x2),  x1,x2€ T, k, k' e N, (56)

Thus, for a fixed r we take as a basis functions the set:

{¢1,17 ¢1,27 LR ¢l,r—la ¢2,1a s 7¢2,r—27 LR ¢r—1,l} = {wlvw% e l//r(r—l)/Z}'
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Therefore, we take all functions ¢ ,, such that k + k' <r and order them in the
lexicographic order. The corresponding matrices will be of size @ X @:

K= diag(ﬂZef(nzvzﬂ)([k/Z]2+[k’/2]2))k+k,< ’
=r 57
J = diag(ﬂ_ze(ﬂZJZ/Z)([k/Z]2+[k,/2]2) )k+k' <r ( )

where the order is again lexicographic.
To compare the results, we use the same time and space discretization through-
out all our 2-dimensional experiments, as well as the same parameters for the

numerical scheme. We discretize the time using a step size Az = % For the dis-
cretization of M we use
x o M (o) /
ym’—<—,—>7 COfO(/:Q—7 1SOC7OC SQ
Q+1 Q+1 Zﬁ,ﬂ’=1 M(J’/}ﬂ’)

We choose N = 20, Q = 20 and use eight basis functions, r = 8. Furthermore, we
set the numerical scheme parametersto 2 =1, v = % and 0 = 1.

In Figure 5, we plot the Gaussian kernels used in the simulations, with differ-
ent values of y and g. We see that the bigger u is the higher the peak of the kernel,
see (a) and (b) in Figure 5. This means that each agent in (a) is more adverse of
being in crowded areas than agents is (b), £ = 0.75 and u = 0.5 respectively. For
higher values of ¢ we see that the kernel becomes flat, compare (b) with (c) in Fig-
ure 5, for ¢ = 0.1 and o = 1 respectively. As before, this means that the agents
penalize others independent of mutual distances.

In Figure 6, we compare the simulation results using the same initial-terminal
conditions, see Figure 4, but different kernel functions (plotted in the first row of
Figure 6). In the last row of Figure 6 we have the final distribution of agents.

We see that for larger values of g, left column compared with the middle one,
the agents’ concentration near low-cost regions of terminal cost, U, is less dense.
We also see that when ¢ is bigger the agents become more indifferent to the

K?a,x1, X2,0,0) Ko, 4lx1, 2,0,0) Ko, 4lx1, 2,0, 0)

(a) K§.1,0.75(3717332§07 0). (b) K§.1,0.5(3¢17$2§070)- (c) K12,0.5(3717332§07 0).

Figure 5. Plots of the Gaussian kernels for (o, ) € {(0.1,0.75), (0.1,0.5), (1,0.5)}.
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Ko, x1, x2,0,0) K, 41, %2,0,0) Ko, x1, x2,0,0)

0505

(c) K12,0.5($17932§ 0,0).

(e) Projected trajectories.

P e

1000

(f) Final density, m(x,1).

Figure 6. Simulations using Gaussian kernels with different parameters, (o,u) €
{(0.1,0.75),(0.1,0.5), (1,0.5)}, for each column. In the first row we show a section of
each kernel. In the second row we show the trajectories of the agents, {x(z, ylm')}ocro’:l’
t € [0, 1], with initial positions { y,,} fwzl e T2. In the third row, we plot the 2D projec-

tion of the trajectories. And in the last row, we plot the final distribution of the agents,
m(x, 1).
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density of the crowd, and concentrate more densely near low-cost values of U —
see the right column in Figure 6(f).

As in the 1-dimensional case, looking to the projected trajectories in the
2-dimensional plane we observe that for flat kernel agents follow straight
lines from the initial positions to closest low-cost regions of the terminal cost
function.

Acknowledgments. J. Saude was partially supported by FCT/Portugal through
the CMU-Portugal Program.
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