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Abstract. In this note, we develop Fourier approximation methods for the solutions of
first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion tech-
niques, we approximate a given MFG system by a simpler one that is equivalent to a
convex optimization problem over a finite-dimensional subspace of continuous curves.
Furthermore, we perform a time-discretization for this optimization problem and arrive at
a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a
variant of a primal dual hybrid gradient method.
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1. Introduction

The mean-field game (MFG) framework [28], [29], [30], [31], [32] models systems

with a huge number of small identical rational players (agents) that play non-

cooperative di¤erential games. In this framework, a generic player aims at

minimizing a cost functional that takes the distribution of the whole popula-

tion as a parameter. Consequently, the problem is to find a Nash equilibrium

where a generic player cannot unilaterally improve his position. For a detailed

account on MFG systems we refer the reader to [12], [15], [18], [19], [24], [25],

[27], [34].

In this note, we introduce Fourier approximation techniques for first-order

nonlocal MFG models. More precisely, we consider the system

�qtuþHðx;‘uÞ ¼ F ½x;m�;
qtm� div

�
m‘pHðx;‘uÞ

�
¼ 0; ðx; tÞ a Td � ½0; 1�;

mðx; 0Þ ¼ MðxÞ; uðx; 1Þ ¼ UðxÞ; x a Td :

8><
>: ð1Þ



Here, u : Td � ½0; 1� ! R and m : Td � ½0; 1� ! Rþ are the unknown functions.

Furthermore, H a C2ðTd � RdÞ is a Hamiltonian, and F : Td �PðTdÞ ! R is a

nonlocal coupling term between the Hamilton–Jacobi and Fokker–Planck equa-

tions. Above, Td is the d-dimensional flat torus, and PðTdÞ is the space of Borel
probability measures on Td . Next, U a C2ðTdÞ and M a LlðTdÞBPðTdÞ (with
a slight abuse of notation we identify the absolutely continuous measures with

their densities) are terminal-initial conditions for u and m, respectively.

In (1), u represents the value function of a generic agent from a continuum

population of players, whereas m represents the density of this population. Each

agent aims at solving the optimization problem

uðx; tÞ ¼ inf
g AH 1ð½t;1�Þ; gðtÞ¼x

ð1

t

L
�
gðsÞ; _ggðsÞ

�
þ F

�
gðsÞ;mð�; sÞ

�
dsþU

�
gð1Þ

�
; ð2Þ

where L is the Legendre transform of H; that is,

Lðx; vÞ ¼ sup
p

�v � p�Hðx; pÞ; ðx; vÞ a Td � Rd :

Hence, U is a terminal cost function. Since a generic agent is small and her ac-

tions on the population distribution can be neglected, we assume that m is fixed,

but unknown, in (2). Consequently, u must solve a Hamilton–Jacobi equation;

that is, the first PDE in (1) with terminal data U .

Furthermore, given u, optimal trajectories of agents are determined by

_ggðsÞ ¼ �‘pH
�
gðsÞ;‘u

�
gðsÞ; s

��
:

Therefore, m, being the population density, must satisfy the Fokker–Planck equa-

tion; that is, the second PDE in (1) with initial data M. Hence, M is the popula-

tion density at time t ¼ 0.

The existence, uniqueness and stability theories for (1) are well understood

[14], [15], [32]. Here, we are specifically interested in approximation methods

for the solutions of (1) that can be useful for numerical solution and modeling

purposes.

Currently, there are number of e¤ective approximation methods for solutions

of MFG systems. We refer to [1], [2], [3], [4] for finite-di¤erence schemes, [16], [17]

for semi-Lagrangian methods, [6], [9], [10], [11], [13] for convex optimization tech-

niques, [5], [26] for monotone flows, and [22] for infinite-dimensional Hamilton–

Jacobi equations. Although general, the majority of methods above are particu-

larly advantageous when F in (1) depends locally on m. The reason is that local

F yield analytic pointwise formulas for infinite-dimensional operators involved

in the algorithms. Instead, nonlocal F do not yield such formulas. Additionally,
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fixed-grid methods su¤er from dimensionality issues. Also, the number of inter-

nodal couplings grows significantly for nonlocal F which leads to an increased

complexity of such schemes. Hence, we are interested in developing approxima-

tion methods that specifically suit nonlocal F and are grid-free.

Our approach is based on a Fourier approximation of F and is inspired by the

methods in [35]. Here, we use the classical trigonometric polynomials as an ap-

proximation basis. Nevertheless, our method is flexible and allows more general

bases. For instance, one may consider (1) on di¤erent domains and boundary con-

ditions and choose a basis accordingly.

Additionally, our approach yields a grid-free numerical approximation of u

and m. More precisely, we directly recover the optimal trajectories of the agents

rather than the values of u and m on a given grid. In particular, our methods may

blend well with recently developed ideas for fast and curse-of-the-dimensionality-

resistant solution approach for first-order Hamilton–Jacobi equations [21], [33],

[36]. Hence, our techniques may lead to numerical schemes for nonlocal MFG

that are e‰cient in high dimensions.

To avoid technicalities, we consider a linear F . More precisely, we assume that

F ½x;m� ¼
ð
Td

Kðx; yÞmðy; tÞ dy; x a Td ; m a PðTdÞ;

where K a C2ðTd � TdÞ. Thus, here we deal with the system

�qtuþHðx;‘uÞ ¼
Ð
Td Kðx; yÞmðy; tÞ dy;

qtm� div
�
m‘pHðx;‘uÞ

�
¼ 0; ðx; tÞ a Td � ½0; 1�;

mðx; 0Þ ¼ MðxÞ; uðx; 1Þ ¼ UðxÞ; x a Td :

8><
>: ð3Þ

Our basic idea is to show that when K is a generalized polynomial in a given

basis then (3) is equivalent to a fixed point problem, in a space of continuous

curves, that has nice structural properties. In particular, when K is symmetric

and positive semi-definite, (3) is equivalent to a convex optimization problem in

the space of continuous curves.

Furthermore, we discuss how to construct generalized polynomial kernels that

approximate a given K . Additionally, we observe that for translation invariant K

the approximating kernels have a particularly simple structure. Consequently, for

such K the aforementioned optimization problem is much simpler to solve.

The paper is organized as follows. In Section 2, we present standing assump-

tions and some preliminary results. In Section 3, we prove the equivalence of

(3) to a fixed point problem over the space of continuous curves when K is a gen-

eralized polynomial. Next, in Section 4, we discuss approximation methods for

a general kernel. Furthermore, in Section 5, we construct a discretization for the

369Fourier approximation methods for first-order nonlocal mean-field games



optimization problem from Section 3 and devise a variant of a primal dual hybrid

gradient algorithm for the discrete problem. Finally, in Section 6, we study sev-

eral numerical examples.

2. Assumptions and preliminary results

We denote by Td the d-dimensional flat torus. Furthermore, throughout the

paper, we assume that H a C2ðTd � RdÞ, and

1

C
Id a‘2

ppHðx; pÞaCId ; Eðx; pÞ a Td � Rd ;

�Cð1þ jpj2Þa‘xHðx; pÞ � p; Eðx; pÞ a Td � Rd ;

ð4Þ

for some constant C > 0. Next, we assume that M a LlðTdÞBPðTdÞ, U a
C2ðTdÞ, K a C2ðTd � TdÞ, and

kMkLlðTd Þ; kUkC 2ðTd Þ; kKkC 2ðTd�Td Þ aC: ð5Þ

Additionally, we suppose that K is positive semi-definite; that is,

ð
Td�Td

Kðx; yÞ f ðxÞ f ðyÞ dx dyb 0; Ef a LlðTdÞ: ð6Þ

We call K symmetric if

Kðx; yÞ ¼ Kðy; xÞ; Ex; y a Td : ð7Þ

Next, we denote by PðTdÞ the space of Borel probability measures on Td . We

equip PðTdÞ with the Monge–Kantorovich distance that is given by

km2 �m1kMK ¼ sup
nð

Td

fðxÞ
�
m2ðxÞ �m1ðxÞ

�
dx s:t: kfkLipa 1

o
: ð8Þ

In the rest of this section, we present some preliminary results and formulas.

For the optimal control and related Hamilton–Jacobi equations theory we refer

to [8], [23]. We begin by the definition of a solution for (3).

Definition 2.1. A pair ðu;mÞ is a solution of (3) if u a W 1;lðTd � ½0; 1�Þ is a vis-

cosity solution of

�qtuþHðx;‘uÞ ¼
Ð
Td Kðx; yÞmðy; tÞ dy; ðx; tÞ a Td � ½0; 1�;

uðx; 1Þ ¼ UðxÞ; x a Td ;

(
ð9Þ
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and m a LlðTd � ½0; 1�ÞBC
�
½0; 1�;PðTdÞ

�
is a distributional solution of

qtm� div
�
m‘pHðx;‘uÞ

�
¼ 0; ðx; tÞ a Td � ½0; 1�;

mðx; 0Þ ¼ MðxÞ; x a Td :

(
ð10Þ

The following theorem [14], [15], [32] asserts that (3) is well-posed.

Theorem 2.2. (i) Under assumptions (4) and (5), system (3) admits a solution

ðu;mÞ. Moreover, there exists a constant C1ðCÞ > 0 such that

‘2
xxu; kukW 1;l ; kmkLl aC1; ð11Þ

for any solution ðu;mÞ. Additionally, if (6) holds then ðu;mÞ is unique.
(ii) Solutions of (3) are stable with respect to variations of U, M and K in respective

norms. Particularly, suppose that fKrglr¼1 � C2ðTd � TdÞ is such that

lim
r!l

kK � KrkC 2ðTd�Td Þ ¼ 0; ð12Þ

and fður;mrÞglr¼1 are solutions of (3) corresponding to kernel Kr. Then, the

sequence fður;mrÞglr¼1 is precompact in CðTd � ½0; 1�Þ � C
�
½0; 1�;PðTdÞ

�
with

all accumulation points being solutions of (3). Consequently, if (6) holds then

lim
r!l

urðx; tÞ ¼ uðx; tÞ; uniformly in ðx; tÞ a Td � ½0; 1�;

lim
r!l

kmrð�; tÞ �mð�; tÞkMK ¼ 0; uniformly in t a ½0; 1�;
ð13Þ

where ðu;mÞ is the unique solution of (3).

Next, consider an arbitrary basis of smooth functions

F ¼ ff1; f2; . . . ; frg � C2ðTdÞ: ð14Þ

For a ¼ ða1; a2; . . . ; arÞ a Cð½0; 1�;RrÞ we denote by ua the viscosity solution of

�qtuðx; tÞ þH
�
x;‘uðx; tÞ

�
¼

Pr
i¼1

aiðtÞfiðxÞ; ðx; tÞ a Td � ½0; 1�

uðx; 1Þ ¼ UðxÞ; x a Td :

8<
: ð15Þ

From the optimal control theory, we have that

uaðx; tÞ ¼ inf
g AH 1ð½t;1�Þ; gðtÞ¼x

ð1

t

�
L
�
gðsÞ; _ggðsÞ

�
þ
Xr

i¼1

aiðsÞfi
�
gðsÞ

��
dsþU

�
gð1Þ

�
; ð16Þ
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for all ðx; tÞ a Td � ½0; 1�, where

Lðx; vÞ ¼ sup
p ARd

�v � p�Hðx; pÞ: ð17Þ

Moreover, for all ðx; tÞ a Td � ½0; 1� there exists gx; t;a a C2ð½t; 1�;TdÞ such that

uaðx; tÞ ¼
ð1

t

�
L
�
gx; t;aðsÞ; _ggx; t;aðsÞ

�
þ
Xr

i¼1

aiðsÞfi
�
gx; t;aðsÞ

��
dsþU

�
gx; t;að1Þ

�
; ð18Þ

and

d

ds
‘vL

�
gx; t;aðsÞ; _ggx; t;aðsÞ

�
¼ ‘xL

�
gx; t;aðsÞ; _ggx; t;aðsÞ

�
þ
Xr

i¼1

aiðtÞ‘fi
�
gx; t;aðsÞ

�
; s a ½t; 1�: ð19Þ

Additionally,

�‘vL
�
x; _ggx; t;aðtÞ

�
a ‘þ

x uaðx; tÞ;

�‘vL
�
gx; t;aðsÞ; _ggx; t;aðsÞ

�
¼ ‘xua

�
gx; t;aðsÞ; s

�
; s a ðt; 1�;

� _ggx; t;aðsÞ ¼ ‘pH
�
gx; t;aðsÞ;‘xua

�
gx; t;aðsÞ; s

��
; s a ðt; 1�:

ð20Þ

In fact, this previous equation is also su‰cient for (18) to hold. For lighter nota-

tion, we denote gx;0;a by gx;a.

In general, ua is not everywhere di¤erentiable. Nevertheless, ua is semicon-

cave and hence ‘þuaðx; tÞA j for all ðx; tÞ, and ‘þuaðx; tÞ ¼ f‘uaðx; tÞg for a.e.

ðx; tÞ. In fact, points ðx; tÞ where ua is not di¤erentiable are precisely those for

which (16) admits multiple minimizers. Thus, at points x a Td where uaðx; 0Þ is
not di¤erentiable we choose gx;a in such a way that the map ðx; tÞ 7! gx;aðtÞ is

Borel measurable.

Furthermore, we denote by ma the distributional solution of

qtm� div
�
m‘pHðx;‘uaÞ

�
¼ 0; ðx; tÞ a Td � ½0; 1�;

mðx; 0Þ ¼ MðxÞ; x a Td :

(
ð21Þ

One can show that ma is given by the push-forward of the measure M by the map

g�;aðtÞ; that is,

mað�; tÞ ¼ g�;aðtÞaM: ð22Þ
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We equip Cð½0; 1�;RrÞ with the Ll norm

kakl ¼ max
i

sup
t A ½0;1�

jaiðtÞj:

Then, one has that

lim
n!l

kmanð�; tÞ �mað�; tÞkMK ¼ 0; uniformly in t a ½0; 1�; ð23Þ

if lim
n!l

kan � akl ¼ 0. For a detailed discussion on ma see Chapter 4 in [15].

Finally, we denote by

GðaÞ ¼
ð
Td

uaðx; 0ÞMðxÞ dx; a a Cð½0; 1�;RrÞ: ð24Þ

Our first theorem addresses the properties of G.

Theorem 2.3. The functional a 7! GðaÞ is concave and everywhere Fréchet di¤er-

entiable. Moreover,

qaiG ¼
ð
Td

fiðxÞmaðx; �Þ dx; 1a ia r: ð25Þ

Proof. We denote by

pðaÞ ¼
�ð

Td

fiðxÞmaðx; �Þ dx
�r
i¼1

; a a Cð½0; 1�;RrÞ:

We prove that for every a a Cð½0; 1�;RrÞ

0bGðbÞ � GðaÞ � ðb� aÞ � pðaÞb oðkb� aklÞ:

We have that

GðbÞ � GðaÞ � ðb� aÞ � pðaÞ

¼
ð
Td

MðxÞ dx
ð1

0

�
L
�
gx;bðtÞ; _ggx;bðtÞ

�
þ
Xr

i¼1

biðtÞfi
�
gx;bðtÞ

��
dtþU

�
gx;bð1Þ

�

�
ð
Td

MðxÞ dx
ð1

0

�
L
�
gx;aðtÞ; _ggx;aðtÞ

�
þ
Xr

i¼1

aiðtÞfi
�
gx;aðtÞ

��
dtþU

�
gx;að1Þ

�

�
Xr

i¼1

ð1

0

�
biðtÞ � aiðtÞ

�
dt

ð
Td

fiðxÞmaðx; tÞ dx:
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From (22) we have that

ð
Td

fiðxÞmaðx; tÞ dx ¼
ð
Td

fi
�
gx;aðtÞ

�
MðxÞ dx; t a ½0; 1�; 1a ia r:

Hence,

GðbÞ � GðaÞ � ðb� aÞ � pðaÞ

¼
ð
Td

MðxÞ dx
ð1

0

L
�
gx;bðtÞ; _ggx;bðtÞ

�
� L

�
gx;aðtÞ; _ggx;aðtÞ

�
dt

þ
ð
Td

MðxÞ dx
ð1

0

Xr

i¼1

biðtÞ
�
fi
�
gx;bðtÞ

�
� fi

�
gx;aðtÞ

��
dt

þ
ð
Td

MðxÞ
�
U
�
gx;bð1Þ

�
�U

�
gx;að1Þ

��
dx:

By definition, we have that

ð1

0

L
�
gx;bðtÞ; _ggx;bðtÞ

�
þ
Xr

i¼1

biðtÞfi
�
gx;bðtÞ

�
dtþU

�
gx;bð1Þ

�

a

ð1

0

L
�
gx;aðtÞ; _ggx;aðtÞ

�
þ
Xr

i¼1

biðtÞfi
�
gx;aðtÞ

�
dtþU

�
gx;að1Þ

�
; Ex a Td :

Hence,

GðbÞ � GðaÞ � ðb� aÞ � pðaÞa 0; Ea; b a Cð½0; 1�;TdÞ:

This previous inequality yields the concavity of G. On the other hand, we have

that

GðbÞ � GðaÞ � ðb� aÞ � pðaÞ

¼
ð
Td

MðxÞ dx
ð1

0

L
�
gx;bðtÞ; _ggx;bðtÞ

�
� L

�
gx;aðtÞ; _ggx;aðtÞ

�
dt

þ
ð
Td

MðxÞ dx
ð1

0

Xr

i¼1

aiðtÞ
�
fi
�
gx;bðtÞ

�
� fi

�
gx;aðtÞ

��
dt

þ
ð
Td

MðxÞ
�
U
�
gx;bð1Þ

�
�U

�
gx;að1Þ

��
dx

þ
ð
Td

MðxÞ dx
ð1

0

Xr

i¼1

�
biðtÞ � aiðtÞ

��
fi
�
gx;bðtÞ

�
� fi

�
gx;aðtÞ

��
dt:
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Therefore, again by the definition of gx;a and gx;b, we have that

GðbÞ � GðaÞ � ðb� aÞ � pðaÞ

b

ð
Td

MðxÞ dx
ð1

0

Xr

i¼1

�
biðtÞ � aiðtÞ

��
fi
�
gx;bðtÞ

�
� fi

�
gx;aðtÞ

��
dt

b�kb� akl
Xr

i¼1

ð1

0

���ð
Td

fi
�
gx;bðtÞ

�
MðxÞ dx�

ð
Td

fi
�
gx;aðtÞ

�
MðxÞ dx

��� dt
¼ �kb� akl

Xr

i¼1

ð1

0

���ð
Td

fiðxÞmbðx; tÞ dx�
ð
Td

fiðxÞmaðx; tÞ dx
��� dt

b�kb� akl
Xr

i¼1

LipðfiÞ
ð1

0

kmbð�; tÞ �mað�; tÞkMK dt:

Hence, by (23) the proof is complete. r

3. The optimization problem

In this section, we assume that K is a generalized polynomial in the basis F;

that is,

Kðx; yÞ ¼
Xr

i; j¼1

kijfiðxÞfjðyÞ; x; y a Td : ð26Þ

where K ¼ ðkijÞri; j¼1 a Mr; rðRÞ is a matrix of coe‰cients. For such K , (3) takes

form

�qtuþHðx;‘uÞ ¼
Pr
i¼1

fiðxÞ
Pr
j¼1

kij
Ð
Td fjðyÞmðy; tÞ dy;

qtm� div
�
m‘pHðx;‘uÞ

�
¼ 0; ðx; tÞ a Td � ½0; 1�;

mðx; 0Þ ¼ MðxÞ; uðx; 1Þ ¼ UðxÞ; x a Td :

8>>><
>>>:

ð27Þ

Our main observation is the following theorem.

Theorem 3.1. (i) A pair ðu;mÞ is a solution of (27) if and only if ðu;mÞ ¼
ðua � ;ma �Þ for some a� a Cð½0; 1�;RrÞ such that

a� ¼ KqaGða�Þ: ð28Þ
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(ii) If K is positive-definite then (28) is equivalent to finding a 0 of a monotone

operator a 7! K�1a� qaGðaÞ, a a Cð½0; 1�;RrÞ.
(iii) Additionally, if K is symmetric, (28) is equivalent to the convex optimization

problem

inf
a ACð½0;1�;R rÞ

1

2
3K�1a; a4� GðaÞ

¼ inf
a ACð½0;1�;R rÞ

1

2
3K�1a; a4�

ð
Td

uaðx; 0ÞMðxÞ dx: ð29Þ

Proof. Items (ii) and (iii) follow immediately from (i) by the concavity of G.

Thus, we just prove (i).

By Theorem 2.2 (27) admits a solution ðu;mÞ. Furthermore, define a� as

a�
i ðtÞ ¼

Xr

j¼1

kij

ð
Td

fjðyÞmðy; tÞ dy; t a ½0; 1�: ð30Þ

Then a� a Cð½0; 1�;RrÞ, and by the definition of ua and ma we have that ðu;mÞ ¼
ðua� ;ma� Þ. Hence, by Theorem 2.3, we have that

qaiGða�Þ ¼
ð
Td

fiðxÞmðx; �Þ dx; 1a ia r:

Consequently, from (30) obtain

a�
i ¼

Xr

j¼1

kijqajGða�Þ: r

Remark 3.2. The optimization problem (29) is equivalent to the optimal control

of Hamilton–Jacobi PDE pointed out in [32] (equations (58)–(59) in Section 2.6).

One can think of (29) as (58)–(59) of [32] written in Fourier coordinates.

4. Approximating the kernel

In this section, we show that one can construct suitable approximations for an

arbitrary K . We begin by a simple lemma.

Lemma 4.1. Suppose that K is given by (26). Then K is positive semi-definite if

and only if K ¼ ðkijÞrij¼1 is positive semi-definite.
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Proof. Fix an arbitrary ðxiÞri¼1 a Rr. Then there exists a unique ðliÞri¼1 a Rr such

that

xi ¼
Xr

j¼1

lj

ð
Td

fiðxÞfjðxÞ dx; 1a ia r;

because ffig are linearly independent. Therefore, for

f ¼
Xr

j¼1

ljfj

we have that

xi ¼
ð
Td

f ðxÞfiðxÞ dx; 1a ia r:

Hence,

ð
Td�Td

Kðx; yÞ f ðxÞ f ðyÞ dx dy ¼
Xr

i; j¼1

kijxixj;

that yields the proof. r

Now, we fix our basis to be the trigonometric one:

faðxÞ ¼ e2ipa�x; x a Td ; a a Zd : ð31Þ

Remark 4.2. Unlike in (14), here it is more practical to use multi-dimensional

indexes to enumerate the trigonometric functions in higher dimensions. Addition-

ally, it is more economical in terms of notation to use the complex-valued trigono-

metric functions. Nevertheless, our discussion is always about real valued K , and

the reader can think of the end results as expansions in terms of fcosð2pa � xÞ;
sinð2pa � xÞga AZd .

For a ¼ ða1; a2; . . . ; adÞ a Zd , we denote by

jaj ¼ ðja1j; ja2j; . . . ; jad jÞ;

and for a; r a Zd

aa r () aj a rj ; 1a ja d:
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For r1; r2 a Nd
0 we denote by

Kr1r2ðx; yÞ ¼
X

jajar1; jbjar2

K̂Kabe
2ipða�xþb�yÞ; x; y a Td ;

where

K̂Kab ¼
ð
Td

Kðx; yÞe�2ipða�xþb�yÞ dx dy; a; b a Zd :

Furthermore, for r1; r2 a Nd
0 we denote by

Sr1r2ðx; yÞ ¼
1Qd

j¼1ð1þ r1jÞð1þ r2jÞ

X
jajar1; jbjar2

Kr1r2ðx; yÞ; x; y a Td :

Remark 4.3. The function Kr1r2 is the rectangular partial Fourier sum of K .

Correspondingly, Sr1r2 is the rectangular Fejér average of K . Additionally, if K

is real valued then Kr1r2 and Sr1r2 are real valued for any r1; r2 a Nd
0 .

Proposition 4.4. If K is positive semi-definite (symmetric) then, Krr and Srr are also

positive semi-definite (symmetric) for all r a Nd
0 . Moreover,

lim
minj rj!l

kSrr � KkC 2ðTd�Td Þ ¼ 0; ð32Þ

Additionally, if K a C3ðTd � TdÞ then

lim
minj rj!l

kKrr � KkC 2ðTd�Td Þ ¼ 0: ð33Þ

Proof. The convergence properties (32), (33) are classical results in Fourier analy-

sis. Thus, we will just prove that Krr and Srr are positive semi-definite (symmetric).

For that, we use the representation formulas

Krrðx; yÞ ¼
ð
Td�Td

Kðz;wÞDrrðx� z; y� wÞ dz dw;

Srrðx; yÞ ¼
ð
Td�Td

Kðz;wÞFrrðx� z; y� wÞ dz dw; x; y a Td ;

where Drr and Frr are, respectively, the 2d-dimensional rectangular Dirichlet and

Fejér kernels. A crucial feature of Drr and Frr is that they are symmetric and

decompose into lower dimensional kernels:

Drrðz;wÞ ¼ DrðzÞDrðwÞ; Frrðz;wÞ ¼ FrðzÞFrðwÞ; z;w a Td ;
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where Dr and Fr are the corresponding d-dimensional kernels. In particular, Krr,

Srr are symmetric if K is such. Furthermore, for an arbitrary f a LlðTdÞ we have
that

ð
Td�Td

Krrðx; yÞ f ðxÞ f ðyÞ dx dy

¼
ð
Td�Td

Kðz;wÞ dz dw
ð
Td�Td

f ðxÞ f ðyÞDrrðx� z; y� wÞ dx dy

¼
ð
Td�Td

Kðz;wÞ dz dw
ð
Td�Td

f ðxÞ f ðyÞDrðx� zÞDrðy� wÞ dx dy

¼
ð
Td�Td

Kðz;wÞ frðzÞ frðwÞ dz dwb 0:

Thus, Krr is positive semi-definite if K is such. The proof for Srr is identical.

Remark 4.5. By Proposition 4.4, kernels Krr, Srr are positive semi-definite. There-

fore, their coe‰cients matrices with respect to basis fcosð2pa � xÞ; sinð2pa � xÞg are

also positive semi-definite by Lemma 4.1. Nevertheless, to take full advantage

of Theorem 3.1 one would need these matrices to be positive definite (invertible).

To solve this problem one can add eI regularization term, where I is the iden-

tity matrix of the suitable dimension and e > 0 is a small constant. However, as

discussed below, this regularization is not necessary for translation invariant

kernels.

Suppose that

Kðx; yÞ ¼ hðx� yÞ; x; y a Td ;

where h is a periodic function. Then, we have

ð
Td

Kðx; yÞ cosð2pa � yÞ dy

¼
ð
Td

hðx� yÞ cosð2pa � yÞ dy ¼
ð
Td

hðyÞ cos
�
2pa � ðx� yÞ

�
dy

¼ cosð2pa � xÞ
ð
Td

hðyÞ cosð2pa � yÞ dy

þ sinð2pa � xÞ
ð
Td

hðyÞ sinð2pa � yÞ dy: ð34Þ

Similarly, we obtain that
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ð
Td

Kðx; yÞ sinð2pa � yÞ dy

¼
ð
Td

hðx� yÞ sinð2pa � yÞ dy ¼
ð
Td

hðyÞ sin
�
2pa � ðx� yÞ

�
dy

¼ sinð2pa � xÞ
ð
Td

hðyÞ cosð2pa � yÞ dy

� cosð2pa � xÞ
ð
Td

hðyÞ sinð2pa � yÞ dy: ð35Þ

Therefore, we have thatð
Td

Kðx; yÞ cosð2pa � xÞ cosð2pa � yÞ dx dy ¼
ð
Td

hðyÞ cosð2pa � yÞ dy;ð
Td

Kðx; yÞ sinð2pa � xÞ cosð2pa � yÞ dx dy ¼
ð
Td

hðyÞ sinð2pa � yÞ dy;ð
Td

Kðx; yÞ cosð2pa � xÞ sinð2pa � yÞ dx dy ¼ �
ð
Td

hðyÞ sinð2pa � yÞ dy;ð
Td

Kðx; yÞ sinð2pa � xÞ sinð2pa � yÞ dx dy ¼
ð
Td

hðyÞ cosð2pa � yÞ dy:

Hence, the coe‰cients matrices of partial Fourier sums (and their linear combina-

tions) of K consist of 2� 2 blocks that correspond to expansion terms with a fre-

quency a a Zd ; that is,

Da ¼
Ð
Td hðyÞ cosð2pa � yÞ dy

Ð
Td hðyÞ sinð2pa � yÞ dy

�
Ð
Td hðyÞ sinð2pa � yÞ dy

Ð
Td hðyÞ cosð2pa � yÞ dy

� �
: ð36Þ

Thus, the coe‰cient matrix will be degenerate if detðDaÞ ¼ 0 for some a. But we

have that

detðDaÞ ¼
�ð

Td

hðyÞ cosð2pa � yÞ dy
�2

þ
�ð

Td

hðyÞ sinð2pa � yÞ dy
�2
:

Hence, detðDaÞ ¼ 0 if and only if Da ¼ 0 or, equivalently, there are no expansion

terms with frequency a. But then, we can simply ignore these terms in our basis

and obtain a non-degenerate matrix.

Moreover, to invert the coe‰cients matrix one just has to invert the 2� 2

blocks. Additionally, if K is symmetric; that is, hðyÞ ¼ hð�yÞ, we get that
ð
Td

hðyÞ sinð2pa � yÞ dy ¼ 0; Ea a Zd :
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Hence, the coe‰cient matrices are simply diagonal. Therefore, we have proved

the following proposition.

Proposition 4.6. If K is translation invariant then all partial Fourier sums of K and

their linear combinations, such as Krr and Srr, contain only cosð2pa � xÞ cosð2pa � yÞ,
cosð2pa � xÞ sinð2pa � yÞ, sinð2pa � xÞ cosð2pa � yÞ, sinð2pa � xÞ sinð2pa � yÞ expan-

sion terms. Therefore, coe‰cient matrices of such approximations with respect to

trigonometric basis consist of 2� 2 blocks that are multiples of Da in (36). Addition-

ally, if K is symmetric these coe‰cient matrices are diagonal.

Remark 4.7. In general, if ff1; f2; . . . ; fr; . . .g is an orthonormal basis consisting

of eigenfunctions of Hilbert–Schmidt integral operator f ð�Þ 7!
Ð
Td Kð�; yÞ f ðyÞ dy;

that is,

ð
Td

Kðx; yÞfaðyÞ dx ¼ lafaðxÞ; x a Td ; a a N;

for some flag � R. Then, one has that

kab ¼
ð
Td

Kðx; yÞfaðxÞfbðyÞ dx dy ¼ lbdab:

Consequently, for arbitrary I � N�N we have that

KI ðx; yÞ ¼
X

ða;bÞ A I
kabfaðxÞfbðyÞ ¼

X
ða;aÞ A I

lafaðxÞfaðyÞ:

Therefore, all partial Fourier sums of K in basis ffaðxÞfbðyÞg contain only terms

faðxÞfaðyÞ and yield diagonal coe‰cient matrices consisting of corresponding

eigenvalues of the Hilbert–Schmidt integral operator.

In general, it is not easy to calculate the eigenfunctions of a given Hilbert–

Schmidt integral operator. Nevertheless, as we saw above, for translation invari-

ant symmetric periodic K these eigenfunctions are precisely the trigonometric

functions.

5. A numerical method

In this section we propose a numerical method to solve (3) for a symmetric and

positive semi-definite K . We assume that an approximation Kr of the form (26)

is already constructed with a symmetric and positive definite K. Thus, we devise

an algorithm for the solution of (27).
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By Theorem 3.1 we have that (27) is equivalent to (29). Therefore, in what

follows, we present a suitable discretization of (29). We rewrite latter as

inf
a ACð½0;1�;R rÞ

SðaÞ; ð37Þ

where

SðaÞ ¼ 1

2
3Ja; a4� GðaÞ;

and J ¼ K�1.

5.1. Discretization of the ua. We start with the discretization of ua. For that,

we discretize the representation formula (16). We can rewrite latter as

uaðx; 0Þ ¼ inf
b

ð1

0

La

�
xðsÞ; bðsÞ; s

�
dsþU

�
xð1Þ

�
; ð38Þ

where x satisfies the following controlled ODE

_xxðsÞ ¼ bðsÞ; xð0Þ ¼ x; s a ½0; 1�: ð39Þ

Recall that

Laðx; b; sÞ ¼ Lðx; bÞ þ
Xr

k¼1

akðsÞfkðxÞ; ðx; b; sÞ a Td � Rd � ½0; 1�:

We choose a uniform discretization of the time interval:

0 ¼ s0 < s1 < s2 < � � � < sN ¼ 1;

with a step size ht ¼ 1
N
, hence si ¼ iht ¼ i

N
. We denote the values of x and b at

time si by xðsiÞ ¼ xi, bðsiÞ ¼ bi. Using a backward Euler discretization of (39)

we have

ui ¼
xi � xi�1

ht
; i a f1; . . . ;Ng:

Discretizing the integral (38) with a right point quadrature rule and using the

above discretization we get

½ua�ðx; 0Þ ¼ inffxigN
0
ht
PN

i¼1 La xi;
xi�xi�1

ht
; si

� �
þUðxNÞ;

subject to: x0 ¼ x:

(
ð40Þ
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5.2. Discretization of G. We start by discretizing the initial measure M using a

convex combination of Dirac d distributions. Denoting the discretized measure

½M�, we have

½M� ¼
XQ
a¼1

cadya

or, in the distributional sense,

ð
Td

cðyÞd½M�ðyÞ ¼
XQ
a¼1

cacðyaÞ; c a CðTdÞ; ð41Þ

for some fyagQ
a¼1 � Td and fcab 0gQ

a¼1 such that
PQ

a¼1 ca ¼ 1. Then, G is dis-

cretized as follows

½G�ðaÞ ¼
XQ
a¼1

ca½ua�ðya; 0Þ: ð42Þ

5.3. Discretization of S. Now, we discretize (37). We first discretize ak-s by

taking their values at times si, that we denote by:

½a�k ¼
�
akðs0Þ; . . . ; akðsNÞ

�
¼ ðak0; . . . ; akNÞ; k ¼ 1; 2; . . . ; r:

Recall that

3Ja; a4 ¼
Xr

k; l¼1

Jkl

ð1

0

akðsÞalðsÞ ds:

We discretize this previous quadratic form by a simple right point quadrature rule.

½3Ja; a4� ¼ ht
Xr

k; l¼1

Jkl
XN
i¼1

akiali:

So the discretization of S is

½S�ðaÞ ¼ ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali � ½G�ðaÞ

¼ ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali �
XQ
a¼1

ca½ua�ðya; 0Þ; ð43Þ
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where we used (42). Therefore, the discretization of (37) is

inf
fakig

½S�ðaÞ ¼ inf
fakig

sup
fxai :xa0¼yag

ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali � ht
XQ
a¼1

XN
i¼1

caL xai;
xai � xaði�1Þ

ht

� �

� ht
XQ
a¼1

XN
i¼1

Xr

k¼1

caakifkðxaiÞ �
XQ
a¼1

caUðxaNÞ: ð44Þ

5.4. Primal-dual hybrid-gradient method. Now, we specify the Lagrangian to

be quadratic and devise a primal-dual hybrid-gradient algorithm [20] to solve

(37). More precisely, we assume that

Lðx; bÞ ¼ jbj2

2
; ðx; bÞ a Td � Rd ;

and therefore (44) becomes

inf
fakig

½S�ðaÞ ¼ inf
fakig

sup
fxai :xa0¼yag

ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali �
XQ
a¼1

XN
i¼1

ca
jxai � xaði�1Þj2

2ht

� ht
XQ
a¼1

XN
i¼1

Xr

k¼1

caakifkðxaiÞ �
XQ
a¼1

caUðxaNÞ: ð45Þ

Now, we describe the algorithm. For each iteration time nb 0 we have three

groups of variables: an ¼ fan
kig

r;N
k; i¼1;1, x

n ¼ fxn
aig

Q;N
a; i¼1;0, and zn ¼ fznaig

Q;N
a; i¼1;0. Fur-

thermore, we fix l;o > 0 that are proximal step parameters for variables a and x,

respectively. Additionally, we take 0a ya 1.

Step 1. Given an, xn, zn the first step of the algorithm is to solve the proximal

problem

inf
fakig

ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali �
XQ
a¼1

XN
i¼1

ca
jznai � znaði�1Þj

2

2ht

� ht
XQ
a¼1

XN
i¼1

Xr

k¼1

caakifkðznaiÞ �
XQ
a¼1

caUðznaNÞ þ
1

2l

Xr

k¼1

XN
i¼1

ðaki � an
kiÞ

2;

that is equivalent to

inf
fakig

ht

2

Xr

k; l¼1

Jkl
XN
i¼1

akiali � ht
XQ
a¼1

XN
i¼1

Xr

k¼1

caakifkðznaiÞ þ
1

2l

Xr

k¼1

XN
i¼1

ðaki � an
kiÞ

2:
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Thus, we obtain the following update of the a-variable.

anþ1
1i

anþ1
2i

..

.

anþ1
ri

0
BBBB@

1
CCCCA¼ ðlhtJþ IdrÞ�1

an
1i þ lht

PQ
a¼1 caf1ðznaiÞ

an
2i þ lht

PQ
a¼1 caf2ðznaiÞ
..
.

an
ri þ lht

PQ
a¼1 cafrðznaiÞ

0
BBBBB@

1
CCCCCA; 1a iaN: ð46Þ

Remark 5.1. Although the number of variables fakigr;N
k; i¼1;1 is r�N, the calcu-

lations of fakig for di¤erent i-s are mutually independent. Therefore, the only

complexity is in the inversion of an r� r matrix lsJþ Idr that can be computed

beforehand and used throughout the scheme. Moreover, as seen in Section 4,

translation invariant symmetric kernels yield diagonal matrices that extremely

simplify the calculations.

Step 2. Given anþ1; xn; zn we update x-variable by solving the proximal

problem

inf
fxai :xa0¼yag

XQ
a¼1

XN
i¼1

ca
jxai � xaði�1Þj2

2ht
þ ht

XQ
a¼1

XN
i¼1

Xr

k¼1

caa
nþ1
ki fkðxaiÞ

þ
XQ
a¼1

caUðxaNÞ þ
1

2o

XQ
a¼1

XN
i¼1

jxai � xn
aij

2:

Solving this previous problem may be a costly operation. Hence, we just perform

a one step gradient descent. Therefore, we obtain

xnþ1
a1 ¼ xn

a1 �
oca

ht
ðxa1 � yaÞ �

oca

ht
ðxa1 � xa2Þ � ocaht

Xr

k¼1

anþ1
k1 ‘fkðxa1Þ;

xnþ1
ai ¼ xn

ai �
oca

ht
ðxai � xaði�1ÞÞ �

oca

ht
ðxai � xaðiþ1ÞÞ;

� ocaht
Xr

k¼1

anþ1
ki ‘fkðxaiÞ; 1a iaN � 1;

xnþ1
aN ¼ xn

aN � oca

ht
ðxaN � xaðN�1ÞÞ � oca‘UðxaNÞ

� ocaht
Xr

k¼1

anþ1
kN ‘fkðxaNÞ:

ð47Þ

Step 3. In the final step we update the z-variable by

znþ1
ai ¼ xnþ1

ai þ yðxnþ1
ai � xn

aiÞ; 1a aaQ; 1a iaN: ð48Þ
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Remark 5.2. Note that the updates for fxaig, fzaig variables are mutually inde-

pendent for di¤erent a-s. Therefore, our a-updates are parallel in time, and x, z-

updates are parallel in space.

Remark 5.3. Strictly speaking, one cannot simply apply the primal-dual hybrid

gradient method to (45) because the coupling between a and x is not bilinear,

and there is no concavity in x. Nevertheless, our calculations always yield solid

results. Therefore, there is a natural problem of rigorously understanding the con-

vergence properties of the aforementioned algorithm. We plan to address this

problem in our future work.

6. Numerical examples

In this section, we present several numerical experiments. We first look into one-

dimensional case, in Section 6.1, and after we consider the two-dimensional case,

in Section 6.2.

For our calculations, we choose the periodic Gaussian kernel that is given

by

Kd
s;mðx; yÞ ¼

Yd
i¼1

K 1
s;mðxi; yiÞ; x; y a Td ; ð49Þ

where

K 1
s;mðx; yÞ ¼

mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p s

2

� �2q Xl
k¼�l

e�ðx�y�kÞ2=2ðs=2Þ2 ; x; y a T; ð50Þ

and s; m > 0 are given parameters. Here, s models how spread is the kernel.

The smaller s the more weight agents assign to their immediate neighbors –

this translates into crowd-aversion in the close neighborhood only. Further-

more, m is the total weight of the agents. Therefore, m measures how sensitive

is a generic agent to the total population, the bigger the more averse is the

agent to others. As we observe in the numerical experiments, the less s and the

larger m the more separated are the agents. This phenomenon was also observed

in [7].

Throughout the section we denote by

fkðxÞ ¼
1; if k ¼ 1;ffiffiffi
2

p
cos pðk � 1Þx; if k is odd; and k > 0;ffiffiffi

2
p

sin pkx; if k is even; x a T:

8><
>: ð51Þ
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Therefore, we have

ff1; f2; f3; . . .g ¼ f1;
ffiffiffi
2

p
sin 2px;

ffiffiffi
2

p
cos 2px; . . .g:

6.1. One-dimensional examples. For all simulations we use the same initial-

terminal conditions

MðxÞ ¼ 1

6
þ 5

3
sin2 px; UðxÞ ¼ 1þ sin 4pxþ p

2

� �
; x a T;

that are depicted in Figure 1.

We also use the same time and space discretization for all one dimensional

experiments, and the same parameters for the numerical scheme. We discretize

the time using a step size Dt ¼ 1
N
. For the discretization of M we use

ya ¼
a

Qþ 1
; ca ¼

MðyaÞPQ
b¼1 MðybÞ

1a aaQ:

We choose N ¼ 20, Q ¼ 50 and use eight basis functions, r ¼ 8. Additionally, we

set the numerical scheme parameters to l ¼ 3, o ¼ 1
12 and y ¼ 1.

Remark 6.1. For the standard primal-dual hybrid gradient method, one must

have ol < 1
A2 , where A is the norm of the bilinear-form matrix. As we mentioned

in Remark 5.3, here we do not have a bilinear coupling between a and x. Thus, we

estimate A by an upper bound on the ðl2; l2Þ Lipschitz norm of the mapping

FkiðxÞ ¼ ht
XQ
a¼1

cafkðxaiÞ; 1a la r; 1a iaN:

Figure 1. Initial distribution of agents, MðxÞ.
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More precisely, we have that

LipðFÞ2 ¼ sup
fxbjg

sup
kwbjk2a1

X
k; i

�X
b; j

qFki

qxbj
wbj

�2

¼ sup
fxbjg

sup
kwbjk2a1

X
k; i

�X
b

htcb‘fkðxbiÞwbi

�2

a h2t sup
fxbjg

sup
kwbjk2a1

X
k; i

�X
b

c2bk‘fkðxbiÞk
2
2 �

X
b

w2
bi

�

a h2t sup
kwbjk2a1

X
k; i

LipðfkÞ
2
�X

b

c2b �
X
b

w2
bi

�

¼ h2t sup
kwbjk2a1

X
k

LipðfkÞ
2
X
b

c2b

X
b; i

w2
bi

¼ h2t

X
k

LipðfkÞ
2
X
b

c2b :

Thus, we take

A2 ¼ h2t

Xr

k¼1

LipðfkÞ
2
XQ
b¼1

c2b :

The trigonometric expansion of K 1
s;m is given by

K 1
s;mðx; yÞ ¼ m

�
1þ 2

Xl
n¼1

e�ðpnsÞ2=2 cos 2pnðx� yÞ
�
; x; y a T; ð52Þ

or

K 1
s;mðx; yÞ ¼

Xl
k¼1

me�ð1=2Þðps½k=2�Þ2fkðxÞfkðyÞ; x; y a T; ð53Þ

in our notation. Therefore, for a given r, the matrices K, J are given by

K ¼ diagðme�ð1=2Þðps½k=2�Þ2Þrk¼1;

J ¼ diagðm�1eð1=2Þðps½k=2�Þ
2

Þrk¼1:
ð54Þ

In Figure 2 we plot the Gaussian kernels we used, for r ¼ 8 and di¤erent values of

m and s. We see the influence of these values in Figure 3. In the first column of

Figure 3 we compare the results regarding for di¤erent values of m and s.
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Comparing the first and the second columns of Figure 3, we see that the tra-

jectories of the agents in the first column are closer than in the second one.

This is due to the fact that m ¼ 0:5 in the first kernel and m ¼ 1:5 in the second

one, hence the second kernel (higher value of m) penalizes more high density of

agents. Therefore, the agents spread out more before the final time when they

converge to the points of low-cost near minima of the terminal cost function, U ,

see Figure 1(b).

In the last column the value of s ¼ 0:8 is higher, this means that agents are

indi¤erent to the distances between them – they just feel the total mass. Hence,

they minimize the travel distances from initial positions to low-cost locations of

U ignoring the population density. In fact, in this case K 1
s;mQm, and thereforeÐ

T
K 1

m;sðx; yÞmðy; tÞ dyQm. Thus, in this case (3) approximates a decoupled sys-

tem of Hamilton–Jacobi and Fokker–Planck equations. But the optimal trajec-

Figure 2. Plots of the three Gaussian kernels in (a)–(c), and a comparison of their sections
in (d).
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tories of the decoupled system are straight lines by Hopf–Lax formula. As we can

see in Figure 3(d), this fact is consistent with the straight-line trajectories that we

obtain.

6.2. Two-dimensional examples. Here, we consider the case of two-dimensional

state space. The initial distribution of players and the terminal cost function

Figure 3. Simulations using Gaussian kernels with di¤erent parameters, ðs; mÞ a fð0:2; 0:5Þ;
ð0:2; 1:5Þ; ð0:8; 0:5Þg, for each column. In the first row, we show a section of each kernel.
In the second row, we plot the trajectories of the agents, fxðt; yaÞgQ

a¼1, at time t a ½0; 1� and
initial positions fyagQ

a¼1 � T. In the third row, we plot the time evolution of the distribu-
tion of players, mðt; xÞ. Each plot of the last row displays the initial-terminal conditions,
MðxÞ and UðxÞ, and the final distribution, mðx; 1Þ.
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are given by

Mðx1; x2Þ ¼ 1þ 1

2
cos

�
pþ 2pðx1 � x2Þ

�
þ 1

2
sin

p

2
þ 2pðx1 þ x2Þ

� �
;

Uðx1; x2Þ ¼
3

2
þ 1

2

�
cosð6px1Þ þ cosð2px2Þ

�
; ðx1; x2Þ a T2;

that are depicted in Figure 4.

The corresponding expansion of the kernel is given by

K 2
s;mðx1; x2; y1; y2Þ

¼
Xl

k;k 0¼1

m2e�ðp2s2=2Þð½k=2�2þ½k 0=2�2Þfkðx1Þfkðy1Þfk 0 ðx2Þfk 0 ðy2Þ

¼
Xl

k;k 0¼1

m2e�ðp2s2=2Þð½k=2�2þ½k 0=2�2Þfk;k 0 ðx1; x2Þfk;k 0 ðy1; y2Þ; ð55Þ

where

fk;k 0 ðx1; x2Þ ¼ fkðx1Þfk 0 ðx2Þ; x1; x2 a T; k; k 0 a N: ð56Þ

Thus, for a fixed r we take as a basis functions the set:

ff1;1; f1;2; . . . ; f1; r�1; f2;1; . . . ; f2; r�2; . . . ; fr�1;1g ¼ fc1;c2; . . . ;crðr�1Þ=2g:

Figure 4. Initial-terminal conditions.

391Fourier approximation methods for first-order nonlocal mean-field games



Therefore, we take all functions fk;k 0 such that k þ k 0a r and order them in the

lexicographic order. The corresponding matrices will be of size
rðr�1Þ

2 � rðr�1Þ
2 :

K ¼ diagðm2e�ðp2s2=2Þð½k=2�2þ½k 0=2�2ÞÞkþk 0ar;

J ¼ diagðm�2eðp
2s2=2Þð½k=2�2þ½k 0=2�2ÞÞkþk 0ar;

ð57Þ

where the order is again lexicographic.

To compare the results, we use the same time and space discretization through-

out all our 2-dimensional experiments, as well as the same parameters for the

numerical scheme. We discretize the time using a step size Dt ¼ 1
N
. For the dis-

cretization of M we use

yaa 0 ¼ a

Qþ 1
;

a 0

Qþ 1

� �
; caa 0 ¼ Mðyaa 0 ÞPQ

b;b 0¼1
Mðybb 0 Þ

; 1a a; a 0
aQ:

We choose N ¼ 20, Q ¼ 20 and use eight basis functions, r ¼ 8. Furthermore, we

set the numerical scheme parameters to l ¼ 1, o ¼ 1
12 and y ¼ 1.

In Figure 5, we plot the Gaussian kernels used in the simulations, with di¤er-

ent values of m and s. We see that the bigger m is the higher the peak of the kernel,

see (a) and (b) in Figure 5. This means that each agent in (a) is more adverse of

being in crowded areas than agents is (b), m ¼ 0:75 and m ¼ 0:5 respectively. For

higher values of s we see that the kernel becomes flat, compare (b) with (c) in Fig-

ure 5, for s ¼ 0:1 and s ¼ 1 respectively. As before, this means that the agents

penalize others independent of mutual distances.

In Figure 6, we compare the simulation results using the same initial-terminal

conditions, see Figure 4, but di¤erent kernel functions (plotted in the first row of

Figure 6). In the last row of Figure 6 we have the final distribution of agents.

We see that for larger values of m, left column compared with the middle one,

the agents’ concentration near low-cost regions of terminal cost, U , is less dense.

We also see that when s is bigger the agents become more indi¤erent to the

Figure 5. Plots of the Gaussian kernels for ðs; mÞ a fð0:1; 0:75Þ; ð0:1; 0:5Þ; ð1; 0:5Þg.
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Figure 6. Simulations using Gaussian kernels with di¤erent parameters, ðs; mÞ a
fð0:1; 0:75Þ; ð0:1; 0:5Þ; ð1; 0:5Þg, for each column. In the first row we show a section of
each kernel. In the second row we show the trajectories of the agents, fxðt; yaa 0 ÞgQ

a; a 0¼1,
t a ½0; 1�; with initial positions fyaa 0 gQ

a; a 0¼1 a T2. In the third row, we plot the 2D projec-
tion of the trajectories. And in the last row, we plot the final distribution of the agents,
mðx; 1Þ.
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density of the crowd, and concentrate more densely near low-cost values of U –

see the right column in Figure 6(f ).

As in the 1-dimensional case, looking to the projected trajectories in the

2-dimensional plane we observe that for flat kernel agents follow straight

lines from the initial positions to closest low-cost regions of the terminal cost

function.
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LQG problems with nonuniform agents: individual-mass behavior and decentralized
�-Nash equilibria. IEEE Trans. Automat. Control, 52(9):1560–1571, 2007.

395Fourier approximation methods for first-order nonlocal mean-field games

https://www.ceremade.dauphine.fr/cardaliaguet/
http://arxiv.org/abs/1805.01636v1
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