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The obstacle problem for noncoercive elliptic equations with
variable growth and L1-data

Hocine Ayadi, Fares Mokhtari, and Rezak Souilah

Abstract. The aim of this paper is to study the obstacle problem associated with noncoercive
elliptic equations with variable exponents and L1-data. After proving the existence and regu-
larity of entropy solutions, we have extended the Lewy–Stampacchia inequalities to the case of
noncoercive elliptic operators.

1. Introduction

In the recent decades, the topic of nonlinear partial differential equations with non-
standard growth conditions has captured an increasing attention because of its applica-
tions to the mathematical modelling of numerous real world phenomena. Particularly,
a number of papers has focused on elliptic obstacle problems involving variable expo-
nents; for instance, see [15, 16, 21, 23, 25, 26] and the references therein.

Let� be a bounded open domain in RN .N � 2/with Lipschitz boundary @� and
f 2L1.�/. Hereinafter, for any two bounded measurable functions r.�/, s.�/W�!R,
we set

r D ess inf
x2�

r.x/ and r D ess sup
x2�

r.x/;

and we write
r.�/� s.�/ if ess inf

x2�
.s.x/ � r.x// > 0:

Let p.�/ W � ! .1;C1/ be a continuous function, and 
.�/ W � ! Œ0;C1/ be a
measurable function such that

1 < p � p < N; (1.1)

0 � 
 < p � 1: (1.2)
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Our main goal is to prove the existence of entropy solutions for the obstacle problem
associated with the following nonlinear noncoercive elliptic problem8̂<̂

:�div
� a.x;ru/

.1C juj/
.x/

�
D f in �;

u D 0 on @�;
(1.3)

where a W � � RN ! RN is a Carathéodory vector function satisfying for almost
every x 2 � and for every �; � 0 2 RN , with � ¤ � 0, the assumptions

ja.x; �/j � ˇj�jp.x/�1; (1.4)

a.x; �/ � � � ˛j�jp.x/; (1.5)�
a.x; �/ � a.x; � 0/

�
�
�
� � � 0

�
> 0; (1.6)

where ˛ > 0, and ˇ > 0.
We define, for u 2 W 1;p.�/

0 .�/, the nonlinear elliptic operator

A.u/ D �div
� a.x;ru/

.1C juj/
.x/

�
;

which, thanks to (1.4) and (1.5), maps W 1;p.�/
0 .�/ into its dual space W �1;p

0.�/.�/,
but its coercivity can degenerate when u is too big. Due to the lack of coercivity, the
variational methods of Leray–Lions (see, for instance, [19]) cannot be applied even if
the data f is sufficiently regular.

For a given function  2 W 1;p.�/
0 .�/ \ L1.�/, we define the convex set

K D
®
v 2 W

1;p.�/
0 .�/ W v �  a.e. in �

¯
:

The unilateral problem relative to A, f , and the obstacle  (denoted by .A; f;  /)
can be formulated, using the duality between W 1;p.�/

0 .�/ and W �1;p
0.�/.�/, in terms

of the variational inequality8̂<̂
:
u 2K ;Z
�

a.x;ru/ � r.u � v/

.1C juj/
.x/
dx � hf; u � vi ; 8v 2K ;

(1.7)

whenever f 2 W �1;p
0.�/.�/. In the case f 2 L1.�/, the last fact holds only if p.�/ >

N (thanks to the Sobolev embedding W 1;p.�/
0 .�/ ,! L1.�/). Unfortunately, if f 2

L1.�/ and 1 < p.�/ < N , then the solution u of (1.3) does not belong to the space
W
1;p.�/
0 .�/ (see [28]). Therefore, the formulation (1.7) does not remain valid since

both sides of inequality (1.7) are maybe meaningless. Following [9, 25], this leads to
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introducing a more general formulation of the obstacle problem .A; f;  / using the
truncation function at level k > 0, Tk W R! R defined by

Tk.s/ D

´
s; if jsj � k;

k s
jsj
; if jsj > k:

Definition 1.1. An entropy solution of the obstacle problem .A; f;  / associated to
problem (1.3) is a measurable function u such that8̂̂̂̂
<̂
ˆ̂̂:
u �  a.e. in �;

Tk.u/ 2 W
1;p.�/
0 .�/; 8k > 0;Z

�

a.x;ru/ � rTk.u � v/

.1C juj/
.x/
dx �

Z
�

f Tk.u � v/ dx; 8v 2K \ L
1.�/:

(1.8)

We point out that, in the case of constant exponents p and 
 , the existence and
regularity of entropy solutions to the obstacle problem (1.8) were obtained in [5–7,
11, 30]. Also in [1, 29], the authors studied the existence of entropy solutions to the
obstacle problem associated with the operator A with additional lower-order terms.
In the coercive case, i.e. 
.�/� 0, the obstacle problem .A; f; / has been considered
by many authors (see, among others, [10, 13, 25]).

The inequality of Lewy–Stampacchia in the general framework has been con-
sidered in numerous papers, see for example [15, 21–26]. In particular, the authors
of [23] and [22] have proved the Lewy–Stampacchia inequalities for pseudomono-
tone elliptic operators in the context of variable exponent Sobolev spaces.

In this paper, in the case when p.�/ is log-Hölder continuous (see Remark 2.5
below) using the techniques of [25,27], we establish the existence of an entropy solu-
tion u to the obstacle problem (1.8) such that jujq.�/ 2L1.�/ for all 0� q.�/� q0.�/,
and jrujq.�/ 2 L1.�/ for all 0� q.�/� q1.�/, where

q0.�/ D p
�.�/

�
1 �

1C 


p

�
and q1.�/ D

p.�/q0.�/

q0.�/C 1C 
.�/
;

where p�.�/ D Np.�/
N�p.�/

. In particular, if p > 2 � 1�
.N�1/
N

then

u 2 W
1;q.�/
0 .�/; for all 1 � q.�/� q1.�/:

Furthermore, if p.�/ � 1 � q1.�/, then A.u/ 2 L1.�/ and the following Lewy–
Stampacchia inequalities hold:

f � A.u/ � f C .A. / � f /C a.e. in �:
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And in the case of a merely continuous p.�/ on � satisfying 2 � 1�
.N�1/
N

< p �

p < N , by taking advantage of the method of [12], we prove that u 2 W 1;q.�/
0 .�/ for

all continuous function q.�/ on � satisfying

1 � q.x/ <
N.p.x/ � 1 � 
/

N � 1 � 

in �:

The rest of the paper is organised as follows. In Section 2, we recall the definitions
of Lebesgue, Marcinkiewicz and Sobolev spaces with variable exponent and some of
their properties. In Section 3, we state our main results. In Section 4, we consider the
approximating obstacle problems, and establish the uniform estimates of solutions
for the approximation problems. In Section 5, we prove the strong convergence of the
truncations of these approximating solutions. Finally, in Sections 6 and 7, we establish
the existence results and we show that Lewy–Stampacchia inequalities hold true in the
context of log-Hölder continuous exponent p.�/.

2. Mathematical preliminaries

In this section, we recall some definitions and basic properties of the variable exponent
Lebesgue and Sobolev spaces. For further details on this topic, we refer to [4, 14, 17]
and references therein. Hereinafter, we write

P0.�/ D
®
h 2 L1.�/ W h > 0

¯
and P1.�/ D

®
h 2 L1.�/ W h � 1

¯
:

For any p 2 P0.�/, the Lebesgue space with variable exponent Lp.�/.�/ is the set of
all measurable functions u W �! R for which the modular

�p.�/.u/ D

Z
�

jujp.x/ dx;

is finite. The space Lp.�/.�/ equipped with the Luxemburg–Nakano quasi-norm

kukLp.�/.�/ D inf
°
� > 0 W �p.�/

�u
�

�
� 1

±
;

is a quasi-Banach space (see [2,14]). In particular, if p 2P1.�/ then the above expres-
sion defines a norm in Lp.�/.�/. In this case, the space Lp.�/.�/ becomes a separable
Banach space (see e.g. [17]). Moreover, if p >1, thenLp.�/.�/ is reflexive and its dual
space can be identified with Lp

0.�/.�/ with 1
p.�/
C

1
p0.�/
D 1, and for all u 2 Lp.�/.�/

and v 2 Lp
0.�/.�/, the Hölder-type inequality holds (see [17])ˇ̌̌̌ Z

�

uv dx

ˇ̌̌̌
� 2kukLp.�/.�/kvkLp0.�/.�/: (2.1)

The norm and the modular are related by the following inequalities.
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Proposition 2.1 ([14]). Let p 2P0.�/. Then, for every u2Lp.�/.�/, one has �p.�/.u/
< 1 (> 1;D 1) if and only if kukLp.�/.�/ < 1 (> 1;D 1); further,

if kukLp.�/.�/ < 1 then kuk
p

Lp.�/.�/
� �p.�/.u/ � kuk

p

Lp.�/.�/
; (2.2)

if kukLp.�/.�/ > 1 then kuk
p

Lp.�/.�/
� �p.�/.u/ � kuk

p

Lp.�/.�/
: (2.3)

The above proposition states that the norm convergence and modular convergence
are equivalent, that is to say, if un; u 2 Lp.�/.�/, then

kun � ukLp.�/.�/ ! 0 if and only if �p.�/.un � u/! 0:

Next we define Marcinkiewicz (weak Lebesgue) spaces with variable exponent
and we investigate their relation with variable exponent Lebesgue spaces.

Definition 2.2 ([2]). Let p 2 P0.�/. We say that a measurable function u W �! R

belongs to the Marcinkiewicz space Mp.�/.�/ if

kukMp.�/.�/ D sup
�>0

�k�¹juj>�ºkLp.�/.�/ <1; (2.4)

where �E denotes the characteristic function of a measurable set E.

Note that inequalities (2.2) and (2.3) imply that (2.4) is equivalent to say that there
exists a positive constant M such thatZ

¹juj>�º

�p.x/ dx �M; 8� > 0: (2.5)

If p; q 2 P0.�/ with q � p, then we have the following two inclusions (see [14]):

Lp.�/.�/ � Lq.�/.�/ and Lp.�/.�/ �Mp.�/.�/ �Mq.�/.�/:

The following result is from [27, Proposition 2.5].

Proposition 2.3. Let p; q 2 P0.�/ such that q.�/� p.�/, then

Mp.�/.�/ � Lq.�/.�/:

We will need the following results proved in [20].

Lemma 2.4. Let u 2Mp.�/.�/ with p 2 P0.�/. Then there exists a constant c > 0
such that

meas¹juj > �º �
c

�p
; 8� > 0:

For any p 2P1.�/, the variable exponent Sobolev spaceW 1;p.�/.�/ is defined by

W 1;p.�/.�/ D
®
u 2 Lp.�/.�/ W jruj 2 Lp.�/.�/

¯
;
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endowed with the norm

kukW 1;p.�/.�/ D kukLp.�/.�/ C krukLp.�/.�/:

We define W 1;p.�/
0 .�/ as the completion of C10 .�/ with respect to the above norm.

The spaces W 1;p.�/.�/ and W 1;p.�/
0 .�/ are separable Banach spaces. If p > 1 they

are reflexive and the dual space of W 1;p.�/
0 .�/ will be denoted by W �1;p

0.�/.�/. For
u 2 W

1;p.�/
0 .�/ with p 2 P1.�/, the Poincaré inequality

kukLp.�/.�/ � ckrukLp.�/.�/;

holds for some c > 0 which depends on � and p. Therefore, krukLp.�/.�/ and
kukW 1;p.�/.�/ are equivalent norms on W 1;p.�/

0 .�/.

Remark 2.5. The smooth functions are in general not dense inW 1;p.�/.�/ but if p is
log-Hölder continuous, that is, there exists a positive constant L such that

jp.x/ � p.y/j �
L

� ln jx � yj
; 8x; y 2 �; 0 < jx � yj �

1

2
; (2.6)

then the smooth functions are dense in W 1;p.�/.�/.

We have the following embedding result which can be found in [4].

Proposition 2.6. If p; q 2 C.�/ with 1 < p � p < N and 1 � q.x/ < p�.x/ D
Np.x/
N�p.x/

in �; then for every u 2 W 1;p.�/
0 .�/

kukLq.�/.�/ � ckrukLp.�/.�/; (2.7)

where c is some positive constant independent of u. The embedding W 1;p.�/
0 .�/ ,!

Lq.�/.�/ is continuous and compact. Moreover, if p satisfies (2.6), then the Sobolev
inequality (2.7) holds also for q.�/ D p�.�/.

We denote by T
1;p.�/
0 .�/ the set of all measurable functions u W � ! R such

that Tk.u/ 2 W
1;p.�/
0 .�/ for any k > 0. Note that T

1;p.�/
0 .�/ is not contained in

the Sobolev space W 1;1
0 .�/. However, the following proposition gives a sense to the

gradient of u 2 T
1;p.�/
0 .�/.

Proposition 2.7 ([27]). Let u 2 T
1;p.�/
0 .�/, then there exists a unique measurable

function v W �! RN such that

rTk.u/ D v�¹juj�kº a.e. in �; for any k > 0:

Moreover, if u belongs to W 1;1
0 .�/, then v coincides with the standard distributional

gradient of u.
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3. Main results

Our first result is the following theorem.

Theorem 3.1. Assume that hypotheses (1.1), (1.2), (1.4)–(1.6) and (2.6) hold. Then
there exists at least one entropy solution u to the obstacle problem (1.8). Moreover,
u 2 Lq.�/.�/, for any q 2 P0.�/ with q.�/� q0.�/, and jruj 2 Lq.�/.�/, for any
q 2 P0.�/ with q.�/� q1.�/, where

q0.�/ D p
�.�/

�
1 �

1C 


p

�
and q1.�/ D

p.�/q0.�/

q0.�/C 1C 
.�/
: (3.1)

In particular, if p > 2 � 1�
.N�1/
N

then u 2 W 1;q.�/
0 .�/, for any q 2 P1.�/ with

q.�/� q1.�/.
Moreover, if p.�/ � 1 � q1.�/ then A.u/ 2 L1.�/ and the following Lewy–

Stampacchia inequalities hold:

f � A.u/ � f C .A. / � f /C a.e. in �: (3.2)

Remark 3.2. When 
.�/ � 0, the statement of Theorem 3.1 coincides with that of
[25, Theorem 2.1 ].

Remark 3.3. We note that in Theorem 3.1, we need to use the continuous Sobolev
embeddingW 1;p.�/

0 .�/ ,!Lp
�.�/.�/, and this requires us to assume that the exponent

p.�/ is log-Hölder continuous.

In our second result, which is a direct generalisation of [6, Theorem 2.4] to the
context of variable exponents, we will assume p.�/ to be a merely continuous function.

Theorem 3.4. Assume (1.1), (1.2), (1.4)–(1.6) and that

p > 2 �
1 � 
.N � 1/

N
: (3.3)

Then there exists at least one entropy solution u to the obstacle problem (1.8). More-
over, u 2 W 1;q.�/

0 .�/ for all continuous function q.�/ on � satisfying

1 � q.x/ <
N.p.x/ � 1 � 
/

N � 1 � 

in �: (3.4)

Remark 3.5. Note that condition (3.3) implies that 1 � N.p.x/�1�
/
N�1�


� p.�/ and
1� q1.�/. When 
.�/ � 0, it corresponds to the well-known condition p > 2 � 1

N
.

Remark 3.6. We remark that if 
.x/ D �.p.x/ � 1/, condition (1.2) is nothing else
than 0 � � <

p�1

p�1
which is a crucial condition for the existence of the solutions for

problem (1.3) (see [28]).



H. Ayadi, F. Mokhtari, and R. Souilah 68

Remark 3.7. Notice that in the case of constant exponents p and 
 , Theorem 3.4
becomes a special case of Theorem 3.1, and we have

q0 D
N.p � 1 � 
/

N � p
and q1 D

N.p � 1 � 
/

N � 1 � 

;

which coincide with the exponents obtained in [3, 18] while studying the existence
of entropy solutions for the Dirichlet problem (1.3) in the framework of constant
exponents.

Remark 3.8. It is worth noting that if 
.�/ D 
 is constant, then we get

q1.x/ �
N.p.x/ � 1 � 
/

N � 1 � 

in �:

Therefore, the particular case of Theorem 3.1 when p > 2 � 1�
.N�1/
N

is included in
Theorem 3.4 as a special case. However, when 
.�/ is variable, we can not compare
q1.�/ with N.p.�/�1�
/

N�1�

.

4. Approximate problem and uniform estimates

To prove our main results, let us consider the sequence of approximate problems8̂<̂
:
un 2K ;Z
�

a.x;run/ � r.un � v/

.1C jTn.un/j/
.x/
dx �

Z
�

fn .un � v/ dx; 8v 2K ;
(4.1)

where fnD Tn.f /. Since fn 2L1.�/, it follows from the result of [31, Theorem 3.1]
that, for fixed n 2 N, problem (4.1) has at least one solution un 2K .

In the rest of this section, let un be a solution of (4.1). We prove some uniform
estimates for the solutions of (4.1) in the Marcinkiewicz spaces with variable expo-
nent.

Lemma 4.1. Assume (1.1), (1.2), (1.4)–(1.6). Then there exist two positive constants
c1 and c2, not depending on n, such thatZ

Bn
k

jrunj
p.x/ dx � c1.2C k/


 ; 8k � k kL1.�/; (4.2)Z
An
k

jrunj
p.x/ dx � c2.1C k/

1C
 ; 8k > 0; (4.3)

where An
k
D ¹x 2 � W jun.x/j < kº and Bn

k
D ¹x 2 � W k � jun.x/j < k C 1º.



The obstacle problem for noncoercive equations 69

Proof. For a fixed integer k > 0, we introduce the function 'k W R! R given by

'k.s/ D TkC1.s/ � Tk.s/ D

8̂̂̂̂
<̂
ˆ̂̂:
1; if s � k C 1;

s � k; if k � s < k C 1;

0; if 0 � s < k;

�'k.�s/; if s < 0:

(4.4)

Let k � k kL1.�/, using
v D un � 'k.un/;

as a test function in (4.1), we obtainZ
�

a.x;run/ � r'k.un/

.1C jTn.un/j/
.x/
dx �

Z
�

fn'k.un/ dx; 8k � k kL1.�/;

which implies Z
Bn
k

a.x;run/ � run

.1C jTn.un/j/
.x/
dx � kf kL1.�/:

Thanks to condition (1.5) and since jTn.un/j � k C 1 on Bn
k

, we have

˛

Z
Bn
k

jrunj
p.x/

.2C k/

dx � ˛

Z
Bn
k

jrunj
p.x/

.1C jTk.un/j/

dx

� ˛

Z
Bn
k

jrunj
p.x/

.1C jTn.un/j/

.x/

dx

�

Z
Bn
k

a.x;run/ � run

.1C jTn.un/j/
.x/
dx

� kf kL1.�/:

Let
v D un � Tk.un �  /; k > 0:

It is easy to see that v 2 K . Hence, taking v as a test function in problem (4.1), we
obtain Z

�

a.x;run/ � rTk.un �  /

.1C jTn.un/j/
.x/
dx �

Z
�

fnTk.un �  / dx:

By assumption (1.5), we get

˛

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx

� kkf kL1.�/ C

Z
¹un� <kº

a.x;ru"/ � r 

.1C jTn.un/j/
.x/
dx: (4.5)
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Now we estimate the second term on the right-hand side of (4.5) using (1.4) and
Young’s inequality with � > 0Z

¹un� <kº

a.x;run/ � r 

.1C jTn.un/j/
.x/
dx

� ˇ

Z
¹un� <kº

jrunj
p.x/�1jr j

.1C jTn.un/j/
.x/
dx

� ˇ�

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx

C C.�/

Z
¹un� <kº

jr jp.x/

.1C jTn.un/j/
.x/
dx

� ˇ�

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx C C: (4.6)

Combining (4.5) and (4.6) gives

˛

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx

� kkf kL1.�/ C ˇ�

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx C C:

Choosing � such that ˛ D 2ˇ�, we find

˛

2

Z
¹un� <kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx � kkf kL1.�/ C C: (4.7)

Replacing k by k C k kL1.�/ in (4.7) and noting that ¹junj < kº � ¹jun �  j <

k C k kL1.�/º, we get

˛

2

Z
¹junj<kº

jrunj
p.x/

.1C jTn.un/j/
.x/
dx � C.1C k/;

which yields (4.3). Therefore, Lemma 4.1 is completely proved.

Lemma 4.2. Under the assumptions of Theorem 3.1, there exists a positive constant
M independent of n, such thatZ

¹junj>kº

kq.x/ dx �M; 8k > 0;

with q.x/ D p�.x/.1 � 1C

p
/.
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Proof. We follow the techniques used in [27] with some improvements based on the
degenerate coercivity.

Case (1): 0 < k � 1. In this case, it is clear that un 2Mq.�/.�/ andZ
¹junj>kº

kq.x/ dx � meas.�/:

Case (2): k � 1. Thanks to (4.3), we have Tk.un/ 2 W
1;p.�/
0 .�/. Let ' D Tk.un/

k
,

then Z
¹junj>kº

kq.x/ dx D

Z
¹j'jD1º

kq.x/j'jp
�.x/ dx

�

Z
�

.k� j'j/
p�.x/

dx; (4.8)

where � D .1 � 1C

p
/. The last term in (4.8) can be estimated using the Sobolev

inequality (2.7) and Proposition 2.1Z
�

.k� j'j/p
�.x/ dx � kk�'k

�

Lp
�.�/.�/

� Ckr.k�'/k
�

Lp.�/.�/

� C

�Z
�

jr.k�'/jp.x/ dx

� �
ı

� C

�Z
�

jrTk.un/j
p.x/

k1C

kp.x/.��1/C1C
 dx

� �
ı

; (4.9)

where

� D

´
p�; if kk�'kLp�.�/.�/ � 1;

p�; if kk�'kLp�.�/.�/ � 1;
ı D

´
p; if kr.k�'/kLp.�/.�/ � 1;

p; if kr.k�'/kLp.�/.�/ � 1:

Note that kp.x/.��1/C1C
 � 1 since k > 1 and p.x/.� � 1/ C 1 C 
 � 0. Finally,
combining (4.8) and (4.9) leads to the desired result, which completes the proof of
Lemma 4.2.

The following lemma is proved in much the same way as [20, Lemma 2.2], so we
shall omit the proof.

Lemma 4.3. If there is a positive constant M , independent of n, such thatZ
¹junj>kº

kq.x/ dx �M; 8k > 0;
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for some q 2 P0.�/, then, under estimate (4.3), there holds jrunj�.x/ 2Mq.�/.�/,
where �.x/ D p.x/

q.x/C1C
.x/
. Moreover, there exists a positive constant M1, independ-

ent of n, such that Z
¹jrunj�.x/>kº

kq.x/ dx �M1; 8k > 0: (4.10)

Lemma 4.4. Under the assumptions of Theorem 3.4, there exists a positive con-
stant C , independent of n, such that

kunkW 1;q.�/
0

.�/
� C; (4.11)

kunkLq�.�/.�/ � C; (4.12)

for all continuous functions q.�/ on � satisfying (3.4).

Proof. Here, our technique follows [8, 12]. First, we note that assumption (3.3) im-
plies that

1 <
N.p.x/ � 1 � 
/

N � 1 � 

; 8x 2 �:

From (1.1) and (3.4), we deduce

q.x/ < p.x/; 8x 2 �:

The proof proceeds in two steps.

Step 1: Suppose that q satisfies 1 � q <
N.p�1�
/

N�1�

. Then it follows that q < p and

p � q

p
q� � 
 > 1: (4.13)

In view of the continuous embedding W 1;p.�/
0 .�/ ,! W

1;p

0 .�/, we deduce from
(4.2) and Hölder’s inequalityZ

Bn
k

jrunj
q dx �

�Z
Bn
k

jrunj
p dx

� q
p

.meas.Bnk //
1� qp

� c1.2C k/
q

p .meas.Bnk //

1� qp : (4.14)

Now, let k0 � max.2; k kL1.�//, then for all k � k0, we haveZ
Bn
k

jrvjq dx � c2k
q

p .meas.Bnk //

1� qp :
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Using this and (4.3), we getZ
�

jrunj
q dx �

k0�1X
kD0

Z
Bn
k

jrunj
q dx C

C1X
kDk0

Z
Bn
k

jrunj
q dx

� c3 C c4

C1X
kDk0

k
q

p .meas.Bnk //

1� qp : (4.15)

Clearly, meas.Bn
k
/ � 1

kq
�

R
Bn
k
junj

q� dx for all k � k0. From this estimate and invok-
ing Hölder’s inequality again, we obtainZ

�

jrunj
q dx � c3 C c4

C1X
kDk0

1

k
p�q

p q�� q
p

�Z
Bn
k

jrunj
q� dx

�p�q
p

� c3 C c4

� C1X
kDk0

1

k
p�q

p
q��


� q
p
� C1X
kDk0

Z
Bn
k

junj
q� dx

�p�q
p

: (4.16)

Thanks to (4.13), we deduce from (4.16) thatZ
�

jrunj
q dx � c3 C c5kunk

p�q

p q�

Lq
�
.�/
:

The Sobolev inequality gives

kunk
q

Lq
�
.�/
� c6 C c7kunk

�

Lq
�
.�/

with � D
p � q

p
q�: (4.17)

It is easy to verify that the condition p < N implies � < q. Thus, we conclude that

kunkW 1;q
0

.�/
� C for all 1 � q <

N.p � 1 � 
/

N � 1 � 

: (4.18)

In particular, there exists a constant C 0 > 0, independent of n, such that

kunkL1.�/ � C
0: (4.19)

Step 2: Let q 2 C.�/ satisfying (3.4). The continuity of p.�/ and q.�/ on� guarantees

the existence of a constant ı > 0 such that

max
y2B.x;ı/\�

q.y/ < min
y2B.x;ı/\�

N.p.y/ � 1 � 
/

N � 1 � 

for all x 2 �; (4.20)
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where B.x; ı/ denotes the open ball of centre x and radius ı. Note that � is com-
pact and therefore we can cover it with a finite number of open balls .Bj /jD1;:::;m.
Moreover, there exists a constant � > 0, such that

ı > j�j j D meas.�j / > �; �j D Bj \� for all j D 1; : : : ; m: (4.21)

We denote by qj the local maximum of q.�/ on�j (respectively pj the local minimum

of p.�/ on �j ). Therefore, (4.21) implies that

qj <
N.pj � 1 � 
/

N � 1 � 

for all j D 1; : : : ; m: (4.22)

Now locally, using the same arguments as before, we find that the estimates (4.14)
and (4.15) hold on �j \ Bnk and �j , respectively. In particular, it is easy to check
that, instead of the global estimate (4.16), we findZ
�j

jrunj
qj dx

� c3 C c4

 
C1X
kDk0

1

k
..pj�qj /=p

C

j
/qj
�
�


! qj
pj

 
C1X
kDk0

Z
�j\B

n
k

junj
qj
�

dx

!pj�qj
pj

� c3 C c5kunk

pj�qj

pj
qj
�

L
qj
�
.�j /

: (4.23)

We denote by Qunj the average of un over �j

Qunj D
1

meas.�j /

Z
�j

un.x/ dx:

From (4.19) and (4.21), we have

j Qunj j �
C 0

�
: (4.24)

By virtue of the Poincaré–Wirtinger inequality, we obtain

kun � Qunj k
L
qj
�
.�j /
� c6krunkLqj .�j /

: (4.25)

In view of (4.23), (4.24) and (4.25), we deduce

kunk
qj

L
qj
�
.�j /
� c7 C c8kunk

�

L
qj
�
.�j /

with � D
pj � qj

pj
qj
�: (4.26)

Clearly, (4.22) and the condition p < N imply � < q, and we can therefore conclude
that

kunk
L
qj
�
.�j /
� c9; for all j D 1; : : : ; m: (4.27)
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Note that q.x/ � qj and q.x/ � q�.x/ � qj � for all x 2�j and for all j D 1; : : : ;m.
Thus, from (4.27) and (4.23), we have the desired result

kunkLq�.�/.�/ C kunkW 1;q.�/
0

.�/
� c10:

This finishes the proof of Lemma 4.4.

5. The strong convergence of the truncations

Employing the uniform estimates obtained in the previous section, we are able to get
the strong compactness of the truncations.

Proposition 5.1. Assume that hypotheses (1.1), (1.2), (1.4)–(1.6) hold true and let
un be a sequence of solutions to (4.1). Then, there exists a subsequence of un (still
denoted by un) and a function u 2 T

1;p.�/
0 .�/ such that u �  and

Tk.un/! Tk.u/ strongly in W 1;p.�/
0 .�/; (5.1)

as n!C1, for every k > 0.

Proof. We will proceed with the proof in two steps.

Step 1: The almost everywhere convergence of un in �. We claim that .un/ is a
Cauchy sequence in measure. Indeed, let ı > 0, we have

¹jun � umj > ıº � ¹junj > kº [ ¹jumj > kº [ ¹jTk.un/ � Tk.um/j > ıº;

which implies that

meas¹jun � umj > ıº � meas¹junj > kº Cmeas¹jumj > kº

Cmeas¹jTk.un/ � Tk.um/j > ıº:

Let � > 0, by invoking Lemma 2.4, we may choose k D k.�/ large enough such that

meas¹junj > kº �
�

3
and meas¹jumj > kº �

�

3
: (5.2)

From estimate (4.3), it follows that the sequence .Tk.un//n is bounded inW 1;p.�/
0 .�/.

Then, up to a subsequence (not relabelled)

Tk.un/ * �k weakly in W 1;p.�/
0 .�/ as n!C1:

Thanks to the compact embedding (2.7), we get

Tk.un/! �k strongly in Lr.�/.�/ and a.e in �;



H. Ayadi, F. Mokhtari, and R. Souilah 76

for all r 2 C.�/ with 1 � r.x/ < p�.x/ in �. Consequently, we can assume that
.Tk.un//n is a Cauchy sequence in measure. Thus,

meas
®
jTk.un/ � Tk.um/j > ı

¯
�
�

3
for all m; n � n0.�; ı/: (5.3)

Combining this with (5.2) yields

8ı; � > 0; 9n0.�; ı/ 2 N;8n;m � n0.�; ı/ W meas¹jun � umj > ıº � �;

which proves that the sequence .un/ is a Cauchy sequence in measure and then it
converges almost everywhere to some measurable function u, thus

Tk.un/ * Tk.u/ weakly in W 1;p.�/
0 .�/: (5.4)

Step 2: The strong convergence of the truncation Tk.un/. Let m > k � k k1, we
set hm.s/D 1� j'm.s/j and v D un � hm.un/.Tk.un/� Tk.u// where 'm is defined
as in (4.4). Since v 2 W 1;p.�/

0 .�/ and v �  , v is an admissible test function to the
approximate problem (4.1), so we have

I1‚ …„ ƒZ
�

a.x;run/ � runh
0
m.un/.Tk.un/ � Tk.u//

.1C jTn.un/j/

.x/

dx

C

I2‚ …„ ƒZ
�

a.x;run/ � r.Tk.un/ � Tk.u//hm.un/

.1C jTn.un/j/

.x/

dx

�

I3‚ …„ ƒZ
�

Tn.f /hm.un/.Tk.un/ � Tk.u// dx :

Hereafter, we denote !.n;m/ (as in [20]) for all quantities, possibly different, such
that limm!C1 limn!C1!.n;m/D 0. That is to say, in the limit process for !.n;m/,
first let n!C1 for fixed m, then let m tend to infinity. Similarly, the notation !.n/
represents all quantities, maybe different, such that limn!C1 !.n/ D 0. Our aim is
to prove that for all k > 0

lim
n!C1

Z
�

�
a.x;rTk.un// � a.x;rTk.u//

�
� r.Tk.un/ � Tk.u// dx D 0: (5.5)

First of all, using the fact that hm.un/.Tk.un/ � Tk.u// * 0 weakly* in L1.�/
and fn ! f strongly in L1.�/, we get I3 D !.n/.

Next, we take v D un � 'm.un/ as a test function in (4.1). The almost everywhere
convergence of un to u implies 'm.un/! 'm.u/ as n! C1, and 'm.un/! 0 as
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m!C1. Therefore, thanks to (1.5) we obtain

˛

Z
�

jr'm.un/j
p.x/

.1C jTn.un/j/
.x/
dx �

Z
�

fn'm.un/ dx

D

Z
�

.fn � f /'m.un/ dx

C

Z
�

f .'m.un/ � 'm.u// dx C

Z
�

f 'm.u/ dx

D !.n;m/: (5.6)

We employ (1.4) and (5.6) to obtain, using Young’s inequality,

jI1j �

Z
�

jh0m.un/jjrunj
p.x/jTk.un/ � Tk.u/j

.1C jTn.un/j/
.x/
dx

� 2k

Z
�

jr'm.un/j
p.x/

.1C jTn.un/j/
.x/
dx

D !.n;m/:

We are left with the estimate of I2 which can be split as follows

I2 D

J1‚ …„ ƒZ
�

a.x;rTk.un// � r.Tk.un/ � Tk.u//hm.un/

.1C jTn.un/j/
.x/
dx

�

J2‚ …„ ƒZ
¹junj>kº

a.x;run/ � rTk.u/hm.un/

.1C jTn.un/j/
.x/
dx :

Let n > mC 1, since hm has compact support, the integral J2 is taken on the subset
¹junj � mC 1º, so J2 can be written as follows:

J2 D

Z
�

a.x;rTmC1.un// � rTk.u/hm.un/�¹junj>kº

.1C jTn.un/j/
.x/
dx:

From (5.4), we deduce that the sequence°a.x;rTmC1.un//hm.un/
.1C jTn.un/j/
.x/

±
n
;

weakly converges in .Lp
0.�/.�//N . On the other hand rTk.u/�¹junj>kº strongly con-

verges to zero in .Lp.�/.�//N , so that we get

J2 D !.n/:



H. Ayadi, F. Mokhtari, and R. Souilah 78

Noting that for n > m C 1 > m > k, hm.un/ D 1 on the set ¹junj � kº, then J1
simplifies to

J1 D

Z
�

a.x;rTk.un// � r.Tk.un/ � Tk.u//

.1C jTn.un/j/
.x/
dx

D

K1‚ …„ ƒZ
¹junj�kº

Œa.x;rTk.un// � a.x;rTk.u//� � r.Tk.un/ � Tk.u//

.1C jTn.un/j/
.x/
dx

C

K2‚ …„ ƒZ
�

a.x;rTk.u// � r.Tk.un/ � Tk.u//�¹junj�kº

.1C jTn.un/j/
.x/
dx :

In view of (1.4) and using Lebesgue’s dominated convergence theorem, we conclude
that ° a.x;rTk.u//

.1C jTn.un/j/
.x/

±
n
;

converges strongly in .Lp
0.�/.�//N , by (5.4) we also deduce that K2 D !.n/.

Based on the previous estimates, by (1.6) and the fact that the integralK1 is taken
on the subset ¹junj � kº, we finally get

!.n;m/ D K1

�
1

.1C k/


Z
�

�
a.x;rTk.un// � a.x;rTk.u//

�
� r.Tk.un/ � Tk.u// dx

� 0:

Therefore, (5.5) is proved. Under assumptions (1.4)–(1.6), it is well known that (5.5)
implies

Tk.un/! Tk.u/ strongly in W 1;p.�/
0 .�/ for all k > 0:

This affirms that
run ! ru a.e. in �:

6. Existence of entropy solutions

Let un be a solution to (4.1) and let v 2 W 1;p.�/
0 .�/ \ L1.�/ with v.x/ �  .x/

in �. For a fixed k > 0, the function

un � Tk.un � v/;

is an admissible test function in (4.1). With this choice of test function we getZ
�

a.x;run/ � rTk.un � v/

.1C jTn.un/j/
.x/
dx �

Z
�

fnTk.un � v/ dx: (6.1)
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Since on the set ¹x 2�I jun � vj < kº we have junj � hD kCkvkL1.�/, therefore,
(6.1) can be written asZ

�

�n
a.x;run/ � run�
1C jTn.un/j

�
.x/ dx C Z
�

A.x; un;run/ � rv dx

�

Z
�

fnTk.un � v/ dx;

(6.2)

where �n.x/ D �¹jun�vj<kº.x/, and A.x; un;run/ D
a.x;rTh.un//

.1CjTn.un/j/
.x/
�n. Let us pass

to the limit in (6.2). On the right-hand side, it is easy since fn converges strongly to
f in L1.�/ and Tk.un � v/ converges to Tk.u � v/ weakly� in L1.�/. As for the
first term on the left-hand side, we have, by using Fatou’s lemmaZ

�

�
a.x;ru/ � ru

.1C juj/
.x/
dx � lim inf

n!C1

Z
�

�n
a.x;run/ � run

.1C jTn.un/j/
.x/
dx;

where �.x/ D �¹ju�vj<kº.x/. In the second term of the left-hand side we have, by
using (1.4), the boundedness of the sequence Th.un/ in W 1;p

0 .�/, and the almost
everywhere convergence of run in � to ru, we deduce that

kA.x; un;run/k.Lp0.�/.�//N � C; (6.3)

and
A.x; un;run/! A.x; u;ru/ a.e. in �; (6.4)

where A.x;u;ru/D a.x;rTh.u//

.1Cjuj/
.x/
�.x/. By (6.3), (6.4), and using Vitali’s theorem, we

can conclude that

A.x; un;run/! A.x; u;ru/ weakly in .Lp
0.�/.�//N :

Hence, Z
�

A.x; un;run/ � rv dx !

Z
�

A.x; u;ru/ � rv dx:

Letting n tend to infinity in (6.2) yieldsZ
�

�
a.x;ru/ � ru

.1C juj/
.x/
dx C

Z
�

�
a.x;rTh.u// � rv

.1C juj/
.x/
dx �

Z
�

f Tk.u � v/ dx:

Since Th.u/ D u on the set ¹x 2 � W ju � vj < kº, the previous inequality can be
rewritten as Z

�

a.x;ru/ � rTk.u � v/

.1C juj/
.x/
dx �

Z
�

f Tk.u � v/ dx:

This proves that u is an entropy solution of the obstacle problem .A; f;  /.
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7. Lewy–Stampacchia inequalities

In this section we assume the hypotheses of Theorem 3.1 are fulfilled.
Let us now consider the sequence of operators An W W

1;p.�/
0 .�/! W �1;p

0.�/.�/

defined by

An.v/ D �div
�

a.x;rv/

.1C jTn.v/j/
.x/

�
;

with p.�/ is log-Hölder continuous and verify p.�/ � 1� q1.�/.
Let un be a solution of the approximate obstacle problem (4.1), then using the

same arguments as in [27], we can prove easily that

a.x;run/

.1C jTn.un/j/
.x/
!

a.x;ru/

.1C juj/
.x/
strongly in .L1.�//N :

Note that for each n 2N, the operator An is a pseudomonotone coercive operator
and satisfying to the hypothesis of [22], so it follows that

fn � An.un/ � fn C .An. / � fn/
C in W �1;p

0.�/.�/:

In particular, the previous inequality holds in the sense of distributions.
Let 0 � ' 2 C10 .�/, thenZ
�

fn ' dx �

Z
�

a.x;run/ � r'

.1C jTn.un/j/
.x/
dx �

Z
�

�
fn C .An. / � fn/

C
�
' dx:

Since fn converges to f in L1.�/ and

a.x;r /

.1C jTn. /j/
.x/
!

a.x;r /

.1C j j/
.x/
strongly in .Lp

0.�/.�//N ;

by letting n!C1 in the above inequality we obtain

f � A.u/ � f C .A. / � f /C in D 0.�/:

Finally, since f and .A. / � f /C belong to L1.�/, we conclude also that A.u/ 2

L1.�/ and (3.2) follows.
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