Port. Math. 79 (2022), 85-161 © 2022 Sociedade Portuguesa de Matemadtica
DOI 10.4171/PM/2080 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Overdetermined ODEs and rigid periodic states in
network dynamics

Ian Stewart

Abstract. We consider four long-standing Rigidity Conjectures about synchrony and phase
patterns for hyperbolic periodic orbits of admissible ODEs for networks. Proofs of stronger
local versions of these conjectures, published in 201012, are now known to have a gap, but
remain valid for a broad class of networks. Using different methods we prove local versions of
the conjectures under a stronger condition, ‘strong hyperbolicity’, which is related to a network
analogue of the Kupka—Smale Theorem. Under this condition we also deduce global versions
of the conjectures and an analogue of the H/K Theorem in equivariant dynamics. We prove the
Rigidity Conjectures for all 1- and 2-colourings and all 2- and 3-node networks by showing that
strong hyperbolicity is generic in these cases.

1. Introduction

The phenomenon of synchrony in network dynamics has been widely studied for
decades; see for example Boccaletti et al. [12] and Wang [76]. In the network con-
text, sets of synchronous nodes are often called clusters. Another term is ‘partial
synchrony’; see Belykh et al. [9, 11], Belykh and Hasler [10], Pecora et al. [61],
Pogromsky [64], Pogromsky et al. [63]. In neurobiology, neurons are synchronised
if they ‘fire together’, a relationship that is significant for neural processing and the
architecture of the brain (Kopell and LeMasson [54], Singer [65], Uhlhaas et al. [74]).
Manrubia et al. [59] discuss synchronisation in neural networks. Van Vreeswijk and
Hansel [75] analyse several models, including a coupled system of Hodgkin—Huxley
neurons that can produce spikes and bursts. Mosekilde et al. [60] describe a model of
synchronisation in nephrons, structures in the kidneys that help regulate blood pres-
sure.

A closely associated phenomenon is the occurrence of phase patterns: specific
phase shifts (as fractions of the period) between nodes with otherwise identical time-
periodic waveforms. Such phenomena occur in models of animal locomotion (Buono
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and Golubitsky [14], Golubitsky et al. [40, 41]), peristalsis (Chambers et al. [18],
Gjorgjieva et al. [29]), respiration (Butera et al. [15, 16]), and binocular rivalry and
visual illusions (Curtu [19], Diekman et al. [23-25,70]). There are also applications
in the physical sciences, for instance to robotics (Campos et al. [17], Liu et al. [58])
and coupled lasers (Glova [30], Zhang et al. [77]).

The common occurrence of such patterns suggests that a unified theory, provid-
ing a conceptual framework applicable to arbitrary networks, could prove useful.
One such framework is the ‘coupled cell’ formalism of [36,39,43,71], which takes
its inspiration from the topological approach to nonlinear dynamics of Arnold [7],
Smale [67], and many others, and the analogous theory of equivariant dynamics and
bifurcation of Golubitsky et al. [35,42]. In this formalism, a network determines a
class of admissible ODEs, and the primary aim is to relate the dynamics of such
equations to the network architecture. Synchrony and phase patterns are closely asso-
ciated with balanced colourings, which are combinatorial features of the network, and
the associated quotient networks, whose admissible ODEs prescribe the dynamics of
synchronous clusters. There are numerous existence theorems for steady and peri-
odic states with prescribed synchrony and phase patterns, and some ideas extend to
synchronised chaos. We summarise this formalism in Section 4.

However, the theory of synchrony and phase patterns for periodic states remains
incomplete, because several key results are still conjectural. The main ones are the
Rigidity Conjectures, discussed in Section 1.3. They have been proved for a broad
class of networks, but it has recently been realised that the published proofs make a
tacit assumption that fails for some networks; see Section 1.4. The aim of this paper
is to prove these conjectures without that assumption, but under an extra technical
hypothesis: ‘strong hyperbolicity’ of the periodic orbit. In some cases it is possible to
dispense with this condition; in particular we prove the Rigidity Conjectures uncon-
ditionally for networks with up to 3 nodes and for all 1- and 2-colour patterns on
any network. The general case, without assuming strong hyperbolicity, remains open,
but could be dealt with using similar methods if it is possible to prove suitable net-
work analogues of the Kupka—Smale Theorem, Section 1.5. The method shows that if
counterexamples to the Rigidity Conjectures exist, they must have extremely degen-
erate systems of periodic orbits, Section 14.5.

For technical reasons indicated in Section 4.3, the analysis is carried out within a
mild generalisation of the standard coupled cell formalism, developed in detail in [39].
We focus on synchrony and phase relations between nodes (formerly called ‘cells’),
defined as follows. Consider an admissible ODE for the network (one that respects
the network structure)

x = f(x), Xc € P, (1.1)
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where ¢ runs through the set € = {1,...,n} of nodes, x = (x1,...,X,), f =
(fi,..., fn), and the node spaces P, are finite-dimensional real vector spaces. An
orbit X = {x(¢)} of (1.1) is synchronous for nodes c, d if the corresponding node
states are equal for all time

X (1) = x4(1). (1.2)

The orbit X is phase-related for nodes c, d if the corresponding node states are equal
for all times, up to a phase shift 0

xe(t) = xq(t + 6). (1.3)

The synchrony pattern for x (t) is the equivalence relation determined by all synchron-
ous pairs. It can also be viewed as a partition of the nodes into synchronous clusters,
or as a colouring in which synchronous nodes are given the same colour. We pass
between these three interpretations without further comment.

For technical reasons, explained in Sections 7.6 and 7.7, we prefer to use local
versions of these relations. Let ty € R. Then X is locally synchronous for nodes c, d
at x (fo) if there exists an open set J C R containing f¢ such that (1.2) holds for all
t € J, and locally phase-related for nodes c, d at x(t) if (1.3) holds for all ¢ € J.
The local synchrony pattern at x(ty) is the equivalence relation determined by all
synchronous pairs.

The local phase pattern at a point x(f9) € X is slightly more complicated. Phase
relations between pairs of nodes need not be unique, because the minimal period of
Xc(t) at a node ¢ may differ from the minimal period of the entire orbit X. For an
oscillating node this can happen for a multirhythm state [37]; in fact it is possible for
all minimal periods at nodes to differ from the overall minimal period. Moreover, the
state of a steady node is fixed by all phase shifts. The phase pattern for X encodes
phase relations between pairs of nodes as sets ®(c, d) containing all 6 such that (1.3)
is valid. The set ® = {®(c, d)} has a natural groupoid structure [72]. This definition
also has a local version where again we consider only ¢t € J.

1.1. Rigidity

The notion of rigidity is central to the general theory of synchrony and phase patterns,
because it excludes artificial examples where these patterns arise for non-generic reas-
ons, such as couplings that are generically nonzero but vanish on the states concerned.
A prerequisite for defining rigidity is that the relevant state (which we take to be either
an equilibrium or a periodic orbit) should be hyperbolic. For an equilibrium this means
that the Jacobian has no zero or purely imaginary eigenvalues, Guckenheimer and
Holmes [44, Section 1.4]. For periodic orbits, the Floquet multipliers should not lie
on the unit circle except for a simple eigenvalue 1 associated with the periodic orbit,
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Hassard et al. [45, Section 1.4]. Equivalently, the derivative of a Poincaré return map
should have no eigenvalues on the unit circle [44, Section 1.5].
In a general dynamical system, hyperbolicity of a given periodic orbit or equilib-
rium is a generic property. That is, it is:
* Dense: Every periodic orbit becomes hyperbolic after an arbitrarily small perturb-
ation (if necessary).

*  Open: After any sufficiently small perturbation, a hyperbolic periodic orbit re-
mains hyperbolic.

The density property follows from the Kupka—Smale Theorem, a considerably strong-
er statement; see Kupka [55], Smale [66], and Peixoto [62]. Openness is obvious
because eigenvalues (of the Jacobian at an equilibrium or the derivative of a Poincaré
map at a periodic orbit) perturb continuously, Lancaster and Tismenetsky [56].

We describe the situation for periodic orbits; there are simpler analogous state-
ments for equilibria. Consider an ODE

x = f(x), x € R™ (1.4)

for a smooth (that is, C*°) vector field f on a finite-dimensional Euclidean space
R™. In the theory of general dynamical systems, any hyperbolic periodic state X of
this ODE with period T persists when f is replaced by any sufficiently small pertur-
bation f ; see Hirsch et al. [47]. That is, locally there is a unique perturbed periodic
state X (¢) near x () with period T near T'. Throughout this paper, ‘small’ refers to the
C! norm, Section 6.1.

Definition 1.1. Suppose that (1.4) is an admissible ODE for a network. A property 5
of a hyperbolic periodic orbit X is rigid if, for any admissible perturbation f =f+p
of the vector field f, where p is sufficiently small, the perturbed periodic orbit X also
has property .

Hyperbolicity ensures that a locally unique perturbed periodic orbit exists, so this
definition makes sense. We allow property & to depend on the period T, which is
replaced by T in the perturbed ODE. So, for example, ‘nodes 1 and 2 are out of phase
by half a period” might be a rigid property. Rigidity is an ‘openness’ condition: in a
suitable topology, the set of X with property J is open.

1.2. Motivation from equivariant dynamics

In this paper we focus on rigid synchrony and phase patterns of orbits of admissible
ODEs for networks. A natural setting for these patterns, and an important source of
motivation for the network theory, is equivariant dynamics [36,42]. Here the map f
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in (1.4) is equivariant for the action of a group I on R¥; that is,
flyx) =yf(x) Vyel.

Associated with any periodic orbit X = {x(¢)} are two subgroups of I"

K ={y:yx() =x() vVt € R},
H={y :yX=XVteR}.

We call K the group of pointwise symmetries of X, and H the group of setwise
symmetries. The possible pairs (H, K) are classified by the H/K Theorem of Buono
and Golubitsky [14]. For finite I' the main conditions are that K <1 H and the quotient
group H/K = Z, is cyclic. There are other technical conditions if the state space has
low dimension. It can then be shown that X is a discrete rotating wave

yx(t) = x(t +0), 0 =mT/r

for all # € R and for some integer m. The group K plays the role of a (global) syn-
chrony pattern (6 = 0), while H (or H/K) plays the role of a (global) phase pattern.
By [36, Corollary 3.7], both H and K are rigid properties of X. (The term used there
is ‘robust’.) So the synchrony and phase patterns for (H, K) are rigid. It is easy to
prove that if § is a network with symmetry group I" then every admissible map is I'-
equivariant. Therefore any synchrony or phase pattern arising from a pair (H, K) is
rigid. However, equivariant maps need not be admissible [5, Section 3.1]. Examples
of synchrony and phase patterns of these kinds can be found in many papers, for
instance [4-6], Buono and Golubitsky [14], Golubitsky et al. [31,32,37,57,70].

It is well known that rigid synchrony patterns in networks can arise for reas-
ons more general than symmetry. In particular, any balanced colouring of the nodes
determines a rigid synchrony pattern [43,71]. If the Rigid Synchrony Conjecture holds
for the network, the converse is true. Moreover, if the Rigid Phase Conjecture also
holds for the network, its rigid phase patterns arise from cyclic symmetries of quo-
tient networks by balanced colourings [73].

Another source of motivation for the Rigidity Conjectures is their analogues for
equilibria. It is proved in [43] that if a synchrony pattern of a steady state is rigid, then
the corresponding colouring is balanced. That is, synchronous nodes have synchron-
ous inputs, up to input isomorphism. Aldis [3, Chapter 7] gives another proof using
transversality. A third proof, using methods along the lines of this paper, is in [69].

1.3. Rigidity Conjectures

In this paper, an orbit X = {x(¢)} is defined to be periodic if there exists T > 0 such
that x(¢ + 7)) = x(¢), and x(¢) is not constant (which would be a steady state). A
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periodic orbit of a network may be steady at some nodes; that is, some components
X¢(t) can be constant as ¢ varies. However, x4 () must oscillate (not be constant) for
some node d. This can happen, for example, in feedforward networks, where a steady
node is an input to oscillating nodes; see for example Golubitsky et al. [32].

The Rigidity Conjectures, stated about 15 years ago, comprise:

(a) Rigid Input Conjecture: For any rigid synchrony or phase pattern, synchron-
ous or phase-related nodes are input isomorphic. That is, they have the same
number of input arrows for any given arrow-type.

(b) Rigid Synchrony Conjecture: For any rigid synchrony pattern, corresponding
input nodes inherit the same synchrony pattern, if suitably identified.

(c) Rigid Phase Conjecture: For any rigid phase pattern, corresponding input
nodes inherit the same phase pattern, if suitably identified.

(d) Full Oscillation Conjecture: If a transitive network has a hyperbolic periodic
state, there exist arbitrarily small admissible perturbations for which every
node oscillates.

The identifications in (b) and (c) must be made using input isomorphisms, which pre-
serve the node dynamics and the numbers and types of couplings. Although rigidity
is not mentioned specifically in (d), it is implicit: a node that is steady after any small
perturbation is rigidly steady. Moreover, (d) is a simple consequence of (c).

All four conjectures can also be stated as local versions, in which the relevant
hypotheses are assumed to hold only for some non-empty open interval of time. We
append the word ‘local’ to distinguish these. The local versions are not just general-
isations: they have technical advantages and are essential to this paper. As it happens,
the local versions imply the global ones, but this is not immediate from the definitions.
The Rigidity Conjectures are all motivated by the same intuition: if two nodes have
the same dynamics, except perhaps for a phase shift, then the same should be true for
the nodes that input to them, up to some bijection and for the same phase shift. In (a)
the common feature is having the same number of inputs of each arrow type; in (b) it
is synchrony, in (c) it is a phase relation, and in (d) it is the node not oscillating.

The condition of rigidity is required for (a), (b), and (c), because without it, these
conjectures are false [72, Section 7]. All known counterexamples are ‘non-generic’,
having very special features that can be destroyed by small admissible perturbations
of the ODE. It therefore makes sense to impose suitable genericity conditions. The
natural choice is rigidity: the property concerned persists under small admissible per-
turbations. As mentioned in Section 1.1, the periodic orbit must be hyperbolic to
ensure that a locally unique perturbed periodic orbit exists. See Section 6.2 for details.

For (d) a network is transitive (strongly connected, path-connected) if, for any
two nodes c, d, there is a directed path from ¢ to d. Statement (d) can be false if the
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network is not transitive; for instance, in feedforward networks nodes upstream from
an oscillating node can be rigidly steady.

1.4. Previous results

We summarise the current state of play for the Rigidity Conjectures. Conjectures (a),
(b), (c) were stated in 2006 in Golubitsky and Stewart [37, Section 10], with a claim
that (a) had been proved using strongly admissible coordinate changes. At that time,
all four conjectures had been ‘folklore’ for some years. Fully oscillatory states are
mentioned by Josi¢ and Torok [52] as hypotheses of existence theorems for peri-
odic states of symmetric networks. Conjecture (d) is stated explicitly in [73]. A proof
of conjecture (a) is presented in [72]. Proofs of conjectures (a,b,d) are presented in
Golubitsky et al. [33] for stronger local versions. Similar methods were applied in
Golubitsky et al. [34] to prove (c), again in a local version. Since the local versions
have weaker hypotheses, they are stronger than the global ones. Curiously, the local
versions are technically more tractable, Sections 7.2 and 7.6. Joly [51] proves the Full
Oscillation Conjecture, but only for fully inhomogeneous networks. This proof uses
transversality methods.

Readers familiar with the literature may wonder why we refer to the above state-
ments as conjectures. The reason is that it has recently been noticed that there is a
gap in the proofs in [33,34,72], which is related to the coordinate changes employed;
see [69, Appendix]. Specifically, it is assumed that certain coordinate changes are
‘strongly admissible’, when sometimes they are not. This gap can be repaired by
requiring the network to be semihomogeneous: such that input equivalence is the
same as state (previously cell) equivalence. This class includes all homogeneous net-
works (all nodes have the same number of input arrows of each arrow type) and all
fully inhomogeneous networks (all nodes and all arrows have different types and no
multiple arrows or self-loops occur); see Golubitsky et al. [28, 38]. However, not all
networks are semihomogeneous; a simple example is discussed in Section 3.

As already remarked, in this paper we prove all four conjectures, for any finite
network, but only by making an extra assumption on the periodic orbit concerned,
which we call ‘strong hyperbolicity’. A weaker property, ‘stable isolation’, suffices,
but existing proofs of this property for specific networks establish strong hyperbolicity
in any case. Both properties are closely related to the Kupka—Smale Theorem, which
(among other things) asserts that hyperbolicity of all equilibria and periodic orbits is
generic in a general dynamical system; see Section 1.5. A Kupka—Smale analogue for
admissible ODEs would imply strong hyperbolicity; see Section 6.10.

The analysis shows that any hypothetical counterexample to any of the Rigidity
Conjectures must have at least 4 nodes and involve a synchrony pattern with at least 3
colours. Moreover, the periodic orbit concerned must have properties that are highly
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non-generic in a general dynamical system, and seem unlikely even when network
constraints are imposed. Thus the results proved here, although requiring stronger
hypotheses, represent a significant strengthening of the evidence in support of the
Rigidity Conjectures.

1.5. Kupka-Smale Theorem

The Kupka—Smale Theorem plays a central role in this paper. It asserts a form of
genericity (open and dense) for discrete dynamical systems (diffeomorphisms) or con-
tinuous ones (flows). We paraphrase the result:

Theorem 1.2 (Kupka—Smale Theorem). Let M be a C*° manifold and let 'V be the
space of all C" vector fields on M with the C” topology, r > 1. For a general dynam-
ical system on M, the following three properties are generic in 'V; that is open and
dense — indeed, residual:

(a) Every equilibrium point is hyperbolic.
(b) Every periodic orbit is hyperbolic.

(c) The stable and unstable manifolds of all equilibria and periodic orbits inter-
sect transversely.

Proof. For precise statements and definitions see Kupka [55], Smale [66], and the
simplified proof in Peixoto [62, Section 2]. |

There is a corresponding theorem for discrete dynamical systems (diffeomorph-
isms). In this paper we require both the continuous and the discrete versions, but the
more delicate property (c) is not needed. Field [27] proves equivariant versions for
discrete and continuous dynamics, which we apply in Section 14 to prove the Rigid-
ity Conjectures for all 1- and 2-colourings and all 2-node and 3-node networks.

The original theorem of Kupka and Smale was restricted to compact manifolds,
where the C” topology is the usual metric topology defined by bounding norms of
derivatives of order up to r. This restriction was removed by Peixoto, assuming the
Whitney C” topology. In this paper state spaces are R¥, hence noncompact, but we
can effectively reduce to the case of a compact manifold by using bump functions to
make the admissible vector field vanish outside a compact set whose interior contains
the periodic orbit under consideration. Therefore we can work with the metric C”
topology. (The space of C° maps is not closed in this topology.) We make these
statements precise in Section 6.
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1.6. Is hyperbolicity generic for networks?

For a general dynamical system (equivalent to an all-to-all coupled fully inhomogen-
eous network) the Kupka—Smale Theorem proves that hyperbolicity of all periodic
orbits is a generic property. Field [27] proves an equivariant analogue, which applies
to some symmetric networks. Not all, because in this case admissible maps are always
equivariant, but equivariant maps for networks need not be admissible [4].

Hyperbolicity and strong hyperbolicity are probably generic properties for all net-
works, except for one class where this statement is known to be false by Josic and
Torok [52, Remark 1]; see Section 6.5. Indeed, the Kupka—Smale Theorem fails for
such networks. We suspect that this class of networks contains all exceptions, and that
it can be avoided in the proof of the Rigidity Conjectures below, but currently we are
unable to prove either of these statements.

1.7. Implications between the conjectures

In principle, any of the Rigidity Conjectures might be valid for some networks, or
some periodic orbits, but false for others. It is therefore convenient to phrase the res-
ults of the conjectures as positive properties of the network and the periodic orbit:

Definition 1.3. Let § be a network and let X be a hyperbolic periodic orbit of an
admissible ODE. Then the pair (¢, X) has the following properties if the stated con-
ditions hold:

(a) Rigid Input Property (RIP): For any rigid synchrony or phase pattern of X,
synchronous or phase-related nodes are input equivalent.

(b) Rigid Synchrony Property (RSP): For any rigid synchrony pattern of X, cor-
responding input nodes inherit the same synchrony pattern, if suitably iden-
tified.

(c) Rigid Phase Property (RPP): For any rigid pattern of phase relations of X,
corresponding input nodes inherit the same phase pattern, if suitably identi-
fied.

(d) Full Oscillation Property (FOP): If § is transitive and X is a hyperbolic
periodic state, there exist arbitrarily small perturbations for which every node
oscillates.

If any of the above statements holds for all hyperbolic X, we say that § has the
property concerned.

Each conjecture states that all networks have the corresponding property. There
are local versions, where the stated conditions hold on a non-empty open interval of
time, which we call the Local Rigid Synchrony Property (LRSP), and so on.
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The properties are closely related. Known implications among the corresponding
properties, for any specific §, are

FOP <= RPP <= RSP = RIP.

Three implications are trivial: RPP =—> RSP, RSP — RIP, and RPP — RIP. It is
also clear that RPP = FOP, because a node variable x. is in equilibrium if and only
if x.(t) = x.(t + 0) for all & € S! (see Section 12 for a full discussion and a more
general version of the result).

The most surprising implication is that RSP = RPP. This follows using the
‘doubling’ trick of Golubitsky et al. [34], which converts a phase relation on § into a
synchrony relation on two disjoint copies 2§, for a special periodic orbit on a 2-torus
foliated by periodic orbits. Some care is needed to show that 2§ has suitable versions
of the required properties, see Section 11.

2. Summary of paper

In [33,34] the conjectures are proved in the order
Rigid Input == Full Oscillation == Rigid Synchrony = Rigid Phase.

The viewpoint there is local: local versions are more tractable and lead to stronger
results while avoiding technical obstacles. Here we also consider local versions, for
similar reasons, but we employ a different strategy:

Rigid Synchrony = Rigid Phase == Full Oscillation

4
Rigid Input

The key result for the method employed in this paper is therefore the local form of
(b), the Local Rigid Synchrony Property.

Consider an admissible ODE x = f(x), where x = (x1, ..., X,), and write it in
components as X, = f¢(x), where 1 < ¢ < n. Assume, for a contradiction, that this
ODE has a hyperbolic periodic orbit X = {x(¢)} with a rigid synchrony pattern ><.
Any such orbit satisfies the condition

cdd = x.(t) =x4() VteR
which implies that x. satisfies two equations

Xe = fc(x)9 Xe = fd(x)-
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If the colouring is balanced, these equations are identical, but if it is unbalanced, they
are formally inconsistent — they involve different functions or the same function eval-
uated at different points. This does not of itself create a contradiction, because f, and
fa might agree on X while being distinct elsewhere. It seems highly implausible that
such a situation can persist under all small admissible perturbations, but proving that
is another matter. In the unbalanced case, the result of this substitution is an ‘over-
determined ODE’ (OODE), with more equations than unknowns, and the method of
proof that we employ is to construct perturbations that exploit the formal inconsist-
ency of the OODE to derive a contradiction.

Our method requires an additional assumption on the orbit X: ‘strong hyperboli-
city’ (Section 6.7), or the weaker property of ‘stable isolation’” (Section 6.9). We can
establish this property rigorously for some networks and colourings. Heuristically, this
extra property is plausible, and hyperbolic periodic orbits that lack it ‘ought to be’ of
infinite codimension, hence highly non-generic. However, we are unable to prove this
in full generality with current methods. For further discussion see Section 6.7 and
Section 6.9.

As motivation, and to provide a simple example of the proof technique, Section 3
considers the special case of a 3-node directed ring with two arrow types. In this
network, admissible diagonal maps are not strongly admissible, so the results of Gol-
ubitsky et al. [33,34] do not apply. Using the relevant OODEs, we prove the Rigid
Synchrony Conjecture for this network. This example emphasises the central role of
the Kupka—Smale Theorem.

Section 4 recalls the relevant features of the basic formalism of coupled cell net-
works (henceforth just ‘networks’) from [43,71], including properties of the quotient
network by a balanced colouring. An important point is a simple characterisation of
admissible maps in Proposition 4.7, originally proved in [71, Proposition 4.6], which
reduces admissibility to invariance under the appropriate vertex group.

Section 5 sets up a generalisation of the usual quotient network construction for a
balanced colouring ><, by throwing away the balance condition. The resulting ‘quasi-
quotient’ depends on a choice of representatives JR for the colouring, and fails to have
most of the useful properties of the quotient. However, it retains two key properties
in relation to states with synchrony pattern ><: such states induce solutions for the
induced ODE on the quasi-quotient, and solutions of the induced equation that also
satisfy a set of constraint equations lift to solutions of the original ODE with syn-
chrony pattern ><.

Section 6 reviews standard results concerning hyperbolicity and genericity in gen-
eral dynamical systems, provides rigorous definitions of the C! norm and rigidity,
relates these concepts to network dynamics, and introduces two properties that are
central to the methods of this paper: stable isolation and strong hyperbolicity. It ends
with a discussion of the Kupka—Smale Theorem and network analogues.
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Section 7 begins the general programme to prove the Local Rigid Synchrony Con-
jecture for any network under the assumption of strong hyperbolicity. Here we define
a local version of rigid synchrony, needed to set up the proof. We discuss lower semi-
continuity of colourings, the existence of generic points for local rigid synchrony, and
technical obstacles that arise if instead we try to work with global rigid synchrony.

Section 8 describes a method for constructing admissible perturbations with small
support and small C ! norm. The construction uses bump functions and a symmetrisa-
tion technique.

The Local Rigid Synchrony Conjecture, which lies at the heart of this paper, is
proved in Section 9 under the hypothesis of strong hyperbolicity. The main obstacle
to finding such a proof has always been to gain enough control over how the perturbed
periodic orbit X moves when the vector field f is perturbed. Previous attacks on the
conjecture employ various strategies to do this, such as constructing flows geometric-
ally [72] or using perturbations related to adjacency matrices and delicate estimates
for integrals along the periodic orbit [33]. Instead, we analyse the quasi-quotient §®
for a set of representatives R of the synchrony colouring and the structure of the res-
ulting OODE. This leads to an induced ODE for % on the synchrony space P&,
together with constraint equations. We retain control of X by constructing perturb-
ations that leave the corresponding orbit in P*® unchanged, assuming local rigidity.
Indeed, the constraint equations created by local rigidity imply that X = X for suffi-
ciently small perturbations of that kind, so the periodic orbit in P is also unchanged.
The constraint equations then lead to a contradiction when the synchrony colouring is
unbalanced. The Rigid Input Property follows immediately because balanced colour-
ings refine input equivalence.

Section 10 parlays this local theorem into a proof of the standard global version
of the Rigid Synchrony Property, using the lattice of colourings [68].

The Local Rigid Phase Property is deduced in Section 11 using the same trick
that underlies the proof in [34], namely, form two disjoint copies of the network
and convert a phase relation into a synchrony relation. The Local Rigid Synchrony
Property does not apply directly, because doubling the network destroys hyperbolicity
and strong hyperbolicity; instead of being isolated, periodic orbits defined by phase-
shifted pairs foliate a 2-torus. However, rigidity of the phase shift gives a canonical
choice of perturbed periodic orbit among those on the torus. The proof of the Local
Rigid Synchrony Conjecture generalises directly to this situation, and the conclusion
that any rigid synchrony relation is balanced implies the Local Rigid Phase Conjec-
ture.

We deduce a local version of the Full Oscillation Conjecture in Section 12. The
main observation is that if a periodic state of the network is steady at some node, for
some time interval J, then on J that node is phase-related to itself by all possible
phase shifts.
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Section 13 provides a brief discussion of implications for analogues of the H/K
Theorem in equivariant dynamics, whose proofs, given in [34,73], are contingent upon
the four Rigidity Properties. These results are striking consequences of those proper-
ties because they classify all possible locally or globally rigid synchrony and phase
patterns. In particular, they show that rigid phase patterns arise from cyclic group
symmetries of a quotient network (or its completion if the quotient is not transitive).

In special cases, strong hyperbolicity of the periodic orbit can be proved to be
generic using current techniques. In Section 14 we carry out this programme for 1-
and 2-colourings, and deduce the Rigidity Properties for all networks with at most 3
nodes. Here a key role is played by the notion of ODE-equivalence: distinct networks
with the same space of admissible maps. We classify 2-node networks up to ODE-
equivalence.

Finally, we remark on the strong link that emerges from the methods of this paper,
relating the four Rigidity Properties to results of Kupka—Smale type for networks, and
point out that if a counterexample to any of the Rigidity Conjectures exists, the peri-
odic orbit X must satisfy conditions that would be extremely degenerate in a general
dynamical system.

3. 3-node example

We set the scene by analysing a simple example, used later to motivate the proof
of the Rigid Synchrony Conjecture for strongly hyperbolic periodic orbits. (For this
network, strong hyperbolicity can be proved.) To focus on the main idea we post-
pone formal definitions of the terminology to Section 4. The discussion should be
clear without these. The main feature of the general case that does not arise for this
example is invariance under vertex groups. This step requires a straightforward sym-
metrisation, Section 8.1.

Figure 1 shows a network § with three nodes, € = {1, 2, 3}. There are two arrow
types, solid and dashed. The shading on the nodes indicates ‘input type’, formalised
below. Each of nodes 1 and 2 receives its input from a single solid arrow, so they have

@
/N
&-®

Figure 1. A 3-node directed ring &, with two arrow types, that is not semihomogeneous.
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the same input type. Node 3 receives its input from a single dashed arrow, so it has a
different input type.

A network is semihomogeneous if state equivalent nodes are input equivalent. This
class includes all homogeneous networks and all fully inhomogeneous ones, together
with many others. The proofs in [33,34] are valid for all semihomogeneous networks.
However, there exist networks that are not semihomogeneous, the simplest example
being §. Indeed, all nodes of § are cell (or state) equivalent, but there are two distinct
input equivalence classes, {1,2} and {3}. Therefore the results of [33,34] do not apply
to §. However, by constructing suitable admissible perturbations, we prove that in
fact it does have all four Rigidity Properties. The central role of the Kupka—Smale
Theorem arises naturally from the method.

Admissible ODEs for § (defined in Section 4.3) have the form

X1 = f(x1,x3),
X2 = f(x2,x1), 3.1
X3 = g(x3,x2).

Here the variables x. lie in node spaces P., which we take to be real vector spaces
R¥e . In order for (3.1) to respect the network architecture, the domains and ranges of
these functions must be

f:P1XP3—>P1,
f i Pax Py — Py,
gIP3XP2—>P3.

The function f occurs twice, so the domains and ranges in the two cases must coin-
cide. That is, P = P, and P; = P;. In other words, the network structure and the
definition of admissible ODEs requires Py = P, = Pj3. This is an example of ‘state
equivalence’, which replaces the usual ‘compatibility conditions’ on head and tail
nodes of arrows in [43,71]. The reasons for this change are discussed in Section 4.3,
and in greater detail in [39].

3.1. Strong admissibility

We find the strongly admissible maps for this network and verify their composition

properties directly. Some notation defined in Section 4 is convenient. To avoid com-

plications concerning state equivalence, we use the previous notation ~¢ for cell

equivalence and ~j for input equivalence. (In this case, cell equivalence with the

previous compatibility conditions turns out to be the same as state equivalence.)
Strongly admissible maps are defined in [43] as ‘diagonal” maps

g(x) = (g1(x1).....gn(xn)) (3.2)
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such that g; = g; whenever i ~¢ j. It is proved there that if f is admissible and g
is strongly admissible, then both fog and go f are admissible.

In [33,34,72] it was tacitly assumed that the same composition properties hold if
gi = g;j wheneveri ~j j;thatis, if g is diagonal and admissible. We show that this
statement is false for &, implying that new methods are required to prove any of the
Rigidity Conjectures for this network.

Since the two solid arrows have the same type, the previous compatibility con-
dition requires all three nodes to have the same cell type. The network § has two
different input types {1, 2} and {3}, so ~¢ is different from ~;. Admissible diagonal
maps (3.2) have g; = g» # g3. Strongly admissible maps, as defined in [43, Defini-
tion 7.2], have g1 = g» = g3.

First, we show that the only diagonal maps g that compose on the right with
admissible maps f to give admissible maps are maps g where gy = g, = g3. That
is, gi = g; wheneveri ~c j, in accordance with [43, Lemma 7.3]. We have

JS1(x1.x3) Sf1(g1(x1), g3(x3))
Sx) = | filx2,x1) |, Sfog(x) = | f1(g2(x2), g1(x1))
Jf2(x3,x2) f2(g3(x3), g2(x2))

If fog is admissible for all f, then the first two components yield

S1(g2(x2), g1(x1)) = f1(g1(x2), g3(x1)).

Take f1(u,v) = u to give go(x2) = g1(x2), and then f1(u,v) = v to give g1(x1) =
g3(x1). Therefore g; = g» = g3.

Conversely, any map of this form composes on the right to give an admissible
map.

In contrast, we now show that the maps g that compose on the left with admissible
maps f to give admissible maps are maps g where g = g». Thatis, g; = g; whenever
i ~g j.These are precisely the admissible diagonal maps. Now

g1(f(x1.x3))
gof(x) = | g2(f(x2,x1))
g3(f(x3,x2))

If go f is admissible for all f, then the first two components yield
82(f(x1,x3)) = g1(f (x1,x3)).

Take f(u,v) = u, obtaining g, (1) = g1 (u). Therefore g; = g,. Conversely, any map
of this form composes on the left to give an admissible map.
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3.2. Construction of suitable perturbations

Since the network ¥ of Figure 1 is not semihomogeneous, the results of [33, 34, 73]
do not apply. Nevertheless, we now prove by a different method that ¥ has the Local
Rigid Synchrony Property. As mentioned in Section 1.7 and proved in Sections 11
and 12, it therefore has the other three Local Rigidity Properties as well. The method
used for this example motivates the subsequent approach to synchrony patterns on
arbitrary networks. For this network we obtain a complete proof, because we can
apply the standard Kupka—Smale Theorem and the equivariant version of Field [27]
for the symmetry group Z,. In the general case some network version, not yet proved,
is required: this is why we impose strong hyperbolicity in the bulk of this paper. We
discuss the first case in detail, to establish the logic, and provide less detail for the
other cases.

Admissible ODEs take the form x = f(x) with certain conditions on the compon-
ents f.. We consider an arbitrary 1-parameter family of perturbations x = f(x) +
ep(x), where p is also admissible. Explicitly, admissibility requires

X1 = f(x1,x3) + ep(x1,x3),
X2 = f(x2,x1) + ep(x2,x1), (3.3)

X3 = g(x3,x2) + £q(x3,x2),

where p, g are arbitrary smooth functions because vertex symmetries are trivial. We
can choose p, ¢ to be bounded using bump functions, so the perturbation is C !-small
when ¢ <« 1. See Section 8.2.

The only balanced colouring is the trivial one with all nodes of different colours.
We show that for every other colouring <, rigid synchrony leads to a contradic-
tion. This is obtained by applying the Kupka—Smale Theorem (or Field’s equivariant
version) for certain 1- and 2-node networks, when p is constructed to have certain
properties that depend on the colouring ><. Throughout we assume only that the syn-
chrony pattern >< is valid for ¢ in some non-empty open interval J, and choose a point
to € J.

Case (A): > = {{1,2, 3}}. (Here and elsewhere we write >< as a partition of €.)
For given ¢, any (periodic) orbit X® = (x{, x5, x§) with this synchrony pattern has the
fully synchronous form

WE(t), u® (1), u®(t)).

We assume that X is hyperbolic and 0 < ¢ < 1. Taking a suitable Poincaré section
¥ at x(to) and setting initial conditions by requiring x°(#9) € X, we can assume that
x%(t) varies continuously (indeed, by the implicit function theorem applied to a first-
return map, smoothly) with € and ¢.
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Substituting x{ = x5 = x5 = u® in (3.3), this state must satisfy the conditions

u® = f(u®,u®) + epu®,u®),
ut = f(u,u®) +ep(u, u’), (34
u® = g, u®) +eq®, u).

The first component determines u#® uniquely, for given initial conditions. The second
is the same as the first. The third is different, and potentially contradictory; we use it
to derive a contradiction.
The projection U® = {(u°(¢)} of X into P; = P, = P; is a periodic orbit of the
‘induced ODE’
y=r 0. (3.5)

We pre-prepare f so that U is hyperbolic on P;. This follows from the Kupka—Smale
Theorem, since (3.5) is an ODE on P; and any perturbation p(y) can be expressed in
the form g(y, y, y). By rigidity, the local synchrony pattern {{1, 2, 3}} applies to this
perturbed ODE provided we make the perturbation small enough. The open interval J
may have to be replaced by a smaller open interval J’ where tp € J' C J.

Having pre-prepared f and X° to make U° hyperbolic on Py, we can realise the
contradiction as follows. To simplify notation, write

u* =u(1).

Define p(x) = 0 for all x, and define g so that g(u™,u™) # 0. This is possible because
P, q are arbitrary independent smooth maps. The first equation now becomes

ut = f(us’ uS)

which is the same as the unperturbed equation. Therefore, near (u*, u™), the periodic

0

orbits u% and u° satisfy the same ODE, and u® — u" as e — 0.

Since U? is hyperbolic on Pj, there is a locally unique periodic orbit near u°(z).

0 as ¢ — 0. Therefore, for small & > 0, we have u® (t) = uo(t) for all ¢

But u® — u
near ¢y (which implies equality for all # by uniqueness of solutions to ODEs). There-

fore 1 (t) = u°(t). Set t = tg to obtain
g™ u*) +equ* u) = g™ u*) +0.q™ u*) = gu* u*).

This implies that eq(u*, u*) = 0 for some ¢ > 0. However, we chose ¢ so that this is
false. Therefore X cannot have local rigid synchrony pattern {1, 2, 3}.

Case (B): < = {{1,2},{3}}. By Case (A) we may assume that < is the finest col-
ouring such that X has local synchrony pattern >« at fy. We follow similar reasoning,
and omitroutine details.
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For given ¢, any (periodic) orbit X® = (x{, x5, x§) with this local synchrony pat-
tern has the form

e (1), u®(1), v (2)).

Substitute x{ = x5 = u® and x§ = v* in (3.3) to obtain

u® = f(u®,v®) + ep’, v®), (3.6)
u® = fu® u®) + epu®,u’), 3.7
08 = g(v®, u) + eq(v®, u’). (3.8)

Components (3.6) and (3.8) determine ©#® and v® uniquely, for given initial conditions.
Equation (3.7) is formally different from (3.6), and potentially contradictory.

The perturbation terms in (3.6) and (3.8) have the form (p(u?, v®), g(v¥, u®)),
which is a general vector field on P; x P3 with variables u®, v®. We can therefore
apply the Kupka—Smale Theorem (for a general dynamical system) to pre-prepare
/. X so that the projected orbit U® = {(u°(), v°(¢))} is hyperbolic on P; x P3. We
retain the same notation.

Choose a time 71 € J so that if u* = u°(¢;) and v* = vO(#;) then u* # v*. If this
is not possible then we are in Case (A), already dealt with; this is also contrary to ><
being the finest local synchrony pattern.

Define ¢ = 0, and define p so that p(u, v) = 0 in a neighbourhood of (u*, v*),
but p(u*,u*) # 0. This is possible since u™* # v*, so (u™*,u*) # (u*,v*). Indeed, we
can use a bump function to make p vanish outside a small neighbourhood of (u*, u*),
but be nonzero near (u*, u™).

When (u, v) is near (u*, v*), equations (3.6) and (3.8) reduce to

0t = f(uf ), (3.9)

08 = g(v8,u’), (3.10)
which is the same ODE as the unperturbed equation, but with variables u®, v® in place
of u®, v0.

As before, the pre-preparation guarantees local uniqueness of perturbed periodic
orbits on Py X P3, so this implies that p(u*,u*) = 0, a contradiction.

Case (C): > = {{1, 3}, {2}}. The argument has a similar structure. Synchronous
orbits have the form

® (@), v8 (1), u®(1)).
Substitute x{ = x§ = u® and x5 = v° in (3.3) to obtain
u® = f(u®,u®) + epu®,u®), (3.11)
v = f(%,uf) +eq (v uf), (3.12)
u® = g, v%) +epu, v°). (3.13)
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Components (3.12) and (3.13) determine u® and v® uniquely, for given initial condi-
tions. Equation (3.11) is formally different from (3.11). When ¢ = 0 equations (3.12)
and (3.13) are a general ODE on P; x P,, and (p, ¢) is an arbitrary vector field on
P1 x P,. We can use the Kupka—Smale Theorem to pre-prepare f, g so that the peri-
odic orbit U® = {u°(r), v°(¢)} is hyperbolic on P; x P;.

Choose the perturbation so that g =0, p(v,u)=0near (v*,u*), but p(u*,u*)#0.
When (u, v) is near (u*, v*), the orbit (u®, v¥) satisfies the same ODE as (u°, v°),
and hyperbolicity implies local uniqueness, so (u®(t), v%(¢)) = (u°(¢), v°(¢)) near t,.
As before, this implies that p(u*, u*) = 0, a contradiction.

Case (D): >< = {{2, 3}, {1}}. Again the argument has a similar structure. Syn-
chronous orbits have the form

W*(1), v*(1), v*(1)).

Substitute x{ = u® and x5 = x§ = v in (3.3) to obtain

u® = f(u®,v®) + epu’, v, (3.14)
v = f(v®, u®) + eq(v®,u®), (3.15)
v = g(v%,v®) + ep(v®, v%). (3.16)

Components (3.14) and (3.15) determine u® and v® uniquely, for given initial condi-
tions. Equation (3.16) is formally different from (3.15).

When ¢ = 0 equations (3.14) and (3.15) are a general Z,-equivariant ODE on
Py x P, where Z, swaps u® and v®, and (p, ¢) is an arbitrary Z,-equivariant vector
field on Py x P,. We can use Field’s equivariant Kupka—Smale Theorem to pre-
prepare f, g so that the periodic orbit U® = {u°(¢), v°(¢)} is hyperbolic on P; x P;,.

Choose the perturbation so that g =0, p(u,v)=0near (u*,v*), but p(v*,v*)#0.
When (u, v) is near (u*, v*), the orbit (u®, v®) satisfies the same ODE as (u°, v°),
and hyperbolicity implies local uniqueness, so (u%(t), v4(¢)) = (u°(¢),v°(¢)) near t,.
As before, this implies that p(v*, v*) = 0, a contradiction.

We conclude that the only local rigid synchrony pattern is trivial, verifying the
Local Rigid Synchrony Property for §. The other three Local Rigidity Properties
follow, as outlined in Section 1.7 and discussed in detail in Sections 11 and 12.

Remark 3.1. Since the Rigidity Conjectures were first stated it has been clear that the
main obstacle to proving them is to retain enough control over the behaviour of the
perturbed periodic orbit. In [33,34] this is achieved by delicate estimates. The method
employed above controls the perturbed periodic orbit by not changing it. Obviously a
zero perturbation has this property, but the admissible perturbation that we construct
changes the constraint equations. This construction leads to a contradiction when the
local synchrony colouring is rigid but not balanced.
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This example suggests that a similar type of perturbation of the induced ODE on
the synchrony space might be used for an arbitrary network, and that the main obstacle
is to prove a suitable version of the Kupka—Smale Theorem, so that (assuming rigidity)
the perturbed periodic orbit is the same as the unperturbed one, but the constraints of
synchrony lead to a contradiction. In the rest of the paper we show that this approach
succeeds, modulo a version of Kupka—Smale for networks.

4. Formal definition of a network and standard properties

We now proceed to the general case. First, we briefly recall some basic concepts of
the ‘coupled cell’ network formalism introduced in [71] and generalised in [43], and
state some standard notations, definitions, and results. For further details, see [33,37,
39,43,69]. We introduce a further slight generalisation, which resolves the dual role
of ‘cell equivalence’ in the previous formalism. All of the standard theory extends
to this more general setting, which applies to a wider range of ODEs with network
structure. Full details are presented in [39]; everything in this paper is valid in this
more general setting.
We begin with the formal setting for networks.

Definition 4.1. A network § = (€, ~c, A, ~4, H, T ) consists of:

(a) A finite set of nodes € and a node-type assigned to each node. Write
c~cd

if ¢, d € € have the same node-type.

(b) A finite set of arrows 4 and an arrow-type assigned to each arrow. Write
a~yb

if a,b € A have the same arrow-type. (The previous notation uses & for 4
and ~g for ~4.)
The node type can be viewed as a distinguished ‘internal’ arrow-type.

(¢) Eacha € +4 has a head node J (a) and a tail node T (a) in €. When viewing
anode ¢ € € as an internal arrow, we define #(¢) = ¢ = T (¢).

Remark 4.2. Readers familiar with the literature will observe that we have omit-
ted from this definition the standard ‘compatibility condition’ that arrow-equivalent
arrows have node-equivalent heads and node-equivalent tails. This condition com-
bines two roles for cell-equivalence that are better kept distinct, namely equality of
state spaces (which we call ~g below) and equality of the distinguished ‘internal
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arrows’ on nodes (where we retain the notation ~¢). In its place, we impose a nat-
ural condition on the state spaces (or phase spaces) assigned to nodes, see Defini-
tion 4.5 (a).

4.1. Input sets and tuples

Definition 4.3. Let ¢, d be nodes in €.
(a) The input set of c is the set I(c) of all arrows a € + such that #(a) = c.
(b) An input isomorphism is an arrow-type preserving bijection 8 : I(c) — 1(d).
Thatis, ¢ ~¢c d anda ~4 B(a) forall a € I(c).

(¢) Two nodes ¢ and d are input isomorphic or input equivalent if there exists an
input isomorphism from /(c) to I(d). In this case we write

c~yd.

The set of input isomorphisms from ¢ to d is denoted by B(c, d). The disjoint
union of these sets

8= | Bc.ad) 4.1

c,det

is a groupoid; see Brown [13], Higgins [46], and [37,43,71].

4.2. Redundancy

The definitions of node- and arrow-types, as stated, allow nodes or arrows to be
assigned the same type even when they are not related by an input isomorphism —
that is, they are in different groupoid orbits. This redundancy is often convenient,
especially when drawing network diagrams. It does not affect the class of admissible
maps, which depends only on the input isomorphisms, but it can cause problems in
some constructions and introduces an ambiguity into the definition of the adjacency
matrix for a given arrow type. Redundancy can be avoided by requiring the types to
be the same if and only if the nodes or arrows are related by an input isomorphism.
The resulting network is said to be irredundant, and we assume this throughout.

4.3. Admissible maps and ODEs

We now define admissible maps and ODEs, and state an equivalent property that is
central to this paper.

Assign to each node ¢ € € a node space P.. This is usually taken to be a real
vector space R¥¢, and we make this assumption throughout the paper. The overall
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state space of the network system (or coupled cell system) of ODEs is
P =P x---xP,.
In node coordinates, a map f : P — P has components f, for ¢ € € such that
fe: P — P..

Remark 4.4. More generally, node spaces can be C °° manifolds, Field [26]. In phase
oscillator models (Izhikevich and Ermentrout [50]) all node spaces are the circle,
so P. = S!. The methods employed in this paper probably generalise to manifolds.
However, Golubitsky et al. [31] show that the topology of node spaces can change
the list of possible phase patterns in the H/K Theorem, so it should not be assumed
that all of the results proved here automatically remain valid when node spaces are
manifolds, or that they are independent of their topology.

In Example 3 we noted that in order for admissible ODEs to make sense, certain
equalities are forced on node spaces. These equalities arise whenever nodes ¢ # d
are input isomorphic. For any input arrow e € I(c), and to ¢’ = B(e) € I(d) where
B € B(c,d), we require

Py = Pye(er), Py ey = Pre. 4.2)

The first equation reduces to P, = P, so input isomorphic nodes must have the same
state space. However, the second equation can impose further equalities. We say that
i, ] are state-equivalent, written i ~g j, if the above equations, taken over all ¢, d,
require P; = P;. This is the transitive closure of the relation on € defined by (4.2).
It resolves an ambiguity in the usual concept of cell equivalence by distinguishing
between having the same node space, and having the same node dynamic. It also
extends the possible types of network without changing any of the basic theorems or
proofs [39].

For any tuple of nodes ¢ = (cy, ..., Cp) We write
Pe= P, x---x P,
Xe = (X¢yoevesXeyp,)-
The input set of node ¢ defines an input tuple 1(c) = (¢, T (i1),--- , T (iy)), where

the i; are the arrows satistying J¢(i;) = c. For brevity we follow [72,73] and define
the v-tuple of tail nodes x7() and the space Pr(.) by

XT(c) = XT(()) = (XTGy)s -+ X7 Gy)) € Priae)) = Proo)-
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Definition 4.5. Let § be a network. Amap f : P — P is §-admissible if:
(a) Node compatibility: The node spaces satisfy P, = Pz whenever ¢ ~g d.

(b) Domain condition: For every node c, there exists a function fAc i Pe X Prcy —
P, such that

fe(x) = J;C(xc’ xT(c))-

In particular, the domain of fAc (which, in effect, is the relevant domain of f)
is Pc X PT(c)-
(¢) Pullback condition: If nodes ¢, d are input equivalent, then for every B €
B(c,d):
Ja(xa.x7@)) = fe(xa. B*X1(2)) (4.3)

where the pullback map is defined by
B*xr@) = (X7 - - ¥T(B@)) € Preoy- “.4)
In particular, we can apply (4.3) when ¢ = d. This shows that
fc(xc, XT(¢)) is B(c, ¢)-invariant

where the vertex group B(c, c¢) acts trivially on the first coordinate x, and permutes
the coordinates of x7 () according to the pullback maps (4.4). That is, the action of 8
is

(xc, xT(c)) = (Xe, lg*xT(c))- 4.5)

Triviality of this action on the first coordinate, and the distinguished nature of that
coordinate, are crucial to this paper.

Remarks 4.6. (a) The group B(c, ¢) is finite and is a direct product of symmet-
ric groups, one for each arrow-type.

(b) From now on it is convenient to omit the hat on fc and consider f. as a map
fc . PC X PT(c) — Pc.

4.4. Alternative characterisation of admissibility

The definition of pullback maps provides a ‘coordinate-free’ definition of admissible
ODEs. We now deduce a standard characterisation of admissible maps, based on a
specific choice of coordinates in the domains of component maps f., which is more
convenient for the purposes of this paper.

Choose an ordering on arrow types, so that arrows of a given type occur as a
block; then order arrows arbitrarily within each block. Call this a standard ordering
of arrows. It is easy to prove that the groupoid B is generated by all vertex symmetry
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groups B(c, ¢) together with a single transitional map B.q : 1(c) — I(d) for each
¢ # d with ¢ ~7 d. Moreover, if input variables for input equivalent nodes are listed in
standard order, the natural transitional map is the identity. This is why the usual way to
represent symmetries of components using an overline on the relevant input variables
is possible [43,71]. The overlines correspond to the blocks of arrows with a given
arrow type, and substitution of corresponding variables gives the identity transition
map.

The group B(c, ¢) acts on the input set /(c) by permuting arrows and preserving
arrow-type, so it preserves blocks of arrows in standard order. We can now charac-
terise admissible maps in terms of B(c, ¢)-invariance, avoiding explicit reference to
pullback maps.

Proposition 4.7. A map f : P — P is admissible if and only if, in standard order:

(1) fe is invariant under B(c, ¢) for each c in a set of representatives of the input
equivalence classes.

2)c~rd= fo= fa.

Proof. This follows from [71, Lemma 4.5 and Proposition 4.6], with the extra obser-
vation that when the inputs are in standard order the fS.; can be taken to be the
identity. |

Proposition 4.7 implies that admissible maps can be constructed as follows. Choose
a set of representatives S for input equivalence. For each s € § let ps be any smooth
B(s, s)-invariant map p, : Py x Pr(s) — Ps. The maps p; can be chosen independ-
ently for each s. In standard order, for all ¢ € €, define

Pe = ps Wheres ~ycands € §.
The resulting map p is admissible because
Pd(Xa. X1(a)) = pe(Xa, B*X1(@)) = Pe(Xa, XT(a))

when 8* = id.

4.5. Balanced colourings
A colouring of a network is a partition of the nodes into disjoint subsets, the parts

= U6U---Ut,.

The colour [c] of node c is the unique i such that ¢ € €;. A colouring can also be
viewed as an equivalence relation ‘in same part’ or ‘same colour’. We pass without
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comment between these three interpretations, but mainly refer to colourings. We use
the same symbol >< for all three, and often specify it as a partition.
Associated with any colouring < is the polydiagonal (or synchrony space)

Ap={xeP:x.=x5 & crad}.

The name indicates that this notion is a generalisation of the usual diagonal subspace
{(»,y,¥,...,¥)}. Another common term is synchrony space.

Definition 4.8. A colouring is balanced if whenever ¢ and d have the same colour,
there is a colour-preserving input isomorphism § : I(c) — I(d). That is, 7 (e) and
B(T (e)) have the same colour for all arrows e € I(d). Symbolically,

cxad = T(e)v< B(T(e)) Veel(c).

This concept is central to network dynamics because Aq is flow-invariant, that
is, invariant under any admissible map, if and only if < is balanced; see [43, The-
orem 4.3] or [71, Theorem 6.5]. The space A, is defined even when < is unbalanced,
but is no longer flow-invariant.

Associated with any balanced colouring of § is a quotient network § />< whose
admissible maps are precisely the restrictions to Ay of the admissible maps of the
original network when A, is canonically identified with [ [, P for a set of rep-
resentatives § of ><; see [43, Section 5]. The validity of this theorem requires the
multiarrow formalism introduced in that paper; the differences that occur in the single-
arrow formalism are described in [21].

4.6. Synchrony and phase relations: sufficient conditions

The calculations that motivate the Rigid Synchrony and Rigid Phase Conjectures com-
bine the pullback condition (4.3) for admissibility with equations (1.2) and (1.3), as
follows. From (1.2) we obtain x.(¢) = x;(¢), so

Je(e, x1(0)) = fa(Xa. x1@) = fe(Xa. B XT(a))-
Therefore, a sufficient condition for synchrony of nodes ¢, d is
x7(e)(t) = B*x7@)(t) Vi € R whenever x.(1) = x4(1). (4.6)

The Rigid Synchrony Conjecture states that with the additional hypothesis of rigidity,
condition (4.6) is also necessary. This condition is equivalent to the relation of syn-
chrony being balanced. Similar reasoning for (1.3) leads to the sufficient condition

x7(e)(t) = B*x7@)(t +6) YVt € R whenever x.(t) = x4(t + 6). 4.7

The Rigid Phase Conjecture states that condition (4.7) is also necessary for (1.3) to
hold, with the additional hypothesis of rigidity.
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5. Quasi-quotients

Each induced ODE obtained in Section 3 can be characterised as an admissible ODE
for a smaller network whose nodes correspond to the colours. If a colouring >< is
balanced, the smaller network is the usual quotient network. If >< is not balanced,
we can still construct a smaller network as a ‘quasi-quotient’ §%® for any set of
representatives R. Uniqueness now fails: different choices of R can give different
quasi-quotients. Dynamics with synchrony pattern >< projects to give dynamics on
€% but the converse fails because the discarded ‘constraint equations’ need not be
satisfied. For these reasons, quasi-quotients seem not to have been considered pre-
viously. However, they arise naturally from the methods of this paper, and they have
one very useful property: all admissible maps for §% lift to (that is, are induced from)
admissible maps for €. This property allows us to construct €% -admissible perturba-
tions using only the topology of §%®, and then lifting them to admissible perturbations
on §. We therefore develop the basic properties of quasi-quotients required in later
proofs.

5.1. Definition of quasi-quotient

Let ¥ be a network with nodes €, let ><1 be a colouring of § (which need not be
balanced), and choose a set R of representatives for p<.

Definition 5.1. If ¢ € €, write [c] for the unique element of R such that r > ¢. In
particular, [r] = r if and only if r € R.

Definition 5.2. The quasi-quotient network % has nodes r € R, whose node type
is the same as the node-type of r in §.
The arrows e for AR of % are identified (via a bijection e — ¢’) with the arrows

e e U I(r).

reR

Under this identification, head and tail nodes in §% are defined by
IRy =),  TRe) =T ().

Arrows ey, e; in AR have the same arrow type if and only if e}, e, have the same
arrow type in §.

Informally, we construct €® by taking all nodes in R, together with their input
arrows. Then the tail node of each input arrow is found by replacing its tail node in §
by the unique node in R that has the same colour.

For example, let § be the 3-node network of Figure 1. The corresponding quasi-
quotients for all nontrivial (><, R) are shown in Figure 2.
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D<= {1,2,3} C@ C@ 7@

R={1} R=1{2} R =3}
pa-1 23 (1D)¥=(3) CQ@——=0B)
R={13} R=1{23}
a= w132 C(D)—Q) @=0B)
R={1.2} R=1{2,3}
pa-ined (1) =(2) O~—@)
R={1.2 R={1,3}

Figure 2. Quasi-quotients of the 3-node ring.

5.2. Admissible maps for quasi-quotients

Given node spaces P, for ¢ € €, define the node space for r € R to be P,. The state

PR =T] P

space of €% is then

reR
For any tuple (cq, ..., cg) of nodes ¢; € €, define the corresponding tuple of nodes
of R by
[(c1.. - el = (el - - [ex]) (CRY

We now show that any §-admissible map on P defines a unique §*-admissible
map on P®. Conversely, every §*®-admissible map on P* lifts to a §-admissible
map on P, but this need not be unique. The key observation is:

Proposition 5.3. (a) Any input isomorphism from I(r) to 1(s) in €% identifies
naturally with an input isomorphism from I(r) to I(s) in §.

(b) Nodes r,s € R have the same input type in §% if and only if they have the
same input type in '§.

Proof. (a) This is immediate from the definition of arrows and arrow-types in Defini-
tion 5.2. In detail: we have identified arrows in A® with arrows in + via the bijection
e > ¢’. The definition of head nodes of these arrows implies that the input arrows of r
in % correspond bijectively to the input arrows of r in §, preserving arrow types.
The same goes for input arrows of s. Therefore, any input isomorphism 7(r) — I(s)
in % corresponds to an input isomorphism 7(r) — I(s) in &, and conversely.

(b) This is now immediate. ]
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5.3. Properties of quasi-quotients

Most features of the usual quotient network construction do not carry over to quasi-
quotients, but a few useful ones do. We exploit these features in the proof of the main
theorem, Theorem 9.2.

Theorem 5.4. (a) Restriction: Every §-admissible map f : P — P determines
a $%R-admissible map f® . PR — PR defined by

frﬁ(xr’ xT(r)) = fr(xrﬂx[T(r)])' (5.2)

(b) Lifting: For every §®-admissible map g : PR® — PR, there exists a §-
admissible map f : P — P such that f® = g.

(c) Smallness of Lift: If |g||1 < &, we can define f so that | f1 < e.

Proof. (a) By Definition 5.2, the domain condition for f® is that there exists f R
Py X Py such that f®(x) = R (x,, x(r(r)). This is consistent with (5.2).

The identifications in Definition 5.2 imply that if r, s € R and B € B(r, s) (for §)
then g identifies with an input isomorphism in €%, which we also denote by . The
pullback condition for f is

fa(xa. xr@y) = fe(xa. B*x1(@a))

for all input isomorphisms f : I(¢) — I(d). Therefore

FR (s xr) = folxs, X1(9) = S, B*X70) = LR (s, B*X[7(57)

which is the pullback condition for f%.

(b) Here it is convenient to use the alternative characterisation of admissible maps
in Proposition 4.7. Let g : P® — P® be a §®-admissible map. We must construct a
-admissible map f : P — P such that f® = g. The nodes € split into two disjoint
subsets €1, €, defined by

€l ={ce€:IAreR,c~yr} 6, =€\ 6.

With arrows in standard order, define f by

(5.3)

Frel(Xens X)) if ¢ € €,
fc('xC7xT(C)) = { [C] [C] [ (C)]

ifc € \62.

Clearly f satisfies the required domain conditions to be §-admissible. To verify the
pullback conditions, we must show that f. is B(c, c¢)-invariant on Pr(.). The rest
follows because transition maps are now the identity. Since ¢ € €y, invariance under
B(c, c) follows from Proposition 5.3 and B([c], [c])-invariance of f[¢] on P[7(c)].
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(¢)In (5.3), we have fi¢](X[¢], X[7(c)]) = O when ¢ € €,. With the C! norm defined
as in Definition 6.2, ||g||1 < € implies that || f||; < e. ]

Remark 5.5. For (b), the choice of f. for ¢ € €, can be replaced by the correspond-
ing components g, of any §-admissible map g, by Proposition 4.7. The choice on €;
is unique.

In the proof of the key Lemma 9.4 below, we make the lift have small compact
support, which implies that it is C !-bounded, but we do not want it to vanish identic-
ally for ¢ € €,. This can be done by making g have small compact support but not
requiring g = 0.

5.4. Induced ODE

Associated with any quasi-quotient is a version of the usual restricted ODE for a
quotient network. Because A, need not to be flow-invariant, the domain of the ODE
is restricted to P® and its codomain is projected onto P®.

Definition 5.6. Consider an admissible ODE (6.3) and write it in components as
Xe = fe(xe,XT(0)), X € P, 1 <c=<n. 5.4)
The induced ODE for the pair (>, R) is the ODE
Xr = fr(Xp X[re), x€PreR (5.5

where [T ()] is defined by (5.1). The constraint equations are the corresponding equa-
tions on the other components, implied by the synchrony relations x.(t) = x[¢](¢),

X[c] = fc(X[c],X[T(c)]) x€eP,cet \ R. (5.6)
Example 5.7. Again, consider the 3-node network of Figure 1, with admissible ODEs
(3.1). Consider Case (B) of Section 3.2 with colouring <t = {{1, 2}, {3}}. There are

two choices of R.
If R = {1, 3}, the induced ODE is

x1 = f(x1,x3), X3 = g(x3, x1),

with constraint
X1 = f(x1,x1).

If R = {2, 3}, the induced ODE is
X2 = f(x2,x2), X3 = g(x3, x2),

with constraint ]
X2 = f(x2,x3).
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The induced ODE:s are the admissible ODEs for the corresponding quasi-quotients
in Figure 2, in accordance with Theorem 5.4. The same remark holds for all other
choices of (><, R) in the figure.

The induced ODE depends on the choice of >< and R, and in general solutions
need not lift back to (5.4). More precisely:

Theorem 5.8.  (a) Anyorbit X = {x(t)} of (5.4) defines an orbit X® = {x® (1)}
of (5.5).
(b) The orbit x(t) € Apq if and only if it satisfies the additional constraints (5.6).

(c) Solutions of (5.5) lift uniquely to a solution of (5.4), provided that such a
solution satisfies the constraints. ]

The proof is obvious. We emphasise that (c) requires the constraint equations
to be satisfied as well as the induced ODE. This can, for example, be implied by
rigidity. Our aim in this paper is to obtain a contradiction to this property in suitable
circumstances.

When < is not balanced, then for any choice of R the constraints include at
least one component that differs formally from the corresponding component of the
induced equation. We exploit this formal difference to obtain a contradiction to rigid-
ity.

When < is balanced, the constraints just repeat the corresponding components of
the induced ODE, and this is the same as the usual restricted ODE. In this case no
contradiction occurs.

5.5. Perturbations

Suppose that an ODE y = g(y) has a non-hyperbolic periodic orbit Y. If g is per-
turbed to a nearby map g, there may be no periodic orbits near Y, or more than one.
Thus, we cannot talk of ‘the’ perturbed periodic orbit Y.

If f is §-admissible, with a hyperbolic periodic orbit X, and we consider the
induced ODE y = g(y) for §%®, the same remark applies to Y = X%&, because Y
need not be hyperbolic. However:

Lemma 5.9. If X is hyperbolic with rigid synchrony pattern <, and R is a set of rep-
resentatives, then for any small €% -admissible perturbation f® of f® the induced
orbit X® has a uniquely defined canonical perturbed periodic orbit X*®.

Proof. Let pR = fR— f® where | p® || is small. By Theorem 5.8 (c) we can lift p®
to a §¥-admissible map p whose norm is equally small. If f = f+pthen fR=fR4
pR = f R Let X be the unique perturbed periodic orbit near X for €. By rigidity, X*®
is a periodic orbit of %, and is near X®. This procedure defines XR uniquely. |
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Corollary 5.10. If all periodic orbits of f R near X® are hyperbolic, then XR s
hyperbolic. ]

6. Properties related to hyperbolicity

In this section we recall background results and concepts that are needed for the proofs
of the main theorems, and provide rigorous definitions for concepts that until now
have been treated informally for illustrative purposes.

6.1. C! norm

We begin by clarifying the sense in which a perturbation is to be considered ‘small’,
a technical point that we have hitherto slid over. In order for hyperbolicity to imply
the existence of a locally unique perturbed periodic orbit, we use the C! topology. It
is also convenient to define this in a way that is tailored to the network setting, with
distinguished node spaces, as follows.

Choose a fixed state space P = Py X --- x P, where P, = R¥e for finite k. and
1 < ¢ <n.Let C!(P, P) be the Banach space of admissible C!-bounded C' maps
f : P — P withthe C! norm

11l = Sug(llf(X)ll, IDfCol) (6.1)

where D f is the derivative. In the context of this paper it is convenient to define the
norm on state space P by

[(xc)eeell = max{|[xc[|g : ¢ € €} (6.2)

where ||v|| g is the Euclidean norm.
By Abraham et al. [2, Proposition 2.1.10 (ii)], all norms on a finite-dimensional
real vector space are equivalent, so this definition is equivalent to the usual C ! norm.

Remark 6.1. In order for locally unique perturbed periodic orbits to exist, we must
work with perturbations p for which the C! norm is bounded. This condition can
always be arranged using a bump function, Abraham et al. [2, Lemma 4.2.13], to
modify any admissible map f so that it vanishes outside some large compact set K
that contains X, while leaving X unchanged and f unchanged in a neighbourhood
of X. However, we require C !-boundedness only for perturbations p of f, not for
f itself, and p will always be defined in a manner that ensures it is bounded, so this
modification of f is not required in this paper.
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6.2. Hyperbolic periodic orbits

Hyperbolicity (for equilibria, periodic orbits, or more generally for invariant submani-
folds) is defined in many sources, for example Abraham and Mardsen [1], Arrowsmith
and Place [8], Hirsch and Smale [48], Guckenheimer and Holmes [44], and Katok and
Hasselblatt [53]. An equilibrium x° of (1.1) is hyperbolic if and only if the derivative
(Jacobian) D f| .0 has no eigenvalues on the imaginary axis (zero included). A peri-
odic orbit is hyperbolic if its linearised Poincaré return map, for some (hence any)
Poincaré section, has no eigenvalues on the unit circle. That is, exactly one Floquet
multiplier (equal to 1) lies on the unit circle; equivalently, exactly one Floquet expo-
nent (equal to 0) lies on the imaginary axis [45].

The following result is standard, and can be proved by applying the implicit func-
tion theorem to a Poincaré map. A more general proof for invariant submanifolds can
be found in Hirsch et al. [47, Theorem 4.1 (f)]. For the purposes of this paper it is
convenient to state it for 1-parameter families of perturbations.

Lemma 6.2. Let X = {x(¢)} be a hyperbolic periodic orbit of a smooth ODE x =
f(x) on R™. Let f + ep be any 1-parameter family of perturbations, with || p||1
bounded. Then for ¢ < 1 there exists, near x(t), a locally unique periodic orbit Xt =
{x%(t)} of the perturbed ODE x = f(x) + ep(x). [

The perturbed periodic orbit is locally unique in the sense that, for any 1-parameter
family of sufficiently small perturbations, there is a locally unique path of periodic
orbits that includes the unperturbed one. Here and elsewhere, ¢ < 1 means ¢ < &* for
some &* > 0 with specified properties.

6.3. Open properties

Again, choose a fixed state space P = Py x -+ x Py, and let C!(P, P) be the Banach
space of admissible C!'-bounded C! maps f : P — P with the C! norm (6.1). Let
C®°(P, P) be the space of admissible C* maps f : P — P, which is not a Banach
space. We use || ||1 to put a topology on the space

F(P)=CYP,P)NC>(P,P).

This topology is applied only to ‘small perturbations’ p of C* maps f, because
smooth maps need not be C !-bounded. We use the same notation when all maps are
required to be §-admissible for a network ¢, indicating this condition by context.

If we focus only on a suitable compact subset K of a state space, we can replace
any admissible map f by a bounded one that agrees with f on K, see Remark 6.1.
However, the space of admissible C !-bounded C* maps f : P — P is still not a
Banach space. Nevertheless, we can state:
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Definition 6.3. A property @ of maps f € C*°(P, P) is open if whenever f has
property (9, there exists ¢ > 0 such that, for all g € ¥ (P) with |¢||1 < &, the map
f =+ q has property . Equivalently, the set of all f with property @ is open in the
C! norm, and is preserved by all C'-small perturbations of f.

We use the same terminology for network dynamics, requiring the maps involved
to be admissible.

In the sequel we use a 1-parameter family of perturbations ¢ = ep for a fixed
p € F(P), that is, we consider the family f + ep for ¢ < 1. We use the weaker
condition that @ holds for all p and all ¢ <« 1. That is, we do not require the upper
bound on ¢ to be uniform in p.

6.4. Rigidity

We extend Definition 6.3 to properties of a hyperbolic periodic orbit of an admissible
ODE, replacing ‘open’ by ‘rigid’ to preserve traditional terminology. Restating (1.1)
for convenience, let the admissible ODE be

x=f(x), xeP (6.3)

andlet X = {x(¢) : t R} be a hyperbolic periodic orbit with period 7. By Lemma 6.2,
if p € ¥ (P) is any admissible map and ¢ is sufficiently small then the perturbed ODE

x¢ = f(x¥) +ep(x?), x*eP (6.4)

has a unique perturbed periodic orbit X¢ = {x®(¢) : ¢ € R} that is near X in the Haus-
dorff metric for the C'! topology, with period 7°¢ near T'. This equation becomes (6.3)
when & = 0. In particular, X® = X and T° = T..

As is customary, we use the same symbol x? to denote an arbitrary variable in P
and a specific solution (orbit, trajectory) of the ODE. The alternative is to introduce
cumbersome notation to distinguish the two meanings.

Using a fixed Poincaré section X to X to define the initial condition by x°(#g) € X,
and considering the Poincaré map and hyperbolicity, we can assume that for € > 0 and
any ¢ € R the point x°(¢) varies smoothly with ¢, and so does T°°.

Definition 6.4. A property @ of X relative to T is rigid if X? has property O relative
to T¢ fore < 1.

Hyperbolicity of a given X for f is an open property of f, and also a rigid prop-
erty of X. Rigid synchrony and phase patterns of X are obviously rigid properties
of X. So are local rigid synchrony and phase patterns, defined in Section 1.

If X has a balanced synchrony pattern (or local synchrony pattern) >, the cor-
responding periodic orbit on the quotient § /< is also hyperbolic, because Anq is
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flow-invariant. However, this result no longer applies if < is not balanced. This is
why we require X to be stably isolated or strongly hyperbolic, Sections 6.9 and 6.7.

6.5. Failure of hyperbolicity

There is one class of networks for which an analogue of the Kupka—Smale Theorem
cannot hold, for feedforward reasons. To discuss it, we use standard ideas from Flo-
quet theory [45].

Every network decomposes into transitive components [28]', and the set 7 of
transitive components has a natural partial ordering induced by directed paths. Dy-
namically, this ordering gives admissible ODEs a feedforward structure. If 7 has
more than one maximal element, and the periodic state X oscillates on at least two
maximal components, this state is not hyperbolic. This follows because the Floquet
operator has block-triangular form induced by the partial ordering.

In more detail, Josic and Torok [52, Remark 1] observe that for the network of
Figure 3, periodic orbits cannot be hyperbolic unless node 1 or node 2 is steady. To
prove this, observe that admissible ODEs for this network have the form

X1 = f(x1),
X2 = g(x2), (6.5)
X3 = h(xy,x2,x3).

We must show that if such an ODE has a hyperbolic periodic orbit

X = {(x1(0), x2(1), x3(1)) : 1 € R}

then either x1(¢) or x,(¢) is steady. This follows because, setting F' = (f, g, h), the
Floquet multipliers are the eigenvalues of Dy ) F, which is lower triangular. There-
fore, the evolution operator is also lower triangular, and has two eigenvalues equal
to 1. These eigenvalues correspond to the two diagonal blocks describing the evolu-
tion in the spaces of the variables x; and x,. (A periodic orbit always has a Floquet
multiplier 1 for an eigenvector along the orbit; see [45, Chapter 1 Note 5].)

Figure 3. Connected network with two distinct maximal transitive components.

ISee also en.wikipedia.org/wiki/Strongly_connected_component.
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As Josic and Torok observe, similar remarks apply if we replace nodes 1 and 2
by two disjoint transitive components that are maximal in the partial ordering: that is,
they force (feed forward into) the rest of the network, which replaces node 3. In (6.5)
let x1, x2, x3 be coordinates on, respectively, the two maximal components and the
rest of the network. The same argument then applies.

6.6. Implications for quasi-quotients

In the present context, such networks cannot occur as the overall network §, since we
assume X hyperbolic. However, we also require hyperbolicity (or a similar property)
for certain quasi-quotients §%. A ‘bad’ choice of representatives can create more than
one maximal transitive component in §%. Figure 4 (left) shows the simplest (connec-
ted) example of this kind. The ‘good’ choice R = {1, 3} yields an induced network
with feedforward structure and a single maximal component, Figure 4 (middle). In
contrast, the ‘bad’ choice R = {1, 4} yields an induced network with two disconnec-
ted maximal components, Figure 4 (right). If nodes 1 and 3 force the same component
of some larger network, the corresponding quasi-quotient has no hyperbolic periodic
orbits.

We do not know whether there always exists such an R when § has only one
maximal component.

o aya
O—0——O® Oo—6 06

Figure 4. Left: 2-coloured regular network. Right: Two distinct induced networks, one ‘good’,
one ‘bad’.

6.7. Strong hyperbolicity
This paper relies on the following concept:

Definition 6.5. A periodic orbit X is strongly hyperbolic for a colouring < if X is
hyperbolic and there exists a set of representatives R such that, if necessary after an
arbitrarily small perturbation, the induced orbit X% is a hyperbolic periodic orbit of
the induced ODE.

The orbit X is strongly hyperbolic if it is strongly hyperbolic for every colour-
ing <.

Suppose that X is hyperbolic, and perturb f to a nearby admissible map f . There
is a locally unique perturbed periodic orbit X near X. Lemma 5.9 implies that there
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is a unique canonical choice for ‘the’ perturbed induced periodic orbit X*®, which
is near X®. Thus when X has a rigid synchrony pattern we can keep track of each
X? in a meaningful manner when f is perturbed, even when X% is not known to be
hyperbolic on P*®.

The condition of strong hyperbolicity lets us ‘pre-perturb’ the admissible map f’
to f , thereby ensuring that without loss of generality the uniquely defined periodic
orbit X® is hyperbolic on P®. This step is crucial for the proof of the Local Rigid
Synchrony Property.

6.8. Local Kupka-Smale Theorem

In Section 14.4 we infer strong hyperbolicity from a local version of the Kupka—Smale
Theorem:

Lemma 6.6. Let f be any smooth vector field on R¥, with a periodic orbit X of
period T. Then:

(a) For all sufficiently small 51 > 0 there exists 6, with 0 < 6, < 81, such that for
all t with 0 <t < 2T we have

¥ (N5, (X)) S N, (X)

where ¥ is the flow of f and Ng is the tubular neighbourhood of X of
radius 4.

(b) There exists a smooth perturbation f of f and 83,684 > 0 with §3 < §; and
84 < 85 such that

¥' (N5, (X)) € Ni, (X)

where W' is the flow of f, and every periodic orbit off~ inside Ns,(X) is
hyperbolic.

Proof. This is a restatement of Peixoto [62, Lemma 3]. The bound 27 on ¢ is intro-
duced because the perturbed period T may be (slightly) larger than T'. ]

Definition 6.7. Let § be a network and let X be a hyperbolic periodic orbit of an
admissible vector field f. If for every colouring >« there exists a set of representat-
ives R such that statement (b) holds for all X®, we say that § is locally Kupka—Smale
for X.

Lemma 6.8. If G is locally Kupka—Smale for X, then for any < there is a choice of
R such that the canonical induced periodic orbit X® can be made hyperbolic by an
arbitrarily small admissible perturbation.

Proof. The perturbed induced periodic orbit X® lies inside N . (X). ]
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6.9. Stable isolation

A rigid property that is weaker than strong hyperbolicity but could play the same role
in the method used here is:

Definition 6.9. A hyperbolic periodic orbit X is stably isolated for < if there exists
R such that, if necessary after an arbitrarily small perturbation:
(a) The induced orbit X% is an isolated periodic orbit of the induced ODE.
(b) This property is preserved by any further sufficiently small perturbation.
The orbit X is stably isolated if it is stably isolated for every colouring ><.
Remarks 6.10. (a) Condition (b) ensures that ‘having a stably isolated periodic
orbit’ is an open property of f. Here ‘stable’ refers to structural stability,

not stability to perturbations of initial conditions such as asymptotic or linear
stability.
(b) If < is balanced, any hyperbolic X is stably isolated, because Aq is flow-

invariant, so X% is hyperbolic.

Proposition 6.11. If X is strongly hyperbolic for < then it is stably isolated for r=<.
If X is strongly hyperbolic then it is stably isolated.

Proof. Hyperbolic periodic orbits are isolated by the local uniqueness assertion in
Lemma 6.2. ]

6.10. Kupka-Smale networks

There is a connection between strong hyperbolicity and the Kupka—Smale Theorem,
requiring only analogues of (a) and (b) in Theorem 1.2. This motivates:

Definition 6.12. A network § is a Kupka—Smale network if properties (a) and (b) in
Theorem 1.2 hold for a generic set of admissible vector fields.
Theorem 6.13. Let X be a hyperbolic periodic orbit and let <t be a colouring.

(a) If 8% is a Kupka—Smale network for some set of representatives R for 1<
then X is stably isolated for <.

(b) If§% is locally Kupka—Smale near X* for some R, then X is stably isolated
for <.

(c) IfXis stably isolated for < then it is strongly hyperbolic for <.

(d) If X is stably isolated for < then X is not a limit of a continuum of periodic
orbits, whose members do not equal X on some open neighbourhood.

(e) The implications (a)—(d) hold when ‘for <’ is deleted from all of them.
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Proof. All implications are trivial. |

In the remainder of the paper we prove that when the local synchrony pattern
> of X is rigid, the property stated in (d) implies that >< is balanced. That is, &
has the Rigid Synchrony Property for X. The implications (a)-(d) provide alternative
strategies for proving the Local Rigid Synchrony Property in specific cases.

7. Local rigidity

In this section we compare and contrast local and global versions of rigidity, discuss
the existence of generic points, and motivate the focus on local versions of the Rigidity
Conjectures.

7.1. Synchrony patterns on subsets

Let X = {x(¢) :t € R} asusual. Let / C R be any subset. Define the local synchrony
pattern of X on J to be the colouring <1y defined by

c<yd = x.(t) =x4@0) Vtel. (7.1)

If J = {x} is a singleton, we write ><iy instead of <.

In this notation the global synchrony pattern of X is the colouring ><ig. However,
it is just as valid, and more intuitive to denote it by ><ix, which we do from now on.
The corresponding polydiagonal is accordingly denoted Ax. This pattern is globally
rigid if, for small enough perturbations, the perturbed periodic orbit has the same
global synchrony pattern. The usual form of the Rigid Synchrony Conjecture (see [37,
Section 10]) states that any rigid global synchrony pattern ><x is balanced.

It is easy to establish an alternative characterisation of ><ix in terms of polydiag-
onals:

Proposition 7.1. The global synchrony pattern of X is the unique colouring > such
that

(@ X <Ay,

(b) X is not contained in any polydiagonal strictly smaller than Apq. ]

Uniqueness follows from the lattice structure.

7.2. Locally rigid synchrony

For technical reasons, discussed in Section 7.6, it is better to work with a local version
of rigidity. (The same point was made in [33, 34].) We modify Definition 6.4:
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Definition 7.2. A property & of a hyperbolic periodic orbit X relative to its period T
is locally rigid near ty € R if

(a) There exists an open interval J € R with #g € J such that x°(¢) has property
P forallt € J.

(b) There exists an open interval J; € R with fp € J; such that if ¢ is small

enough, x°(¢) has property & (relative to 7¢) for all t € J;.

Remark 7.3. This 1-parameter version is sufficient for the purposes of this paper. We
do not need the bound on ¢ to be uniform in p.

7.3. The lattice of colourings

In order to compare x.(¢) with x;(¢), they must both belong to the same space, so we

require P, = P;. Any colouring defined by synchrony properties satisfies this condi-

tion, so from now on we do not refer to it explicitly. Formally, for any colouring <,

the condition ¢ < d requires ¢ and d to be state equivalent, denoted by ¢ ~g d.
Recall that every colouring < defines a polydiagonal

Apg={xeP:cr<xd = x. = x4}

and it also defines a partition whose parts correspond to the colours. There is a natural
partial order < on colourings:

Definition 7.4. A colouring < is finer than a colouring ><i,, written ><i; < p<lp, if
c>dyd = ¢y d.

Contrary to normal English, this includes the possibility that the colourings are the
same, up to a permutation of the colours. We also say that ><i, is coarser than <. To
remove the possibility of equality we use the terms strictly finer and strictly coarser.

The following proposition is obvious:

Proposition 7.5. The following properties are equivalent:
(a) The colouring < is finer than ><,.

(b) Every part of the partition defined by < is contained in some part of the
partition defined by ><,.

(©) Apqy 2 Apa,.
Section 4 of [68] proves, in slightly different terminology, that with this partial

ordering the set of all colourings is a lattice in the sense of partially ordered sets,
Davey and Priestley [20]. Lemma 4.3 of that paper proves that this lattice is dual
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to the lattice of polydiagonals under inclusion, property (c) of Proposition 7.5. The
balanced colourings form a sublattice, as do the balanced polydiagonals. Since the
number of polydiagonals is finite, these are finite lattices.

7.4. Semicontinuity of colourings

The next proposition, which is well known and easy to prove, states that sufficiently
small changes to x € P can make the colouring finer, but not strictly coarser. (Recall
that in Definition 7.4 the terms ‘finer’ and ‘coarser’ permit equality.)

Proposition 7.6. If x € P, with synchrony pattern <y, and y € P with ||y — x||
sufficiently small, then <y is finer than 1><,,.

Proof. Suppose that x. # x4, and let || x. — x4|| = & > 0. Suppose that || x — y|| <4/3.
Then

§ = llxe = xall < llxe = yell + lye = yall + llya — xall
<8/34 llye —yal +6/3

50 [[ye = yall = 8/3 > 0. u

Thus, one implication of local rigidity is that the synchrony pattern at x(fp) € X
does not become coarser at sufficiently close points X(¢) € X.

Intuitively, Proposition 7.6 states that small perturbations cannot create new equal-
ities of coordinates, but they might break up existing equalities. Equivalently, small
perturbations cannot make the synchrony colouring coarser, but they might make it
finer. Another equivalent condition is that small perturbations cannot make the polydi-
agonal A, smaller, but they might make it larger. Technically, the number of colours
is lower semicontinuous with respect to small perturbations, It [49].

7.5. Generic points

Given X, the synchrony pattern <) at a point x(fp) € X is defined by
€ >x(t0) d <— )Cc(to) = xd(lo).

In general this pattern may vary with #y. By Proposition 7.6, synchrony patterns
are lower semicontinuous. Intuitively, under sufficiently small perturbations colour
clusters can break up, but not merge.

In Section 7.1 we defined the local synchrony pattern on an interval J. Depending
on J, this pattern might change as 7 runs over J. Semicontinuity implies that, by
shrinking J if necessary, we can assume that

Dx(to) = >x(ry) Vio.11 € J.

‘We assume this from now on.
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When this condition holds, any point in x (J) = {x(¢) : t € J} is a generic point.
That is, it has the same synchrony pattern as the local pattern on J. This result is a
trivial consequence of Definition 7.8, but we state it explicitly because it is central to
the proof of the Rigid Synchrony Conjecture. It is valid for a local synchrony pattern,
but need not be for the global synchrony pattern. Although the proof is trivial, this
observation is crucial to the construction of suitable perturbations, and is why we
consider locally rigid synchrony instead of globally rigid synchrony.

Proposition 7.7. Let <, be the local rigid synchrony pattern for X at x (to). If R
is a set of representatives for <y, then

i #]eR = xito) # x;(t0)

Proof. 1f x;(t9) = xj(tp) theni <y (s, j,s0i = j since R is a set of representatives.
[

Local synchrony is technically more tractable than global synchrony for several
reasons. One is that generic points need not exist for global synchrony patterns; see
Section 7.6. (Existence of a generic point is claimed in [72], but the proof there is
fallacious.) Another is that in the global case, the perturbation technique requires
admissible perturbations to vanish near the whole of X, but not at certain other points.
In certain circumstances this can conflict with admissibility. Local perturbations —
those with small support — avoid this problem.

Ironically, once we have used local rigid synchrony to prove that (subject to strong
hyperbolicity) a network has the Local Rigid Synchrony Property, we can deduce the
Global Rigid Synchrony Property and show that a rigid global synchrony pattern is the
same as any local one. But working from the beginning with rigid global synchrony
runs into the technical difficulties mentioned above. See Section 10.

7.6. Changes in local synchrony

In general dynamical system, different points on a periodic orbit can have different
synchrony patterns. Moreover, a general dynamical system can be viewed as a fully
inhomogeneous network ODE with all-to-all coupling. Therefore we must deal with
the possibility of a periodic orbit akin to Figure 5.

Here Aq, A, are distinct polydiagonals. The periodic orbit X = {x(¢)} lies in
A for some intervals of time ¢, but in A, for another interval. The transitions occur
smoothly via intervals of time in which x(¢) € Ay N A,. Considerably more complic-
ated changes in the local synchrony pattern are possible; for example it might change
infinitely many times. If this or anything similar occurs, then the polydiagonal Ax for
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the global synchrony pattern p<ix of X is different from both A; and A,. Indeed,

A; € Ax, Ay & Ax

-

and no point or small interval J on X has synchrony pattern <ty = p<ix, the global
synchrony pattern of X. We cannot infer local rigidity directly from global rigidity,
because perturbed orbits need not remain locally on either A; or A,. All we know is
that they stay inside the strictly larger polydiagonal Ax.

7.7. Local rigid synchrony and generic points

If X is as in Figure 5, there is no generic point for the global synchrony pattern,
because no point on the orbit lies in Ax \ (A7 U Aj). However, there exist generic
points for the local synchrony patterns.

Such behaviour is easily perturbed away in a general dynamical system, but it
is not clear whether this can always be done for network dynamics. We get round
this issue by considering a local version of rigid synchrony. This property is local in
time, but still requires a global condition: existence of a hyperbolic periodic orbit. A
local version of rigidity was introduced by Golubitsky et al. [33, Section 2] for similar
reasons; see in particular their Definition 2.9 (c).

The natural definition of the global pattern of rigid synchrony ><tx on X is to take
J = R in (7.1); which leads to

cxix d < X.(t)=X4(t) VieR

where X () is any perturbed periodic orbit for a sufficiently small admissible perturb-
ation. This colouring is the same as ~"¢ in [72]. However, because of the possible
non-existence of generic points, we work locally:

Figure 5. A periodic orbit with more than one local synchrony pattern, which potentially might
be rigid.
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Definition 7.8. A colouring < is a locally rigid synchrony pattern or rigid local
synchrony pattern for X at x (tp) if and only if there exists ¢ > 0 and t* > 0 such that

(a) X remains hyperbolic after a perturbation p with || p||; < &,
(b) the condition
@) =x0(t) < crad
is valid for all perturbations p with || p||; < € and all ¢ such that |t —to| < ™.
That is, the synchrony pattern for X?(¢) is the same for all small enough p and for

all 7 close enough to #9. We define this to be the local synchrony pattern of X near ¢,
and denote it by > ().

8. Construction of admissible perturbations

We now set up a general method for defining admissible perturbations with arbitrarily
small support and arbitrarily small C! norm. We describe the method for a general
network €, but apply it below to quasi-quotients §%.

8.1. Symmetrisation

We will use Proposition 4.7 to construct admissible pertubations, supported on (usu-
ally small) sets, by defining suitable bump functions and then symmetrising, as ex-
plained below in Definition 8.1. Let

gC:PCXPT(C)_>PC7

(xc, xT(c)) = ge(xe, xT(c))

be a smooth admissible map. By (4.5) the vertex group I' = B(c, ¢) acts on such maps
by

v8e(Xe, xT(c)) = g¢(xe, )’*xT(c))
where y* is the pullback of y.

Definition 8.1. The symmetrisation of g. is g¥', where
1
gf(xc,XT(c)) = m Z(xc, YEXT()-
yel

Symmetrisation on each input class, combined with standard-order identifications,
yields the groupoid symmetrisation construction of [72] up to constant factors. The
normalisation factor 1/|T"| ensures that

gl < llgel 8.1)
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bearing in mind that ||g”|; = ||gc|l1 for all ¢ € € because I' acts by permuting
coordinates. Clearly, g{ is I'-invariant, that is, B(c, ¢)-invariant. Moreover,
supp(g; ) = |_J v supp(gc) (8.2)
yel

where supp is the support
supp(h) = cl{x : h(x) # 0}

and cl indicates the closure.

In this paper we apply symmetrisation to components of admissible maps for
quasi-quotients §*®. The following simple lemma lets us perform symmetrisations
on P® and lift them to symmetrisations on P.

Lemma 8.2. With the above notation,

[B*x1)] = B* X1 (e))-

Proof. Permuting entries, and replacing ¢ by [c], commute. In more detail, let T'(c) =
(i1,...,ix), sothat [T'(c)] = ([i1], ..., [ix]). Then

(B*x1(0)] = (X(gGa1)s - - X[BG0D = (XB(Ei1Ds - - - > XB(lix])
= ﬂ*(x[il],...,x[ik]) = ,B*X[T(c)]. n

8.2. Bump functions

We use bump functions to construct admissible C* maps p : P — P with a specified
compact support, taking a specific locally constant value w on a neighbourhood of a
specified point z € P. We denote the open ball in the Euclidean norm of radius r
centre x by B, (x).

Proposition 8.3. Let z € P. X Pr() and suppose that § > 0. Let w € P.. Then there
exists a C* map V¢ : Pc X Pr(y — Pc with compact support, hence C L_bounded,
such that

= | VI =zl =8
‘ 0 iflly —z| > 25.

Proof. Letx € P, x PryandletU = B,(x), V = By(x) where r <s. By Abraham
etal. [2, Lemma 4.2.13] there is a C* function ¢ : R¥ — R such that ¢(x) = 1 when
x € U and ¢(x) = 0 when x ¢ V. In particular, there exists a C° bump function
¥ : R — R such that

1 ifxe(-1,1),

V) = {o ifx & (=2,2).
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This has compact support. For any § > 0 let ¢% : RT — [0, §] be defined by
$°(x) = ¥ (x/9). (8.3)
Then if ||-|| g is the Euclidean norm, the function
®(y) = ¢*(ly —zllH)w (8:4)

is smooth, supported on the compact set cl(B,5(z)), and satisfies ®(y) = wif ||y —
z|| < 6. ]

8.3. Symmetrised bump functions

We construct admissible perturbations using symmetrised bump functions. In a gen-
eral setting, let I be a finite group acting linearly and orthogonally on a real vector
space V. Denote the I'-orbit of A € V by

O(A) ={ya:yeTl,ae A}
For finite subsets Y, Z C V write the (Hausdorff) distance as
d(A,B) =min{||y —z|| : y e Y,z € Z}.

We state the following lemma for a general finite group action. It will be applied when
the group is a vertex group.

Lemma 8.4. Let V, W be real vector spaces, and let a finite group T act on V. Let
A, B C V be finite sets with disjoint group orbits

O(A) N O(B) = 9.

Let 0 £ w € W. Then there exists § > 0 and a T'-invariant map h : V. — W with
compact support such that

0 ifye0O(A),
h(y) =qw ifd(y,0(B)) <3,
0 ifd(y,0(B)) = 2.

Proof. Since the group orbits 9 (A) and O (B) are disjoint, d(O(A), O(B)) > 0. Let

§ < %d(@(A), O(B))
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so that -neighbourhoods of @ (A) and @ (B) are disjoint. By Proposition 8.3 there is
a bump function ® : V' — W such that

Pa) =0 ifacecAd,
O(y) =w ifd(y,0(B)) <4,
d(y) =0 ifd(y,0(B)) > 26.

Symmetrise, to obtain 7 = ®'. Then & has compact support by definition, and the
stated properties follow easily from Section 8.1. |

9. Proof of Local Rigid Synchrony Property for strongly hyperbolic
periodic orbits

We now adapt the method of Section 3 to prove the Local Rigid Synchrony Property
for any network, under the extra condition that the periodic orbit is strongly hyperbolic
(indeed, ‘stably isolated’ suffices).

If necessary, an arbitrarily small initial perturbation ensures that if R is a set of
representatives for local synchrony colouring then the induced periodic orbit X% is
hyperbolic in P*®, hence is an isolated periodic orbit in P*®. The interval J and the
size ¢ of a sufficiently small perturbation may have to be made smaller. Without loss
of generality, we assume such a ‘pre-perturbation’ has been made, and retain the same
notation for £, X, and so on.

Recall that we consider a network § with nodes € = {1,2,...,n}, with state
spaces P, for nodes ¢ be RKe, so that the total state space is P = Py X --- X Py,
Consider a §-admissible ODE (6.3), written in coordinates as

x() = fC(xLWxT(C))’ c € '6 (91)

Let (6.4) be a family of small admissible perturbations. Let X be a strongly hyperbolic
periodic orbit of (6.3), with perturbed periodic orbit X? for (6.4). Assume that at
fo € R the local synchrony pattern >y ) is rigid.

We use Proposition 4.7 to define admissible perturbations p. This implies that we
need to define p. only for one node ¢ from each input equivalence class, provided we
ensure that p. is B(c, ¢)-invariant.

Remark 9.1. When ¢ ~; d, Proposition 4.7 lets us identify P, with Pz and Pr)
with Pr(g). It also lets us identify the actions of B(c,c) and B(d,d), so B(c, c) acts
on Pr(g) in the same way as it acts on Pr(c).

We make these identifications without further comment from now on.
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9.1. Statement of main theorem

As in [33, Sections 2 and 6], the issues raised in Section 7.6 make it necessary to
prove a stronger local version of the Rigid Synchrony Property, namely:

Theorem 9.2. If a strongly hyperbolic periodic orbit of a §-admissible ODE has a
locally rigid synchrony pattern on a non-empty open interval of time, then that pattern
is balanced.

The proof occupies the remainder of this section.

For any subset J € R write x(J) = {x(¢) : t € J}. In the sequel J is either a
non-empty open interval or a point. Local rigidity of X implies that there exists a non-
empty open interval J such that the synchrony pattern ><y ;) of any point x(¢) € x(J)
is the same for all + € J, and is rigid. By Definition 7.8, this pattern includes all
synchrony relations that hold on x (J). By local rigidity, it is also the same colouring
as that of x°(¢) for e < 1,1 € J. (Here and elsewhere we may have to make J or
smaller for such statements to be valid: we retain the same notation.)

Choose ty € J, giving a point x (tp) € X. As in Section 3.2, we choose a Poincaré
section X transverse to X at x (¢g). Any perturbed periodic orbit meets X transversely
in a unique point, provided the perturbation is sufficiently C!-small. We use this
intersection point to fix initial conditions on perturbed periodic orbits X by requir-
ing X(f9) € X. As just remarked, D<) = >y, and local rigidity similarly implies
that >xto) = P>x (o) for X(tp) € X.

For a contradiction, assume that

D<Ix(z) 18 NOt balanced. 9.2)

The rest of this section proves that this cannot happen.
To simplify notation we write ><y(z,) = > from now on.

9.2. Induced OODE

The first step is to replace the unperturbed ODE (9.1) by the corresponding induced
overdetermined ODE (or induced OODE) for the synchrony pattern with colour-
ing ><®. (We get an OODE because ><°
entatives R for the colours, and renumber nodes so that these are nodes 1,2, ..., m.

is not balanced.) Choose some set of repres-

Denote the representative of node ¢ in R by [c] as in Definition 5.1. Then [c] = ¢
when ¢ € R, thatis, for 1 <c¢ < m.

The set R defines coordinates (U1, ..., Uy) on the polydiagonal A, o € P by
setting x¢ = U[¢].
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For example, if | €| = 5 and the synchrony pattern is the partition {{1,2,4},{3,5}},
then (11, u,) is identified with (1, uy,us,uq,u,) € P. Now u, acts as the node co-
ordinate for node r in €% when 1 < r < m, and canonically identifies PR with A.

By Proposition 7.7, local rigidity of ><° implies

the points ug(to) are distinct for 1 < c¢ < m. 9.3)

Write input variables in standard order so that transitional pullback maps between
distinct input equivalent nodes can be taken to be the identity. By Proposition 4.7, the
only further requirement on the c¢-component for admissibility is B(c, ¢)-invariance
for each representative ¢ of the input equivalence classes. Moreover, we can identify
B(d,d) with B(c, c) whenever ¢ ~; d, by Remark 9.1.

We have identified A 0 € P with PR with coordinates Ul, ..., Uy. We now
convert (9.1) into an OODE by substituting u[¢] for x., for 1 < ¢ < n, as in Defini-
tion 5.6

ue] = fe(uep - uirey), 1 <c=<n. 9.4)

Recall that [T'(c)] is the tuple of colours of tail nodes of input arrows /(c). That is,

[Groeenin)] = (] - Tir])

for the input tuple (i1, .. .,i,). (The subscript of f. remains c, not [c], since we are not
changing the map, just substituting different variables into it.) A solution X of (9.1)
satisfies the OODE (9.4) if and only if X has synchrony pattern ><. Thus, X determ-
ines a canonical periodic orbit X*® for the §*®-admissible induced ODE.

Forallu € X® and ¢ € {1,...,m} we have

Ue = U], urr(e) (1) € Prre)-

Say that the colouring is unbalanced at nodes c, d if distinct nodes ¢, d have the
same colour, but their input sets are not colour-isomorphic. This is equivalent to

either ¢ £y d, or 9.5)
¢ ~g d and x[7()] and x[7(4)] lie in distinct orbits of B(c, ¢). 9.6)

Here we again use Remark 9.1, so that B(c,c) = B(d, d) acts on both input tuples.
By (9.2), < is not balanced at some ¢ # d. Renumber the nodes so that ¢ =
1,d = m + 1. Then: < is unbalanced at nodes 1, m + 1, and node 1 has the same
colour as node m + 1.
Split (9.4) into the induced OODE for R, which is

e = fe(Ue uireyy), 1<c<m 9.7)
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together with the conflicting equation
Umt1 = U1 = fnt1(U1, U[Tm+1)]) 9.8)
(bearing in mind that [m + 1] = 1), with possible further constraint equations
U] = fe(Ue uirey), m-+2=<c=n. 9.9
Because < is unbalanced at nodes 1, m + 1, the two equations

uy = fi(ur, uray). U1 = fmr1 (U1, UT 1))

conflict, in the sense of (9.5) or (9.6): either nodes 1 and m + 1 are not input equival-
ent, so that f, 11 # f1, or they are input equivalent, so that f,,, 11 = f1, but u[rm+1)
and u[r (1)) do not lie in the same B(1, 1)-orbit, using Lemma 8.2 to define the group
action. (The same result holds if we replace x by u throughout.) We will use this con-
flict to deduce a contradiction. The remaining constraints (9.9) play no further role in
the proof and are ignored. The various f, may or may not be equal, and we distinguish
these cases in the proof. Also, some input equivalence classes may not be represented
among nodes {1, ..., m}.

9.3. Perturbations

It is convenient to write
R
STr=Uh s Tm)

for the map that appears in the induced ODE, to distinguish it from f.Now f : P —
P and f®: PR — PR We use similar notation to distinguish a perturbation p on
P from p® on PR,

Theorem 5.4 implies that we can construct §-admissible perturbations of f on P
by first constructing §*®-admissible perturbations p® of f® on P® and then lift-
ing to P. Moreover, lifting can be performed in a manner that does not increase the
C' norm of the perturbation. We therefore work initially with §%®-admissible maps
on P® using the previously defined coordinates u1, ..., u,, on P%.

Write the OODE for the perturbed map f + ¢p as

e = fi(ug, ”fT(c)]) + SPc(u?“fT(c)]), l<c<m (9.10)
with conflicting equation
ufm+1] =] = fmr1(uf, u'[sT(m+1)]) + epm+1(ui, U‘[ET(m_;_l)]) 9.11)
and possible further constraints

it = fi (ui’”fT(c)]) + epe(ug, u'[sT(c)]), m+2<c<n. (9.12)



I. Stewart 134

Assume, for a contradiction, that the OODE defined by (9.10), (9.11), and (9.12)
has a solution for any admissible C!'-bounded p. So although (9.8) conflicts with
the first component of (9.7), they must agree on X. Rigidity implies that the same
statement holds for X. Agreement of this kind is possible for a single admissible
map [, but it is highly non-generic. We show that in the strongly hyperbolic case, it
cannot remain valid for all small perturbations.

To avoid confusion, but at the expense of slightly more complicated notation, we
write points on components of the induced unperturbed periodic orbit as u(c)(t) instead
of u(t). In particular, u2 (7o) is the c-component of the unique point (locally) at which
the unperturbed periodic orbit meets the Poincaré section X. This notation is chosen
to be consistent with the notation u? (¢) for the corresponding perturbed periodic orbit
for a perturbation ep.

9.4. Proof strategy

The Local Rigid Synchrony Theorem 9.2 is an immediate consequence of the follow-
ing two results, Lemma 9.3 and Lemma 9.4. The proof of Lemma 9.4 is deferred to
Section 9.5.

Lemma 9.3. Suppose there exists an admissible map p for § such that for 1 <c¢ <m,

Pe(xXc @), X[ry () =0, 1=<c=m, e<L1[t—1] <1 (9.13)
and
Pt 1 (1 (10), X{r s 1) (f0)) # 0. (9.14)
Then <1° is not locally rigid.

Proof. The periodic orbit X induces a canonically defined periodic orbit X® for
(9.10) on PR, By (9.13), for all ¢ < 1 and ¢ near ¢y, the induced equations for the per-
turbed ué () are the same as those for the unperturbed coordinate u2 (7). Now X¢ — X
as ¢ — 0. By strong hyperbolicity, if ¢ < 1 then X® = X. Since initial conditions are
determined by the Poincaré section X, we have x(¢) = x(¢) fort € J. Thus

ub(t) =ul(r) Vtel.

(By uniqueness of solutions of ODEs, this identity is valid for all ¢+ € R.) The con-
flicting equation is

il? = fm+1(“(1),u?r(m+1)]) + 8pm+1(u(1),u?7"(m+1)]) Ve 1,t € J.
Since all terms except ¢ are independent of &,
Pt (U (), Ul i1y () =0 Ve L 1,1 € J.

This is a contradiction since py, 11 is nonzero at (u9 (7o), u([)T(m 1] (t0)),by (9.14). =
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Thus the proof of the Local Rigid Synchrony Property, Theorem 9.2, reduces to
proving the second lemma:

Lemma 9.4. There exists an admissible perturbation p, with support near x°(ty) and
its images under the vertex group B(1, 1), that satisfies (9.13) and (9.14).

We prove Lemma 9.4 in the next subsection. To do so, we need some additional
observations.

9.5. Construction of the perturbation

It remains to construct a ¥-admissible perturbation p : P — P that satisfies (9.13)
and (9.14). We do this by constructing a §®-admissible perturbation g : P® — PR
and lifting it to p using Theorem 5.4.
To construct g, we focus on the ODE (9.10) and the constraint (9.11), remember-
ing that
m+ 1< 1.

To simplify notation, write

U = (u2(10)7u?7"(c)](t0))7
O.=0U,) forl = B(c,c),
Ug = (ug(to), ufg ey (o)),
O: =0Uf) forT = B(c,c).

The identifications in Remark 9.1, transferred to P, imply that the finite sets O, Oy
lie in the same space P. x P[] if ¢ ~; d, and otherwise lie in distinct spaces.
Moreover, when ¢ ~j d the groups B(c, c), B(d, d) and their actions on this space
are identified.

Lemma 9.5. With the above notation,
O.NO; =0 Ve, d:1<c#d<m+1,c~yd.

Proof. Proposition 7.7 implies that the points u(c)(to) are distinct for 1 < ¢ <m. There-
fore, by projection onto P, the points U, are distinct for 1 < ¢ < m. Since I" acts
trivially on the ‘base point’ u°(t9) of U, it follows that O, N @; = @ whenever
1<c#d<m.

Since m + 1 <° 1, the only possible non-empty intersection occurs for 0 N
Om+1- These two sets lie in the same space only when m + 1 ~; 1. But then, @ and
Om+1 are disjoint by (9.6). [
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Proof of Lemma 9.4. The proof splits into three cases:
(a) Node m + 1 is not input equivalent to any of nodes 1, ..., m.
(b) Node m + 1 is input equivalent to node k where 2 < k < m.
(¢) Node m + 1 is input equivalent to node 1.

The arguments are very similar in all cases, but differ in fine detail. We take the
three cases in turn.

Case (a): Here we define the perturbation p directly for §. We use a bump function
and symmetrisation, as in Sections 8.2 and 8.1, to define p,,+; so that (9.14) holds.
Specifically, in Lemma 8.4 make § sufficiently small and take

F=Bm+1,m+1),
V = Pu+1 X PiTm+1) W = Ppi1,
A=0, B = {(x;(,)1+1(10),XE)T(m+1)](IO))}-

The hypothesis O (A) N O(B) = @ clearly holds.

Define p,,+1 = h where A is as in Lemma 8.4. Then p,,41(B) # 0, which is
(9.14). Since variables are in standard order, the transition maps are the identity, so
this determines all p. with ¢ ~; m + 1. On all remaining input equivalence classes,
we set p. = 0. In particular, p. = 0 for 1 < ¢ < m, so (9.13) holds. Since /& has
compact support, so does p, and p is C !-bounded.

Case (b): Since m + 1 ~; k and variables are in standard order, g,,+1 = gx for
any §-admissible map g. Let

Ci={c:c~1k&l1<c<m}. (9.15)

We define a perturbation ¢ for §%® and then lift to obtain p using Theorem 5.4.
We define ¢ so that ¢ has compact support on PR,

Ge(US) =0, 1<c<m, e<1 (9.16)

and
qk(Um+1) # 0. (9.17)

To do so, we define g, for ¢ € €; and make it vanish on R \ €;. Two conditions on
qi must be satisfied: (9.16) when ¢ = k, and (9.17). If these conditions are satisfied,
any lift p of g satisfies (9.13) and (9.14) and also has compact support, hence is C !-
bounded. Therefore ep is C !-small for & < 1. We are therefore finished once we show
that (9.13) and (9.14) can be satisfied simultaneously.
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To complete the proof, let €; be as in (9.15). Let gz = 0 foralld € R \ €;. For
¢ € €1, we define g, using Lemma 8.4. Make § sufficiently small and take

F''=Bm+1,m+1),

V=P xPirgy. W= Py,
4= o.. B = {Un+1}.
cet€y

The hypothesis @(A4) N O (B) = @ holds by Lemma 9.5. This defines a §®-admissible
perturbation g : P® — PR Lift g to a §-admissible map p : P — P, making it zero
on all components that are not input equivalent to a node in R U {m + 1}; then p has
the required properties. Again p is C !-bounded, so ep is C'-small for & < 1 and case
(b) is proved.

Case (c): Again we define a perturbation ¢ for % and then lift to obtain p using
Theorem 5.4.

Inthiscasem + 1 ~; 1 sogm+1 =¢q1.Let€y ={c:c~y 1 &1 <c <m}. As
before, we define g, for ¢ € €; and make it vanish on R \ €;. The only potential
obstacle is that both (9.13) and (9.14) impose conditions on p;, which might be con-
tradictory. We want ¢ to vanish at U} for & < 1, but to be nonzero at U,?l 41+ Again
we use Lemma 8.4. Make § sufficiently small, and take

I'=B(1,1)=Bm+1,m+1),

V = Py x Pirqy)s W = Py,
A= o. B = {Un+1}.
CEf]

The hypothesis @ (A4) N O(B) = @ holds by Lemma 9.5. This defines a §®-admissible
perturbation ¢ : PR — P®_ Lift ¢ to a §-admissible map p : P — P, making it
zero on all components that are not input equivalent to a node in &R. Then p has the
required properties. Again p is C!-bounded, so gp is C!-small for ¢ < 1 and case
(b) is proved.

This completes the proof of Theorem 9.2. |

Remarks 9.6. (a) The same strategy gives another proof of the Rigid Equilibrium
Theorem, first proved in [43, Theorem 7.6]. This new proof (see [69]) is simpler than
the periodic case, and we can appeal to Sard’s Theorem instead of assuming strong
hyperbolicity as an extra hypothesis. This approach has some similarities to a proof
based on transversality arguments by Aldis [3, Theorem 7.2.3], but is simpler.

(b) The same proof works if node spaces are arbitrary C°° manifolds. Indeed,
only C!-smoothness is required throughout. In particular, the above results and proofs
remain valid for phase oscillators, where the node spaces are the circle S'.
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10. Global rigid synchrony and the Rigid Input Property

Having established the main result of this paper, we can deduce the usual global ver-
sion of the Rigid Synchrony Property [33, 72], assuming as before that X is strongly
hyperbolic. As discussed in Section 7.6, the main obstacle is the possibility, in prin-
ciple, that a local synchrony pattern on some interval of time need not be the same
as the global synchrony pattern of the entire periodic orbit X. Indeed, the global syn-
chrony pattern ><x need not equal the local synchrony pattern ><iy () for any specific .
In fact, rigidity prevents this happening, but the proof requires a little care. To make
the proof precise we require a number of technical definitions. We also use the lattice
of colourings from Section 7.3.

10.1. Local rigidity implies global rigidity

We now appeal to the Local Rigid Synchrony Theorem 9.2 to show that the above
change of local synchrony pattern cannot occur if X is strongly hyperbolic and the
global pattern < is rigid. The following remark is useful:

Remark 10.1. Any finite number of perturbations performed in turn can be made
arbitrarily small by making successive sizes be £/2,¢/4,¢/8,. .. The triangle inequal-
ity then shows that the combined perturbation has size < ¢. We can also reduce the
size of ¢ or the interval J finitely many times if required.

Theorem 10.2. Assume that X is strongly hyperbolic, and suppose that the global
synchrony pattern ><tx on X is rigid. Then it is balanced.

Proof. As before, denote the local synchrony pattern at x,, by ><°. Let t<ix be the
global synchrony pattern of X and assume this is rigid.

Since X C Apqy, the colouring > is coarser than <. Proposition 7.6 implies
that after any sufficiently small perturbation, in which X becomes X and xo becomes
Xo, the colouring 4% can become finer than <10, but not coarser. Therefore 50
remains coarser than b<ix since p<ix is rigid; that is, A[;qo C Apay-

Continue making perturbations until 5<? is as fine as possible. By Remark 10.1,
the combined perturbation can be made as small as we wish. Now < is locally rigid.
By Theorem 9.2, < is balanced. Therefore X intersects the synchrony space for 5<®,
and flow-invariance implies that X € A -o. By definition of the global synchrony
pattern, Apqy, < A[>~<IO. Thus the two are equal, so ><ix is balanced. [

Corollary 10.3. Let X be a strongly hyperbolic periodic orbit with a locally rigid
synchrony pattern on some non-empty open time interval. Then the entire orbit has
that synchrony pattern, and it is balanced.
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Proof. By Theorem 9.2 the rigid local synchrony pattern ><° is balanced. Therefore
Ao is flow-invariant. But X N A 0 # 0,50 X € Apo. [

Some points on the periodic orbit might have extra equalities among their com-
ponents, compared to ><ix, but these cannot be balanced and cannot persist rigidly on
any non-empty open interval of time. In particular, the scenario of Figure 5 cannot
occur rigidly when X is strongly hyperbolic.

10.2. Local Rigid Input Property
The Local (hence also the global) Rigid Input Property now follows trivially:

Corollary 10.4. The Local Rigid Input Property holds for all strongly hyperbolic
periodic orbits.

Proof. The Rigid Synchrony Property implies the Rigid Input Property for synchron-
ous nodes, because any colour-preserving input isomorphism is, in particular, an input
isomorphism. ]

11. Rigid Phase Property

In this section we deduce the Local Rigid Phase Property from Theorem 9.2 using the
‘doubling’ trick of Golubitsky et al. [34]; see also Aldis [3, Chapter 10].

We state the Rigid Phase Property in the following local form. The global Rigid
Phase Property is the case J/ = R. We use p rather than e¢p and make || p||; small, and
write S! = R/Z for the circle group, representing the phase as a proportion of the
period.

Theorem 11.1 (Local Rigid Phase Property). Let X be a strongly hyperbolic periodic
orbit of a §-admissible ODE, and let X be the corresponding perturbed periodic orbit
for an admissible perturbation p with ||p|l1 < 1. Suppose that two nodes ¢, d in'§
are rigidly phase-related on a time interval J ; that is

Fhty=%,0+60T) Viel Vpkl (11.1)

for a fixed proportion 6 € S of the perturbed period T. Then there exists a vertex
symmetry B € B(d,d) such that

X1 (t) = ﬂ*XI(d)(t +60T) Vtel. (11.2)

Here X and T depend on p, but we suppress p in the notation. Informally, a
locally rigid phase shift implies that input sets of phase-related nodes are related by
the same phase shift, up to the action of a vertex group element.
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The proof of Theorem 11.1 closely mimics that of Theorem 9.2, so we omit
routine details. First, we state a simple corollary:

Corollary 11.2. If nodes are related by a locally rigid phase shift, they are input
equivalent.

Proof. The map B introduced just before equation (11.2) is an input equivalence. m

The central idea in the proof of Theorem 11.1 is a trick from [3, 34], namely:
construct two isomorphic copies §;, &, of § and form the disjoint union

286 = 51U %,.

If the state space for § is P then that for 2§ is P x P. Take coordinates (x, y)
on P x P where x = (x1,...,x,) and y = (y1,..., ¥n). We recall some simple
properties of the doubled network 2§ that are proved in [34].

Lemma 11.3. Let f be §-admissible. Then (with obvious identifications) (f, f) is
2§ -admissible, and all 2§ -admissible maps are of this form.

Proof. See [34, Lemma 4.3]. [

Assume as usual an admissible ODE (6.3) on P for &. This induces an admissible
ODE on P for 2§ of the form

Xx=fx). y=r10. (11.3)

The dynamics of §; and &, are decoupled, so a periodic state X = {x(¢)} for f
on ¢ gives rise to a 2-torus T2 for (£, f) on 2§, foliated by periodic orbits

Xg = {(x(t).x(t + 0T)) : 1 € R} (11.4)

where 0 € S!. We call Xy a 0-sheared periodic orbit.
The following result converts rigid phase relations on § into rigid synchronies
on 2§; see [34, Section 4]. The proof is immediate.

Lemma 11.4. Nodes c,d are rigidly phase-related by 0 in'§, with ¢ corresponding to
c1 in'§1 and d corresponding to dy in §,, if and only if ¢1, dy are rigidly synchronous
on Xy. ]

The method of proof assumes that § has the Rigid Synchrony Property for strong-
ly hyperbolic X, and uses properties of Xg, where 6 is the assumed rigid phase
relation. The idea is to deduce that Xy has the Rigid Synchrony Property for the
periodic orbit on 2¢. Then Lemma 11.4 yields the Rigid Synchrony Property for X
on §. However, the Rigid Synchrony Property for Xy is not immediate because the
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foliation by tori is an obstacle to hyperbolicity. To avoid this obstacle we establish a
modified version of the Rigid Synchrony Property for Xy on 2§. This is achieved as
follows.

Proof of Theorem 11.1. (a) Assume a rigid phase relation

Xc(t) =x40+0T), tel

where either ¢ % d or ¢ = d and 6 # 0 (mod T). Assume for a contradiction that
this relation does not extend to the corresponding input tuples.

(b) Assume that X is strongly hyperbolic (or is locally Kupka—Smale or has the
strong isolation property). This implies that ¥ has the Rigid Synchrony Property for
X but in principle is a stronger condition.

(c) Consider the corresponding admissible ODE (11.3) for 2§. Let Xy be defined
by (11.4), and consider an admissible perturbation of the form (ep, ep) where p is
admissible for ¢ and C!-bounded (which follows if p is compactly supported). The
perturbed ODE has the form

Xx=f(x)+ep(x).  y=[f()+ep(y). (11.5)
If 6 is rigid, the unique perturbed periodic orbit X = {(¥¢(¢), X¢(t + 0T)} satisfies
Fe(t) = Xq(t +0T), tel.

By Lemma 11.4, this corresponds to a rigid synchrony relation for 2§.
Theorem 9.2 does not apply directly, as noted above, but we can use the same
method of proof with extra conditions. The proof has three key ingredients:

(a) There exists a generic point x () on the periodic orbit witht € J.

(b) There is a conflicting component of the ODE; that is, one that is formally
inconsistent with the equation

Je(xe, x1(c)) = fa(xa(t +0T), x7@ay(t + 0T))

in the sense that either d 7 ¢ or x7() and x4 (¢t 4+ 6T do not lie in the same
B(c, ¢)-orbit.

(¢) X?® is hyperbolic, if necessary after a pre-perturbation of f.

If we can arrange analogous statements for Xy on P x P, the proof goes through and
the resulting contradiction establishes Theorem 11.1.

A useful simplifying step is to form the quotient & /< where < is the relation of
(local or global) rigid synchrony, which we know is balanced. Now nodes of § /<
are synchronous if and only if they are identical. Replacing § by this quotient (and
renaming this ¥), we may assume that the only synchrony relations for Xg on 2§ are
those of the form x.(¢) = x4 (¢ + 6); that is, between P x {0} and {0} x P.
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Condition (a) is straightforward, except perhaps when x1(¢) = x;(¢ + 0), so the
orbit on node 1 has period 8 < T. (This could, for example, occur for a multirhythm
on node 1.) This possibility corresponds to case (c) of the proof of Lemma 9.4, and
is dealt with in the same manner. We are assuming that node 1 does not satisfy the
Rigid Phase Property, so x[7(1)](fo) and x[71)}(to + 0) lie in distinct B(1, 1)-orbits.
Therefore the required conditions on p; can be satisfied. Condition (b) is immediate
because we are assuming, for a contradiction, that a formal inconsistency occurs.
Condition (c) can be dealt with by working only with sheared periodic orbits for 2§.
We need:

Definition 11.5. A periodic orbit Xy is quasi-hyperbolic if all of its Floquet multipli-
ers are off the unit circle except for two that equal 1. Of these, one is associated with
a phase shift along Xy, while the other is associated with a change from Xy to Xy
where ¢ € S with ¢ near 6 and ¢ # 6.

Definition 11.6. Let & be one of the properties ‘strongly hyperbolic’, ‘stably isol-
ated’, ‘locally Kupka—Smale’ for X. Then the property quasi-P for Xy is defined for
‘strongly hyperbolic’ and ‘locally Kupka—Smale’ by replacing ‘hyperbolic’ by ‘quasi-
hyperbolic’ in the definition of J°. For ‘stably isolated’ it is defined by being stably
isolated except for nearby periodic orbits X.

Now condition (¢) follows from:

Lemma 11.7. Let P be one of the properties ‘strongly hyperbolic’, ‘stably isolated’,
or ‘locally Kupka—Smale’. If X has property P for (6.3), then Xg has the property
quasi-P for (11.3).

Proof. First, observe that 2§ -admissible perturbed families have the form (11.5).

Strongly hyperbolic: There is a perturbation p such that {¥%®(¢)} is hyperbolic
on P. Since %(t + 6T) is a phase-shifted copy of %(¢), the orbit {¥®(t + )} is
hyperbolic on P for the same perturbation p. Now all Floquet multipliers of X? lie
off the unit circle except for two multipliers that are equal to 1: one for the first com-
ponent {X(¢)} and the other for the second component {X(¢ + 67T)}. Restricting to
any sheared periodic orbit (which includes Xg) reduces these to one Floquet multi-
plier equal to 1 and the rest off the unit circle. Therefore Xbﬂ is quasi-hyperbolic.

Stably isolated: If {X(t)} is stably isolated on P for a small perturbation p, then
since ¥(t + 6T) is a phase-shifted copy of %(¢), the orbit {X®(t + )} is stably
isolated on P for the same perturbation p. Therefore Xg is quasi-stably-isolated on
P xP.

Locally Kupka—Smale: The proof is similar to case (a) of Lemma 9.4. ]

This completes the proof of Theorem 11.1. u
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Remark 11.8. The example of Section 3 sheds light on the requirement of rigidity.
Among the admissible maps (3.1), consider the ‘non-generic’ case when g = f. The
ODE then has Z3; symmetry, and therefore supports rotating waves with %-period
phase shifts; see for example [42, Chapter XVIII, Section 0], and [36, Section 4.8].
These phase shifts would be rigid if the dashed arrow in Figure | had the same arrow-
type as the solid ones. However, since this is not the case, a perturbation of the form
(p, p,q) can (and, as we proved above, does) change the phase shifts, so that they are
no longer one third of the period.

12. Full Oscillation Property

We now deduce the Full Oscillation Property for strongly hyperbolic X. Following
Gandbhi et al. [28], say that node d is upstream from node c if there is a directed path
in § from d to c. We prove a stronger local version of the property: if some node
of a network is rigidly steady for some non-empty open interval of time J, then all
upstream nodes are also steady for ¢ € J. The global version follows immediately
since ‘oscillate’ is local in time.

A node is always synchronous with itself. In the proof of the Local Rigid Syn-
chrony Property, we do not assume that X is oscillating at any particular node; only
that the overall orbit is periodic (not steady) and nodes 1 and m + 1 are distinct.

Phase relations are different. A node can be phase-related to itself in a nontrivial
manner; indeed, this is precisely what happens in multirhythms. A multirhythm occurs
when some nodes oscillate at frequencies rationally related to the overall period,
because the phase pattern requires those nodes to oscillate as nontrivially phase-
shifted copies of themselves. This phenomenon goes back to [42, Chapter XVIII,
Section 0], and is discussed in [36, Section 3.6].

The proof of the Rigid Phase Property allows multirhythms, because the two cop-
ies of such a node are distinct in 2§. In fact, if node ¢ experiences a multirhythm,
rigidly, then Theorem 11.1 implies that x7 () is invariant under the same phase shift,
up to some input automorphism in 8 € B(c, ¢). That is,

Xe(t) = xc(t +0) = x7(0)(1) = B x7(0)(t + 0). (12.1)

The input automorphism f is essential here. Indeed, without some such automorph-
ism, the phase shift & would propagate back through the entire (transitive) network
and imply that all nodes oscillate with the same minimal period. This is false for
multirhythms, and is why they are interesting.
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Definition 12.1. Let X = {x(¢)} be a hyperbolic periodic orbit of a network ODE. A
node c is rigidly steady on a non-empty open set J C R if X, is steady (that is, X, ()
is constant) for all sufficiently small perturbed periodic orbits X = {x(¢)}.

The proof of the Local Rigid Phase Property makes no extra assumptions about
the phase shift 6, except that it is rigid. In particular, other phase relations are also per-
mitted (and occur in multirhythms). The connection with the Full Oscillation Property
arises because equilibria can be viewed as extreme cases of multirhythms:

Lemma 12.2. Let X = {x(t)} be a periodic state with period T, and let J be a non-
empty open subset of R. Then x.(t) is an equilibrium for t € J if and only if

Xe(t) =x.(t +0T) VO eS'=R/Z,t e J. "

As observed in [34, Section 2], in order to prove the Local Full Oscillation Prop-
erty it is enough to prove that a small enough perturbation makes at least one addi-
tional node oscillate. When § is transitive, iterating with smaller and smaller perturb-
ations, as in Remark 10.1, makes all nodes oscillate, because ‘node ¢ oscillates on J’
is an open property.

We prove a stronger result. The key observation is:

Lemma 12.3. Suppose that § has the Local Rigid Phase Property and node c is
rigidly steady fort € J. Then every node d upstream from c is also rigidly steady for
tel.

Proof. We prove that any input node d € T'(c) is steady for ¢z € J. That it is rigidly
steady then follows by Remark 10.1.

Since node c is rigidly steady, any sufficiently small perturbation creates a unique
perturbed periodic orbit X that is also steady at c. Therefore by Lemma 12.2,

Fe(t) = Xe(t +60T) VO eS!

where T is the period of X. That is, the phase shift 6 at node c is rigid for all § € S'.
(All phase shifts in S occur, but any particular one is preserved by perturbation, and
is distinguished by having that value of 6 — which is what the proof of Theorem 11.1
requires.) Theorem 11.1 therefore implies that there exists 8 € B(c, c¢) such that

x7(0)(t) = B*x7e)(t +0T) VO eS.
Since B(c, ¢) is a finite group, 8% = id for some k. Then
x70)(#) = (B x7(0)(t + kOT) = x7(0)(t +kOT) VO € S

Now k6 ranges over the whole of S! since # does, so by Lemma 12.2, XT(c) is in
equilibrium. In particular, any node d € T'(c¢) is in equilibrium. As noted at the start
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of the proof, node d is rigidly steady, so we can iterate. Since § is finite, after finitely
many steps we deduce, using Remark 10.1, that any given upstream node must be
rigidly steady. |

Theorem 12.4. The Full Oscillation Property holds for all strongly hyperbolic peri-
odic orbits.

Proof. Suppose not. Then some transitive network has a hyperbolic periodic orbit that
is rigidly steady at some node c¢. But in a transitive network, every node is upstream
from c. Therefore, every node is steady, so the state is not periodic — contradiction. m

13. Cyclic groups of automorphisms and the H/K Theorem

It is known that if conjectures (a, b, ¢, d) are valid for a network &, which we have
proved is the case for strongly hyperbolic periodic orbits, then there are important
consequences for the combinatorial structure of §. In Golubitsky et al. [34] and [73]
it is proved that, on the assumption that these conjectures are valid for a given net-
work §, there is a natural network analogue of the H/K Theorem of Buono and
Golubitsky [14]; see also Golubitsky and Stewart [36] and Golubitsky et al. [31].

In Section 1.1 we stated that for equivariant dynamics with symmetry group I,
the H/K Theorem characterises, for each I', the possible spatiotemporal patterns
of periodic states X that can occur for suitable I'-equivariant ODEs. This character-
isation is stated in terms of the the spatiotemporal symmetry group H, which fixes
X setwise, and the spatial symmetry group K C H, which fixes X pointwise. It is
easy to prove that K <1 H and (when T is finite) the quotient group H/K is cyclic
and corresponds to phase shifts through certain rational multiples of the period. The
synchrony and phase patterns determined by such subgroups H and K are always
rigid [36, Corollary 3.7].

For a network, the natural analogue of K is a balanced colouring <, determined
by the synchrony pattern, and the natural analogue of H is the phase pattern. The
crucial feature in common with the equivariant H/K Theorem is proved in [73] under
the assumption that § has the Rigid Phase Property. Namely, when § is transitive, the
existence of a rigid phase pattern implies that the quotient network § />< of § by the
synchrony colouring < has a cyclic symmetry group. Moreover, this symmetry group
implies the existence of a discrete rotating wave with the corresponding phase pattern.
So rigid phase relations on an arbitrary network occur if and only if they come from
a cyclic group symmetry on § /<.

The same proof works if we assume only the Local Rigid Phase Property on some
interval J. We can also pass from a specific rigid phase relation to the entire phase
pattern in the sense of [72], to establish:
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Theorem 13.1. Let § be a transitive network, and assume that '§ has the (global)
Rigid Phase Property. Suppose that there is a rigid phase pattern corresponding to a
T -periodic state x (t) of an admissible ODE. Then there is a balanced colouring < of
G and a symmetry y of the quotient network Gy, generating a cyclic group I' = Zy,
such that

(@) xc(t) = x4(t) ifand only if c < d.
(b) For each pair (c, d) of nodes that are rigidly phase-related

Xe(t) = xq(t +0:qT)

we have 0.q = 7 for some integer m. Moreover, y¢ = d where ¢, d are the
quotient nodes corresponding to ¢, d. ]

The converse is true with node spaces R for which m > 2, by results of Josi¢
and Torok [52]. The precise characterisation of H, K pairs for network ODEs remains
open when m = 1 or node spaces are S (phase oscillators).

Corollary 13.2. The above theorem holds if X is strongly hyperbolic. ]

Transitivity of § is required in Theorem 13.1 because nodes can be removed
from a feedforward network without affecting the phase pattern or its rigidity, but
destroying the cyclic symmetry. This issue is raised in Stewart and Parker [73, Sec-
tion 3.1]. Golubitsky et al. [34, Theorem 1.4] prove a similar result. Finally, Golubit-
sky et al. [34, Section 7] provide a detailed and thorough discussion of rigid phase
patterns in non-transitive networks. Here it may be necessary to complete the net-
work ¢ by adding further downstream nodes and arrows to obtain a larger network §*.
This extension does not affect the dynamics on ¥ because nodes in § force those in
g%\ 9, but it restores cyclic group symmetry.

14. Local Rigidity Properties for all 1- and 2-colourings

We now remove the hypothesis of strong hyperbolicity in some special cases. These
results are new and add evidence in support of the Rigidity Conjectures.

A colouring with k colours is called a k-colouring. We prove the first three Rigid-
ity Conjectures (RIC, RSC, RPC) for 1- and 2-colourings by proving that strong
hyperbolicity is generic. For the Rigid Synchrony Conjecture, the number of col-
ours refers to the number of synchrony classes. For the Rigid Phase Conjecture, the
number of colours refers to the number of node waveforms that are the same up to
a phase shift. That is, ¢ <1 d whenever x.(t) = x4(t + 0T) in the above notation.
If the Rigid Phase Property holds, this colouring is balanced. We exclude the Full
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Oscillation Conjecture (FOC) because this is not associated with a specific number of
colours.
We will prove, for any network §:

Theorem 14.1. (a) The Rigid Input, Synchrony, and Phase Properties hold for
any 1-colouring of any network.

(b) The Rigid Input, Synchrony, and Phase Properties hold for any 2-colouring
of any network.

The proof is deferred to Sections 14.2 and 14.4.

Corollary 14.2. The Rigid Input, Synchrony, and Phase Properties as well as the Full
Oscillation Property hold for any network with 1, 2, or 3 nodes. ]

Here we include the Full Oscillation Property because this can be defined for a
specific number of nodes.

These results are new. They add evidence supporting the Rigidity Conjectures.
In particular, if a counterexample exists, it must have at least 4 nodes and the syn-
chrony pattern must involve at least 3 colours. Moreover, the periodic orbit X must
fail to be strongly hyperbolic. Indeed, for any unbalanced synchrony pattern <°, after
any small perturbation, each X% is the limit of a continuum of periodic orbits of the
induced ODE for R, containing periodic orbits distinct from X® that meet any neigh-
bourhood of the point x°(zp).

14.1. ODE-equivalence

The proof of Theorem 14.1 depends on the concept of ODE-equivalence [22,57]. We
summarise the definition and basic properties.

A fundamental feature of network dynamics is that for a given choice of node
spaces P, and total state space P = [ ] P, each network § determines a class of dif-
ferential equations on P defined by the admissible maps. There is a bijection between
network diagrams and these ‘admissible classes’. Despite this, it was pointed out
in [57] that networks with different diagrams can define the same space of admissible
maps. Such networks are said to be ODE-equivalent, because any admissible ODE for
one of them can be interpreted as an admissible ODE for the other, and the same goes
for the solutions of the ODEs.

Nontrivial ODE-equivalence can occur because of the technical but vital distinc-
tion between a component f. : P — P, and the associated fAc i Pe X Py = Pe;
see Definition 4.5 (b). Although fc determines f. uniquely, different choices of fc
can determine the same f.. Admissible classes use specific presentations fAc of the
components of the map, whose domain lists the tail nodes of arrows. The space of
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admissible maps P — P is determined by the f., and this difference creates the
ambiguity.

Remark 14.3. Properties of specific orbits (such as periodicity, hyperbolicity, and
synchrony and phase patterns) are preserved when passing to an ODE-equivalent net-
work.

Example 14.4. Figure 6 shows a simple example of ODE-equivalence, discussed
briefly in [43]. In §; both nodes have the same node-type, and similarly for §,. Sup-
pose that the state space for all four nodes is R¥. The admissible maps for §; have the
form

F(x1,x2) = (f(x1,x2), f(x2,x1))

where f : R x RF — R¥ is any smooth map. The admissible maps for €, have the
form

G(x1,x2) = (g(x1,x1, X2), g(x2, X2, X1))
where g : R x R¥ x R¥ — R¥ is any smooth map.

It is now easy to see that the set {G} of all G is the same as the set {F'} of all F.
Namely, given f we can define g(u, v, w) = f(u,w) sothat {G} C {F}. Conversely,
given g we can define f(u,v) = g(u,v,v), so that { '} € {G}. Therefore ¥; and G,
are ODE-equivalent.

W= {O=0.
Figure 6. Two 2-node networks with different network topologies that define the same space of
admissible maps. Left: §1. Right: §>.

Definition 14.5. Networks §; and &, with the same sets of nodes (up to the number-
ing of the nodes) are ODE-equivalent, written §; ODE §,, if, for the same choices of
node spaces, §; and &, have the same spaces of admissible maps.

They are linearly equivalent if they have the same spaces of linear admissible
maps.

Recall that the adjacency matrix A for a given arrow-type is the matrix (a;;) for
which a;; is the number of arrows e of that type such that #(e) =i and 7 (e) = j.
When arrow-types are irredundant (see Section 4.2) and node spaces are 1-dimen-
sional, it is easy to see that the space of linear admissible maps is spanned by the
adjacency matrices for the separate arrow types, including internal node ‘arrows’ dis-
tinguished by node type. Linear equivalence then becomes ‘the adjacency matrices
span the same space’.

The key result on ODE-equivalence is [22, Theorem 7.1]:
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Theorem 14.6. Two networks are ODE-equivalent if and only if they are linearly
equivalent. Moreover, when verifying linear equivalence we may assume that all node
spaces are 1-dimensional. ]

This theorem reduces ODE-equivalence to routine linear algebra, applied to the
space spanned by the adjacency matrices.

Example 14.7. Consider the networks §; and 9, in Figure 6. The linear admissible

b [

(adjacency matrices for internal node arrows, solid arrows, respectively). Those for

9, are spanned by
1 0 0 1 1 0
0 1|° 1 of’ 0 1

(internal node arrows, solid arrows, dashed arrows, respectively). Clearly these spaces

maps for & are spanned by

ODE
are the same, so §; ~ 9.

14.2. 1-colour synchrony

The proof of the first three Rigidity Conjectures for 1-colourings (that is, when the
orbit is fully synchronous for the RSC and RIC, and has a single waveform up to
phase for the RPC) is now straightforward:

Proof of Theorem 14.1 (a). The result is true for equilibria by [3,43,69], so we may
assume X is not an equilibrium. Assume for a contradiction that & is not homogen-
eous. The periodic orbit X is fully synchronous; that is, x.(z) = x4 (¢) for all nodes
¢,d, so the colouring < = {1,2,...,n}. Let R = {1}.

The quasi-quotient % is a 1-node network, on which the induced ODE is 11 =
fi(u, ..., u). We claim that €% is ODE-equivalent to a 1-node network with no
arrows (other than the internal node ‘arrow’). This follows from Theorem 14.6, be-
cause all adjacency matrices are integer multiple of the identity. Admissible maps
are therefore arbitrary smooth functions of u, so the standard Kupka—Smale Theorem
implies that % is a Kupka—Smale network, which implies the Rigidity Properties. =

The proof of the Rigidity Conjectures for 2-colourings requires further prepara-
tion, done in the next subsection. We complete the proof in Section 14.4.
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14.3. Classification of 2-node networks up to ODE-equivalence

To deal with 2-colourings we first classify all possible 2-node networks up to ODE-
equivalence. This is straightforward, but seems not to be in the literature, so we give
details.

Theorem 14.8. Every 2-node network is ODE-equivalent to precisely one of the net-
works illustrated in Figure 7.

Proof. By Theorem 14.6 it is enough to classify 2-node networks up to linear equival-
ence, assuming all node spaces are 1-dimensional. The classification therefore reduces
to considering the vector spaces spanned by the adjacency matrices for each arrow-
type (assuming irredundancy). There are three main cases:

(a) The network § is disconnected.

(b) The network § is feedforward; that is, its is connected and has more than one
transitive component.

(¢) The network € is transitive.

For a 2-node network, transitivity is equivalent to being all-to-all connected. Through-
out, let 7 be the 2 x 2 identity matrix.

Case (a): This is trivial. Either ¥ is homogeneous, or not. If it is homogeneous
then all adjacency matrices are multiples of /, so & is ODE-equivalent to network (1)
in the figure. If not, all adjacency matrices are positive integer multiples of either of

bl [0

Now ¢ is ODE-equivalent to network (2) in the figure.

the following two:

Case (b): Clearly any network ODE-equivalent to a feedforward network is also
feedforward (all adjacency matrices have a common block-triangular structure). Re-

© @ O Ok O

(¢Y) 2 3 (C))

O cO-@ OFOs OO
) (6) Q) @®

Figure 7. Classification of 2-node networks up to ODE-equivalence. In case (8) we require
p,q > 0and ged(p,q) = 1.
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numbering if necessary we can assume that node 1 is the upstream node. Either § is
homogeneous, or not. If it is homogeneous then the internal arrow-type has adjacency
matrix a multiple of /. Every other arrow-type also has as adjacency matrix a multiple
of I, or it has a adjacency matrix of the form

a+b O
a b

with a > 1, by homogeneity. By connectedness, at least one such arrow-type has a > 0.
Subtracting b1 we obtain

So the span of the adjacency matrices is that of

b [

however many arrow-types there may be. (Different types may have different entries
a, b but the same statement holds.) Therefore & is ODE-equivalent to network (6) in
the figure.

If '§ is not homogeneous then the internal arrow-types have adjacency matrices

bl 0]

Any other arrow-type either has as adjacency matrix a multiple of one of these, or its

-

with at least one arrow-type for which ¢ > 0. We can subtract the diagonal terms

adjacency matrix has the form

without changing the span of the adjacency matrices, and then divide by c. Therefore
the span of the adjacency matrices is that of

TNINE

and ¢ is ODE-equivalent to network (5) in the figure.

Case (c): Either § is homogeneous or not. If it is homogeneous then the internal
arrow-type has adjacency matrix /. Any other arrow-type is either a self-loop whose
adjacency matrix is a multiple of 7, or its adjacency matrix has the form

-
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where a + b = ¢ + d. Swapping nodes if necessary we may assume that a < d.
Subtracting a I, the above matrix becomes

]

and by scaling, we may assume that gcd(b,c) = 1.
The largest possible span is the set of all matrices

-

where a + b = ¢ + d, which has dimension 3. Therefore there are two possibilities:
the span is 3-dimensional or it is 2-dimensional. If it is 3-dimensional it is spanned by

BN

which is case (7) in the figure. If it is 2-dimensional, then every adjacency matrix is
either a multiple of the identity or a multiple of some

L)

with ged(b,c) = 1.Letb = p+q¢q,c =q,s0b—c = p.

If p = 0 we can scale g to equal 1, giving case (4) in the figure. If ¢ = 0 we
can scale p to equal 1, giving case (6) in the figure (again). Otherwise p,g > 0 and
gcd(p, q) = 1. Two such matrices are linearly dependent modulo the identity if and
only if they are the same. So now we get a 2-parameter family of networks, with
parameters p, g such that gcd(p, ¢) = 1, which is case (8) in the figure.

Finally, suppose § is not homogeneous. The nodes are not input equivalent, so by
irredundancy they have different types. There must be at least one arrow in each dir-
ection, and these have different arrow-types. The node-types give adjacency matrices

CRi ]

Any self-loops give adjacency matrices that are multiples of these, and can be deleted.
Arrows from node 1 to node 2 and the reverse give adjacency matrices of the form

bol e
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respectively, where a, b # 0 for at least one arrow-type each way. Thus the adja-
cency matrices span the 4-dimensional space of all 2 x 2 matrices. The simplest such
network is number (3), and all others are ODE-equivalent to it since their adjacency
matrices span the same 4-dimensional space. |

14.4. Rigidity Conjectures for 2-colourings
Some (non-standard) terminology is useful:

Definition 14.9. A periodic orbit Y of a dynamical system x = f(x) is locally
Kupka—Smale if there exist §; > §> > 0 and tubular neighbourhoods Y3, 2 Y5, 2 Y
such that

(a) the flow of f maps Yj, into Y,

(b) there exists an arbitrarily small perturbation p of f &3, 84 > 0 with §5 < 6,
and 84 < 0, such that the flow of f + p maps Ys, into Ys,,

(c) every periodic orbit for /" + p that is contained in Ys, is hyperbolic.

Lemma 6.6 states that every periodic orbit X for a general dynamical system
is locally Kupka—Smale. Below we use this to deduce that X® is locally Kupka—
Smale for certain networks §. Before embarking on the proof of Theorem 14.1 (b),
we explain why it reduces to a case-by-case analysis showing that all networks (3)—(7)
in Figure 7 are Kupka—Smale or locally Kupka—Smale.

If >« contains just two colour classes, all induced ODEs are defined by sets of
representatives R of cardinality 2. The corresponding quasi-quotients are 2-node net-
works. The Rigidity Conjectures then follow from the previous analysis, provided we
can prove that every 2-node quasi-quotient network €® occurring in the proof has the
stable isolation property. In particular this follows if % is Kupka—Smale or locally
Kupka—Smale. By Remark 14.3 the stable isolation property and the (local and global)
Kupka—Smale properties are preserved by ODE-equivalence. It therefore suffices to
prove that all networks in Figure 7 except the disconnected networks (1) and (2) are
Kupka—Smale or locally Kupka—Smale. (By Section 6.5, networks (1) and (2) lack the
stable isolation property, but we can deal with them by a different, trivial, argument.)

Proof of Theorem 14.1 (b). Case (1): This network is disconnected. It arises only
if the original network § has no arrows whose head and tail have different colours.
This implies that § is the disjoint union of two networks, each having all nodes of the
same colour. Such a pattern is automatically balanced.
Case (2): This network is also disconnected, and the same argument applies.
Case (3): Admissible ODEs for this network are arbitrary dynamical systems on
Py x P,. The standard Kupka—Smale Theorem [55, 62, 66] therefore applies.
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Case (4): Admissible ODEs for this network are arbitrary Z,-equivariant dynam-
ical systems on P; x Pj. The equivariant Kupka—Smale Theorem of Field [27] for
compact group actions therefore applies.

Case (5): This is a general ‘forced’ dynamical system on P; x P,. We prove it is
locally Kupka—Smale, which implies the stable isolation property. Admissible ODEs
have the ‘forced’ or ‘skew product’ form

X1 = f(x1), X2 = g(x2,x1). (14.1)

If x; is steady, with equilibrium x; = «, we can perturb f to make « a hyperbolic
fixed point. Then the second component is X, = g(x2, @), which is an arbitrary ODE
in x,. By the Kupka—Smale Theorem we can perturb g to make x, hyperbolic. Now
X is hyperbolic.

If x; oscillates, let the minimal period of X be T. Let ¥; € P; be a Poincaré
section transverse to {x;(¢)} at ¢t = 0, and define ¥, = {x;(fp)} x X as in Figure 8.
The Poincaré map 7 : ¥, — X, has the form 7 (u, v) = (71(u), w2 (u, v)) since the
ODE is feedforward. The derivative is

|: D]]T] 0 :|
Dn =
Dy Dame
and we want to make D |x* hyperbolic, where X* = (x1 (%), x2(¢9)) is the fixed
point of 7.
Perturbing f and applying the Kupka—Smale Theorem we can make D7y hyper-

bolic on P;. The flow of (14.1) leaves the cylinder X! x P, =~ S! x P, invariant.
The component 75 (x1(%o), X2) is a local diffeomorphism near (x;(¢p), x2(%p)) € X.

Figure 8. Poincaré section for (14.1).
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A suitable perturbation of g perturbs m, to any nearby diffeomorphism (consider a
suspension). By the Kupka—Smale Theorem for diffeomorphisms (discrete dynamics)
we can make D, hyperbolic at X*. Therefore X is hyperbolic.

Case (6): This is similar, but the network is homogeneous, so minor modifications
are required. Admissible ODEs have the form

X1 = f(x1,x1), X2 = f(x2,x1).

The subspace A = {(u, u)} is flow-invariant. If X meets A then it remains in A for
all time, the ODE reduces to # = f(u, u), and X can be made hyperbolic by the
Kupka—Smale Theorem applied to f. If X does not meet A then on a small tubular
neighbourhood of X, admissibility imposes no constraints: f(x1,x1) and f(x1, x2)
are independent functions. We can now argue as in case (5), perturbing near X.

Case (7): Admissible ODEs have the form

X1 = f(Xl,Xz,xz), Xy = f(xz’xl,xz)

and A = {(u, u)} is flow-invariant. By similar reasoning, either X C A and the result
follows, or we can reduce this case to a general dynamical system in some tubular
neighbourhood of X. To do so we must show that X! N X2 = @, where

X' = {(x1(0), x2(1), x2(1) 1 1 € R},
X? = {(x2(0), x1 (1), x2(1)) : 1 € R}.

Suppose that X! N X2 = @. Then there exist times s, # such that

(x1(2), x2(2), x2(1)) = (x2(s), X1(5), x2(5)).

Therefore x1 () = x2(s) = x2(¢), 50 X N A # @, and X € A. Now tubular neighbour-

hoods of X! and X? are disjoint, so we can choose f independently on these neigh-

bourhoods without destroying admissibility. The analysis then reduces to case (3).
Case (8): This is similar to case (7). Admissible ODEs have the form

X1 = f(x1,x2,...x2),
——
p+q
XZ = f(x27x1’"'7x1’x29"'x2)‘
—— ——
p q
Define

XD ={(x1(1), x2(1), ... x2(2)) : 1 € R},
N’
p+q
X2 = {(x2,x1(t), ..., x1(t), x2(t), ... x2(t)) : t € R}.
p q
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Again, we can prove that X! N X? = @ by comparing suitable entries of X!(¢) and
X2(s) and deducing that x; (t) = x(s) = x2(t). The rest is as before. [

14.5. Final remarks

The proof in this paper of the Rigidity Conjectures for strongly hyperbolic periodic
orbits uses three unorthodox methods, which together reveal a link with network ana-
logues of the Kupka—Smale Theorem. These methods are:

(a) The use of overdetermined ODESs in which some components are formally
inconsistent with others.

(b) A construction analogous to the usual quotient network by a balanced col-
ouring, applied to a colouring that is not balanced.

(c) Construction of an admissible perturbation p that leaves the perturbed peri-
odic orbit X unchanged. This avoids the main obstacle to proving the Rigidity
Conjectures: keeping track of X. Here this is not a problem because X = X.

This combination works because the rigidity assumption causes enough structure
to be preserved for the formal inconsistency (a) to contradict rigidity of the local
synchrony pattern for X. In the current state of knowledge, this contradiction relies
on strong hyperbolicity, which is closely related to the Kupka—Smale Theorem and
possible network analogues.

A more specific version of strong hyperbolicity is logically equivalent to the Rigid
Synchrony Property (local or global). Definition 6.5 is stated for all colourings, but
we use it only for colourings determined by a local rigid synchrony pattern. We can
therefore weaken the definition of strong hyperbolicity by considering only these col-
ourings. This weaker version still implies the Rigid Synchrony Property, with the
same proof. Conversely, the Rigid Synchrony Property implies that any local rigid
synchrony pattern is balanced, so its synchrony space is flow-invariant. This implies
that the Floquet multipliers of the induced periodic orbit X® are a subset of those
of X. Since X is assumed hyperbolic, so is X*.

We have shown that if a counterexample to the Rigidity Conjectures exists, its
dynamics must be remarkably degenerate from the viewpoint of general dynamical
systems theory. Specifically, for some unbalanced colouring and all small admissible
perturbations, and for any set of representatives &R of that colouring, the solution
X® of the induced ODE is non-isolated in an extreme manner: it is included in a
continuum of distinct periodic orbits. It is difficult to see how the constraints imposed
by network topology could create such degeneracy rigidly. Be that as it may, the focus
for proving the Rigidity Conjectures now shifts towards network analogues of the
Kupka—Smale Theorem — at least until some alternative method is found.



Overdetermined ODEs and rigid periodic states in network dynamics 157

References

(1]

(2]

(3]
(4]

(51

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16l

R. Abraham and J. E. Marsden, Foundations of mechanics. Benjamin/Cummings Publish-
ing Co., Inc., Advanced Book Program, Reading, Mass., 1978 Zbl 0393.70001

MR 515141

R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, tensor analysis, and applications.
Global Analysis Pure and Applied: Series B 2, Addison-Wesley Publishing Co., Reading,
Mass., 1983 MR 697563

J. W. Aldis. On Balance, PhD Thesis, University of Warwick, 2010

F. Antoneli and I. Stewart, Symmetry and synchrony in coupled cell networks. 1. Fixed-
point spaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 3, 559-577

Zbl 114537019 MR 2228833

F. Antoneli and I. Stewart, Symmetry and synchrony in coupled cell networks. II. Group
networks. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 3, 935-951

Zbl 1141.37392 MR 2324988

F. Antoneli and I. Stewart, Symmetry and synchrony in coupled cell networks. III. Exotic
patterns. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 2, 363-373

Zbl 1143.37302 MR 2404307

V. 1. Arnol’d, Mathematische Methoden der klassischen Mechanik. VEB Deutscher Verlag
der Wissenschaften, Berlin, 1988 MR 1007828

D. K. Arrowsmith and C. M. Place, An introduction to dynamical systems. Cambridge
University Press, Cambridge, 1990 Zbl 0702.58002 MR 1069752

I. Belykh, V. Belykh, K. Nevidin, and M. Hasler, Persistent clusters in lattices of coupled
nonidentical chaotic systems. Chaos 13 (2003), no. 1, 165-178 Zbl 1080.37525

MR 1964970

I. Belykh and M. Hasler, Mesoscale and clusters of synchrony in networks of bursting
neurons. Chaos 21 (2011), no. 1, 016106 Zbl 1345.92035 MR 2808181

V. N. Belykh, I. V. Belykh, and M. Hasler, Hierarchy and stability of partially synchronous
oscillations of diffusively coupled dynamical systems. Phys. Rev. E (3) 62 (2000), no. 5,
part A, 6332-6345 MR 1796442

S. Boccaletti, L. M. Pecora, and A. Pelaez, A unifying framework for synchronization of
coupled dynamical systems. Phys. Rev. E 63 (2001), no. 6, article no. 066219

R. Brown, From groups to groupoids: a brief survey. Bull. London Math. Soc. 19 (1987),
no. 2, 113-134 7Zbl 0612.20032 MR 872125

P.-L. Buono and M. Golubitsky, Models of central pattern generators for quadruped loco-
motion. I. Primary gaits. J. Math. Biol. 42 (2001), no. 4, 291-326 Zbl 1039.92007

MR 1834105

R. J. Butera Jr.,, J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in
the pre-Botzinger complex I: Bursting pacemaker neurons. J. Neurophysiol. 82 (1999),
382-397

R. J. Butera Jr., J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the
pre-Botzinger complex II: Populations of coupled pacemaker neurons. J. Neurophysiol. 82
(1999), 398-415


https://zbmath.org/?q=an:0393.70001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=515141
https://mathscinet.ams.org/mathscinet-getitem?mr=697563
https://zbmath.org/?q=an:1145.37019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2228833
https://zbmath.org/?q=an:1141.37392&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2324988
https://zbmath.org/?q=an:1143.37302&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2404307
https://mathscinet.ams.org/mathscinet-getitem?mr=1007828
https://zbmath.org/?q=an:0702.58002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1069752
https://zbmath.org/?q=an:1080.37525&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1964970
https://zbmath.org/?q=an:1345.92035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2808181
https://mathscinet.ams.org/mathscinet-getitem?mr=1796442
https://zbmath.org/?q=an:0612.20032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=872125
https://zbmath.org/?q=an:1039.92007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1834105

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

I. Stewart 158

R. Campos, V. Matos, and C. Santos, Hexapod locomotion: a nonlinear dynamical systems
approach. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society
(2010), 1546-1551

J. D. Chambers, E. A. Thomas, and C. Bornstein, Mathematical modelling of enteric
neural motor patterns. Proc. Austral. Physiol. Soc. 44 (2013), 75-84

R. Curtu, Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory
neural network. Phys. D 239 (2010), no. 9, 504-514 Zbl 1196.37088 MR 2595817

B. A. Davey and H. A. Priestley, Introduction to lattices and order. Camb. Math. Textb.,
Cambridge University Press, Cambridge, 1990 Zbl 0701.06001 MR 1058437

A. P. S. Dias and I. Stewart, Symmetry groupoids and admissible vector fields for coupled
cell networks. J. London Math. Soc. (2) 69 (2004), no. 3, 707-736 Zbl 1049.37009

MR 2050042

A. P. S. Dias and I. Stewart, Linear equivalence and ODE-equivalence for coupled cell
networks. Nonlinearity 18 (2005), no. 3, 1003-1020 Zbl 1079.37010 MR 2134081

C. Diekman, M. Golubitsky, T. McMillen, and Y. Wang, Reduction and dynamics of a
generalized rivalry network with two learned patterns. SIAM J. Appl. Dyn. Syst. 11 (2012),
no. 4, 1270-1309 Zbl 1263.37068 MR 3022067

C. O. Diekman and M. Golubitsky, Network symmetry and binocular rivalry experiments.
J. Math. Neurosci. 4 (2014), Art. 12 Zbl 1321.92044 MR 3202310

C. O. Diekman, M. Golubitsky, and Y. Wang, Derived patterns in binocular rivalry net-
works. J. Math. Neurosci. 3 (2013), Art. 6 Zbl 1291.92032 MR 3083268

M. Field, Combinatorial dynamics. Dyn. Syst. 19 (2004), no. 3, 217-243

Zbl 1058.37008 MR 2084549

M. J. Field, Equivariant dynamical systems. Trans. Amer. Math. Soc. 259 (1980), no. 1,
185-205 Zbl 0447.58029 MR 561832

P. Gandhi, M. Golubitsky, C. Postlethwaite, I. Stewart, and Y. Wang, Bifurcations on fully
inhomogeneous networks. SIAM J. Appl. Dyn. Syst. 19 (2020), no. 1, 366411

Zbl 1443.34039 MR 4059374

J. Gjorgjieva, J. Berni, J. F. Evers, and S. J. Egle, Neural circuits for peristaltic wave
propagation in crawling Drosophila larvae: analysis and modeling. Front. Comput. Neur-
osci. 7 (2013), DOI 10.3389/fncom.2013.00024

A. F. Glova, Phase locking of optically coupled lasers. Quantum Electronics 33 (2003),
283-306

M. Golubitsky, L. Matamba Messi, and L. E. Spardy, Symmetry types and phase-shift
synchrony in networks. Phys. D 320 (2016), 9-18 Zbl 1364.34045 MR 3470657

M. Golubitsky, M. Nicol, and I. Stewart, Some curious phenomena in coupled cell net-
works. J. Nonlinear Sci. 14 (2004), no. 2, 207-236 Zbl 1136.37359 MR 2041431

M. Golubitsky, D. Romano, and Y. Wang, Network periodic solutions: full oscillation and
rigid synchrony. Nonlinearity 23 (2010), no. 12, 3227-3243 Zbl 1216.34029

MR 2739423

M. Golubitsky, D. Romano, and Y. Wang, Network periodic solutions: patterns of phase-
shift synchrony. Nonlinearity 25 (2012), no. 4, 1045-1074 Zbl 1245.34043

MR 2904269


https://zbmath.org/?q=an:1196.37088&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2595817
https://zbmath.org/?q=an:0701.06001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1058437
https://zbmath.org/?q=an:1049.37009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2050042
https://zbmath.org/?q=an:1079.37010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2134081
https://zbmath.org/?q=an:1263.37068&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3022067
https://zbmath.org/?q=an:1321.92044&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3202310
https://zbmath.org/?q=an:1291.92032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3083268
https://zbmath.org/?q=an:1058.37008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2084549
https://zbmath.org/?q=an:0447.58029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=561832
https://zbmath.org/?q=an:1443.34039&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4059374
https://doi.org/10.3389/fncom.2013.00024
https://zbmath.org/?q=an:1364.34045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3470657
https://zbmath.org/?q=an:1136.37359&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2041431
https://zbmath.org/?q=an:1216.34029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2739423
https://zbmath.org/?q=an:1245.34043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2904269

[35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

Overdetermined ODEs and rigid periodic states in network dynamics 159

M. Golubitsky and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I.
Appl. Math. Sci. 51, Springer, New York, 1985 Zbl 0607.35004 MR 771477

M. Golubitsky and 1. Stewart, The symmetry perspective. Prog. Math. 200, Birkh&user,
Basel, 2002 Zbl 1031.37001 MR 1891106

M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism.
Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 3, 305-364 Zbl 1119.37036 MR 2223010
M. Golubitsky and I. Stewart, Coordinate changes for network dynamics. Dyn. Syst. 32
(2017), no. 1, 80-116 Zbl 1362.37051 MR 3606590

M. Golubitsky and 1. Stewart, Dynamics and Bifurcation in Networks, SIAM, Philadelphia,
to appear

M. Golubitsky, I. Stewart, P.-L. Buono, and J. J. Collins, A modular network for legged
locomotion. Phys. D 115 (1998), no. 1-2, 5672 Zbl 1039.92009 MR 1616780

M. Golubitsky, 1. Stewart, J. J. Collins, and P.-L. Buono, Symmetry in locomotor central
pattern generators and animal gaits. Nature 401 (1999), 693-695

M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and groups in bifurcation
theory. Vol. I1. Appl. Math. Sci. 69, Springer, New York, 1988 Zbl 0691.58003

MR 950168

M. Golubitsky, I. Stewart, and A. Torok, Patterns of synchrony in coupled cell networks
with multiple arrows. STAM J. Appl. Dyn. Syst. 4 (2005), no. 1, 78-100 Zbl 1090.34030
MR 2136519

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurca-
tions of vector fields. Appl. Math. Sci. 42, Springer, New York, 1983 Zbl 0515.34001
MR 709768

B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and applications of Hopf bifurc-
ation. London Math. Soc. Lecture Note Ser. 41, Cambridge University Press, Cambridge,
New York, 1981 Zbl 0474.34002 MR 603442

P. J. Higgins, Notes on categories and groupoids. Van Nostrand Rienhold Mathematical
Studies, No. 32, Van Nostrand Reinhold Co., London, New York, Melbourne, 1971

7Zbl1 0226.20054 MR 0327946

M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds. Lecture Notes in Math. 583,
Springer, Berlin, New York, 1977 Zbl 0355.58009 MR 0501173

M. W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra.
Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich,
Publishers], New York, London, 1974 Zbl 0309.34001 MR 0486784

K. 1t6 (ed.), Encyclopaedic Dictionary of Mathematics, vol. 1 (2nd ed.), MIT Press, Cam-
bridge, MA, 1993

E. M. Izhikevich and B. Ermentrout, Phase model. Scholarpedia 3 (2008), no. 10, article
no. 1487

R. Joly, Observation and inverse problems in coupled cell networks. Nonlinearity 25
(2012), no. 3, 657-676 Zbl 1237.93032 MR 2887987

K. Josi¢ and A. Torok, Network architecture and spatio-temporally symmetric dynamics.
Phys. D 224 (2006), no. 1-2, 52-68 Zbl 1118.34032 MR 2301509


https://zbmath.org/?q=an:0607.35004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=771477
https://zbmath.org/?q=an:1031.37001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1891106
https://zbmath.org/?q=an:1119.37036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2223010
https://zbmath.org/?q=an:1362.37051&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3606590
https://zbmath.org/?q=an:1039.92009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1616780
https://zbmath.org/?q=an:0691.58003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=950168
https://zbmath.org/?q=an:1090.34030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2136519
https://zbmath.org/?q=an:0515.34001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=709768
https://zbmath.org/?q=an:0474.34002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=603442
https://zbmath.org/?q=an:0226.20054&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0327946
https://zbmath.org/?q=an:0355.58009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0501173
https://zbmath.org/?q=an:0309.34001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0486784
https://zbmath.org/?q=an:1237.93032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2887987
https://zbmath.org/?q=an:1118.34032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2301509

(53]

[54]

[55]

(561

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

I. Stewart 160

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems.
Encyclopedia Math. Appl. 54, Cambridge University Press, Cambridge, 1995

Zbl 0878.58020 MR 1326374

N. Kopell and G. LeMasson, Rhythmogenesis, amplitude modulation, and multiplexing in
a cortical architecture. Proc. Natl. Acad. Sci. USA (1994) 91, 1058610590

I. Kupka, Contribution a la théorie des champs génériques. Contrib. Differ. Equations 2
(1963), 457-484 7Zbl 0149.41002 MR 165536

P. Lancaster and M. Tismenetsky, The theory of matrices. Second edn., Computer Science
and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985 Zbl 0558.15001
MR 792300

M. d. C. A. Leite and M. Golubitsky, Homogeneous three-cell networks. Nonlinearity 19
(2006), no. 10, 2313-2363 Zbl 1114.34035 MR 2260266

C. Liu, Q. Chen, and J. Zhang, Coupled van der Pol oscillators utilised as central pattern
generators for quadruped locomotion. /EEE Chinese Control and Decision Conference
(2009), 3677-3682

S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emergence of Dynamical Order.
World Scientific, Singapore, 2004 Zbl 1119.34001

E. Mosekilde, Y. Maistrenko, and D. Postnov, Chaotic synchronization. World Scientific
Series on Nonlinear Science. Series A: Monographs and Treatises 42, World Scientific
Publishing Co., Inc., River Edge, NJ, 2002 MR 1939912

L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Symmet-
ries, cluster synchronization, and isolated desynchronization in complex networks. Nature
Communications 5 (2014), article no. 4079

M. M. Peixoto, On an approximation theorem of Kupka and Smale. J. Differential Equa-
tions 3 (1967), 214-227 7Zbl 0153.40901 MR 209602

A. Pogromsky, G. Santoboni, and H. Nijmeijer, Partial synchronization: from symmetry
towards stability. Phys. D 172 (2002), no. 1-4, 65-87 Zbl 1008.37012 MR 1942999

A. Y. Pogromsky, A partial synchronization theorem. Chaos 18 (2008), no. 3, article no.
037107 Zbl 1309.34061 MR 2464318

W. Singer, Neuronal synchrony: a versatile code for the definition of relations. Neuron 24
(1999), 49-65

S. Smale, Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola
Norm. Sup. Pisa CI. Sci. (3) 17 (1963), 97-116 Zbl1 0113.29702 MR 165537

S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747-817
Zbl 0202.55202 MR 228014

I. Stewart, The lattice of balanced equivalence relations of a coupled cell network. Math.
Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 165-183 Zbl 1120.37003

MR 2340982

L. Stewart, Overdetermined constraints and rigid synchrony patterns for network equilibria.
Port. Math. 77 (2020), no. 2, 163—196 Zbl 1468.34049 MR 4163974

I. Stewart and M. Golubitsky, Symmetric networks with geometric constraints as models
of visual illusions. Symmetry 11 (2019), article no. 799


https://zbmath.org/?q=an:0878.58020&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1326374
https://zbmath.org/?q=an:0149.41002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=165536
https://zbmath.org/?q=an:0558.15001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=792300
https://zbmath.org/?q=an:1114.34035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2260266
https://zbmath.org/?q=an:1119.34001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1939912
https://zbmath.org/?q=an:0153.40901&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=209602
https://zbmath.org/?q=an:1008.37012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1942999
https://zbmath.org/?q=an:1309.34061&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2464318
https://zbmath.org/?q=an:0113.29702&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=165537
https://zbmath.org/?q=an:0202.55202&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=228014
https://zbmath.org/?q=an:1120.37003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2340982
https://zbmath.org/?q=an:1468.34049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4163974

(71]

[72]

(73]

[74]

[75]

[76]

(771

Overdetermined ODEs and rigid periodic states in network dynamics 161

I. Stewart, M. Golubitsky, and M. Pivato, Symmetry groupoids and patterns of synchrony
in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2 (2003), no. 4, 609-646

Zbl 1089.34032 MR 2050244

I. Stewart and M. Parker, Periodic dynamics of coupled cell networks. I. Rigid patterns of
synchrony and phase relations. Dyn. Syst. 22 (2007), no. 4, 389450 Zbl 1162.37312
MR 2377209

I. Stewart and M. Parker, Periodic dynamics of coupled cell networks. II. Cyclic symmetry.
Dyn. Syst. 23 (2008), no. 1, 17-41 Zbl 1162.37010 MR 2406978

P.J. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D. Nikoli¢, and W. Singer,
Neural synchrony in cortical networks: history, concept and current status. Front. Integr.
Neurosci. 30 (2009), DOI 10.3389/neuro.07.017.2009

C. van Vreeswijk and D. Hansel, Patterns of synchrony in neural networks with spike
adaptation. Neural Computation 13 (2001), 959-992 Zbl 1004.92011

X. F. Wang, Complex networks: topology, dynamics and synchronization. pp. 885-916,
12,2002 Zbl 1044.37561 MR 1913980

L. Zhang, W. B. Pan, L. Yan, B. Luo, X. Zou, and M. Xu, Cluster synchronization of
coupled semiconductor lasers network with complex topology. IEEE J. Selected Topics in
Quantum Electronics 25 (2019), DOI 10.1109/JSTQE.2019.2913010

Received 24 January 2022.

Ian Stewart

Mathematics Department, University of Warwick, Warwick, United Kingdom;

i.n.stewart@warwick.ac.uk


https://zbmath.org/?q=an:1089.34032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2050244
https://zbmath.org/?q=an:1162.37312&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2377209
https://zbmath.org/?q=an:1162.37010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2406978
https://doi.org/10.3389/neuro.07.017.2009
https://zbmath.org/?q=an:1004.92011&format=complete
https://zbmath.org/?q=an:1044.37561&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1913980
https://doi.org/10.1109/JSTQE.2019.2913010
mailto:i.n.stewart@warwick.ac.uk

	1. Introduction
	1.1. Rigidity
	1.2. Motivation from equivariant dynamics
	1.3. Rigidity Conjectures
	1.4. Previous results
	1.5. Kupka–Smale Theorem
	1.6. Is hyperbolicity generic for networks?
	1.7. Implications between the conjectures

	2. Summary of paper
	3. 3-node example
	3.1. Strong admissibility
	3.2. Construction of suitable perturbations

	4. Formal definition of a network and standard properties
	4.1. Input sets and tuples
	4.2. Redundancy
	4.3. Admissible maps and ODEs
	4.4. Alternative characterisation of admissibility
	4.5. Balanced colourings
	4.6. Synchrony and phase relations: sufficient conditions

	5. Quasi-quotients
	5.1. Definition of quasi-quotient
	5.2. Admissible maps for quasi-quotients
	5.3. Properties of quasi-quotients
	5.4. Induced ODE
	5.5. Perturbations

	6. Properties related to hyperbolicity
	6.1. C^1 norm
	6.2. Hyperbolic periodic orbits
	6.3. Open properties
	6.4. Rigidity
	6.5. Failure of hyperbolicity
	6.6. Implications for quasi-quotients
	6.7. Strong hyperbolicity
	6.8. Local Kupka–Smale Theorem
	6.9. Stable isolation
	6.10. Kupka–Smale networks

	7. Local rigidity
	7.1. Synchrony patterns on subsets
	7.2. Locally rigid synchrony
	7.3. The lattice of colourings
	7.4. Semicontinuity of colourings
	7.5. Generic points
	7.6. Changes in local synchrony
	7.7. Local rigid synchrony and generic points

	8. Construction of admissible perturbations
	8.1. Symmetrisation
	8.2. Bump functions
	8.3. Symmetrised bump functions

	9. Proof of Local Rigid Synchrony Property for strongly hyperbolic periodic orbits
	9.1. Statement of main theorem
	9.2. Induced OODE
	9.3. Perturbations
	9.4. Proof strategy
	9.5. Construction of the perturbation

	10. Global rigid synchrony and the Rigid Input Property
	10.1. Local rigidity implies global rigidity
	10.2. Local Rigid Input Property

	11. Rigid Phase Property
	12. Full Oscillation Property
	13. Cyclic groups of automorphisms and the H/K Theorem
	14. Local Rigidity Properties for all 1- and 2-colourings
	14.1. ODE-equivalence
	14.2. 1-colour synchrony
	14.3. Classification of 2-node networks up to ODE-equivalence
	14.4. Rigidity Conjectures for 2-colourings
	14.5. Final remarks

	References

