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Automorphisms of tropical Hassett spaces

Sam Freedman, Joseph Hlavinka, and Siddarth Kannan

Abstract. Given an integer g � 0 and a weight vector w 2 Qn \ .0; 1�n satisfying 2g � 2CP
wi > 0, let �g;w denote the moduli space of n-marked, w-stable tropical curves of genus g

and volume one. We calculate the automorphism group Aut.�g;w/ for g � 1 and arbitrary
w, and we calculate the group Aut.�0;w/ when w is heavy/light. In both of these cases, we
show that Aut.�g;w/ Š Aut.Kw/, where Kw is the abstract simplicial complex on ¹1; : : : ; nº
whose faces are subsets with w-weight at most 1. We show that these groups are precisely the
finite direct products of symmetric groups. The space �g;w may also be identified with the
dual complex of the divisor of singular curves in the algebraic Hassett space Mg;w . Following
the work of Massarenti and Mella (2017) on the biregular automorphism group Aut.Mg;w/,
we show that Aut.�g;w/ is naturally identified with the subgroup of automorphisms which
preserve the divisor of singular curves.

1. Introduction

Fix integers g; n � 0 such that 2g � 2 C n > 0, let Mg;n denote the moduli stack
of smooth n-marked algebraic curves of genus g, and let Mg;n denote its Deligne–
Mumford–Knudsen compactification by stable curves. Brendan Hassett [16] has given
a large family of alternate modular compactifications of Mg;n: given a weight vector
w 2 Qn \ .0; 1�n satisfying

2g � 2C

nX
iD1

wi > 0;

Hassett constructs a smooth and proper Deligne–Mumford moduli stack Mg;w , bira-
tional to Mg;n, which contains Mg;n as a dense open substack. The points of Mg;w

represent n-pointed nodal curves .C; p1; : : : ; pn/, satisfying (i) that the Q-divisor
KC C

P
wipi is ample along each component of C , whereKC is the canonical divi-

sor of C , and (ii) if pi1 D � � � D pir , then wi1 C � � � C wir � 1. In particular, when
w D .1.n// is the all 1’s vector, we have an equality Mg;w DMg;n.
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An important feature of the compactification Mg;n �Mg;n is that the boundary
divisor

@Mg;n WDMg;n XMg;n

is normal crossings. In [9], Chan, Galatius, and Payne, following work of Harper
[15] and Abramovich–Caporaso–Payne [1], show how to construct the dual com-
plex �.X;D/ of a normal crossings divisor D on a Deligne–Mumford stack X.
They study �.X;D/ in the case where X DMg;n and D D @Mg;n, showing that
�.X;D/ D �g;n is identified with the link of the cone point in the moduli space
M

trop
g;n of stable n-marked tropical curves of genus g.

On the other hand, the complement of Mg;n in Hassett’s compactification Mg;w

is not in general normal crossings. However, if we put Mg;w for the locus of smooth,
but not necessarily distinctly marked, curves in Mg;w , then the complement

@Mg;w WDMg;w XMg;w

has normal crossings, and the resulting dual intersection complex �g;w is the link of
the cone point in the moduli space M trop

g;w of n-marked, w-stable tropical curves of
genus g, as established by Ulirsch [28].

In this paper, we are interested in the automorphism groups of the complexes
�g;w , taken in the category of symmetric �-complexes, as defined in [9] and recalled
in Section 2. Given a weight vector w, we can form an abstract simplicial complex
Kw with vertex set ¹1; : : : ; nº by declaring that a subset S � ¹1; : : : ; nº belongs toKw
if and only if

P
i2S wi � 1; this construction was considered by Alexeev and Guy [3]

in their work on moduli of weighted stable maps. See Figure 1 for some examples of
the complex Kw . Our first main theorem determines Aut.�g;w/ in terms of Kw for
g � 1.

Theorem X. Let g � 1 and suppose w 2Qn \ .0; 1�n for some n such that 2g � 2C
n � 3. Then

Aut.�g;w/ Š Aut.Kw/;

where Aut.Kw/ acts by permuting the markings.

Here Aut.Kw/ is viewed as a subgroup of Sn WD Perm.¹1; : : : ; nº/. Theorem X
will be proven in Section 3, and the failure of the g D 0 case will be further explored
and partially remedied in Section 4. Following Cavalieri, Hampe, Markwig, and Ran-
ganathan [6], we refer to weight vectors satisfying the hypotheses of the following
theorem as heavy/light, with m light markings and n heavy markings.

Theorem Y. Suppose n; m � 2, with n C m � 5, and put w D .".m/; 1.n// where
" � 1=m. Then we have

Aut.�0;w/ Š Aut.Kw/ Š Sm � Sn:
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Figure 1. Examples of the simplicial complex Kw .

Heavy/light Hassett spaces are of particular interest: they are also studied in [4,
10, 14, 18, 21, 22].

It is also interesting to characterize the groups Aut.Kw/, as in the following
theorem. Since it is independent from the rest of the paper, its proof is found in
Appendix A.

Theorem Z. Let G be a group. Then there exists n � 1 and w 2 Qn \ .0; 1�n such
that

Aut.Kw/ Š G

if and only if G is isomorphic to the direct product of finitely many symmetric groups.

1.1. Comparison with the algebraic moduli space

The automorphism groups of Mg;n have been studied by Bruno and Mella [5] when
g D 0, and Massarenti [23] in positive genus. Massarenti and Mella [24] have calcu-
lated Aut.Mg;w/ for g > 0, and when g D 0 for heavy/light w. These results have
been extended to fields of arbitrary characteristic by Fantechi and Massarenti [11,12].
For g; n � 0 such that 2g � 2C n � 3, we have isomorphisms

Aut.Mg;n/ Š Aut.�g;n/ Š Sn;

following the results of [17] and [23]; here Sn acts by relabeling the marked points.
The analogous result cannot be true for general weight vectors. Indeed, [16, Corollary
4.7] states that if wi � w0i for all i and the complexes Kw ; Kw0 coincide outside
of their 1-skeletons, then there is an isomorphism of coarse moduli spaces M g;w Š

M g;w0 . Moreover, by [24, Theorem 3.20], the automorphism groups of the stacks and
coarse spaces agree. This implies, for example, that when w D .1.n/; 1=2.m//, we
have Aut.Mg;w/ Š SnCm. On the other hand, Theorem X states that Aut.�g;w/ Š
Aut.Kw/ Š Sn � Sm.
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In [24], Massarenti and Mella prove that for g; n � 1 such that 2g C 2C n � 3,
the automorphism group of the moduli stack Mg;w is given by the subgroup of Sn
generated by admissible transpositions. These are transpositions .i; j / such that, for
all S � ¹1; : : : ; nº with jS j � 2, we have

wi C w.S/ � 1 ” wj C w.S/ � 1;

where for a subset S � ¹1; : : : ; nº we define

w.S/ WD
X
i2S

wi :

The group generated by admissible transpositions acts on Mg;w by relabeling the
marked points, and contracting rational components which become unstable if neces-
sary. We now show that Aut.Kw/ is the subgroup of Aut.Mg;w/ which preserves the
locus @Mg;w of singular curves.

Lemma 1.1. Suppose g; n � 1 with 2g � 2C n � 3, and fix w 2 Qn \ .0; 1�n. Then

Aut.Mg;w ; @Mg;w/ Š Aut.Kw/;

where Aut.Kw/ acts by permuting the markings.

Proof. Suppose first that � is in the subgroup of Sn generated by admissible transposi-
tions but � …Aut.Kw/. Then there exists some S �¹1; : : : ;nºwith jS j D 2,w.S/> 1,
but w.�.S// � 1; say S D ¹i; j º. Consider a pointed nodal curve .C; p1; : : : ; pn/ of
arithmetic genus g with two irreducible components T1; T2, so that T2 is isomorphic
to P1 and supports the marked points pi ; pj , while the other marked points are dis-
tributed distinctly on T1. Then � � .C;p1; : : : ;pn/ is obtained from .C;p1; : : : ;pn/ by
first permuting the marked points according to � , and then contracting the component
T2 to a point so that p�.i/ D p�.j / (this is necessary because w�.i/ C w�.j / � 1).
In particular � � .C; p1; : : : ; pn/ is no longer a singular curve. This shows that
Aut.Mg;w ; @Mg;w/ is a subgroup of Aut.Kw/. To finish, we simply note that when
applying � 2 Aut.Kw/ to a nodal curve .C; p1; : : : ; pn/, there is never a need to
contract any components, so Aut.Kw/ preserves the boundary.

The simplicial complexes Kw correspond to the chambers of the fine chamber
decomposition of [16, Section 5] (see also [3, Section 2]).

In general, if D is a normal crossings divisor on a variety or Deligne–Mumford
stack X, one has a homomorphism

Aut.X;D/! Aut.�.X;D//;

where �.X;D/ is the dual complex of D in X. Given Lemma 1.1, the upshot of
Theorem X is that this map is an isomorphism if we specialize to D D @Mg;w and
X DMg;w .
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Corollary 1.2. Suppose g; n � 1 with 2g � 2C n � 3, and w 2 Qn \ .0; 1�n. Then
the map

Aut.Mg;w ; @Mg;w/! Aut.�g;w/

is an isomorphism.

We can also give a sufficient condition for the groups Aut.Mg;w/ and Aut.Kw/
to coincide. Recall that a facet of a simplicial complex is a face that is maximal with
respect to inclusion.

Corollary 1.3. Suppose g; n � 1 with 2g � 2C n � 3, and w 2 Qn \ .0; 1�n. If Kw
has no 1-dimensional facets, then

Aut.Mg;w/ D Aut.Kw/:

Proof. It suffices to show that every admissible transposition � D .i;j / is in Aut.Kw/.
Suppose S � ¹1; : : : ; nº satisfiesw.S/� 1, in order to show thatw.�.S//� 1. If both
i; j 2 S or i; j 2 Sc , then w.�.S//D w.S/, so we suppose without loss of generality
that i 2 S while j 2 Sc . Then, if jS j � 3, by the definition of admissible transposition,
we must have w.�.S// � 1. If jS j D 2, then S forms a 1-simplex of Kw , and cannot
be a facet. Thus, there exists some T � ¹1; : : : ; nº such that S ¨ T and w.T / � 1.
Since jT j � 3, we have w.�.T // � 1, and w.�.S// < w.�.T //, so w.�.S// � 1 and
� 2 Aut.Kw/, finishing the proof.

The condition of Corollary 1.3 is sufficient but not necessary: indeed, if w D
.1=2.n//, then Aut.Mg;w/ Š Aut.Kw/ Š Sn, but Kw is the complete graph on n
vertices, so all of its facets are 1-dimensional.

1.2. Tropical Hassett spaces excluded by Theorem X

When g � 1, the space �g;w is nonempty as long as 3g � 3C n > 0, so the positive
genus cases not covered by Theorem X are .g;n/D .1;1/; .1;2/. When nD 1we have
�1;w D�1;1 for anyw, and this space is a single point, so the automorphism group is
trivial. When nD 2, sowD .w1;w2/, we have�1;w Š�1;2 ifw1Cw2 >1, so in this
case the automorphism group is trivial by [17, Example 2.19]. When w1 C w2 � 1,
Aut.�1;w/ will be shown to be trivial in Example 2.8.

1.3. Related work

In the special case w D .1.n//, the automorphism group of �g;w is known to be
Sn: this is due to Abreu and Pacini [2] when g D 0, and to the third author [17] in
arbitrary genus. Indeed, one of the main technical theorems in [17] is also the driving
force behind the calculation in the current paper.
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The topology of �g;w was studied for g � 1 by Cerbu et al. in [7]. When g D 0
and the weight vector w has at least two entries equal to 1, the space �0;w has the
homotopy type of a wedge of spheres, possibly of varying dimension. Closed formulas
for the number of spheres are known when w is heavy/light. In higher genus, the
topology of�g;w has been explored by Li, Serpente, Yun, and the third author in [19],
and by Serpente in [27]. When g � 1, and for any value ofw, the space�g;w is shown
to be simply-connected. Formulas for the Euler characteristic of �g;w in terms of the
combinatorics of the complex Kw have also been derived.

The cone complexesM trop
0;w were studied in the context of tropical compactification

in [6]. The authors showed that the complexM trop
0;w can be embedded as a balanced fan

†0;w in a real vector space if and only if w is heavy/light. In the heavy/light case,
they show that the locus M0;w embeds into the toric variety X.†0;w/, in such a way
that taking the closure of the image gives Hassett’s original compactification. This
procedure gives an isomorphism of Chow ringsA�.M0;w/ŠA

�.X.†0;w//, allowing
for the computation of A�.M0;w/ carried out in [18].

2. Graphs and �g;w

We first recall the category �g;n of weighted stable graphs of genus g; see [8, §2.1] or
[17, §2.1] for a precise definition. An object of �g;n is a triple G D .G; h;m/ where
G is a finite connected graph, while h W V.G/! Z�0 andm W ¹1; : : : ; nº ! V.G/ are
functions; these three data are required to satisfy

b1.G/C
X

v2V.G/

h.v/ D g;

and
2h.v/ � 2C val.v/C jm�1.v/j > 0

for all v 2 V.G/. In the above, b1.G/ D jE.G/j � jV.G/j C 1 denotes the first Betti
number of G, and val.v/ denotes the valence of the vertex v, which is the number of
half-edges emanating from v. A morphism of weighted stable graphs of genus g is a
composition of isomorphisms and edge-contractions. Given a morphism ' W G! G0

in �g;n, each edge in G0 has a unique preimage in G. We write '� W E.G0/! E.G/
for the induced map of sets.

Definition 2.1. Given w 2 Qn \ .0; 1�n, say G 2 Ob.�g;n/ is w-stable if for all v 2
V.G/, we have

2h.v/ � 2C val.v/C w.m�1.v// > 0:

We write �g;w for the full subcategory of �g;n whose objects are those which are
w-stable.
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We remark that when w D .1.n//, we have �g;w D �g;n. As in [17], it is useful to
define an auxiliary groupoid �EL

g;w , whose objects are edge-labeled w-stable graphs of
genus g.

Definition 2.2. Define �EL
g;w to be the groupoid of pairs .G; �/ where G 2 Ob.�g;w/

and � W E.G/! Œp� is a bijection, where for an integer p � 0, we define

Œp� D ¹0; : : : ; pº:

An isomorphism of pairs ' W .G; �/! .G0; � 0/ is an isomorphism G! G0 such that
the diagram

E.G0/ E.G/

Œp�

'�

� 0 �

commutes.

An open problem in graph theory is to classify those graphs which are determined,
up to isomorphism, by their deck of edge-contractions. The reader may consult the
thesis of Antoine Poirier [25] for a thorough overview of this problem. The main
technical tool of this paper is a solution to an easier version of this problem for the
categories �EL

g;w . Given .G; � W E.G/! Œp�/ 2 Ob.�EL
g;w/ and i 2 Œp�, we set ei D

��1.i/ 2 E.G/, and put �i W E.G/! Œp� for the unique edge-labeling making the
diagram

E.G=ei / E.G/

Œp � 1� Œp�

c�
i

�i �

ıi

commute, where ci W G! G=ei is the contraction of edge ei and ıi W Œp � 1�! Œp�

is the unique order-preserving injection whose image does not contain i .

Definition 2.3. Let .G; �/ 2 Ob.�EL
g;w/. We define the nonloop contraction deck of

.G; �/ to be the set of pairs

DG
� WD ¹..G=ei ; �i /; i/ j ei is not a loop of Gº � Ob.�EL

g;w/ � Œp�:

Given two lists D1D ¹..Gi ; �i /; i/ j i 2 J1º;D2D ¹..Hi ;�i /; i/ j i 2 J2º of �EL
g;w -

objects indexed by J1;J2� Œp�, we write D1ŠD2 if J1D J2, and .Gi ; �i /Š .Hi ;�i /

for all i 2 J1.

Theorem 2.4. Suppose .G; �/; .G0; � 0/ 2 Ob.�EL
g;w/ with b1.G/ D b1.G0/ D g. Sup-

pose further that DG
� ŠDG0

� 0 and that jV.G/j D jV.G0/j � 3. Then .G; �/Š .G0; � 0/.
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Proof. In the casewD .1.n//, this is [17, Theorem 4.2]. The case of generalw follows
from this one, as �EL

g;w may be identified with a full subcategory of �EL
g;n.

2.1. Description of �g;w as a functor

We will calculate Aut.�g;w/ in the category of symmetric�-complexes, as introduced
by Chan, Galatius, and Payne [9]. Put I for the category whose objects are the sets Œp�
for each p � 0, and whose morphisms are all injections.

Definition 2.5. A symmetric �-complex is a functor X W Iop ! Set.

A morphism of symmetric �-complexes is a natural transformation of functors.
A symmetric �-complex X W Iop ! Set should be thought of as a set of combinato-
rial gluing instructions for a topological space jX j. There is a geometric realization
functor given by X 7! jX j; see [9, 17, 19] for a description of this functor.

The symmetric �-complex description of �g;w is as follows: for each p � 0, we
let

�g;w.Œp�/ D ¹.G; �/ 2 �0.�EL
g;w/ j jE.G/j D p C 1º;

where �0 denotes the set of isomorphism classes. We put ŒG; � � for the equivalence
class of a �EL

g;w -object .G; �/, and will hereafter shorten�g;w.Œp�/ to�g;w Œp�. Given
an injection � W Œp�! Œq�, we define �� D �g;w.�/ W �g;w Œq�! �g;w Œp� as follows:
if ŒG; � � 2 �g;w Œq�, then ��ŒG; � � is the edge-labeled graph obtained by contracting
all edges in G which are not labeled by the image of �, and then taking the induced
labeling of the remaining edges which preserves their � -ordering.

2.2. Automorphisms of �g;w and the filtration by number of vertices

An automorphism of �g;w is a natural isomorphism �g;w ! �g;w . To unpack this,
we will identify a generating set for the morphisms in the category I. For p � 0, put

SpC1 WD HomI.Œp�; Œp�/;

so SpC1 is the group of permutations of the set ¹0; : : : ; pº. Given ˛ 2 SpC1, we
write ˛� D �g;w.˛/. Next, for each i 2 Œp C 1�, we put ıi W Œp�! Œp C 1� for the
unique order-preserving injection whose image does not contain the element i . We put
di WD �g;w.ı

i /. It is apparent that any morphism � W Œp�! Œq� in the category I can
be factored as a sequence of maps of the form ıi , followed by some element of SqC1.

An automorphism of �g;w can therefore be understood as the data of bijections

ˆ D ¹ p̂ W �g;w Œp�! �g;w Œp�ºp�0;
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such that the diagrams

�g;w Œp� �g;w Œp�

�g;w Œp� �g;w Œp�

ˆp

˛� ˛�

ˆp

(1)

and

�g;w Œp C 1� �g;w Œp C 1�

�g;w Œp� �g;w Œp�

ˆpC1

di di

ˆp

(2)

commute for all ˛ 2 SpC1 and i 2 ŒpC 1�. We shall suppress the subscript and write
ˆŒG; � � for p̂ŒG; � �.

Notation 2.6. Suppose .G; �/ 2 Ob.�EL
g;w/, and that we have

ˆŒG; � � D ŒG0; � 0�:

Then, for any ˛ 2 SpC1, we must have

ˆŒG; � ı ˛� D ŒG0; � 0 ı ˛�

by the commutativity of diagram (1). So, the action of ˆ on one edge-labeling of G
determines the action on all edge-labelings. We use the notation .ˆG;ˆ�/ WD .G0; � 0/;
the graph ˆG is determined up to isomorphism in �g;w .

Remark 2.7. The group Sn acts on �g;n: if we are given G D .G; h;m/ 2 Ob.�g;n/,
we put � � G D .G; h; m ı ��1/; in this way the edges and vertices of G and � � G
are identified, so that whenever the marking i 2 ¹1; : : : ; nº is supported on vertex v in
G, the marking �.i/ is supported on v in � �G. A given permutation � preserves the
subcategory �g;w if and only if � 2 Aut.Kw/. This gives the action of Aut.Kw/ on
�g;w by automorphisms: � � ŒG; � � D Œ� �G; � �.

Example 2.8. When w D .w1; w2/ with w1 C w2 � 1, there are only two stable
graphs in �1;w with a positive number of edges: a single loop, where the single vertex
supports both markings, and a pair of parallel edges, where each vertex supports one
marking. Both of these graphs have a unique edge-labeling up to their automorphism
groups, so we have

j�1;w Œ0�j D j�1;w Œ1�j D 1

while �1;w Œp� D ¿ for p > 1, so the automorphism group is trivial in this case. The
geometric realization is given by the quotient of a 1-simplex by its automorphism
group S2.
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Following [17], we analyze the action of Aut.�g;w/ by showing that it preserves
the subspace Vig;w of �g;w parameterizing tropical curves with at most i vertices.
Each Vig;w is a subcomplex of �g;w , and we have

V1g;w � V2g;w � � � � � V2g�2Cng;w D �g;w :

The proof that Aut.�g;w/ preserves this filtration is very similar to the proof of [17,
Proposition 3.4], with some minor differences. Due to this similarity, we record the
result here and relegate its proof to Appendix B.

Theorem 2.9. Let ˆ 2 Aut.�g;w/. Then ˆ preserves the subcomplexes Vig;w for
all i � 1.

The next theorem follows from Theorem 2.4. We omit the proof, as it is exactly
the same as in the special case of w D .1.n//, which is [17, Theorem 1.5].

Theorem 2.10. Fix g � 0 and a weight vector w 2 Qn \ .0; 1�n, where 2g � 2 CP
wi > 0. Then the restriction map

Aut.�g;w/! Aut.V2g;w/

is an injection.

3. Calculation of Aut.�g;w/ for g � 1

Suppose g;n� 1 andw 2Qn \ .0; 1�n, where 2g � 2C n� 3. If nD 1, then�g;w Š
�g;1, so Theorem X specializes to the main result of [17]. Thus, we hereafter assume
n � 2 (and when g D 1, n � 3). To prove Theorem X, we first show that any ˆ 2
Aut.�g;w/ preserves the Sn-orbit of a given simplex in V2g;w .

3.1. Aut.�g;w/ preserves Sn-orbits in V2
g;w

We want to show that for any ŒG; � � in V2g;w , the action of ˆ 2 Aut.�g;n/ preserves
the Sn-orbit of ŒG; � �. It suffices to show this in the case where ŒG; � � is a facet of
V2g;w , i.e. ŒG; � � 2 V2g;w Œg�. The first step is to show that Aut.�g;w/ preserves the
isomorphism class of the edge-labeled graph underlying such a facet, if we forget the
marking function. This motivates the following definition.

Definition 3.1. Given two objects .G; �/; .G0; � 0/ of �EL
g;w with G D .G; h; m/ and

G0 D .G0; h0;m0/, we say that .G; �/ and .G0; � 0/ are weakly isomorphic if there exists
an isomorphism of weighted graphs

' W .G; h/! .G0; h0/
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making the diagram

E.G0/ E.G/

Œp�

� 0

'�

�

commute. Such a map ' is called a weak isomorphism of pairs, and is denoted with a
dashed arrow

' W .G; �/ Ü .G0; � 0/:

The proof of the following lemma is the same as that of [17, Proposition 5.3], and
is thus omitted.

Lemma 3.2. Suppose ˆ 2 Aut.�g;w/, and let ŒG; � � 2 V2g;w Œg�. Then, for any repre-
sentatives .G; �/; .ˆG; ˆ�/, there exists a weak isomorphism

' W .G; �/ Ü .ˆG; ˆ�/:

Now we work towards the proof that Sn-orbits of simplices in V2g;w Œg� are pre-
served. For this we will need the following lemma. We adopt the convention that a
1-cycle of a graph is a loop, and a 2-cycle is a pair of parallel edges.

Lemma 3.3. Let ˆ 2 Aut.�g;w/, and suppose ŒG; � � 2 �g;w Œp�. Then:

(a) A subset S � Œp� indexes a k-cycle of G via � if and only if it indexes a
k-cycle of ˆG via ˆ� .

(b) A subset ¹i; j º � Œp� indexes a pair of loops on the same vertex of G if and
only if it indexes a pair of loops on the same vertex of ˆG.

Proof. We prove each part separately.
(a) When k D 1, the claim is true as an index i labels a loop of G if and only if

G=ei has the same number of vertices as G, and ˆdi ŒG; � � D di ŒˆG; ˆ��. Since ˆ
preserves the number of vertices, it follows that i must label a loop index ofˆG. Now
S labels a k-cycle of G if and only if, for all i 2 S , the set ıi .S/ labels a .k � 1/-cycle
of di ŒG; � � (here, ıi W Œp� X ¹iº ! Œp � 1� is the unique map such that ıi ı ıi D id).
Thus the claim follows by induction.

(b) For i; j to label a pair of loops on the same vertex of G, we must have
.i; j / 2 StabSpC1

ŒG; � �. By the commutativity of (1), we must also have .i; j / 2
StabSpC1

ŒˆG; ˆ��, and by the first part of the lemma, i and j must both label loops
of ˆG. So ˆG must have an automorphism which exchanges the loops i and j ,
but which fixes every other edge. If jV.ˆG/j � 3, this is only possible if i and j
label loops on the same vertex of ˆG. When jV.ˆG/j D 2, the claim follows from
Lemma 3.2, and the claim is clear when jV.ˆG/j D 1.
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Lemmas 3.2 and 3.3 give us a criterion for checking whether Aut.�g;w/ preserves
the weak isomorphism class of a given simplex, and at the level of V2g;w , Lemma 3.2
means that Aut.�g;w/ acts on an edge-labeled stable graph by at most changing the
marking function. We would like to show that this redistribution preserves the number
of markings on each vertex. It is useful to introduce a notation parameterizing the
facets of V2g;w .

Fix a vertex set ¹v1; v2º. For two integers k; ` such that k; ` � 0 and k C ` � g,
we fix Bk;` to be a graph with vertex set ¹v1; v2º, where v1 and v2 are connected by
g � .k C `/C 1 edges, so that v1 supports k loops while v2 supports ` loops.

By construction, Bk;` has genus g and g C 1 edges, and we have graph iso-
morphisms Bk;` Š B`;k . Up to isomorphism, any facet of the subcomplex V2g;w is
a marked, edge-labeled version of Bk;` for some k, `. Given a subset A � ¹1; : : : ; nº,
we putBk;`A for an n-marked version ofBk;`, where a vertex with k loops supports the
elements of A and the other vertex supports the elements of Ac . We will use the bold-
face notation Bk;`A when Bk;`A defines a �g;w -object. Fixing choices of edge-labelings
�k;` WE.Bk;`/! Œg�, we put ŒBk;`A �D ŒBk;`A ;�k;`� for the resulting simplex in V2g;w Œg�.
Throughout the remainder of this section, we will tacitly change the choice of �k;`

for a given k; ` if it is necessary. To prove that Aut.�g;w/ Š Aut.Kw/, it suffices to
show that for any ˆ 2 Aut.�g;w/, there exists a unique element � 2 Aut.Kw/ such
that

ˆŒBk;`A � D Œ� � Bk;`A � D ŒBk;`
�.A/

�

for all k; `; A.
Following [17], we now observe that for a fixed choice of A, there always exists

some (not necessarily unique) permutation �A 2 Sn such that ˆŒBk;`A � D ŒBk;`
�A.A/

�:

Theorem 3.4. Suppose g; n � 1 with 2g � 2C n � 3 and w 2 Qn \ .0; 1�n. Then
for allˆ 2 Aut.�g;w/ and Bk;`A , there exists someˆ.A/� ¹1; : : : ; nº such that jAj D
jˆ.A/j and ˆŒBk;`A � D ŒBk;`

ˆ.A/
�. Moreover, the choice of such ˆ.A/ is unique unless

.k; `/ D .0; 0/ and jAj D n=2.

Proof. The argument is exactly the same as in [17, Section 5.2], except in the case
.k; `/ D .0; 0/. In this case, for a fixed A � ¹1; : : : ; nº, we let

�.A/ D
ˇ̌®

G 2 �0.�g;w/ j jV.G/j D 3;G has a 3-cycle, � 1multiedge,

contracts to B0;0A
¯ˇ̌
:

For any A � ¹1; : : : ; nº, it is straightforward to compute

�.A/ D 2jAj C 2n�jAj C Constant;

cf. [17, Proposition 5.2]. By Lemma 3.2, there exists some C � ¹1; : : : ; nº such that

ˆŒB0;0A � D ŒB0;0C �;
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Lemma 3.3 implies that we must have �.A/ D �.C/. In particular, we must have
either jAj D jC j or jAj D n � jC j. Then unless jAj D n=2, there is a unique choice
betweenˆ.A/D C;C c such thatˆŒB0;0A �D ŒB0;0

ˆ.A/
� and jAj D jˆ.A/j. If jAj D n=2,

this choice is only determined up to complementation.

Recalling that the Bk;`A are precisely the facets of V2g;w , we can see, using that

ˆ.di ŒBk;`A �/ D di .ˆŒBk;`A �), that Theorem 3.4 extends to the preservation of Sn-orbits
in V2g;w as a whole.

3.2. Finishing the proof of Theorem X

First we deal with the case n D 2. In this case, we have Aut.Kw/ Š S2, and g � 2.
Given x 2 ¹1; : : : ; nº we have that the graph

Bg�1;1x WD Bg�1;1
¹xº

is always stable. Given ˆ 2 Aut.�g;w/, there exists a unique element � 2 S2 such
that

ˆŒBg�1;1x � D ŒBg�1;1
�.x/

�

for x D 1; 2.

Proposition 3.5. Suppose n D 2, g � 2, and w 2 Q2 \ .0; 1�2. If ˆ 2 Aut.�g;w/
fixes the simplices ŒBg�1;1x � for x D 1; 2, then ˆjV2

g;w
D IdjV2

g;w
.

Proof. This proof follows from that of [17, Proposition 5.13(b)]: in that argument,
no reference is made to w-unstable simplices in order to show that a given w-stable
simplex is fixed.

Given the result of Proposition 3.5, we assume that n � 3 for the remainder of this
section. Since g � 1, the graph

B0;0x WD B0;0
¹xº

is stable for each x 2 ¹1; : : : ; nº. Theorem 3.4 gives a unique permutation � 2 Sn such
thatˆŒB0;0x �D ŒB0;0

�.x/
� for all x 2 ¹1; : : : ; nº. We will first show that � 2Aut.Kw/, and

then that ˆ acts as � on all elements of V2g;w Œg�. For the remainder of the paper, by an
expansion of a graph H 2 Ob.�g;w/ we will mean a graph G with jE.G/j > jE.H/j
admitting a �g;w -morphism to H.

Lemma 3.6. Suppose g � 1, n � 3, w 2 Qn \ .0; 1�n, and suppose ˆ 2 Aut.�g;n/.
Let � 2 Sn be the unique permutation such that

ˆŒB0;0x � D ŒB0;0
�.x/

�

for all x 2 ¹1; : : : ; nº. Then � 2 Aut.Kw/.



S. Freedman, J. Hlavinka, and S. Kannan 176

Proof. We will show that for S � ¹1; : : : ; nº, we have that w.S/ > 1 if and only if
w.�.S// > 1. By switching � with ��1, it suffices to just prove one direction. We may
suppose that some S with w.S/ > 1 exists, because otherwise Aut.Kw/ Š Sn. Since
w.S/ > 1, the graph Bg;0Sc is stable. Moreover, the graph Bg;0Sc shares an expansion
with B0;0x if and only if x 2 Sc . Therefore, if we let ˆ.Sc/ be as determined by
Theorem 3.4, we have ˆ.Sc/ D �.Sc/. This implies that the graph Bg;0

�.Sc/
is stable,

i.e. that w..�.Sc//c/ D w.�.S// > 1, as we wanted to show.

Given the result of Lemma 3.6, Theorem X is rendered equivalent to the following
result.

Theorem 3.7. Fix g� 1;n� 3, and say thatˆ2Aut.�g;w/ fixes each simplex ŒB0;0x �.
Then ˆ fixes all of the simplices ŒBk;`A �.

Theorem 3.7 is further broken up into the three intermediate results Proposi-
tion 3.8, Proposition 3.9, and Proposition 3.10, whose statements and proofs make
up the remainder of this section.

Proposition 3.8. Fix g � 1; n � 3, and suppose ˆ 2 Aut.�g;w/ fixes the simplices
ŒB0;0x � for all x 2 ¹1; : : : ; nº. Then, ˆ fixes the simplices ŒB0;0A � for all A � ¹1; : : : ; nº.

Proof. If jAj or jAcj D 0, then ŒB0;0A � is fixed by Theorem 3.4. If jAj or jAcj D 1 then
B0;0A = B0;0x for some x 2 ¹1; : : : ; nº, so it is fixed by hypothesis. So, assume that jAj
and jAcj � 2, and for now we also assume that jAj ¤ n=2, so in particular jAj ¤ jAcj
and there is a uniqueˆ.A/� ¹1; : : : ;nºwith jˆ.A/j D jAj andˆŒB0;0A �D ŒB0;0

ˆ.A/
�. For

each x 2 A, consider the graph T1 of Figure 2, with some edge-labeling � such that
di ŒT1; � �D ŒB0;0x � and dj ŒT1; � �D ŒB0;0A �; we put ŒT1� WD ŒT1; � �. Then, by Lemma 3.3,
we have that ˆŒT1� is weakly isomorphic to ŒT1�. Let B1; B2; B3 � ¹1; : : : ; nº be the
markings on the vertices of ˆŒT1� as indicated by Figure 2.

Then, since ŒB0;0x � is fixed, we must have that either B1 [ B3 D ¹xº or B1 [ B3
D ¹xºc . But if B1 [ B3 D ¹xº, then by stability B3 D ¹xº and B1 D ¿. Upon con-
tracting edge j in both graphs, we would then have that the Sn-orbit of ŒB0;0A � is

Ac Ar {x}

x

i

j

B1 B3

B2

i

jΦ

Figure 2. The simplex ŒT1� and its image under ˆ
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not preserved by ˆ, which is impossible. Therefore, we have B1 [ B3 D ¹xºc and
B2 D ¹xº. Moreover, since Sn-orbits of graphs with two vertices are preserved, we
have jAcj C 1 D jB1j C jB2j, so jB1j D jAcj, hence jB3j D jAj � 1. It follows that
B2 [B3 D ˆ.A/, hence x 2 ˆ.A/. It results that A � ˆ.A/, so in fact AD ˆ.A/ by
Theorem 3.4.

It is only left to show that ˆŒB0;0A � D ŒB0;0A � when jAj D n=2. Since n � 3, this
case only arises when n � 4 and n is even. We treat the n D 4 case and the n � 5
case separately. If n � 5, then the set of graphs B0;0S such that jS j D 2 sharing an
expansion with B0;0A are precisely those S such that S � A or S � Ac . Since n � 5,
we know all of the B0;0S with jS j D 2 are fixed, hence for any choice of ˆ.A/ such
that ˆŒB0;0A � D ŒB0;0

ˆ.A/
�, we must have that 
A

2

!
[

 
Ac

2

!
D

 
ˆ.A/

2

!
[

 
ˆ.A/c

2

!
:

This implies that A D ˆ.A/ or A D ˆ.A/c , so in particular we have that ŒB0;0A � is
fixed by ˆ.

Finally, consider the case when n D 4 and jAj D 2. Say jAj D ¹x; yº and Ac D
¹u; vº, and suppose for sake of contradiction we have

ˆŒB0;0
¹x;yº

� D ŒB0;0
¹x;vº

�:

Then consider an expansion T2 of B0;0
¹x;yº

as in Figure 3, with an edge-labeling � so that

di ŒT2; � �D ŒB0;0¹x;yº� and dj ŒT2; � �D ŒB0;0x �; we put ŒT2�D ŒT2; � �. We letB 01;B
0
2;B

0
3�

¹1; : : : ; nº denote the marking sets on the vertices of ˆŒT2� as in Figure 3.
Then, since ˆŒB0;0x � D ŒB0;0x �, we must have djˆŒT2� D ŒB0;0x �, so either B 02 [

B 03 D ¹xº or B 01 D ¹xº. If B 02 [ B
0
3 D ¹xº, then by stability we have B 02 D ¹xº while

B 03 D ¿, but then
ˆŒB0;0

¹x;yº
� D diˆŒT2� D ŒB0;0¿ �;

x v

y

j Φ

u

i

B′
1

B′
2

ji

B′
3

Figure 3. The simplex ŒT2� and its image under ˆ
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y v

Φi j

u
x

B′′
1 B′′

3

i j

B′′
2

h h

Figure 4. The simplex ŒT3� and its image under ˆ

which is a contradiction. ThereforeB 01D¹xºwhileB 02[B
0
3D¹xº

c . Since diˆŒT2�D
ŒB0;0
¹x;vº

� by hypothesis, it follows that B 02 D ¹vº and B 03 D ¹u; yº. From this we may
conclude that

ˆŒB0;g�1y � D ŒB0;g�1v �:

This clearly contradicts our hypothesis if g D 1, so we may now suppose that g � 2.
Finally, consider the simplex ŒT3� and its image under ˆ in Figure 4, where the

edge-labeling is such that di ŒT3� D ŒB0;0y � and dj ŒT3� D ŒB0;g�1y �. Let B 001 ; B
00
2 ; B

00
3 �

¹1; : : : ; nº be the marking sets of ˆŒT3� as in Figure 4.
Then, as we have ˆŒB0;g�1y � D ŒB0;g�1v �, it must be that B 001 D ¹vº while B 002 [

B 003 D ¹vº
c . On the other hand, since ˆŒB0;0y � D ŒB0;0y �, we must have diˆŒT3� D

ŒB0;0y �, hence B 003 D ¹yº and B 002 D ¹x; vº. From this it follows thatˆdhŒT3�D B0;0
¹x;vº

.

This is a contradiction as dhŒT3� D ŒB
0;0
¿ � must be fixed by Theorem 3.4. This com-

pletes the proof.

The next step is to show that any automorphism which fixes the simplices ŒB0;0A �

must also fix the simplices ŒBk;0A �.

Proposition 3.9. Fix g � 1; n � 3, and supposeˆ 2 Aut.�g;w/ fixes all simplices of
the form ŒB0;0A �. Then, ˆ fixes all simplices of the form ŒBk;0A � with k � g.

Proof. If k D 0, then ŒBk;0A � is fixed by Proposition 3.9. When k D g, then Bg;0A shares
a common expansion with B0;0x if and only if x 2 A, so ŒBg;0A � is fixed because all of
the simplices ŒB0;0x � are fixed. So suppose that 1 � k < g and that A is nonempty.

For a pair ŒBk;0A � and ŒB0;0x �with x 2A consider the graph Gk;A of Figure 5, where
the ¹x;A� ¹xºº multiedge has cardinality k C 1 and contains an edge labeled j , and
the ¹Ac ; xºmultiedge has cardinality g � k and contains an edge labeled h. Give such
a graph an edge-labeling � such that

di ŒGk;A� D ŒB0;0x �;

dj ŒGk;A� D ŒB
k;0
A �;
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Ac Ar {x}

x

i

j Φh

C1 C3

C2

i

jh

Figure 5. The simplex ŒGk;A� and its image under ˆ

and
dhŒGk;A� D ŒB

g�k�1;0

Ac[¹xº
�I

we put ŒGk;A� WD ŒGk;A; � �. Then, by Lemma 3.3, we have that ˆŒGk;A� is weakly
isomorphic to ŒGk;A�. Let C1; C2; C3 � ¹1; : : : ; nº be the marking sets on the vertices
of Gk;A as in Figure 5.

If we can show that x 62 C1, we are done: we must have C2 [ C3 D ˆ.A/, where
ˆ.A/ � ¹1; : : : ; nº is uniquely determined by Theorem 3.4. So if x 2 C2 [ C3 we
have x 2 ˆ.A/ which gives that A � ˆ.A/, and the result follows as jAj D jˆ.A/j.

As such, assume for contradiction that x 2C1. Then di ŒGk;A�D ŒB
0;0
x �, soC3D¿,

and C2 D ¹xºc . Since n� 1D jC2 [C3j D jˆ.A/j D jAj, this gives jAcj D jC1j D 1.
Thus

dhˆŒGk;A� D ŒB
g�k�1;0

¹1;:::;nº
�:

However, we have
dhŒGk;A� D ŒB

g�k�1;0

Ac[¹xº
�;

so we must have n D jAcj C 1 D 2, a contradiction to our hypothesis that n � 3.

By symmetry, Proposition 3.9 gives us that any ŒB0;`A � is also fixed.

Proposition 3.10. Fix g � 1; n � 3, and suppose ˆ 2 Aut.�g;w/ fixes all simplices
of the form ŒBk;0A � with k < g. Then, ˆ fixes all simplices of the form ŒBk;`A �.

Proof. If either of k; ` D 0 then ŒBk;`A � is fixed by Proposition 3.9. Similarly, by The-
orem 3.4, we may always assume A; Ac nonempty. So, assume first that k; ` � 1,
k C ` < g. For every pair ŒBk;`A � and ŒB0;`x � with x 2 A consider the graph Gk;`;A of
Figure 6, where the ¹x; A � ¹xºº multiedge has cardinality k C 1, and the ¹Ac ; xº
multiedge has cardinality g � k � `. Give such a graph an edge-labeling � such
that di ŒGk;`;A� D ŒB0;`x �, dj ŒGk;`;A� D ŒBk;`A �, and dhŒGk;`;A� = ŒBg�k�1;0

Ac[¹xº
�; we put

ŒGk;`;A� WD ŒGk;`;A; � �. By hypothesis, ` and k are nonzero, so neither of the vertices
adjacent to edge j inˆŒGk;`;A� can support ` loops: if either did, then djˆŒGk;`;A�D
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Ac

Ar {x}

x

i

j Φh

D1

D3

D2

i

jh

Figure 6. The simplex ŒGk;`;A� and its image under ˆ

ŒBkC`;0
ˆ.A/

� for some choice of edge-labeling, a contradiction to Lemma 3.2. This means
that the ` loops in ˆŒGk;`;A� are adjacent to edges h and i . Thus, by Lemma 3.3
applied to all remaining edges ofˆŒGk;`;A�, we have thatˆŒGk;`;A� is weakly isomor-
phic to ŒGk;`;A�, so the situation is as depicted in Figure 6; letD1;D2;D3� ¹1; : : : ;nº
be the marking sets on the vertices as in the figure.

By Proposition 3.9,

diˆŒGk;`;A� D ˆŒB0;`x � D ŒB0;`x �:

Further, by the same,

dhˆŒGk;`;A� D ˆŒB
g�k�1;0

Ac[¹xº
� D ŒBg�k�1;0

Ac[¹xº
�:

Since ` ¤ 0, this implies thatD2 D ¹xº andD1 [D2 D Ac [ ¹xº, soD1 D Ac , and
thus D3 D A X ¹xº. This implies that ˆŒGk;`;A� D ŒGk;`;A�, and so each contraction
of ŒGk;`;A� is fixed under ˆ as well.

Now say k C ` D g, with k; ` > 0. Recall that by Theorem 3.4, we may always
assume that jAj; jAcj � 1. Then, for every pair ŒBk;`A � and ŒB0;`x � with x 2 A, consider
the graph G0

k;`;A
of Figure 7, where the ¹x;A� ¹xººmultiedge has cardinality kC 1.

Give such a graph an edge-labeling � such that di .ŒG0k;`;A�/ D ŒB0;`x � and
dj .ŒG0k;`;A�/ D ŒB

k;`
A �; we put ŒG0

k;`;A
� WD ŒG0

k;`;A
; � �. By Lemma 3.3, ˆ.ŒG0

k;`;A
�/ is

weakly isomorphic to ŒG0
k;`;A

�: this is immediate ignoring the loops, while the loops
cannot be adjacent to edge j lest dj .ˆ.ŒG0k;`;A�// D ŒB

g;0
A � for some edge-labeling of

Bg;0A . Let E1; E2; E3 � ¹1; : : : ; nº be the markings on the vertices of ˆŒG0
k;`;A

� as in
Figure 7.

Then, one can see that E1 D ¹xº because

ˆdi ŒG0k;`;A� D ˆŒB
0;`
x � D ŒB0;`x �

by Proposition 3.9. As such, since E1 [ E2 D ˆ.A/, we have that x 2 A implies
x 2 ˆ.A/, and the result follows.
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Φ
j

i `
x

Ar {x}
Ac j

i `
E1

E2

E3

Figure 7. The simplex ŒG0
k;`;A

� and its image under ˆ

The preceding three propositions combine to prove Theorem 3.7.

Proof of Theorem 3.7. Suppose given ˆ 2 Aut.�g;w/ such that ˆ fixes all the sim-
plices ŒB0;0x �. Proposition 3.8 shows then that ˆ fixes all ŒB0;0A �, then Proposition 3.9
shows that ˆ fixes the ŒBk;0A �, and then Proposition 3.10 shows that ˆ fixes all
the ŒBk;`A �.

We conclude this section by proving Theorem X.

Proof of Theorem X. Following Theorem 2.10, it suffices to show that for any ˆ 2
Aut.�g;w/, there exists a unique element � 2 Aut.Kw/ such that ˆ D � when re-
stricted to V2g;w . Given such ˆ, Theorem 3.4 gives a unique permutation � 2 Sn such
that ˆ D � on the n-simplices ŒB0;0x �. Lemma 3.6 then implies that � 2 Aut.Kw/.
Then Theorem 3.7 gives that ˆ ı ��1 acts as the identity on the facets of V2g;w , from
which it follows that ˆ ı ��1 fixes the whole subcomplex V2g;w . Thus ˆ D � on V2g;w
and the proof is complete.

4. The genus 0 case

When gD 0, Theorem X fails for generalw. We will first give some counterexamples,
and then proceed to show that the theorem still holds when g D 0 and w is assumed
to be heavy/light.

4.1. Counterexamples to Theorem X when g D 0

We now give an infinite family of counterexamples to Theorem X in the case g D 0.

Proposition 4.1. For each integer k � 1, set wk D .1=k/.2kC2/. Then

Aut.�g;wk / Š SN.k/;

where

N.k/ WD
1

2
�

 
2k C 2

k C 1

!
:
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Moreover, we have N.k/ > 2k C 2 for k � 2 and N.1/ D 3 < 4, so Aut.�g;wk / 6Š

Aut.Kwk / for all k � 1.

Proof. The space �0;wk consists of N.k/ disjoint vertices; this is because the only
wk-stable trees consist of only one edge, where each vertex supports k C 1markings.
This proves that Aut.�0;wk /Š SN.k/. Clearly Aut.Kwk /Š S2kC2, so it only remains
to prove that N.k/ > 2k C 2 for all k � 2. We do this by induction. When k D 2, we
have N.2/ D 10 and 2k C 2 D 6. Now suppose it is known that 

2k

k

!
> 4k:

We then have 
2k C 2

k C 1

!
D
.2k C 2/.2k C 1/

.k C 1/2
�

 
2k

k

!
>
.2k C 2/.2k C 1/

.k C 1/2
� 4k:

Observe that

.2k C 2/.2k C 1/

.k C 1/2
D
4k2 C 6k C 1

k2 C 2k C 1
> 2 > 1C

1

k
;

for k � 2. Hence  
2k C 2

k C 1

!
>
�
1C

1

k

�
� 4k D 4k C 4;

as desired.

Example 4.2. The family of examples provided by Proposition 4.1 are 0-dimen-
sional. A 1-dimensional example where Aut.�0;w/ 6Š Aut.Kw/ is given by w D
.1=3.3/; 7=12.3//. In this case we have Aut.Kw/Š S3 � S3, but Aut.�0;w/ is isomor-
phic to the wreath product S3 o S3. See Figures 8 and 9. This also gives an example
where Aut.�0;w/ is not isomorphic to a direct product of symmetric groups, which
cannot happen when g � 1, by Theorem X and Theorem Z.

4.2. Calculation of Aut.�0;w/ for heavy/light w

In this section, we will prove Theorem Y, which remedies the genus 0 failure of
Theorem X when w is heavy/light, i.e. whenw D .".m/; 1.n// for "� 1=m. We restate
the theorem below for convenience.

Theorem Y. Suppose n; m � 2, with n C m � 5, and put w D .".m/; 1.n// where
" � 1=m. Then we have

Aut.�0;w/ Š Aut.Kw/ Š Sm � Sn:
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B4,5

B1,3,6

B1,2,6 B1,4,5

B5,6

B1,3,4

B1,2,4 B1,5,6

B4,6

B1,4,6

B1,2,5 B1,3,5

Figure 8. The tropical moduli space �0;w for w D .1=3.3/; 7=12.3//

1

2

3

4 5 6

Figure 9. The simplicial complex Kw for w D .1=3.3/; 7=12.3//

To prove Theorem Y, we will describe �0;w as a flag complex, i.e. the maximal
simplicial complex on its 1-skeleton. This allows us to calculate Aut.�0;w/ by instead
calculating the automorphism group of its 1-skeleton.

Remark 4.3. In [6], the tropical moduli space M trop
0;w is realized, for heavy/light w D

.".m/; 1.n//, as the Bergman fan B.Gw/ of the graphic matroid of the reduced weight
graph Gw associated to w. The vertex set of Gw is ¹1; 2; : : : ; mC n � 1º, and edge
.i; j / is included whenever wi C wj > 1. The space �0;w can be constructed as the
link of M trop

0;w at its cone point, so in particular we have Aut.�0;w/ Š Aut.B.Gw//.
The fanB.Gw/ carries actions of the groups Aut.Gw/ and Aut.I.Gw//, where I.Gw/
denotes the independence complex of the graph Gw . In general, we have Aut.Gw/ Š
Sm � Sn�1, while a general description of Aut.I.Gw// eludes the authors. In the case
nD 2, the graphGw is a star withm leaves, and I.Gw/ is a standard .m� 1/-simplex,
so we have that Aut.Gw/ Š Aut.I.Gw// Š Sm. By Theorem Y, in this case both
groups are strictly smaller than the automorphism group Aut.B.Gw// Š Sm � S2.

Remark 4.4. When w D .".m/; 1; 1/, the heavy/light Hassett space M0;w is equal to
the Losev–Manin moduli space Lm, studied in [20]. This space is the toric variety of



S. Freedman, J. Hlavinka, and S. Kannan 184

the .m � 1/-dimensional permutohedron. In [24, Theorem 1], it is shown that

Aut.Lm/ Š .C�/m�1 Ì .S2 � Sm/:

In this way, Theorem Y implies that there is an exact sequence

1! .C�/m�1 ! Aut.Lm/! Aut.�0;w/! 1;

so the automorphism group of Lm is an extension of the automorphism group of its
fan by the dense torus.

4.3. �0;w as a flag complex

When g D 0 and w 2 Qn \ .0; 1�n with
P
wi > 2, the objects in �0;w are auto-

morphism-free, and hence�0;w may be realized as a simplicial complex. Given some
A � ¹1; : : : ; nº with w.A/; w.Ac/ > 1, we put BA for a �0;w -object with one edge,
such that one vertex supports the elements of A, and the other supports the elements
of Ac . A collection of vertices ¹BA1

; : : : ;BAk
º spans a .k � 1/-simplex of�0;w if and

only if there exists a �0;w -object G with precisely k edges e1; : : : ; ek , such that

G=¹eiºc Š BAi

for all i ; here G=¹eºc indicates the graph obtained from G by contracting all edges
except for e.

We claim that �0;w is a flag complex. This claim when w D .1.n// is due to
N. Giansiracusa [13], and its proof is based on the Buneman Splits-Equivalence The-
orem [26, Theorem 3.1.4], which we state here in a form compatible with our notation:

Theorem 4.5. A collection ¹BA1
; : : : ;BAk

º of vertices of�0;n spans a simplex if and
only if each pair ¹BAi

;BAj
º forms a 1-simplex of �0;n.

The analogous theorem for�0;w results from the following observation: a graph G
in �0;n lies in �0;w if and only if G=¹eºc lies in �0;w for all e 2 E.G/. Thus, if we
are given a collection ¹BA1

; : : : ;BAk
º of vertices of �0;w such that each pair of them

spans a 1-simplex of�0;w , then we can use Theorem 4.5 to guarantee that there exists
some graph G in �0;n such that G has precisely k edges e1; : : : ; ek , and such that
G=¹eiºc Š BAi

for all i . By our observation, we actually have G 2 Ob.�0;w/, hence
¹BA1

; : : : ;BAk
º spans a simplex of�0;w . As such, we have the following corollary of

Theorem 4.5.

Corollary 4.6. The space �0;w is a flag complex. In particular, we have

Aut.�0;w/ Š Aut.�.1/0;w/;

where �.1/0;w denotes the 1-skeleton of �0;w .
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4.4. Automorphisms of the 1-skeleton of �0;w

We now prove the following theorem.

Theorem 4.7. Let m; n � 2 such that mC n � 5. Then, if w D .".m/; 1.n// for " �
1=m, we have

Aut.�.1/0;w/ Š Sm � Sn:

Note that by Corollary 4.6, Theorem 4.7 implies Theorem Y. To prove Theo-
rem 4.7, we will show that any automorphism of �.1/0;w can be completely described
by its action on graphs of the form

Bi;j WD B¹i;j º;

where i 2 ¹1; : : : ;mº and j 2 ¹mC 1; : : : ;mC nº. Graphs of this form will be called
special. Special graphs have the maximal number of expansions among all graphs
in �.1/0;w :

Lemma 4.8. Consider the same hypotheses as in Theorem 4.7. For a graph G, let
exp.G/ denote the number of isomorphism classes of expansions of G with precisely
one more edge than G. Then for all graphs Bi;j as above and for all vertices BA 2
�
.1/
0;w ,

exp.Bi;j / � exp.BA/;

with equality if and only if BA D Bi 0;j 0 for possibly different indices i 0 2 ¹1; : : : ; mº
and j 0 2 ¹mC 1; : : : ; mC nº.

The proof of Lemma 4.8 amounts to a somewhat tedious application of basic
calculus, and can be found in Appendix C. Establishing an analogue of this lemma
for arbitrary weight vectors seems to be the principal obstruction to determining the
groups Aut.�0;w/ in general.

Proof of Theorem 4.7. The desired isomorphism is given by the map

F W Sm � Sn ! Aut.�.1/0;w/; .�; �/ 7! ˆ.�;�/;

where ˆ.�;�/ is the automorphism of �.1/0;w that relabels light points using the permu-
tation � 2 Sm and the heavy points with the permutation � 2 Sn. We must show that
F is both injective and surjective:

F is injective. Supposing thatˆ.�;�/ acts as the identity on�.1/0;w , we must show that
.�; �/ is the identity permutation. We use that ˆ.�;�/ in particular fixes each special
graph Bi;j . As we are assumingmC n� 5, the graph Bi;j has at least 3marked points
on its other endpoint. It follows that ¹�.i/; �.j /º D ¹i; j º, or �.i/D i and �.j /D j .
This demonstrates that .�; �/ is the identity permutation.
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F is surjective. Fix an arbitrary automorphism ‰ 2 Aut.�.1/0;w/. Note that ‰ pre-
serves the number of expansions of a graph (i.e. the valence of a vertex in�.1/0;w/. This
means that for all special graphs Bi;j , we must have that‰.Bi;j / is some special graph
Bi 0;j 0 as well. Define the permutation .�; �/ 2 Sm � Sn via �.i/ WD i 0 and �.j / WD j 0.
We now claim that ˆ.�;�/ D ‰. Since ˆ.�;�/ ı‰�1 fixes all special graphs by defini-
tion, it suffices to check that .ˆ.�;�/ ı‰�1/.BA/ D BA where A is an arbitrary subset
of left-hand weights.

For any such graph BA, we can decompose A into light and heavy weights as
A D AL t AH , where AL � ¹1; : : : ; mº and AH � ¹mC 1; : : : ; mC nº. Similarly
we can decompose Ac into disjoint sets AcL and AcH . Note that the set of special
graphs incident to BA is then precisely ¹Bi;j º [ ¹Bi 0;j 0º, where .i; j / 2 AL �AH and
.i 0; j 0/ 2 AcL � A

c
H .

In general, if BA is incident to special vertices ¹Bi;j º, then A can be recovered up
to complement from the pairs .i;j /. Indeed, start with any such neighbor Bi;j ; without
loss of generality, i and j are supported on the left-hand endpoint of BA. We can read
off the rest of the markings on this vertex as follows. The left-hand light indices i 0 are
those for which Bi 0;j is incident to BA. Similarly, the left-hand heavy indices j 0 are
those for which Bi 0;j 0 is incident to BA for all left-hand light indices i 0. As such, we
may determine the collection of indices supported on the left-hand endpoint of BA, so
we conclude that BA is uniquely determined by its special neighbors.

In summary, we know thatˆ.�;�/ ı‰�1 fixes all special neighbors of BA, and that
BA is the unique one-edge graph incident to all of these special neighbors. It follows
that ˆ.�;�/ ı‰�1 fixes BA as well, so ˆ.�;�/ D ‰ and F is surjective.

A. Proof of Theorem Z

In this appendix we prove Theorem Z, restated here.

Theorem Z. Let G be a group. Then there exists n � 1 and w 2 Qn \ .0; 1�n such
that

Aut.Kw/ Š G

if and only if G is isomorphic to the direct product of finitely many symmetric groups.

We will first prove that Aut.Kw/ is always isomorphic to a product of symmetric
groups, i.e. that it is generated by transpositions. We require a preliminary lemma.

Lemma A.1. Suppose H is a subgroup of Sn, and that for all � 2 H and i 2
¹1; : : : ; nº, we have .i; �.i// 2 H . Then H is generated by transpositions.

Proof. We want to show that given � 2 H , we can write � D �1 � � � �k where each
�i 2 H is a transposition. First consider the case where � D .i1; : : : ; ir/ is a cycle.
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Then we have

� D .i1; ir/.i1; ir�1/ � � � .i1; i3/.i1; i2/

D .i1; �
r�1.i1//.i1; �

r�2.i1// � � � .i1; �
2.i1//.i1; �.i1//:

Each transposition .i1; �j .i1// lies in H , so the above gives a decomposition of the
desired form for � . To remove the assumption that � is a cycle, we decompose into
disjoint cycles and run the same argument.

Proposition A.2. Let w 2 Qn \ .0; 1�n. Then the subgroup Aut.Kw/ � Sn is gener-
ated by transpositions.

Proof. By the preceding lemma, it suffices to prove that if � 2 Aut.Kw/ satisfies
�.i/ D j , then � D .i; j / 2 Aut.Kw/. Indeed, suppose towards a contradiction that
� … Aut.Kw/. Then there exists S � ¹1; : : : ; nº such that S 2 Kw but �.S/ … Kw ,
i.e. w.S/ � 1, but w.�.S// > 1. If i; j 2 S , or i; j 2 Sc , then w.S/ D w.�.S// so it
must be that exactly one of i; j lies in S , suppose without loss of generality that i 2 S
and j … S . Write

S D ¹`1; : : : ; p̀; iº D L [ ¹iº

where L D ¹`1; : : : ; p̀º. For any natural number k � 0, we have �k 2 Aut.Kw/, so
we must have

w.�k.S// D w.�k.L//C w�k.i/ � 1;

but using that L D �.L/ and j D �.i/, we have

w.�k.�.S/// D w.�k.�.L///C w�k.j / D w.�
k.L//C w�kC1.i/ > 1;

so in particular
w�kC1.i/ > w�k.i/

for all k � 0. This is a contradiction as � has finite order. We conclude that � 2
Aut.Kw/, as we wanted to show.

The following lemma allows us to symmetrize the weight data with respect to the
action of Aut.Kw/.

Lemma A.3. Suppose n � 2 and w 2 Qn \ .0; 1�n. Then there exists some Ow 2
Qn \ .0; 1�n such that

(i) K Ow D Kw ;

(ii) if � 2 Aut.K Ow/ with �.i/ D j , then Owi D Owj .
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Proof. Since Aut.Kw/ is generated by transpositions, it suffices to show that if � D
.i; j / 2 Aut.Kw/, then the weight vector Ow obtained from w by changing both wi
and wj to .wi C wj /=2 satisfies K Ow D Kw . Indeed, suppose w.S/ � 1 to show that
Ow.S/ � 1. If both i; j are contained in S or Sc , then w.S/ D Ow.S/, so it suffices to

consider the case where i 2 S and j … S ; write S D L [ ¹iº where i; j … L. Then

Ow.S/ D w.L/C
wi C wj

2
� w.L/Cmax.wi ; wj / � 1;

since � 2 Aut.Kw/. This shows that any S 2 Kw satisfies S 2 K Ow . Conversely sup-
pose Ow.S/ � 1 to show that w.S/ � 1. Again we may focus on the case where i 2 S
but j … S ; write S D L [ ¹iº, where i; j … L. Suppose for contradiction that

w.S/ D Ow.L/C wi > 1:

Then we must also have

w.�.S// D Ow.L/C wj > 1:

It follows that

Ow.S/ D Ow.L/C
wi C wj

2
� Ow.L/Cmin.wi ; wj / > 1;

which is a contradiction. Thus S 2 Kw , and we are done.

Proposition A.2 gives one direction of Theorem Z: since Aut.Kw/ is generated by
transpositions, it is always isomorphic to a direct product of symmetric groups, and
this product has to be finite as Aut.Kw/ is finite. We have left to show that an arbitrary
finite direct product of symmetric groups can be realized in this way.

Proof of Theorem Z. Suppose

G Š

kY
iD1

Sni

for some integers ni � 1. We prove that there exists w such that Aut.Kw/ Š G by
induction on k. When kD 1, we simply takew to be an all 1’s vector. For the inductive
step, suppose we have some vector Ow such that Aut.K Ow/ Š

Qk�1
iD1 Sni

, in order to
construct w such that Aut.Kw/ Š G. We may assume that nk > 1.

For an arbitrary vector w, we say an index i 2 ¹1; : : : ; nº is heavy in w if wi C
wj > 1 for all indices j ¤ i . We say an index i is light in w if for all S � ¹1; : : : ; nº
with w.S/ < 1, we have w.S/C wi � 1. If i is heavy, respectively light, in w, then
we have that .i; j / 2 Aut.Kw/ if and only if j is also heavy, respectively light, in w.
Moreover, by the previous lemma, there exists some " > 0 such that if w0 is obtained
from w by changing all heavy weights to 1 and light weights to ", then Kw0 D Kw .
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If Ow does not contain any heavy, respectively light, weights, then we can con-
struct w by adding nk heavy, respectively light, weights to Ow, in which case we have
Aut.Kw/ŠG. Otherwise, if Ow contains both heavy and light weights, we can assume
all of the heavy weights are equal to 1 and the light weights are equal to " for some
" > 0. Also by the previous lemma we may assume that whenever � 2 Aut.K Ow/ sat-
isfies �.i/ D j , we have Owi D Owj . Then we set

w D

 
Ow1; : : : ; Owm; 1 �

"

nk
;
"

nk
; : : : ;

"

nk„ ƒ‚ …
nk

!
:

We claim that Aut.Kw/ Š G. Indeed, suppose that � D .i; j / 2 Aut.K Ow/ and S �
¹1; : : : ; mC nk C 1º satisfies w.S/ � 1. Then we claim that w.�.S// � 1. Indeed,
we have

w.�.S// D w.�.S \ ¹1; : : : ; mº//C w.�.S \ ¹mC 1; : : : ; mC nk C 1º//

D Ow.�.S \ ¹1; : : : ; mº//C w.S \ ¹mC 1; : : : ; mC nk C 1º/

D Ow.S \ ¹1; : : : ; mº/C w.S \ ¹mC 1; : : : ; mC nk C 1º/

D w.S/ � 1:

Conversely, if � D .i; j / 2 Aut.Kw/ and i; j � m, then also � 2 Aut.K Ow/. If � D
.i; j / 2 Aut.Kw/ and i > mC 1, then we claim also j > mC 1. The weights wi for
i > mC 1 are those which are equal to "=nk , and these are the unique light weights
in w. Finally, we claim that there are no transpositions � D .i; j / 2 Aut.Kw/ where
either i or j is equal to m C 1. This is because m C 1 is the unique vertex of Kw
which is connected by an edge to all of the light indices, but is not connected to any
other indices: we have Owi � " for all i D 1; : : : ; m.

Altogether, this shows that

Aut.Kw/ D h.i; j / j .i; j / 2 Aut.K Ow/ or wi D wj D "=nki

Š Aut.K Ow/ � Snk
Š G;

as desired.

B. Proof of Theorem 2.9

We now prove Theorem 2.9, restated below. We reiterate that its proof is analogous to
[17, Proposition 3.4].

Theorem 2.9. Let ˆ 2 Aut.�g;w/. Then ˆ preserves the subcomplexes Vig;w for
all i � 1.
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Since Aut.�g;w/ preserves the number of edges of each edge-labeled graph, it
suffices to show that Aut.�g;w/ preserves the first Betti number b1.G/ of the graph
underlying a simplex ŒG; � �. This is clear when g D 0, because in this case we have
b1.G/ D 0 for all w-stable graphs G. Now fix g � 1, and k such that 1 � k � g.
Put Rk for the unique (up to isomorphism) �g;w -object with one vertex and k loops.
Each Rk has a unique edge-labeling up to the action of AutE .Rk/ Š Sk . We put
ŒRk� 2 �g;w Œk � 1� for the corresponding simplex of �g;w . Then given a simplex
ŒG; � �, we have that b1.G/ � k if and only if ŒG; � � has ŒRk� as a face. Thus, to prove
that Aut.�g;w/ fixes the first Betti number of each graph, it suffices to prove that
it fixes each ŒRk�. Finally, each ŒRk� is a face of ŒRg �, so it is enough just to show
that ŒRg � is fixed. We prove this in intermediate steps, the first being that the vertex
ŒR1� 2 �g;w Œ0� is fixed.

Proposition B.1. Suppose g � 1. For any ˆ 2 Aut.�g;w/, we have ˆŒR1� D ŒR1�.

Proof. We say a graph G of �g;w is maximal if the only graphs admitting morphisms
to G are themselves isomorphic to G. Edge-labelings of maximal graphs correspond
to facets of�g;w , where a facet of a symmetric�-complex is a simplex which is not a
proper face of any other simplex. An automorphism of a symmetric �-complex must
permute the d -dimensional facets amongst themselves. We claim that ŒR1� 2�g;w Œ0�
is the unique vertex which is a face of all facets of �g;w . Graph-theoretically, this is
equivalent to the statement that R1 is the unique graph in �g;w which has one edge
and which admits a morphism from all maximal graphs. Indeed, any maximal graph
G satisfies b1.G/ D g, and so must have at least one cycle. We thus get a morphism
G ! R1 by contracting all edges except some fixed edge which is contained in a
cycle of G. To see that R1 is the unique graph with these properties, it suffices to
exhibit a maximal graph G of �g;w , such that if there exists a morphism G! H with
jE.H/j D 1, then HŠ R1. When g D 1, such a graph G can be constructed by taking
an n-cycle and putting one marking at each vertex. For each g � 2 there exists at least
one graph G such that:

• G is trivalent;

• b1.G/ D g;

• G has no bridges

where a bridge of a graph G is a nonloop edge which is not contained in any cycles
(see [17, Figure 3] for an example of such a graph in general). Then the necessary
�g;w -object G can be constructed by choosing n points on the interiors of edges of
G, and putting a vertex supporting a marking at each chosen point. The graph G
cannot contract to a graph which has a bridge, so the only graph with one edge that it
contracts to is R1.
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To prove that the simplex ŒRg � is preserved, we first ensure that bridge indices are
preserved, as in the following lemma.

Lemma B.2. Let ŒG; � � 2 �g;w Œp�, and put BG
� � Œp� for the indices of bridges

of G. Suppose that ˆ 2 Aut.�g;w/ and ŒG0; � 0� D ˆŒG; � �. Then

BG
� D BG0

� 0 :

Proof. Given a simplex ŒG; � � 2 �g;w Œp� and a proper subset of indices S � Œp�,
we put dS ŒG; � � for the face of ŒG; � � obtained by contracting all edges labelled by
elements of S . From the commutativity of diagram (2), it can be shown that for any
automorphism ˆ of �g;n, we have ˆdS ŒG; � � D dSˆŒG; � �. With this notation in
place, we can characterize BG

� as follows:

BG
� D ¹i 2 Œp� j dŒp�X¹iºŒG; � � ¤ ŒR1�º:

That is, an edge e is a bridge of G if and only if upon contracting all edges in G
besides e, we do not get a loop. The lemma now follows from this description of BG

�

and Proposition B.1.

We can now prove that automorphisms preserve the simplex ŒRg �.

Proposition B.3. Let g � 1 and suppose ˆ 2 Aut.�g;w/. Then ˆŒRg � D ŒRg �.

Proof. Suppose G is a maximal graph of �g;w , with the property that every bridge
of G is either a loop or a bridge (it is straightforward to construct examples of such G
for all g� 1 and weight vectorsw). Let � WE.G/! Œp� be any edge-labeling of G, and
put ŒG0; � 0� D ˆŒG; � �. Then we claim G0 also has the property that all of its bridges
are either loops or bridges. Indeed, G0 must also be maximal, so b1.G0/D b1.G/D g,
and hence we have jV.G0/j D jV.G/j. By Lemma B.2, G0 has the same number of
bridges as G, and if we set B D BG

� � Œp�, then B indexes the bridges in both G
and G0. Since bridges are contained in all spanning trees, the edges indexed by B

in G0 must be contained in some spanning tree of G0. On the other hand, we know the
edges indexed by B in G form a spanning tree of G. Since G and G0 have the same
number of vertices, they have the same number of edges in a spanning tree. Therefore
the edges indexed by B in G0 form a spanning tree. Whenever we contract a spanning
tree in a �g;w -object of first Betti number g, the resulting graph is Rg . In particular,
we have

ˆŒRg � D ˆdB ŒG; � � D dB ŒG0; � 0� D ŒRg �;

and the proof is complete.

As per the discussion preceding Proposition B.1, Theorem 2.9 is a corollary of
Proposition B.3.
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C. Proof of Lemma 4.8

We restate the lemma for convenience:

Lemma 4.8. Consider the same hypotheses as in Theorem 4.7. For a graph G, let
exp.G/ denote the number of isomorphism classes of expansions of G with precisely
one more edge than G. Then for all graphs Bi;j as above and for all vertices BA 2
�
.1/
0;w ,

exp.Bi;j / � exp.BA/;

with equality if and only if BA D Bi 0;j 0 for possibly different indices i 0 2 ¹1; : : : ; mº
and j 0 2 ¹mC 1; : : : ; mC nº.

Proof. In what follows let BA be a graph with one edge, where we think of the weights
inA as occupying the left-hand vertex. Set x WD jAj, and suppose that there are y light
weights in A.

We are interested in maximizing the number of expansions of BA. Left expansions
are in bijection with subsets S of A such that w.S/ > 1 and jA X S j > 0. There are
2x � 2y � .x � y/� 1 such subsets S : 2x total subsets ofA, minus the 2y subsets con-
sisting solely of light weights (including the empty subset), minus the x � y singleton
subsets consisting solely of one heavy weight, minus the subset A itself. Repeating
the counting argument on the other side, we conclude that

exp.BA/ D 2
x
� 2y � .x � y/ � 1C 2.mCn/�x � 2m�y

� Œ.mC n � x/ � .m � y/� � 1

D 2x � 2y C 2mCn�x � 2m�y � 2 � n

expansions in total.
It therefore suffices to maximize

f .x; y/ WD 2x � 2y C 2.mCn/�x � 2m�y

over a domain that includes all permissible integer values of .x; y/. Such a domain
is determined by the three inequalities 2 � x � .mC n/ � 2, 0 � y � m, and 1 �
.x � y/ � n � 1; see Figure 10.

These inequalities arise as follows. First, the stability condition requires that both
vertices of BA have at least two weights on them, so x D jAj is bounded by 2 and
mC n � 2. Second, the number of light weights on either vertex cannot exceed m,
the total number of light weights. Finally, there must be at least one heavy weight on
either vertex, so that the number of left-hand heavy weights x � y is at least 1 and at
most n � 1.

To prevent some of the above ranges from collapsing, it is convenient to address
the case n D 2 separately from n � 3:
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(2, 1)

(m+ 1,m) (m+ n− 2,m)

(m+ n− 2,m− 1)

(n− 1, 0)

(m+n
2

, m
2
)

(2, 0) (m+n
2

, 0)

Figure 10. The domain of f .x; y/

n D 2. As there are exactly two heavy weights, each vertex of BA supports one of
them. In other words, we have y D x � 1. We are now maximizing the function

f .x; x � 1/ D 2x � 2x�1 C 2.mC2/�x � 2m�.x�1/ D 2x�1 C 2m�xC1:

over the interval 2 � x � m. As the second derivative

d2

dx2
.2x�1 C 2m�xC1/ D 2�x�1 log2.2/.2mC2 C 4x/

is nonnegative on Œ2;m�, f .x; x � 1/ is convex and thus achieves its maximum value
on its endpoint x D 2 as desired. (The other endpoint x D m corresponds to the com-
plement BAc D BA.)

n � 3. First, we look for critical points on the interior of the region. We compute the
gradient as

rf D hlog.2/2x � 2mCn�x; 2�y log.2/.2m � 4y/i:

Setting the partial derivatives equal to 0, we find that there is one critical point located
at ..mC n/=2;m=2/.

We now optimize f over the boundary. Note that there is a symmetry origi-
nating from exchanging the two vertices of BA; symbolically, this is the involution
.x; y/ 7! .mC n � x;m � y/. Therefore, it suffices to optimize f over only half of
the boundary, i.e. only over the left-hand equalities.

Specifically, we consider restricting f to the following three boundary segments:

f .2; y/; for 0 � y � 1;

f .x; 0/; for 2 � x � n � 1;

f .1C y; y/; for 1 � y � m:
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We first look for critical points on the interiors of these segments, and second consider
the values of f at their endpoints.

• First, note that f .2; y/ D 2mCn�2 � 2m�y � 2y C 4 has a critical point at y D
m=2. As m � 2, this critical point is outside of the interior of the interval for y.

• Second, note that f .2;y/D f .x;0/D 2mCn�x � 2mC 2x � 1C 4 has one critical
point at x D .mC n/=2. This critical point is interior when 2 < .mC n/=2 and
.mC n/=2 < n� 1. That is, there is a critical point interior to this edge whenever
n > mC 2.

• Finally, note that f .1C y;y/D 2mCn�y�1 � 2m�y C 2y has a critical point when
2m C 22y D 2mCn�1. Since m ¤ mC n � 1 and 2y D mC n � 1 immediately
leads to a contradiction, if 2y ¤ m, one sees that all of the exponents in this
equation are distinct. Thus, there is no integer solution by the uniqueness of binary
representations. In case 2y D m the equation reduces to mC 1 D m � n � 1, or
n D 2. As we are assuming n � 3, this edge contains no critical points.

We now consider the function values at the interior critical point, the point on the
boundary edge interior that is sometimes a critical point, and three of the six vertices:

f ..mC n/=2;m=2/ D 2.mCn/=2C1 � 2m=2C1;

f ..mC n/=2; 0/ D 2.mCn/=2C1 � 1 � 2m;

f .2; 0/ D 2mCn�2 � 2m C 3;

f .2; 1/ D 2mCn�2 � 2m�1 C 2;

f .n � 1; 0/ D 2m C 2n�1 � 1:

We claim that f .2; 1/ is at least as big as all of these values. It suffices to check
the following four inequalities:

• f ..mC n/=2;m=2/ < f .2; 1/: We want to show that

2.mCn/=2C1 � 2m=2C1 < 2mCn�2 � 2m�1 C 2;

or equivalently that

2m�1 � 2m=2C1 < 2mCn�2 � 2.mCn/=2C1 C 2:

It suffices to show that the function

g.x/ D 2x � 2.xC3/=2

is nondecreasing in x, for x � 2. Indeed we have

g0.x/ D log 2 � 2x �
log 2
2
� 2.xC3/=2 D log 2 � 2x � log 2 � 21=2 � 2x=2 > 0

for x > 1, proving the claim.
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• f ..mC n/=2; 0/ < f .2; 1/: This inequality is equivalent to

2.mCn/=2 < 2mCn�3 C 2m�2 C 3=2:

For mC n � 6 we have

2.mCn/=2 � 2mCn�3 < 2mCn�3 C 3=2;

proving the claim in every case except whenmC nD 5. In that case, the inequality
becomes

2m > 16
p
2 � 22 � 0:6237;

which holds since m � 2.

• f .2; 0/ < f .2; 1/: This is equivalent to 3 � 2m < 2 � 2m�1, which is true for
1 < 2m�1, i.e. for all m > 1.

• f .n � 1; 0/ < f .2; 1/: This is equivalent to

2m�1 C 2m C 2n�1 < 2mCn�2 C 3;

or
.2m � 2/.2n � 6/ > 0:

As we havem> 1, the inequality reduces to 2n > 6, or n > 2:58496 : : : But n� 3,
so this inequality holds.
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