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Approximation to the classical fractals by using non-affine
contraction mappings

Nisa Aslan and İsmail Aslan

Abstract. In the literature, there are various methods to obtain the fractal sets such as escape
time algorithm, L-systems and iterated function system (IFS), etc. In this study, we aim to
approximate to the classical fractals by using non-affine contraction mappings. In order to get
these non-affine mappings, we utilize from the sequences of suitable Lipschitz continuous func-
tions. Then, we obtain some approximations to the fractals which can be constructed as the
attractor of an IFS. Finally, we give some illustrations for some specific cases.

1. Introduction

In recent years, fractals have been one of the popular subjects with many applications
in different areas such as mathematics, meteorology, engineering, physics, biology,
etc. (see [7–10, 12–15, 17, 19–21]). It is clearly seen that the history of these self-
similar sets dates back to older times. As an example of a crucial development about
fractals, one can take into account the Hutchinson’s theory given in 1981, to construct
the fractals by using the iterated function system (IFS) in [16]. Many well-known
fractal sets such as the Cantor set defined by Georg Cantor in 1883, the Sierpinski
triangle defined by Vaclav Sierpinski in 1915, the Koch curve defined by Helge von
Koch in 1904 can be easily obtained by their related IFSs (see [8, 14, 18]). On the
other hand, fractals can be constructed by using different methods and transforma-
tions. For instance, considering the contraction mappings, Barnsley defined a function
and obtained the right Sierpinski triangle via the escape time algorithm in [8]. Differ-
ently from Barnsley’s method, some classical fractals are obtained via the escape time
algorithm by using expanding, folding, translation and rotation mappings, which are
defined independently from their related IFSs in [6]. Büyükyılmaz, Yaylı and Gök
also give a different construction for Sierpinski triangles with Galilean transforma-
tions in [11].

2020 Mathematics Subject Classification. Primary 28A80; Secondary 40A25, 47H09.
Keywords. Fractal approximation, non-affine contraction mappings, iterated function system,
classical fractals.

https://creativecommons.org/licenses/by/4.0/


N. Aslan and İ. Aslan 46

In the present paper, our purpose is to get approximations to the fractals which can
be obtained as a fixed point of an IFS. For this approximation, inspired by the papers
[1, 3–5], we construct non-affine contraction mappings. As is known, most of the
fractals such as Sierpinski triangle, Sierpinski carpet, Sierpinski tetrahedron, Vicsek
fractal and Koch curve can be obtained as the attractor of an iterated function systems.
It is seen that the contraction mappings used in obtaining these fractals (see Examples
3.1–3.8) are generally affine transformations (y D ax C b). In this study, it is aimed
to approach to these types of fractals by using new non-affine transformations. Our
method is also valid for the fractals which can be obtained by non-affine mappings.
For this purpose, firstly, the sequences of non-affine contraction mappings will be
constructed by applying (sequences of) nonlinear transformations to known contrac-
tion mappings. We recall that these transformations are also used in turning a linear
operator into nonlinear one [1–5]. Thanks to these sequences of non-affine contraction
mappings, it is possible to obtain (a sequence of) new iterated function systems. Thus,
we get approximations to fractals by using the sequence of self-similar sets, which are
obtained as the attractor of the sequence of new IFSs. That means, we will have new
fractal sequences, which converge to the initial fractal. In the last section, in order to
verify our study, we define some non-affine contraction mappings and get approxi-
mations to the Sierpinski triangles, Sierpinski carpet, Sierpinski tetrahedron, Vicsek
(box) fractal and Koch curve. Using some algorithms in Maple, we also display our
approximations in Figures 1–7.

Now, we give some required definitions and theorems.

Definition 1.1 ([8]). Let .X; d/ be a metric space. Then, the function f W X ! X is
called a contraction mapping, if there exists a constant 0 � k < 1 satisfying that

d.f .x/; f .y// � kd.x; y/

for all x; y 2 X . Here, k is called by the contractivity factor of f .

Theorem 1.2 ([8]). Let .X; d/ be a complete metric space and f W X ! X be a
contraction mapping. Then, there exists a unique fixed point x0, (namely f .x0/D x0)
such that

lim
n!1

f n.x/ D f .x0/ D x0

holds for all x 2 X .

Here and throughout the paper, we denote n-times composition of a function f
by f n.x/, i.e., f n.x/ WD .f ı f ı � � � ı f /.x/.

Definition 1.3 ([8]). Let .X; d/ be a complete metric space and let fi W X ! X

(i D 1; 2; : : : ;N ) be contraction mappings. Then, the set ¹X If1; f2; : : : ; fN º is called
an iterated function system (IFS).



Approximation to fractals by non-affine contraction mappings 47

We give the following fundamental theorem for fractal geometry which is intro-
duced by Hutchinson:

Theorem 1.4 ([16]). Let .X; d/ be a complete metric space and ¹X If1; f2; : : : ; fN º

be an IFS. Then F W H .X/! H .X/,

F.S/ WD

N[
iD1

fi .S/

is a contraction mapping for every S 2 H .X/ WD ¹S � X jS is compact and S ¤ ;º
and it has a unique fixed point A 2H .X/ such that F.A/ D A. For each S 2H .X/,
the composition sequence .F n.S//1nD0 is convergent to the fixed pointA and this fixed
point is called the attractor of the IFS. In addition, F has an ˛-contractivity factor,
where

˛ D max
®
˛i j ˛i is the contractivity factor of fi for all i D 1; : : : ; N

¯
:

2. Approximation to fractals by non-affine contraction mappings

In this section, we give our main approximation theorem. To this end, we need to
define the following sequence of nonlinear transformations .Hk/k2N .

We define Hk W X ! X such that Hk is a Lipschitz continuous function with
Lipschitz constant KH , namely, there exists a constant KH satisfying

d.Hk.x/;Hk.y// � KHd.x; y/

for all x; y 2 X and k 2 N.
In addition, we need the following assumption: Let S 2 H .X/ be given. Then

lim
k!1

Hk.u/ D u (uniformly) (1)

holds for all u 2 S , i.e., for all " > 0, there exists a number k0 2 N such that for all
u 2 S and k � k0

d.Hk.u/; u/ < ":

Now, we obtain the following lemmas.

Lemma 2.1. If (1) is satisfied, then for a given S 2 H .X/

lim
k!1

Hk.S/ D S

holds.
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Proof. First of all, let us recall the definition of the Hausdorff metric. Let A;B � X
be given, then the Hausdorff metric Qd is defined by

Qd.A;B/ D max
°

sup
x2A

Nd.x; B/; sup
y2B

Nd.A; y/
±
;

where Nd.u0; U / D infu2U d.u0; u/.
Let S 2 H .X/ be fixed and let y 2 Hk.S/ be arbitrarily given. Then there exists

an element u 2 S such that y D Hk.u/. Now from (1), for any " > 0, there exists a
k0 2 N such that d.Hk.u/; u/ < "=2 for all k � k0 and u 2 S . So we can clearly see
that

Nd.y; S/ D Nd.Hk.u/; S/ D inf
s2S

d.Hk.u/; s/ � d.Hk.u/; u/ <
"

2

for all k � k0. Then, since the convergence in (1) is uniform, from the previous
inequality

sup
y2Hk.S/

Nd.y; S/ D sup
Hk.u/2Hk.S/

Nd.Hk.u/; S/

� sup
Hk.u/2Hk.S/

d.Hk.u/; u/ �
"

2
< "

for all k � k0. On the other hand, let x 2 S be arbitrarily given. Then from (1) there
exists an Hk.x/ 2 Hk.S/ such that for all " > 0, there exists a k1 2 N such that
d.Hk.x/; x/ < "=2 for all x 2 S and k � k1. Therefore, for all k � k0,

Nd.Hk.S/; x/ D inf
Hk.u/2Hk.S/

d.Hk.u/; x/

� d.Hk.x/; x/ <
"

2
:

It follows from the previous inequality and (1) that

sup
x2S

Nd.Hk.S/; x/ � sup
x2S

d.Hk.x/; x/ �
"

2
< "

for all k � k1. Therefore, we finally conclude

Qd.Hk.S/; S/ < "

for all k � max¹k0; k1º, which completes the proof.

Lemma 2.2. Let ¹X I f1; f2; : : : ; fN º be an IFS and KF be the contractivity factor
of F.S/ WD

SN
iD1 fi .S/. Then for each k 2 N, ¹X IHk.f1/; Hk.f2/; : : : ; Hk.fN /º

is also an IFS, provided that
KFKH < 1 (2)

where KH is the Lipschitz constant of Hk .
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Proof. From the definition of Hk , for every 1 � i � N , one can easily see that the
inequalities

d.Hk.fi .x//;Hk.fi .y/// � KHd.fi .x/; fi .y//

� KHKF d.x; y/ < d.x; y/

hold, which implies Hk.fi / is a contraction mapping for all 1 � i � N and k 2 N.
Thus, ¹X IHk.f1/;Hk.f2/; : : : ;Hk.fN /º is an IFS for each k 2 N.

Our main approximation theorem is given below.

Theorem 2.3. Assume that ¹X I f1; f2; : : : ; fN º be an IFS and (1) holds. Then, for
any S 2 H .X/

lim
k!1

lim
n!1

F n
k .S/ D lim

n!1
F n.S/ D A

holds, where A is the attractor of ¹X If1; f2; : : : ; fN º, Fk.S/ WD
SN

iD1.Hk ı fi /.S/

and F.S/ WD
SN

iD1 fi .S/.

Proof. By Lemma 2.1, ¹X IHk.f1/;Hk.f2/; : : : ;Hk.fN /º is an IFS for each k 2 N.
Therefore, from Theorem 1.4 there exists a unique fixed point Ak such that

lim
n!1

F n
k .S/ D Ak

with the contractivity factor KHKF 2 Œ0; 1/, where KF is the contractivity factor
of F.S/. Now, our aim is to show that

lim
k!1

Ak D A:

Changing the order of limits, we get

lim
k!1

Ak D lim
k!1

lim
n!1

F n
k .S/

D lim
n!1

lim
k!1

F n
k .S/

D lim
n!1

lim
k!1

.Fk ı Fk ı � � � ı Fk/.S/

D lim
n!1

lim
k1;:::;kn!1

.Fk1
ı Fk2

ı � � � ı Fkn
/.S/

D lim
n!1

lim
kn!1

� � � lim
k1!1

.Fk1
ı Fk2

ı � � � ı Fkn
/.S/: (3)

On the other hand, from Lemma 2.1 we observe the equalities

lim
k!1

Fk.S/ D lim
k!1

N[
iD1

Hk.fi .S// D lim
k!1

Hk

� N[
iD1

fi .S/

�
D

N[
iD1

fi .S/ D F.S/:



N. Aslan and İ. Aslan 50

Using this expression in (3) for k1 !1 yields

lim
k!1

Ak D lim
n!1

lim
kn!1

� � � lim
k1!1

Fk1
.Fk2

ı � � � ı Fkn
.S//

D lim
n!1

lim
kn!1

� � � lim
k2!1

F.Fk2
ı Fk3

ı � � � ı Fkn
.S//:

Since F is continuous, by a similar process we easily get

lim
k!1

Ak D lim
n!1

.F ı F ı � � � ı F /.S/

D lim
n!1

F n.S/ D A;

which completes the proof.

Corollary 2.4. Theorem 2.3 states that, for every k 2N, we get a sequence of attrac-
tors which correspond to new fractals and these attractors approach to the fractal
obtained as the attractor of ¹X If1; f2; : : : ; fN º when k !1.

3. Applications

In this section, we give some sequence of nonlinear transformations .Hk/ for some
well-known fractals and then we illustrate our approximations using non-affine con-
traction mappings. Let S be any fixed compact subset of RN for some suitableN 2N.
Consider the following examples.

Example 3.1 (Approximation to the right Sierpinski gasket). Let Hk W R
2 ! R2 be

defined by Hk.u1; u2/ WD .H
1
k
.u1; u2/;H

2
k
.u1; u2//, where

H i
k.u1; u2/ WD

8<: k ln
�
1C

ui

k

�
; if ui 2 Œ0; 1/;

kui ln
�
1C

1

k

�
; if ui 2 Œ1;1/;

for 1 � i � 2. It is possible to extendHk in the odd way. We see from [1] thatHk sat-
isfies the Lipschitz condition under Euclidean metric with Lipschitz constantKH D 1.
In addition, since Hk.u/ � HkC1.u/ for all u 2 S , by Dini’s theorem

lim
k!1

Hk.u1; u2/ D .u1; u2/ (uniformly)

holds and hence, condition (1) is satisfied. Although our estimation is true for every
compact subset S of R2, we consider the set

S D
®
.u1; 0/ W 0 � u1 � 1

¯
[
®
.0; u2/ W 0 � u2 � 1

¯
[
®
.u1; u2/ W 0 � u1; u2 � 1; u1 C u2 D 1

¯
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(a) k D 3 (b) k D 10

(c) k D 100 (d) Right Sierpinski gasket

Figure 1. Approximation to the right Sierpinski gasket.

and the IFS ¹R2;Hk.f1/;Hk.f2/;Hk.f3/º, whereHk.fi / are clearly non-affine and
the fi ’s are the affine contraction mappings,

f1.u1; u2/ D
�u1

2
;
u2

2

�
;

f2.u1; u2/ D
�u1 C 1

2
;
u2

2

�
;

f3.u1; u2/ D
�u1

2
;
u2 C 1

2

�
;

for 1 � i � 3. Using non-affine contraction mappings, from Theorem 2.3 we may
estimate to the right Sierpinski gasket. For this approximation, see Figure 1, here (d)
represents the right Sierpinski gasket, and (a), (b) and (c) represent our approximation
for certain values of k 2 N.
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(a) k D 3 (b) k D 7

(c) k D 100 (d) Sierpinski Gasket

Figure 2. Approximation to the Sierpinski gasket using Hk as defined in (4).

Example 3.2 (Approximation to the Sierpinski gasket). In this example, we consider
the kernel

Hk.u1; u2/ D
�
u1 C sin

�u1

k

�
; u2 C sin

�u2

k

��
: (4)

By the definition of Hk , it is clear that

jHk.u1; u2/ �Hk.v1; v2/j �
3

2
j.u1; u2/ � .v1; v2/j

for all k > 1. Since the contractivity factor of the following contraction mappings of
Sierpinski gasket is 1=2, the new contractivity factor will be 1

2
�

3
2
D

3
4
< 1:

f1.u1; u2/ D
�u1

2
;
u2

2

�
;

f2.u1; u2/ D
�u1 C 1

2
;
u2

2

�
;

f3.u1; u2/ D
�2u1 C 1

4
;
2u2 C

p
3

4

�
:

Furthermore, since there exists a constant M > 0 such that j sin u
k
j �

u
k
�

M
k

on a
compact set S , condition (1) holds. Now, let us consider the new IFS ¹R2; Hk.f1/;

Hk.f2/;Hk.f3/º, which satisfies all the assumptions of our main theorem. Then it is
possible to approach the Sierpinski gasket. See Figure 2 for this estimation.
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(a) k D 7 (b) k D 23

(c) k D 450 (d) added Sierpinski Gasket

Figure 3. Approximation to the added Sierpinski gasket using Hk as defined in (5).

Example 3.3 (Approximation to the added Sierpinski gasket). Let us consider the
kernel

Hk.u1; u2/ D

 
u1 C

sin
�

k

u2
1

C1

�
4k

; u2 C

sin
�

k

u2
2

C1

�
4k

!
: (5)

Then, one can clearly observe that

jHk.u1; u2/ �Hk.v1; v2/j �
3

2
j.u1; u2/ � .v1; v2/j

for all k 2 N. Also, condition (1) is clearly satisfied. Since the contractivity factor
of the set ¹R2; f1; f2; f3; f4º is 1=2, the new contractivity factor will be equal to
1
2
�

3
2
D

3
4
<1. Then, from the above lemmas, ¹R2;Hk.f1/;Hk.f2/;Hk.f3/;Hk.f4/º

is an IFS. Using the contraction mappings of the added Sierpinski triangle

f1.x; y/ D
�x
4
C
3

8
;
y

4
C

p
3

8

�
; f2.x; y/ D

�x
2
;
y

2

�
;

f3.x; y/ D
�x
2
C
1

2
;
y

2

�
; f4.x; y/ D

�x
2
C
1

4
;
y

2
C

p
3

4

�
;

then we get the approximation in Figure 3.
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(a) k D 1 (b) k D 4

(c) k D 30 (d) Sierpinski Tetrahedron

Figure 4. Approximation to the Sierpinski tetrahedron using Hk as defined in (6).

Example 3.4 (Approximation to the Sierpinski tetrahedron). Now, we will investi-
gate the approximation to the Sierpinski tetrahedron. For this reason, we consider the
transformation

Hk.u1; u2; u3/ D
� eku1

ek C 1
;
eku2

ek C 1
;
eku3

ek C 1

�
(6)

for every k 2 N. As given in [2], it is clear that Hk is Lipschitz continuous with
Lipschitz constant KH D

1
2

, and satisfies condition (1). Therefore, by Lemma 2.1
and Lemma 2.2 the set ¹R3; Hk.f1/;Hk.f2/;Hk.f3/;Hk.f4/º is an IFS. Here, the
contraction mappings of Sierpinski tetrahedron are given by:

f1.u1; u2; u3/ D
�u1

2
;
u2

2
;
u3

2

�
;

f2.u1; u2; u3/ D
�u1 C 1

2
;
u2

2
;
u3

2

�
;

f3.u1; u2; u3/ D
�2u1 C 1

4
;
2u2 C

p
3

4
;
u3

2

�
;

f4.u1; u2; u3/ D
�2u1 C 1

4
;
6u2 C

p
3

12
;
3u3 C

p
6

6

�
:

By Theorem 2.3, we may obtain an approximation to the Sierpinski tetrahedron, and
this approximation is illustrated in Figure 4.
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(a) k D 7 (b) k D 25

(c) k D 295 (d) Sierpinski Carpet

Figure 5. Approximation to the Sierpinski carpet using Hk as defined in (7).

Example 3.5 (Approximation to the Sierpinski carpet). Let a Lipschitz continuous
function Hk with KH D 1 be defined by

Hk.u1; u2/ D
� ku2

1

1C ku1

;
ku2

2

1C ku2

�
(7)

as given in [1]. SinceHk satisfies the Lipschitz continuity, we see by Lemma 2.1 and
Lemma 2.2 that®

R2;Hk.f1/;Hk.f2/;Hk.f3/;Hk.f4/;Hk.f5/;Hk.f6/;Hk.f7/;Hk.f8/
¯

is an IFS with non-affine mappings Hk.fi /, where fi (1 � i � 8) are the usual con-
traction mappings of Sierpinski carpet defined by

f1.u1; u2/ D
�u1

3
;
u2

3

�
; f2.u1; u2/ D

�u1 C 1

3
;
u2

3

�
;

f3.u1; u2/ D
�u1 C 2

3
;
u2

3

�
; f4.u1; u2/ D

�u1

3
;
u2 C 1

3

�
;

f5.u1; u2/ D
�u1

3
;
u2 C 2

3

�
; f6.u1; u2/ D

�u1 C 2

3
;
u2 C 1

3

�
;

f7.u1; u2/ D
�u1 C 1

3
;
u2 C 2

3

�
; f8.u1; u2/ D

�u1 C 2

3
;
u2 C 2

3

�
:



N. Aslan and İ. Aslan 56

SinceHk.u/�HkC1.u/ for all u 2 S , by Dini’s theorem the condition (1) is satisfied
and therefore, by Theorem 2.3, we may obtain the Sierpinski carpet whenever k!1
(see Figure 5).

Example 3.6 (Approximation to the box fractal). For this example, we define

Hk.u1; u2/ D
�
u1 C

arctan.k=.u2
1 C 1//

k
; u2 C

arctan.k=.u2
2 C 1//

k

�
: (8)

Since ˇ̌̌̌
d

dx

arctan.k=.x2 C 1//

k

ˇ̌̌̌
D

ˇ̌̌̌
2x

k2 C x4 C 2x2 C 1

ˇ̌̌̌
< 2;

we have
d.Hk.x/;Hk.y// < 3d.x; y/:

It is known, that the contractivity factor of the box fractal is 1=3, and therefore condi-
tion (2) is clearly satisfied. In addition, since (1) holds, we get a new IFS®

R2;Hk.f1/;Hk.f2/;Hk.f3/;Hk.f4/;Hk.f5/
¯

(a) k D 2 (b) k D 6

(c) k D 29 (d) Box fractal

Figure 6. Approximation to the box fractal using Hk as defined in (8).
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from the contraction mappings of the box fractal, where

f1.u1; u2/ D
�u1

3
;
u2

3

�
;

f2.u1; u2/ D
�u1 C 2

3
;
u2

3

�
;

f3.u1; u2/ D
�u1

3
;
u2 C 2

3

�
;

f4.u1; u2/ D
�u1 C 2

3
;
u2 C 2

3

�
;

f5.u1; u2/ D
�u1 C 1

3
;
u2 C 1

3

�
:

By using Theorem 2.3, we have an approximation to the box fractal, which is dis-
played in Figure 6.

Remark 3.7. So far, we take nonlinear transformations for which H i
k
D H

j

k
for all

i ¤ j , however it is possible to take the ones for which H i
k
¤ H

j

k
for i ¤ j . An

example for this case is given below.

Example 3.8 (Approximation to the Koch curve). Now, we consider Hk.u1; u2/ WD

.H 1
k
.u1; u2/;H

2
k
.u1; u2//, where

H 1
k .u1; u2/ WD

8<: k ln
�
1C

u1

k

�
; if u1 2 Œ0; 1�;

ku1 ln
�
1C

1

k

�
; if u1 2 .1;1/;

and extended in the odd way, and H 2
k
.u1; u2/ WD

ku2
2

1Ck2u2
. It is easy to observe that

KH D 1 and (1) is satisfied by Dini’s theorem. So, we have that®
R2;Hk.f1/;Hk.f2/;Hk.f3/;Hk.f4/

¯
is a new IFS with non-affine contraction mappings. By Theorem 2.3, it is possible
to approach to the Koch curve considering the following contraction mappings in the
above IFS system:

f1.u1; u2/ D
�u1

3
;
u2

3

�
;

f2.u1; u2/ D
�u1 �

p
3u2 C 2

6
;

p
3u1 C u2

6

�
;

f3.u1; u2/ D
�u1 C

p
3u2 C 3

6
;
�
p
3u1 C u2 C

p
3

6

�
;

f4.u1; u2/ D
�u1 C 2

3
;
u2

3

�
:

This approximation can be seen in Figure 7.
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(a) k D 5 (b) k D 19

(c) k D 192 (d) Koch curve

Figure 7. Approximation to the Koch curve.

Remark 3.9. If we take Hk.u/ D u, then all the non-affine contraction mappings
turn into usual affine contraction mappings. Hence, our estimation both preserve the
classical case and extend it to the non-affine setting.

4. Conclusion

In this study, we aim to approximate fractals by using non-affine transformations. For
this purpose, we use the IFS and suitable nonlinear mappings. Then, we obtain the
sequence of new fractal sets which approach to our main fractal, which is the attractor
of the initial IFS. For further study, the geometrical and topological properties of
these new fractal sets could be another research problem. On the other hand, this
approximation method may also be useful in image processing by fractals.
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