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L-parabolic linear Weingarten spacelike submanifolds
immersed in an Einstein manifold

Railane Antonia and Henrique Fernandes de Lima

Abstract. In this paper, we deal with complete linear Weingarten spacelike submanifolds im-
mersed with parallel normalized mean curvature vector and flat normal bundle in an Einstein
manifold EnCp

p of index p. Under some curvature constraints on the ambient space, we estab-
lish an L-parabolicity criterion related to a suitable modified Cheng–Yau’s operator L and we
apply it to obtain sufficient conditions which guarantee that such a spacelike submanifold must
be an isoparametric hypersurface of EnC1

1
with two distinct principal curvatures one of which

is simple.

1. Introduction

Let LnCpp denote an .n C p/-dimensional semi-Riemannian manifold of index p.
A submanifold M n immersed in LnCpp is said to be spacelike if the metric on M n

induced from that of LnCpp is positive definite and it is called linear Weingarten when
its mean curvature function H and its normalized scalar curvature R satisfy a linear
relation of the type R D aH C b for some constants a; b 2 R.

In this setting, the second author jointly with de Lima [7] obtained characteri-
zation results for linear Weingarten spacelike hypersurfaces immersed in a locally
symmetric Einstein manifold EnC11 of index 1 considering restrictions on the square
length of the second fundamental form and some appropriate curvature constraints of
the ambient space which were inspired by the works of Nishikawa [11] and Choi et
al. [6, 15]. Later, the second author jointly with Araújo, dos Santos and Velásquez [4]
extended these results for the context of an n-dimensional spacelike submanifoldM n

immersed with a parallel normalized mean curvature vector in a locally symmetric
semi-Riemannian manifold LnCpp of index p. For this, they assumed the existence of
real constants c1, c2 and c3 such that the sectional curvature K and curvature tensor
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R of LnCpp satisfy the following conditions:

K.u; �/ D
c1

n
; (1)

for any u 2 TM and � 2 TM?;

K.u; v/ � c2; (2)

for any u; v 2 TM ;
K.�; �/ D

c3

p
; (3)

for �; � 2 TM?; and
hR.�; u/�; ui D 0; (4)

for u 2 TM and �; � 2 TM? with h�; �i D 0. We note that, when p D 1, condi-
tions (3) and (4) are automatically satisfied. Afterwards, also assuming this set of
constraints, the second author jointly with Araújo, Barboza and Velásquez [3] applied
the techniques developed by Yang and Hou in [16] and by Liu and Zhang in [10] to
get sufficient conditions guaranteeing that such a spacelike submanifold M n is either
totally umbilical or isometric to an isoparametric hypersurface of a totally geodesic
submanifold LnC11 ,! L

nCp
p , with two distinct principal curvatures, one of which is

simple.
More recently, the authors [8] studied complete linear Weingarten spacelike hy-

persurfaces immersed in a locally symmetric Einstein manifold obeying curvature
constraints (1) and (2). In this setting, they proved a parabolicity criterion related
to a suitable Cheng–Yau modified operator and they applied it to obtain sufficient
conditions which guarantee that such a spacelike hypersurface must be either totally
umbilical or isometric to an isoparametric spacelike hypersurface with two distinct
principal curvatures one of which is simple. In [9], Liu and Xie used the Omori–Yau’s
generalized maximum principle to obtain classification results concerning a complete
spacelike hypersurfaceM n with constant mean curvature in EnC11 without asking that
the ambient space is locally symmetric but also assuming the curvature constraints (1)
and (2).

Motivated by the works described above, here we deal with complete linear Wein-
garten spacelike submanifolds immersed with parallel normalized mean curvature
vector and flat normal bundle in an Einstein manifold E

nCp
p of index p obeying cur-

vature constraints (1), (2), (3) and (4). In this setting, we establish an L-parabolicity
criterion related to a suitable modified Cheng–Yau’s operator L (see Proposition 3.2),
which is a consequence of a more general criterion related to divergent-type oper-
ators due to Pigola, Rigoli and Setti (see [13, Theorem 2.6]), and we apply it to
obtain sufficient conditions which guarantee that such a spacelike submanifold must
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be an isoparametric hypersurface of EnC11 with two distinct principal curvatures one
of which is simple (see Theorem 3.4 and Corollary 3.5).

It is worth mentioning that the works [3, 4] contain results similar to ours, under
the assumption that the ambient space is locally symmetric. But, in our setting, we can
find examples of Einstein manifolds which are not locally symmetric. Indeed, accord-
ing to [9, Example 1.1], the semi-Riemannian product space Rpp �M n, where M n

is a Ricci flat Riemannian manifold, is an Einstein manifold of index p. Moreover,
supposing that the sectional curvature KM of M n is such that KM .u; v/ � c2 for any
u; v 2 TM and some constant c2 and considering the spacelike submanifold given by
the inclusion � W M n ,! Rpp �M n, we can verify that the curvature constraints (1),
(2), (3) and (4) are satisfied. However, ifM n is not locally symmetric, then Rpp �M n

is not a locally symmetric manifold.

2. Preliminaries

Let M n be a spacelike submanifold immersed in a semi-Riemannian space LnCpp of
index p. In this context, we choose a local field of semi-Riemannian orthonormal
frames e1; : : : ; enCp in LnCpp , such that, at each point of M n, e1; : : : ; en are tangent
to M n and enC1; : : : ; enCp are normal to M n. Using the following convention of
indices:

1 � A;B;C; : : : � nC p; 1 � i; j; k; : : : � n; nC 1 � ˛; ˇ; ; : : : � nC p;

and taking the corresponding dual coframes !1; : : : ;!nC1, the semi-Riemannian met-
ric of LnCpp is given by ds2 D

P
A "A!

2
A, where "i D 1 and "˛ D �1, 1 � i � n and

nC 1 � ˛ � nC p. Denoting by ¹!ABº the connection forms of LnCpp , we have that
the structure equations of LnCpp are given by

d!A D �
X
B

"B!AB ^ !B ; !AB C !BA D 0; (5)

d!AB D �
X
C

"C!AC ^ !CB �
1

2

X
C;D

"C "DRABCD!C ^ !D; (6)

whereRABCD denote the components of the curvature tensor ofLnCpp . In this setting,
denoting by RCD and R the Ricci tensor and the scalar curvature of LnCpp , respec-
tively, we have

RCD D
X
B

"BRCBDB ; R D
X
A

"ARAA:
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Moreover, the components RABCDIE of the covariant derivative of the curvature ten-
sor of LnCpp are defined byX

E

"ERABCDIE!E D dRABCD �
X
E

"E
�
REBCD!EA CRAECD!EB

CRABED!EC CRABCE!ED
�
:

Restricting all the tensors to M n in LnCpp , since !˛ D 0 on M n, we getX
i

!˛i ^ !i D d!˛ D 0:

So, from Cartan’s Lemma we obtain

!˛i D
X
j

h˛ij!j ; with h˛ij D h
˛
ji : (7)

This gives the second fundamental form ofM n, that isB D
P
˛;i;j h

˛
ij!i ˝!j e˛ , and

its square length S D jBj2 D
P
˛;i;j .h

˛
ij /
2. Furthermore, the mean curvature vector

h and the mean curvature function H of M n are defined, respectively, by

h D
1

n

X
˛

�X
i

h˛ii

�
e˛ and H D jhj D

1

n

sX
˛

�X
i

h˛ii

�2
:

From (5) and (6), we deduce that the connection forms ¹!ij º of M n are charac-
terized by the following structure equations:

d!i D �
X
j

!ij ^ !j ; !ij C !j i D 0;

d!ij D �
X
k

!ik ^ !kj �
1

2

X
k;l

Rijkl!k ^ !l ;
(8)

where Rijkl are the components of the curvature tensor of M n. From previous struc-
ture equations, we obtain the Gauss equation (see [12, Theorem 4.5])

Rijkl D Rijkl �
X
ˇ

.h
ˇ

ik
h
ˇ

jl
� h

ˇ

il
h
ˇ

jk
/: (9)

From (9) we also get the relation

S D n2H 2
C n.n � 1/R �

X
i;j

Rij ij ; (10)

where R stands for the normalized scalar curvature ofM n. Moreover, the first covari-
ant derivatives h˛

ijk
of hij satisfyX

k

h˛ijk!k D dh
˛
ij �

X
k

h˛ik!kj �
X
k

h˛jk!ki �
X
ˇ

h
ˇ
ij!ˇ˛: (11)
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Then, by exterior differentiation of (7) we get the Codazzi equation (see [12, Theo-
rem 4.33])

h˛ijk � h
˛
ikj D R˛ijk : (12)

The second covariant derivatives h˛
ijkl

of h˛ij are given byX
l

h˛ijkl!l D dh
˛
ijk �

X
l

h˛ljk!li �
X
l

h˛ilk!lj �
X
l

h˛ijl!lk �
X
ˇ

h
ˇ

ijk
!ˇ˛:

Taking the exterior derivative in (11), we obtain the Ricci formula

h˛ijkl � h
˛
ijlk D �

X
m

h˛imRmjkl �
X
m

h˛mjRmikl : (13)

Restricting the covariant derivative RABCDIE of RABCD to M n, we get

R˛ijkl D R˛ijkIl C
X
ˇ

R˛ˇjkh
ˇ

il
C

X
ˇ

R˛iˇkh
ˇ

jl

C

X
ˇ

R˛ijˇh
ˇ

kl
C

X
m;k

Rmijkh
˛
lm; (14)

where R˛ijkl denotes the covariant derivative of R˛ijk as a tensor on M n. Moreover,
since we are supposing thatM n has a flat normal bundle, that is,R?D 0 (equivalently,
R˛ˇjk D 0), R˛ˇjk satisfy the Ricci equation

R˛ˇij D
X
k

.h˛ikh
ˇ

kj
� h˛kjh

ˇ

ik
/: (15)

3. Main results

From now on, we will deal with a spacelike submanifold M n immersed with parallel
normalized mean curvature vector in E

nCp
p , which means that the mean curvature

functionH is positive and h is parallel as a section of the normal bundle. In particular,
we can choose a orthonormal frame ¹e1; : : : ; enCpº of T E

nCp
p such that enC1 D h

H
.

So, we get

HnC1
WD

1

n
tr.hnC1/ D H and H˛

WD
1

n
tr.h˛/ D 0; ˛ � nC 2; (16)

where h˛ denotes the matrix .h˛ij /.
Considering this previous setting, we obtain the following Simons type formula

which is derived from the proofs of [4, Lemma 2] and [9, Lemma 3.1].
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Lemma 3.1. Let M n be a spacelike submanifold immersed with parallel normal-
ized mean curvature vector and flat normal bundle in an Einstein manifold E

nCp
p

of index p. Suppose that there exists an orthogonal basis for TM that diagonalizes
simultaneously all operators B� with � 2 TM?, where hB�u; vi WD hB.u; v/; �i for
any u, v 2 TM . Then

1

2
�S D jrBj2 C 2

� X
i;j;k;m;˛

h˛ijh
˛
kmRmijk C

X
i;j;k;m;˛

h˛ijh
˛
jmRmkik

�
C

X
i;j;k;˛;ˇ

h˛ijh
ˇ

jk
R˛iˇk �

X
i;j;k;˛;ˇ

h˛ijh
ˇ

jk
R˛kˇi

C

X
i;j;k;˛;ˇ

h˛ijh
ˇ
ijR˛kˇk �

X
i;j;k;˛;ˇ

h˛ijh
ˇ

kk
R˛iˇj C n

X
i;j

hnC1ij Hij

� nH
X
i;j;m;˛

h˛ijh
˛
mih

nC1
mj C

X
˛;ˇ

Œtr.h˛hˇ /�2

C
3

2

X
˛;ˇ

N.h˛hˇ � hˇh˛/; (17)

where N.A/ D tr.AAt /, for any matrix A D .aij /.

Proof. The Laplacian �h˛ij of the components h˛ij of the second fundamental form
is defined by �h˛ij WD

P
k h

˛
ijkk

. Consequently, from the Codazzi equation (12) we
have

1

2
�S D

X
˛;i;j

h˛ij

�X
k

h˛ijkk

�
C

X
˛;i;j;k

.h˛ijk/
2

D

X
i;j;k;˛

h˛ijR˛ijkk C
X
˛;i;j;k

h˛ijh
˛
kijk C jrBj

2: (18)

On the other hand, since .EnCpp ; g/ is an Einstein manifold, the components of its
Ricci tensor satisfy RAB D �gAB , for some constant � 2 R. Moreover, since we are
supposing that there exists an orthogonal basis for TM that diagonalizes simultane-
ously all B� with � 2 TM?, we can consider ¹e1; : : : ; enº a local orthonormal frame
onM n such that h˛ij D �

˛
i ıij for all ˛ 2 ¹nC 1; : : : ; nC pº. So, proceeding as in [9],

from the differential Bianchi identity and the fact that gABIC � 0 we getX
i;k;˛

�˛i R˛iikIk D �
X
i;k;˛

�˛i
�
RikikI˛ CRk˛ikIi

�
D �

X
i;˛

�˛i
�
Ri i I˛ �R˛i Ii

�
D �

X
i;˛

�˛i
�
�gi i I˛ � �g˛i Ii

�
D 0 (19)
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and X
i;k;˛

�˛i R˛kikIi D
X
i;˛

�˛i R˛i Ii D
X
i;˛

�˛i �g˛i Ii D 0; (20)

where RijklIm are the covariant derivatives of Rijkl on E
nCp
p . Consequently, from

(19) and (20) we obtain X
i;j;k;˛

�
R˛ijkIk CR˛iki Ij

�
h˛ij D 0: (21)

Therefore, using (9), (13)–(18) jointly with (21), we can reason as in the proof of
[4, Lemma 2] to deduce formula (17).

According to [5], the Cheng–Yau’s operator � acting on a smooth function f W
M n ! R is given by

�f D
X
i;j

.nHıij � h
nC1
ij /fij D nH�f �

X
i;j

hnC1ij fij ; (22)

where fij denote the components of the Hessian of f and the normal vector field enC1
is taken in the direction of the mean curvature vector, that is enC1 D h

H
. From (22),

we also have
�f D tr.P1 ı r2f /; (23)

where
P1 D nHI � h

nC1; (24)

I being the identity in the algebra of smooth vector fields on M n, hnC1 D .hnC1ij /

denotes the second fundamental form of M n in the direction enC1 and r2f stands
for the self-adjoint linear operator metrically equivalent to the Hessian of f .

In order to study linear Weingarten submanifolds of E
nCp
p whose mean curvature

functionH and normalized scalar curvatureR satisfyRD aH C b for some a;b 2R,
we will consider the following modified Cheng–Yau’s operator

L D �C
n � 1

2
a�: (25)

Equivalently, for all smooth function f WM n!R, the definition (25) can be rewritten
as follows:

Lf D tr.P ı r2f /;

where
P D

�
nH C

n � 1

2
a
�
I � hnC1: (26)

We recall that a Riemannian manifold M n is said to be parabolic (with respect to
the Laplacian operator) if the constant functions are the only subharmonic functions
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on M n which are bounded from above; that is, for a smooth function f W M n ! R

such that

�f � 0 and sup
M

f < C1 implies f D constant:

Extending this previous concept to the operator L defined in (25), M n is said to be
L-parabolic (or parabolic with respect to the operator L) if the constant functions are
the only smooth functions f W M n ! R which are bounded from above and satisfy
Lf � 0. In other words, for a smooth function f WM n ! R such that

Lf � 0 and sup
M

f < C1 implies f D constant:

At this point, we also observe that, denoting by RCD the components of the Ricci
tensor of E

nCp
p , the scalar curvature R of E

nCp
p is given by

R D

nCpX
A

"ARAA D
X
i;j

Rij ij � 2
X
i;˛

Ri˛i˛ C
X
˛;ˇ

R˛ˇ˛ˇ :

Consequently, assuming that E
nCp
p satisfies conditions (1) and (3), we get

R D n.n � 1/R � 2pc1 C .p � 1/c3; (27)

where R WD 1
n.n�1/

P
i;j Rij ij . Hence, since the scalar curvature of an Einstein man-

ifold is constant, from (27) we conclude that R is a constant naturally attached to an
Einstein manifold E

nCp
p satisfying (1) and (3).

The next result provides sufficient conditions which guarantee the L-parabolicity
of a linear Weingarten spacelike submanifold immersed in E

nCp
p . This L-parabolicity

criterion is obtained as an application of [13, Theorem 2.6].

Proposition 3.2. Let M n be a complete linear Weingarten spacelike submanifold
immersed with parallel normalized mean curvature vector in an Einstein manifold
E
nCp
p of index p, such that R D aH C b for some constants a; b 2 R with b � R. If
H is bounded on M n and, for some reference point o 2M n and some ı > 0,Z C1

ı

dt

vol.@Bt /
D C1; (28)

where Bt denotes the geodesic ball of radius t in M n centered at o, then M n is
L-parabolic.

Proof. Let us consider on M n the symmetric .0; 2/-tensor field � given by

�.X; Y / WD hPX; Y i;
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for all X; Y 2 TM or, equivalently,

�.rf; �/] D P.rf /;

where ] W T �M ! TM denotes the musical isomorphism, for all smooth function
f WM n ! R, and P is defined in (26).

Since E
nCp
p is an Einstein manifold, denoting by Ric the Ricci tensor of E

nCp
p ,

we have Ric D �h ; i for some constant � 2 R. Thus, from [1, Lemma 3.1] we get

hdivP1;rf i D
X
i

hR.enC1; ei /ei ;rf i D Ric.enC1;rf /

D �henC1;rf i D 0; (29)

where P1 is defined in (24) and R denotes the curvature tensor of E
nCp
p . Choosing a

local orthonormal frame ¹e1; : : : ; enº on M n, we have

div.P1.rf // D
X
i

h.rei
P1/.rf /; ei i C hP1.rei

rf /; ei i

D hdivP1;rf i C�f: (30)

Thus, from (29) and (30) we obtain �f D div.P1.rf //. Consequently, we get

L.f / D div.P.rf //: (31)

Hence, from (31) we have
Lf D div

�
�.rf; �/]

�
:

Furthermore, sinceRD aH C b with b �R, [3, Lemma 3.4] guarantees thatL is
semi-elliptic or, equivalently, P is positive semi-definite. Taking a local orthonormal
frame ¹e1; : : : ; enº on M n such that hnC1ij D �nC1i ıij , we obtainX

i;j

�
hnC1ij

�2
�

X
˛;i;j

.h˛ij /
2
D S:

Consequently, from (10) we get

n2H 2
� .�nC1i /2 � n.n � 1/aH;

for all i D 1; : : : ; n. Moreover, since

.�nC1i /2 � n2H 2
C n.n � 1/aH �

�
nH C

n � 1

2
a
�2

and taking into account that the normalized mean curvature vector is parallel, we have

�nH �
n � 1

2
a � �nC1i � nH C

n � 1

2
a;
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for all i D 1; : : : ; n. Hence, for all i 2 ¹1; : : : ; nº, we obtain

0 � �i � 2nH C .n � 1/a;

where �i WD nH C n�1
2
a � �nC1i are the eigenvalues of the operator P (see [2, Lem-

ma 3]). Consequently, we can define a positive continuous function �C on Œ0;C1/
by

�C.t/ WD 2n sup
@Bt

H C .n � 1/a:

From the assumption that H is bounded on M n, we have

�C.t/ � 2n sup
M

H C .n � 1/a < C1:

Hence, we reach the following estimate:Z C1
ı

dt

�C.t/vol.@Bt /
�

�
2n sup

M

H C .n � 1/a
��1 Z C1

ı

dt

vol.@Bt /
:

Consequently, from hypothesis (28) we obtainZ C1
ı

dt

�C.t/vol.@Bt /
D C1:

Therefore, we are in position to apply [13, Theorem 2.6] to conclude that M n is L-
parabolic.

Remark 3.3. It is worth to note that we can reason as in the proof of Proposition 3.2 to
infer that an isometric immersion satisfying (28) is L-parabolic for L WD div.P .r�//,
where P is a positive semi-definite tensor such that sup P < C1 and divP � 0.

We will also consider the symmetric tensor

ˆ D
X
˛;i;j

ˆ˛ij!i ˝ !j e˛;

where ˆ˛ij D h
˛
ij �H

˛ıij and H˛ is defined by (16). Consequently, we have that

ˆnC1ij D hnC1ij �Hıij and ˆ˛ij D h
˛
ij ; nC 2 � ˛ � nC p: (32)

Let jˆj2 D
P
˛;i;j .ˆ

˛
ij /
2 be the square of the length of ˆ. It is not difficult to

check that ˆ is traceless with

jˆj2 D S � nH 2
D nH 2.n � 1/C n.n � 1/.R �R/: (33)

From Proposition 3.2, we obtain the following characterization result for complete
linear Weingarten spacelike submanifolds.
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Theorem 3.4. Let M n be a complete linear Weingarten spacelike submanifold im-
mersed with a parallel normalized mean curvature vector and a flat normal bun-
dle in an Einstein manifold E

nCp
p of index p satisfying conditions (1), (2), (3) and

(4), such that R D aH C b for some constants a; b 2 R with b � R. Suppose that
there exists an orthogonal basis for TM that diagonalizes simultaneously all opera-
tors B� with � 2 TM?, where hB�u; vi WD hB.u; v/; �i for any u, v 2 TM . When
c WD c1

n
C 2c2 > 0, assume in addition that H 2 �

4.n�1/c
Q.p/

, where

Q.p/ WD p.n � 2/2 C 4.n � 1/:

If H is bounded on M n, jˆj � C.n; p;H/, where

C.n; p;H/ WD

p
n

2
p
n � 1

�
p.n � 2/H C

p
pQ.p/H 2 � 4p.n � 1/c

�
;

and hypothesis (28) is satisfied, then p D 1 andM n is an isoparametric hypersurface
of EnC11 with two distinct principal curvatures one of which is simple.

Proof. We note that, since the normalized mean curvature vector of M n is parallel,
from the Ricci equation (15) it follows that h˛hnC1 D hnC1h˛ for all ˛, that is, hnC1

commutes with all the matrices h˛ . So, from (32) we have that ˆnC1 commutes with
all the matrices ˆ˛ . Since the matrices ˆ˛ are symmetric and traceless, we can use
[14, Lemma 2.6] with ˆ˛ and ˆnC1 in order to obtainˇ̌

tr..ˆ˛/2ˆnC1/
ˇ̌
�

n � 2p
n.n � 1/

N.ˆ˛/
p
N.ˆnC1/: (34)

Moreover, using Cauchy–Schwarz inequality we also have that

p
X
˛;ˇ

Œtr.ˆ˛ˆˇ /�2 � p
X
˛

Œtr.ˆ˛/2�2 D p
X
˛

ŒN.ˆ˛/�2

�

�X
˛

N.ˆ˛/
�2
D jˆj4: (35)

On the other hand, taking into account our set of constraints on M n ,! E
nCp
p

jointly with Lemma 3.1, we can reason as in the proof of [4, Proposition 1] to obtain

L.nH/ � jˆj2PH;p;c.jˆj/; (36)

where

PH;p;c.x/ D
x2

p
�

n.n � 2/p
n.n � 1/

Hx � n.H 2
� c/:

When c > 0, ifH 2 �
4.n�1/c
Q.p/

, then the polynomial PH;p;c has (at least) a positive
real root given by C.n;p;H/. Thus, since jˆj �C.n;p;H/, we get PH;p;c.jˆj/ � 0,



R. Antonia and H. F. de Lima 222

with PH;p;c.jˆj/ D 0 if and only if jˆj D C.n; p; H/. In the case c � 0, we have
that PH;p;c.jˆj/� 0 without any restriction on the values of the mean curvature func-
tion H . Consequently, in both cases, from (36) we get that L.nH/ � 0.

But Proposition 3.2 assures that M n is L-parabolic. So, from the boundedness
ofH , we get that it is constant onM n implying, in particular, thatL.nH/D 0 onM n.
Since jˆj > 0, we obtain that PH;p;c.jˆj/ D 0. Thus, inequalities (34) and (35) are,
in fact, equalities. In particular, we have that N.ˆnC1/ D tr.ˆnC1/2 D jˆj2. Thus,
from (33) we obtain

tr.ˆnC1/2 D jˆj2 D S � nH 2: (37)

Since M n has parallel normalized mean curvature vector, from (16) we also have

tr.ˆnC1/2 D S �
X

˛>nC1

X
i;j

.h˛ij /
2
� nH 2: (38)

Thus, from (37) and (38) we conclude thatX
˛>nC1

X
i;j

.h˛ij /
2
D 0:

Now, returning to (35) we get

pjˆj4 D pN.ˆnC1/2 D p
X

˛�nC1

ŒN.ˆ˛/�2 D jˆj4:

Hence, we conclude that p D 1. Moreover, since we are supposing that b � R, from
[4, Lemma 1] and the fact that H is constant on M n, we obtain thatX

i;j;k

.hnC1
ijk

/2 D n2jrH j2 D 0;

that is, hnC1
ijk
D 0 for all i; j; k. Therefore, we have thatM n must be an isoparametric

spacelike hypersurface of EnC11 .

We close our paper quoting the following consequence of Theorem 3.4.

Corollary 3.5. Let M n be a complete linear Weingarten spacelike hypersurface im-
mersed in an Einstein manifold EnC11 of index 1 satisfying conditions (1) and (2), such
that R D aH C b for some constants a; b 2 R with b �R. When c WD c1

n
C 2c2 > 0,

assume in addition that H 2 �
4.n�1/c

.n�2/2C4.n�1/
. If H is bounded on M n,

jˆj �

p
n

2
p
n � 1

�
.n � 2/H C

p
n2H 2 � 4.n � 1/c

�
and hypothesis (28) is satisfied, then M n is an isoparametric hypersurface of EnC11

with two distinct principal curvatures one of which is simple.
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