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On the optional and orthogonal decompositions of a class of
semimartingales

Abdelkarem Berkaoui

Abstract. We consider a set Q of probability measures, which are absolutely continuous with
respect to the physical probability measure P and at least one is equivalent to P . We invest-
igate necessary and sufficient conditions on Q, under which any Q-supermartingale can be
decomposed into the sum of a local Q-martingale and a decreasing process. We also provide
an orthogonal decomposition of square integrable semimartingale as the orthogonal sum of a
local Q-martingale and a square integrable semimartingale. As one application, we state the
orthogonal decomposition in an appropriate sense of the polar set of Q. We generalise then
the results of a previous article (2021), from finite probability space and discrete time case to
general continuous time case.

1. Introduction

One of the key elements in solving problems of pricing and hedging claims in incom-
plete markets is the well-known optional decomposition theorem. It states that an
adapted process V , which is dominated from below, can be written under the form
V D V0 C ˛ � Y � C , where ˛ � Y is the stochastic integral with respect to a vec-
tor valued semimartingale Y and C is an increasing process if and only if V is a
supermartingale under all local equivalent martingale measures Mloc.Y / of Y . The
first version of such theorem was established in the case where Y has continuous
paths in El Karoui and Quenez [9], and further extended to the càdlàg paths case in
Kramkov [18], Föllmer and Kabanov [10], Delbaen and Schachermayer [8], Föllmer
and Kramkov [11]. More generalisations of these results can be found in [1,14,17,22]
and [5].

The financial application of the formula is to consider Y as the discounted price
process of a finite set of risky financial assets, then the process ˛ represents the invest-
ment strategy of an agent in the market, where ˛i stands for the units of asset i held
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in the portfolio and C measures the agent’s aggregate consumption, while V cor-
responds to the generated wealth-consumption process starting with initial capital V0.
Inversely for a claimH , we define the process V by Vt D essupQ2Mloc.Y /

EQ.H jFt /,
where the filtration .Ft /0�t�T is generated by Y . Thanks to the m-stability property
of Mloc.Y / (see Definition 2.1), the process V is a supermartingale with respect to all
elements of Mloc.Y / and therefore by the optional decomposition theorem, the claim
H D VT can be superhedged via the portfolio V . Unfortunately, this method has a
very drastic drawback. The superhedging price V0, taken as the supremum over all
possible scenarios, is very high and far from being the practical one to use. That is
why a number of other pricing and hedging alternative methods were investigated. We
name for example utility maximization, risk minimization and mean-variance meth-
ods. Some of these methods are based on the projection idea, well used for minimizing
a certain metric. In our context, the idea is to project the claim H into the vector
space vect.Y / of all elements ˛ � YT and to write H under sufficient conditions as
H D H0 C ˛ � YT CN for some random variable N . By taking the appropriate Hil-
bert space L2, N is orthogonal to each element in vect.Y /.

A more sophisticated orthogonal decomposition suggests that for a square integ-
rableH , there exists a square integrable martingale L, which is orthogonal to Y , such
thatH DH0C ˛ � YT CLT . Two well-known decompositions are stated in this con-
text, namely in Kunita and Watanabe [19] and in Föllmer and Schweizer [12]. We cite
other interesting references, which dealt with the same problem under different set of
conditions, for example in [6, 16, 20]

In this paper, we consider the framework of a probability space .�;F ; P /, en-
dowed with a filtration .Ft /t2I , satisfying the conditions of completeness and right
continuity, and a set Q of P -absolutely continuous probability measures, containing
at least one equivalent to P . Our main goal is twofold: first we state necessary and
sufficient conditions on Q, under which it is possible to apply the optional decom-
position to a given Q-supermartingale. The idea is based on some tools introduced
in [3]. Second, we state the orthogonal decomposition of any square integrable semi-
martingale X , by decomposing it into a Q-martingale Y and a square integrable
semimartingale U , which is orthogonal to any Q-martingale. The proof idea is based
on the method of projection in L2 by using the Doob–Meyer decomposition ofX and
by choosing the appropriate vector space to project into. As one application of the last
result, we state the orthogonal decomposition in an appropriate sense of the polar set
of Q.

We point out that similar results were stated in [4] for the case of a finite probab-
ility space and a finite discrete time axis.
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2. Notations and preliminaries

In this section, we introduce the main notations and concepts which will be used later
in this paper. We define

• the vector space Lp.Rd / of p-integrable random variables with values in Rd and
Lp WD Lp.R/;

• for a semimartingale S , the vector space Lp.S/, of predictable processes ˛ such
that the random variable j˛jp �ST 2L1, where ˇ �S denotes the stochastic integ-
ral process of ˇ with respect to S ;

• the set abs.P /, to be the set of all P -absolutely continuous probability measures;

• the set equiv.P / WD ¹Q 2 abs.P / W P 2 abs.Qº;

• P is the predictable � -algebra, generated by the class of left continuous processes
with limits at right;

• the set … to be the set of all subsets of abs.P / and

…c;e
D ¹Q 2 … W Qis a closed convex set in L1 and Q \ equiv.P / ¤ ;ºI

• for Q 2 …c;e , we define

– the set of densities ZQ WD ¹ZQ WD dQ=dP W Q 2 Qº and denote Zt WD
E.ZjFt / for Z 2 ZQ,

– the polar set AQ WD ¹h 2 L1 W EQ.h/ � 0 for all Q 2 Qº;

• for Q 2…c;e , we say that a processX is a Q-supermartingale (resp. Q-martingale,
local Q-martingale) if it is a Q-supermartingale (resp. Q-martingale, local Q-
martingale) for all Q 2 Q. We denote by spm.Q/ (resp. m.Q/, mloc.Q/), the set
of all Q-supermartingales (resp. Q-martingales, local Q-martingales);

• the two sets M.X/ WD ¹Q2 abs.P / WX 2m.¹Qº/º and Mloc.X/ WD ¹Q2 abs.P / W
X 2 mloc.¹Qº/º for a vector process X ;

• for two processes V and W , we say that V is dominated by W and write V � W
if W � V is an increasing process;

• 1F is the indicator function of a set F .

We also recall the definition of the m-stability property of a set Q 2 …c;e . We
refer to Delbaen [7] for more details on this property.

Definition 2.1. Let Q 2 …c;e with A WD AQ.

• We say that Q is m-stable if for any Z1;Z2 2 ZQ with Z2 > 0 almost surely and
a stopping time � , we have Z WD Z1�Z

2=Z2� 2 ZQ.

• We denote by Qst, the smallest m-stable element in …c;e , which contains Q.

• We define the set Q0 D ¹Q 2 abs.P / W EQ.h/ D 0 for all h 2 A \ �Aº.
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In [3] and for a set Q 2 …c;e , a strong link is drawn between the two sets Qst and
spm.Q/. In a parallel way, the same link is drawn between the two sets ŒQ� WD .Qst/0

and m.Q/. It was shown in particular that spm.Q/ D spm.Qst/ and that ŒQ� is the
greatest set of martingale measures, containing Q and satisfying m.Q/ D m.ŒQ�/.

3. Optional decomposition

We state the main result of this section.

Theorem 3.1. Let Q 2 …c;e . Then the following assertions are equivalent:

(1) any positive Q-supermartingale is dominated by a local Q-martingale,

(2) ŒQ� D Qst,

(3) Q0 � Qst.

For the proof of Theorem 3.1, the equivalence .1/ , .2/ and the implication
.2/) .3/ are not hard to show. But for the implication .3/) .2/ to be proved, we
need to show that ŒH � D .H 0/st for all H 2 …c;e . For that we show the equality first
for a finite discrete time axis I . We denote respectively by spm.H ; I /, m.H ; I / and
H st;I , the corresponding sets spm.H /, m.H / and H st on the interval I . To simplify
notation we fix I WD ¹0 D t0; t1; : : : ; tN�1; tN D T º and J WD ¹0; : : : ; N � 1º.

Lemma 3.2. Let us suppose that H 2 …c;e is m-stable on I . Then for any bounded
process X 2 spm.H ; I /, there exists yQ 2 H with yQ � P and Y 2 spm.H ; I / \

m.¹ yQº; I / such that X � Y on I .

Proof. We define the dynamic sublinear operator �, associated to H , by

�t .h/ WD essupQ2H EQ.hjFt /;

for t 2 I and h2L1. We fix k 2 J and define hk WDXtkC1
�Xtk , then hk D h1k C h

2
k

where h1
k
D XtkC1

� �tk .XtkC1
/ and h2

k
D �tk .XtkC1

/ �Xtk . We have then

0 D �tk .h
1
k/ D EQk .h1kjFtk /

for some Qk 2 H , therefore Y 2 spm.H ; I / \ m.Q; I /, where the process Y is
defined by Y0 D 0 and YtkC1

D Ytk C h
1
k

for k 2 J and the probability measure Q is
defined by EQ.hjFtk / D EQk .hjFtk / for h 2 L1.FtkC1

/ and k 2 J . By following
the same methodology as in [15], there exists yQ 2 H with yQ � P such that Y 2
spm.H ; I / \m. yQ; I /. Moreover, for all k 2 J , we have

XtkC1
�Xtk D YtkC1

� Ytk C h
2
k � YtkC1

� Ytk

since h2
k
WD �tk .XtkC1

/ �Xtk � 0, so X � Y on I .



On the optional and orthogonal decompositions of a class of semimartingales 5

Lemma 3.3. Let H 2 …c;e . Then .H 0/st;I D ŒH �I WD .H
st;I /0.

Proof. For the direct inclusion, we have H � H st;I , so H 0 � ŒH �I and since ŒH �I

is m-stable, .H 0/st;I � ŒH �I . For the reverse inclusion, since the two sets ŒH �I and
zH WD .H 0/st;I are m-stable on I , it suffices to show that spm. zH ; I / � spm.ŒH �I ; I /.

Let a bounded process X 2 spm. zH ; I /, so, by Lemma 3.2, there exists Y 2
spm. zH ; I / \ m.¹ yQº; I / for some yQ 2 zH with yQ � P such that X � Y . So Y 2
spm.H 0; I / \ m.¹ yQº; I / and since H 0 is the set of local martingale measures for a
family of adapted processes on the discrete time axis ¹0; T º, by a discrete time ver-
sion of [11, Theorem 3.1 and Example 2.1] and for all k 2 J , � 2 L1C .Ftk / and
hk WD YtkC1

� Ytk , there exists M k 2 mloc.H
0; ¹0; T º/ such that

�hk �M
k
T �M

k
0 DW Nk :

There exists also yQk 2H 0 with yQk �P , which is equal to yQ on the interval ¹tk; tkC1º,
therefore

E
yQk .�hk/ D E

yQk
�
�E
yQk .hjFtk /

�
D 0 � E

yQk .Nk/ � 0;

and by consequent �hk D Nk . We deduce that EQ.�hk/ D 0 for all Q 2 H 0 and
� 2 L1.Ftk / and therefore EQ.hkjFtk / D 0 for all Q 2 H 0. We conclude that Y 2
m.H 0; I / � m.H ; I / D m.ŒH �I ; I / and so X 2 spm.ŒH �I ; I /.

Now, as we show that ŒH �I D .H
0/st;I for all finite intervals I , we construct an

increasing sequence of finite intervals .In/n�1, converging to Œ0; T � and so we need
an intermediary result to assure that .ŒH �In

; .H 0/st;In/ converge to .ŒH �; .H 0/st/ in an
appropriate sense.

Lemma 3.4. Let a sequence .Qn/n�1 � …
c;e and define An and A0n to be respect-

ively the polar sets of Qn and Q0n for n � 1. Then for B WD
T
nA0n, we have B DB 0.

Proof. We define Kn D An \ �An and L WD L1� , then B D B�� D .
S
n.A

0
n/
�/�.

Since A0n D Kn C L with the closure taken in L1, then .A0n/
� D K�n \ L

� and
therefore

B D
�[
n

.K�n \ L
�/
��
D

�[
n

K�n \ L
�
��
D

\
n

Kn C L:

We remark that B \ �B D
T
nKn, so B D B 0.

Next we show the desired result.

Lemma 3.5. Let H 2 …c;e . Then .H 0/st D ŒH �.
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Proof. For the direct inclusion, we follow the same lines as in Lemma 3.3. For the
reverse inclusion, we define, for each integer n � 1, the interval In D ¹k2�n T W k D
0; : : : ; 2nº. It was proved in [3, Lemma 2.5] that Rst D co.

S
n�1 Rst;In/ for any

R 2 …c;e , where co.C / stands for the closed convex hull of a set C in L1. So

ŒH � D
h
co
� [
n�1

H st;In

�i0
�

h
co
� [
n�1

.H st;In/0
�i0
:

From Lemma 3.4, we have Œco.
S
n�1.H

st;In/0/�0 D co.
S
n�1.H

st;In/0/, so by Lem-
ma 3.3, we get

ŒH � � co
� [
n�1

.H st;In/0
�
D co

� [
n�1

.H 0/st;In

�
D .H 0/st:

After gathering the necessary results, we now prove the main theorem of this
section.

Proof of Theorem 3.1. .1/) .2/ The reverse inclusion is trivial, let us prove the dir-
ect one. Since the two sets ŒQ� and Qst are m-stable, then it suffices to show that
spm.Qst/ � spm.ŒQ�/. Let X 2 spm.Qst/ D spm.Q/, so there exists Y 2 mloc.Q/ D

mloc.ŒQ�/ � spm.ŒQ�/ such that X � Y , therefore X 2 spm.ŒQ�/.
.2/) .1/ Since spm.Q/ D spm.Qst/ and Qst D ŒQ� is the set of local martin-

gale measures for a family of adapted processes, we apply [11, Theorem 3.1 and
Example 2.1] and deduce the result.

.2/) .3/ We have Q0 � ŒQ� and ŒQ� D Qst, then Q0 � Qst.

.3/) .2/ We have that Q � Q0 � Qst, so Qst D .Q0/st and by Lemma 3.5, we
obtain the result.

Example 3.6. We consider the setting of a two dimensional Brownian motion W D
.Wt /t2Œ0;1� and define the set

ƒ D ¹ 2 R2 W :.1;�1/ D 0º:

For � 2 L1.P IR2/, we denote by Z�, the solution of the equation dZ�=Z� D
�:dW and Z�0 D 1 and denote by Q�, the associated probability measure to Z�.
Now we define the set

Q WD ¹Q˛�
W ˛ 2 L0.P I Œ0; 1�/; � 2 ƒº;

then Q D Q0, Qst DM..1; 1/:W / and any positive Q-supermartingale is dominated
by a process of the form ˇ.1; 1/ �W for ˇ 2 L1

loc.
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4. Orthogonal decomposition

For a semimartingale X , we denote the Doob–Meyer decomposition

X D X0 CM
X
C AX ;

where MX is a local martingale and AX is a predictable process with bounded vari-
ation. We define �2, to be the set of square integrable semimartingales X , which
means that

E
�
hMX

iT

�
C E

�
jAX j2T

�
<1;

where hMX i is the quadratic variation process of MX and jAX j is the total variation
process ofAX . We define for Q 2…c;e , the setsm2.Q/ WDmloc.Q/\ �2, spm2.Q/ WD

spm.Q/ \ �2 and …c;e;2 WD ¹Q 2 …c;e W dQ=dP 2 L2 for some Q 2 Qº.
In this section, we state the orthogonal decomposition of square integrable semi-

martingales. We say that two processes X; Y 2 �2 are orthogonal if their quadratic
covariation process hX; Y i D hMX ;M Y i is null and we write X ? Y .

Theorem 4.1. Let X 2 �2 and Q 2 …c;e;2. Then there exists a unique pair of pro-
cesses .Y; U / 2 m2.Q/ � �2 with Y0 D U0 D 0 such that X D X0 C Y C U and
U ? V for all V 2 m2.Q/.

An immediate consequence of this theorem is given next.

Theorem 4.2. Let us consider a vector valued adapted process S such that ; ¤
Mloc.S/ 2 …

c;e;2. Then for all X 2 �2, there exists a predictable process ˇ and
U 2 �2 such that X D X0 C ˇ � S C U and U ?MS .

One application of Theorem 4.2 is pricing claims in incomplete markets. We con-
sider the same setting as in [12, 13, 21]: S is the price process of one risky asset and
C.'/ is the risk process associated to the trading strategy '. We suppose that S 2 �2,
then by the no-arbitrage assumption, there exists a predictable process ˛� such that
AS D ˛� � hMS i. We define the probability measure P�, by its derivativeZ�, defined
by

Z� D exp
®
� ˛ �MS

T �
1

2
.˛�/2 � hMS

iT

¯
:

We suppose that Z� 2 L2 and state that the price of a claim H 2 L2, which cor-
responds to the minimizing strategy of the conditional variance process of the risk
process C.'�/, is given by EP�.H/. Indeed, we should show (2.25) and (2.26) in
[12, Proposition 2.24]. We define the process V by Vt D EP�.H jFt /, then, by The-
orem 4.2, there exists a predictable process ˇ and U 2 �2 such that V D V0 C ˇ �
S C U and U ? MS . We prove now that U is a martingale, we apply Itô’s formula
and get

d.Z�U/ D Z� dU C U dZ�:
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Since the processesZ�U andZ� are martingales, thenZ� �U is a martingale, which
means that Z� � AU D 0 and therefore AU D 0.

Before proving Theorem 4.1, we state a preliminary result. We recall from [2],
that for any square integrable process Y , admitting at least one equivalent martingale
measure, there exists ˛Y 2 L2.M Y / such that Y D Y0 CM Y � ˛Y � hM Y i.

Lemma 4.3. Let Q 2 …c;e;2. Then we have the following:

(1) the set KQ WD ¹M Y
T W Y 2 m2.Q/º is a closed vector space in L2;

(2) let V;W 2 m2.Q/ with V0 D W0 D 0, so V D W iff MV DMW .

Proof. (1) From the uniqueness of the Doob–Meyer decomposition, we deduce easily
that KQ is a vector space. Now we show that it is closed in L2. Let .Y n/n�1�m2.Q/
such that M n

T WD M
Y n

T converges in L2 to some G 2 L2, and define the martingale
M by Mt WD E.GjFt / for t 2 Œ0; T �. Let Q 2 Q such that Z D dQ=dP 2 L2, then
by the Kunita–Watanabe decomposition, there exists ˛n 2 L2.M n/, Rn 2 m2.¹Pº/
with Rn ?M n such that

dDZ
WD dZ=Z D ˛n dM n

C dRn:

So hDZ ; M niT D ˛n � hM niT converges in L1 to hDZ ; M iT . Therefore Y nT D
M n
T � ˛

n � hM niT converges in L1 to YT WD G � hDZ ; M iT and by consequent
Y nt converges in L1 to Yt WD EQ.YT jFt / for all Q 2 Q. We deduce that Y 2 m2.Q/
and thus G DM Y

T 2KQ.
(2) The direct implication is trivial. Inversely, let us suppose that MV D MW ,

then Y WD V � W D M Y � ˛Y � hM Y i with M Y D MV �MW D 0, so Y D 0

which means that V D W .

Proof of Theorem 4.1. We suppose without loss of generality thatX0D 0. From Lem-
ma 4.3, the set KQ D ¹M Y

T W Y 2 m2.Q/º is a closed vector space in L2. So by
projection of MX

T 2 L2 into KQ, there exists Y 2 m2.Q/ and G 2 L2 such that
MX
T DM

Y
T CG and E.GG0/ D 0 for all G0 2 KQ. We define U WD X � Y 2 �2

and show the following:
MU
T DM

X
T �M

Y
T D G;

so E.hMU ;MV iT / D E.MU
T M

V
T / D 0 for all V 2 m2.Q/. Therefore,

E
�
1F � hMU ;MV

iT

�
D E

�
MU
T 1F �MV

T

�
D 0

for all predictable set F since 1F �MV DM 1F �V , we deduce that hMU ;MV i D 0.
For the uniqueness property, we suppose that there exists another pair of processes

.Y 0;U 0/ satisfying the assumptions of Theorem 4.1. SoM Y DM Y 0 and then Y D Y 0

from assertion (2) in Lemma 4.3. We deduce that U �U 0 D Y 0 � Y D 0 and therefore
U D U 0.
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Next, we introduce some new concepts, based on the orthogonal decomposition,
stated in Theorem 4.1.

Definition 4.4. Let Q 2 …c;e;2.

(1) We define the two operators �Q
0 and �Q

1 by �Q
0 .X/D Y and �Q

1 .X/D U for
X 2 �2, where the pair of processes .Y; U / is given in Theorem 4.1.

(2) A process X 2 �2 with X0 D 0 is said to be a �Q-martingale if

�Q
0 .X/ D X:

(3) A process X 2 �2 with X0 D 0 is said to be a �Q-non martingale if

�Q
0 .X/ D 0:

The notion of �Q-martingale, introduced above is identical to the notion of Q-
martingale for Q 2 …c;e . Some properties of the two operators �Q

0 and �Q
1 are given

below.

Proposition 4.5. Let Q 2 …c;e;2. Then

(1) �Q
i D �

ŒQ�
i for i D 0; 1;

(2) �Q
0 ı �

Q
0 D �

Q
0 and �Q

1 ı �
Q
0 D 0;

(3) �Q
1 ı �

Q
1 D �

Q
1 and �Q

0 ı �
Q
1 D 0;

(4) for � D �Q
0 ; �

Q
1 , we have �.X C Y / D �.X/C �.Y / and �.˛ �X/ D ˛ �

�.X/ for all X; Y 2 �2 and ˛ 2 L2.X/ such that ˛ �X 2 �2;

(5) for Q � zQ, we have �Q
0 D �

zQ
0 C �

Q
0 ı �

zQ
1 and �Q

1 D �
Q
1 ı �

zQ
1 .

Proof. (1) Since m2.Q/ D m2.ŒQ�/, we get the result.
(2) Let X 2 �2 and define Y D �Q

0 .X/, U D �Q
1 .X/, Z D �Q

0 .Y / and V D
�Q
1 .Y /. So X D X0 C Z C .V C U/ such that Z 2 m2.Q/, V C U 2 �2, Z0 D
V0 C U0 D 0 and V C U ? W for all W 2 m2.Q/. Therefore, by uniqueness we get
Y D Z and V D 0.

We proceed in the same way for the remaining assertions.

Definition 4.6. Let Q 2 …c;e;2 and X 2 �2. The two processes �Q
0 .X/ and �Q

1 .X/

are called respectively the �Q-martingale and �Q-non martingale parts of X .

Another characterization of the notions of �Q-martingale and �Q-non martingale,
is given below.

Corollary 4.7. Let Q 2 …c;e;2 and X 2 �2 with X0 D 0. Then

(1) X is a �Q-martingale iff �Q
1 .X/ D 0.

(2) X is a �Q-non martingale iff �Q
1 .X/ D X .
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Let Q1;Q2 2…c;e and let � be a stopping time, we define Q WDQ1 �� Q2 2…c;e

to be the L1-closed convex hull of the set of probability measures Q WD Q1 �� Q2

defined by Q.F / D EQ1
.EQ2

.1F jF� //, for Q1 2 Q1, Q2 2 Q2 and F 2 F . Let
respectively A, A1 and A2 be the polar sets of Q, Q1 and Q2, then thanks to [7], Q

is m-stable on the time axis ¹0; �; T º and A D A1 \L1.F� /CA2
� , where A2

� WD

¹h 2 L1 W bh 2 A2 for all b 2 L1C .F� /º.

Proposition 4.8. Let Q1;Q2 2 …c;e;2 and let � be a stopping time. Then for Q WD

Q1 �� Q2 and X 2 �2, we have

�Q
i .X/ D �

Q1

i .1Œ0;�/ �X/C �Q2

i .1Œ�;T / �X/;

for i D 0; 1.

Proof. Let us define the processes Y 1 WD �Q1

0 .1Œ0;�/ � X/, Y 2 WD �Q2

0 .1Œ�;T / � X/,
U 1 WD �Q1

1 .1Œ0;�/ �X/, U 2 WD �Q2

1 .1Œ�;T / �X/, Y WD Y 1C Y 2 and U WD U 1CU 2,
then U 2 �2 and X D X0 C Y C U . In order to apply the uniqueness property in
Theorem 4.1, we have to show that Y 2 m2.Q/ and that U ? V for all V 2 m2.Q/.
We remark that Q D Q1 on F� and Q D Q2 conditionally on F� , and that

1Œ0;�/ � Y D 1Œ0;�/ � Y 1; 1Œ�;T / � Y D 1Œ�;T / � Y 2;
1Œ0;�/ � U D 1Œ0;�/ � U 1; 1Œ�;T / � U D 1Œ�;T / � U 2:

So for ˛ 2 L1, Q1 2 Q1, Q2 2 Q2 and Q WD Q1 �� Q2, we have

EQ.˛ � YT / D EQ1

.1Œ0;�/˛ � Y 1T /C EQ2

.1Œ�;T /˛ � Y 2T / D 0;

then EQ.˛ � YT / D 0 for all Q 2 Q, and so Y 2 m2.Q/. Now, for V 2 m2.Q/, we
have hU; V i D 1Œ0;�/ � hU 1; V i C 1Œ�;T / � hU 2; V i, with 1Œ0;�/ � V 2 m2.Q1/ and
1Œ�;T / � V 2 m2.Q2/ and therefore hU; V i D 0. We conclude the result.

For a family V of adapted processes, we denote by Msp.V/, the set of all super-
martingales measures of the family V , which means that Q 2Msp.V/ if Q 2 abs.P /
and X 2 spm.Q/ for all X 2 V .

Theorem 4.9. Let V � �2 such that ; ¤ Q WDMsp.V/ 2 …c;e;2 and define the set
yV WD ¹�Q

0 .V / W V 2 Vº. Then

(1) ŒQ� DM. yV/;

(2) for allW 2 �2, there exists yV 2 yV and ˇ 2L2. yV / such that �Q
0 .W /D ˇ �

yV ;

(3) for all W 2 �2, there exists yV 2 yV , ˇ 2 L2. yV / and L 2 �2 such that W D
W0 C ˇ � yV C L and L ? Y for all Y 2 yV .
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Proof. (1) Since from [3], ŒQ� is the greatest set of martingale measures, containing
Q and satisfying m.Q/ D m.ŒQ�/, we need to show that

(i) Q �M. yV/, and

(ii) m.Q/ � m.M. yV//.

For (i), we have yV � m2.Q/, so Q �M. yV/. For (ii), let X 2 m.Q/ with X0 D 0,
then by applying [11, Theorem 3.1 and Example 2.2], we get X � ˇ � V for some
predictable process ˇ and V 2 V . Let Q 2 Q with Q � P and ˛ 2 L1C .P /, then
0 D EQ.˛ �XT / � EQ.˛ˇ � VT / � 0. Therefore X D ˇ � V and so X D �Q

0 .X/ D

ˇ � �Q
0 .V / 2 m.M. yV//.

We deduce that Q �M. yV/ � ŒQ�, so ŒQ� D ŒM. yV/� DM. yV/.
(2) LetW 2 �2, then �Q

0 .W /2m2.Q/ and sincem2.Q/Dm2.ŒQ�Dm2.M. yV//,
there exists yV 2 yV and ˇ 2 L2. yV / such that �Q

0 .W / D ˇ �
yV .

(3) It is a consequence of assertion (2) and Theorem 4.1.

As an immediate consequence of Theorem 4.9, we state a generalisation of the
Föllmer–Schweizer decomposition formula.

Corollary 4.10. Let V D .V 1; : : : ;V d / such that V i 2 �2 for i D 1; : : : ; d , ;¤Q WD

Msp.V /2…c;e;2 and define yV D . yV 1; : : : ; yV d /where yV i D�Q
0 .V

i / for i D 1; : : : ;d .
Then for all W 2 �2, there exists ˇ 2 L2. yV / and L 2 �2 such that W D W0 C ˇ �
yV C L and L ? yV .

5. Orthogonal decomposition of polar sets

We say that a set A�L1 is a Q-polar set for some Q 2…c;e if ADAQ. We denote
ŒQ� D .Qst/0 and ŒA� to be the ŒQ�-polar set. We define A WD ¹AQ W Q 2 …c;eº and
Ast WD ¹AQ W Q 2 …c;e is m-stableº.

In this section, we state the orthogonal decomposition of A 2 Ast by showing the
existence of a unique element B 2Ast such that AD ŒA�CB and B is orthogonal to
ŒA� in a sense to be defined next. We write in this case A D ŒA�˚B. We denote by
maxspm2.Q/, the set of maximal elements in spm2.Q/ with respect to the order �.

Definition 5.1. Let Q1;Q2 2 …c;e;2 such that Ai WD AQi
2 Ast for i D 1; 2. We

say that A1 and A2 are orthogonal and we write A1 ? A2, if maxspm2.Q
1/ ?

maxspm2.Q
2/, which means that X1 ? X2 for all X i 2 maxspm2.Q

i / and i D 1; 2.

Now we state the orthogonal decomposition of a set A 2 Ast.

Theorem 5.2. Let Q 2 …c;e;2 such that A D AQ 2 Ast. Then there exists a unique
element A? in Ast such that A D ŒA�˚A?.
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Proof. We define the family V WD ¹�Q
1 .X/ W X 2 spm2.Q/º, the set Q? WDMsp.V/

and its polar set A?.
First we show that A? ? ŒA�. We remark that maxspm2.ŒQ�/ D m2.Q/ and for

allX 2maxspm2.Q
?/ and thanks to [11, Theorem 3.1 and Example 2.2], there exists

Y 2 spm.Q/ such that X D �Q
1 .Y / and so X ? m2.Q/.

Second we show that A D ŒA�CA? or Q D ŒQ� \Q?. The direct inclusion is
trivial, for the reverse inclusion we show that spm2.Q/ � spm2.ŒQ� \ Q?/, so let
X 2 spm2.Q/, Q 2 ŒQ� \Q? and ˛ 2 L1C .P /, by Theorem 4.1, we get X D X0 C
�Q
0 .X/ C �

Q
1 .X/ with �Q

0 .X/ 2 m2.ŒQ�/ � spm2.ŒQ�/ and �Q
1 .X/ 2 spm2.Q

?/.
Therefore

EQ.˛ �XT / D EQ.˛ � �Q
0 .X/T /C EQ.˛ � �Q

1 .X/T / � 0;

and then X 2 spm2.ŒQ� \Q?/. We deduce by duality that A D ŒA�CA?.
Third we show the uniqueness property. Let us suppose there exists B 2 Ast sat-

isfying A D ŒA�˚B. In order to show that B D A?, we prove that spm2.Q
?/ D

spm2.Q
B/ or maxspm2.Q

?/ D maxspm2.Q
B/. Let X 2 maxspm2.Q

B/, so X D
X0 C �

Q
0 .X/C �

Q
1 .X/ and since X �X0 � �Q

1 .X/ ? �
Q
1 .X/, we have X D X0 C

�Q
1 .X/ 2 spm2.Q

?/. Inversely, let X 2 maxspm2.Q
?/. Since Q D ŒQ� \ QB , by

Lemma 5.3 below, we get spm2.Q/ � spm2.ŒQ�/C spm2.Q
B// and therefore X D

X1 CX2 with X1 2 spm2.ŒQ�/ and X2 2 spm2.Q
B/. From [11], there exists a local

Q-martingale M and a decreasing process C such that X1 D M C C . Let � be a
localizing sequence so that the two processes 1Œ0;�/ �M and 1Œ0;�/ � C are in �2.
We deduce that 1Œ0;�/ � .X � .C C X2// D 1Œ0;�/ �M , and since the two processes
1Œ0;�/ � .X � .C CX2// and 1Œ0;�/ �M are orthogonal, 1Œ0;�/ � .X � .C CX2//D 0,
which means that 1Œ0;�/ �X D 1Œ0;�/ � .C CX2/ 2 spm2.Q

B/ for all � and therefore
X 2 spm2.Q

B/.

Lemma 5.3. Let Q1;Q2 2 …c;e such that Q1 and Q2 are m-stable. Then

spm2.Q
1
\Q2/ � spm2.Q

1/C spm2.Q
2/:

Proof. We shall show that zQ�Q where Q WDQ1 \Q2 and zQ WDMsp.spm2.Q
1/C

spm2.Q
2//. Let Q 2 zQ and h 2 AQ, so there exists h1 2 AQ1

and h2 2 AQ2
such

that h D h1 C h2. By applying [11, Theorem 3.1 and Example 2.2], we deduce that
there exists X1 2 spm2.Q

1/ and X2 2 spm2.Q
2/ such that h1 � X1T and h2 � X2T .

So EQ.h/ � EQ..X1 CX2/T / � 0.

Thanks to the orthogonal decomposition stated in Theorem 5.2, we introduce
notions of martingale and non martingale sets.

Definition 5.4. We say that A 2 Ast is a martingale (resp. a non martingale) set if
ŒA� D A (resp. ŒA� D L1� ).



On the optional and orthogonal decompositions of a class of semimartingales 13

Next we investigate the properties of the sets ŒA� and A?.

Proposition 5.5. Let Q 2 …c;e;2 such that A D AQ 2 Ast. Then

(1) ŒA� is the largest martingale subset in A;

(2) A? is a non martingale subset in A;

(3) A? is a minimal subset in A, which satisfy A D ŒA�CA?;

(4) A? is a maximal subset in A, which satisfy A? ? ŒA�;

(5) ŒA�? D L1� ;

(6) .A?/? D A?.

Proof. (1) ŒŒA�� D ŒA�, so ŒA� is a martingale set. Now, let B 2 Ast with B D ŒB�

and B � A, then B D ŒB� � ŒA�.
(2) LetX 2 m2.Q?/, soX 2m2.Q/ and thenX D X0 C �Q

0 .X/, butX �X0 ?
�Q
0 .X/, therefore X D X0. We deduce that ŒA?� D L1� .

(3) Let B 2 Ast such that AD ŒA�CB and B�A?. So spm2.Q
B/� spm2.Q

?/

and then B ? ŒA�. By uniqueness in Theorem 5.2, we get the result.
(4) Let B 2 Ast such that A? � B � A and B ? ŒA�. Then A D ŒA�CA? �

ŒA�CB �A, so AD ŒA�CB and by uniqueness in Theorem 5.2, we get the result.
(5) We have spm2.ŒQ�

?/ ? m2.ŒŒQ��/ D m2.ŒQ�/ and spm2.ŒQ�
?/ � spm2.ŒQ�/,

so m2.ŒQ�?/ D ¹0º and any X 2 spm2.ŒQ�
?/ is an decreasing process, therefore

ŒA�? D L1� .
(6) We apply Theorem 5.2 and get A? D ŒA?�C .A?/? D .A?/?.

Definition 5.6. Let Q 2 …c;e;2 such that A D AQ 2 Ast. Then the two sets ŒA� and
A? are called respectively the martingale and the non martingale parts of A.

Next, we characterize the martingale and non martingale sets in more detail.

Theorem 5.7. Let Q 2 …c;e;2 such that A D AQ 2 Ast. Then the following asser-
tions are equivalent:

(1) A is a martingale set.

(2) A? D L1� .

(3) Any Q-supermartingale is dominated by a local Q-martingale.

Proof. .1/) .2/ Let us suppose A is a martingale set, then by definition A D ŒA�

and by assertion (5) in Proposition 5.5, we get A? D ŒA�? D L1� .
.2/) .1/ By Theorem 5.2, we get A D ŒA�CA? D ŒA�.
.1/) .3/ since Q D ŒQ�, we apply [11, Theorem 3.1 and Example 2.1] and get

the result.
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.3/) .1/ we apply Theorem 3.1 and get that Qst D ŒQ� and since Q D Qst, we
have Q D ŒQ� and therefore A D ŒA�.

Theorem 5.8. Let Q 2…c;e;2 such that ADAQ 2Ast. Then the following assertions
are equivalent:

(1) A is a non martingale set.

(2) A? D A.

(3) Any Q-supermartingale is a �Q-non martingale.

Proof. .1/) .3/ LetX2spm2.Q/, then by Theorem 5.2 we getXDX0C�Q
0 .X/C

�Q
1 .X/ with �Q

0 .X/ 2 m2.ŒQ�/, so �Q
0 .X/ D 0 and X D X0 C �Q

1 .X/.
.3/) .2/ We have A? � A, and for the reverse implication let X 2 spm2.Q/,

then X D X0 C �Q
1 .X/ and therefore X 2 spm2.Q

?/.
.2/) .1/ By assertion (2) in Proposition 5.5, we get ŒA� D ŒA?� D L1� .

Finally, we generalise Theorem 5.2. We denote Mart, to be the set of all martingale
sets and define Mart.A/ WD ¹B 2Mart W B � Aº for A 2 A.

Theorem 5.9. Let A 2 Ast and B 2 Mart.A/. Then there exists a unique element
C 2 Ast such that A D B ˚ C .

Proof. We define the family V WD ¹�
zQ
1 .X/ W X 2 spm2.Q/º, where Q D QA and

zQ D QB , we define the set H D Msp.V/ and C D AH . The rest of the proof is
identical to that of Theorem 5.2.

Definition 5.10. Let A 2 Ast and B 2Mart.A/. The set C 2 Ast in Theorem 5.9 is
called the orthogonal complementary set of B in A and denoted by c.A;B/. So the
set A? for A 2 Ast, introduced in Theorem 5.2, is the orthogonal complementary set
of ŒA� in A.

Corollary 5.11. Let A 2 Ast and B 2Mart.A/. Then c.A;B/ D A? ˚ c.ŒA�;B/.
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