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The solution of a type of absolute value equations using
two new matrix splitting iterative techniques

Rashid Ali and Kejia Pan

Abstract. Finding the solution of an absolute value vector equation (AVE) of the form

Ax � jxj D b

is an important subject in scientific computing, operations research, engineering, management
science, and economic applications. This paper proposes two new iterative techniques to solve
such AVEs. Both techniques are based on a decomposition of the coefficient matrix and a fixed-
point principle. The convergence of the proposed techniques under appropriate assumptions is
examined. We present results of numerical simulations to verify our theoretical findings and
demonstrate the efficiency of our techniques.

1. Introduction

Given a matrix A 2 Rn�n and a vector b 2 Rn, consider the AVE

Ax � jxj D b; (1)

where the coefficient matrix A 2 Rn�n is an M -matrix or strictly diagonally domi-
nant matrix, jxj 2 Rn is the vector with the components jx1j; : : : ; jxnj. One can also
consider the AVE of general form

Ax C Bjxj D b; (2)

where B 2 Rn�n. Equation (2) reduces to equation (1) when B D �I , where I is the
n � n unit matrix.

The AVE (1) occurs in various scientific computing problems as well as engi-
neering fields, including convex quadratic programming, network prices, linear com-
plementarity problems (LCPs), linear programming, and modeling of journal bearing
lubrication [5, 15, 21, 22, 26].
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Numerical techniques for AVEs focus on the structure of solutions, algebraic con-
structions, mathematical hypotheses, and the precise implementations of high-quality
preconditioners and high-performance numerical methods. In addition, in recent years
saw considerable interest in numerical techniques for AVEs, and many papers have
suggested a variety of methods. For example, Li [18] proposed a preconditioner AOR
(accelerated over-relaxation) approach for solving equation (1) and provided condi-
tions ensuring the convergence of his technique. Wu and Li [28] analyzed a novel
approach based on the shift splitting procedure for solving equation (1). Fakhazadeh
and Shams [10] proposed a mixed-type splitting procedure for computing solutions of
the AVE (1) and discussed its convergence properties. Zainali and Lotfi [29] investi-
gated the Newton technique and developed a stable as well as a quadratically conver-
gent solution for equation (1). Feng with Liu [11, 12] presented a two-step technique
as well as an improved generalized Newton technique. Saheya et al. [27] explored
smoothing-type schemes for equation (1) and analyzed the convergence properties
for the proposed schemes. According to Abdalah et al. [1], the AVE problem can be
reformulated as an LCP and its solutions can be computed by applying a smooth-
ing strategy. The unique features of AVEs and their association with LCPs have been
studied by Prokopyev [25]. Ke and Ma [17] considered an SOR-like (successive over-
relaxation) technique for equation (1). The work of Chen et al. [6] has extensively
investigated the approach of [17] and proposed a series of optimal parameters for
an SOR-like system. Zamani and Hladík [30] developed a novel concave minimiza-
tion strategy for equation (1), which eliminates some of the deficiencies of the earlier
methods proposed in [20] and other works; see [4, 8, 9, 13, 14, 16] and the references
therein.

To solve LCPs, Miao and Zhang [24], Li et al. [19], Dehghan and Hajarian [7]
and Mao et al. [23] have recently suggested different techniques based on a system
of fixed-point type. It is the goal of the analysis performed in the present paper to
extend the fixed-point principle to AVEs and develop effective iterative algorithms for
computing solutions of equation (1). To this end, we decompose the coefficient matrix
A of the equation into three different parts and use this decomposition to derive two
fixed-point formulas for the solution of the AVE. The new techniques are obtained
from these formulas. Moreover, we examine the convergence properties of our proce-
dures under new circumstances.

The paper is organized as follows. Section 2 presents the proposed techniques for
computing solutions of the AVE (1) as well as their convergence properties. Section 3
presents results of numerical simulation, and Section 4 draws final conclusions.
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2. Iterative schemes

In this section, we outline the proposed techniques for computing solutions of equa-
tion (1). Initially, we go over a few preparatory results.

Throughout the paper, Td.A/, kAk1 D max1�i�m

Pm
jD1 jaij j, �.A/ and jAj D

.jaij j/ stand for the tridiagonal part, the infinity norm, the spectral radius and the
absolute value of the matrix A, respectively. The square matrix A D .aij / 2 Rn�n

is called a Z-matrix if its off-diagonal entries are all nonpositive. The matrix A is
called an M -matrix if it is a Z-matrix and nonsingular with A�1 � 0. Furthermore,
the matrix A is said to be strictly row diagonally dominant if

Pn
jD1;j¤i jaij j < jai i j,

i D 1; 2; : : : ; n.
To introduce and analyze the new techniques, we decompose the matrix A as

A D W �‚; (3)

with
W D D � U C U T and ‚ D LC U T:

Here A D D � U � L with D, U and L are diagonal, strictly upper triangular and
strictly lower triangular, respectively, and T stands for transposition. The AVE (1) is
equivalent to the fixed-point problem of solving (see [3] for more details)

x D Q.x/;

where
Q.x/ D x � ˇEŒAx � jxj � b�; (4)

0 < ˇ � 1, andE DD�1 is a diagonal matrix consisting of positive diagonal elements
(see [2, 3]). Equations (3) and (4) imply that

x D x � ˇEŒWx �‚x � jxj � b�;

or, equivalently,
.I � ˇE‚/x D x � ˇEŒWx � jxj � b�:

Now we can formulate our iterative Technique I for equation (1) as

xkC1
D .I � ˇE‚/�1

®
xk
� ˇEŒWxk

� jxk
j � b�

¯
; k D 0; 1; 2; : : : (5)

The next result deals with the convergence of Technique I.

Theorem 2.1. Let ¹xkº be the sequence generated by the recipe (5) of Technique I
and let Rx denote the solution of the AVE (1). Then

jxkC1
� Rxj � jG�1

jT jxk
� Rxj;

where G D I � ˇE‚ and T D ˇE C jI � ˇEW j. Moreover, if �.jG�1jT / < 1, then
the sequence ¹xkº converges to the unique solution Rx of the AVE (1).
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Proof. Let Rx be a solution of (1). Then

Rx D .I � ˇE‚/�1
®
Rx � ˇEŒW Rx � j Rxj � b�

¯
: (6)

Subtracting (6) from (5), we get

xkC1
� Rx D .I � ˇE‚/�1

®
.xk
� Rx/ � ˇEW.xk

� Rx/C ˇE.jxk
j � j Rxj/

¯
;

or
xkC1

� Rx D .I � ˇE‚/�1
®
.I � ˇEW /.xk

� Rx/C ˇE.jxk
j � j Rxj/

¯
:

Using absolute values on both sides, we obtain successively the inequalities

jxkC1
� Rxj � j.I � ˇE‚/�1

j
®
jI � ˇEW jjxk

� Rxj C ˇE
ˇ̌
jxk
j � j Rxj

ˇ̌¯
;

jxkC1
� Rxj � j.I � ˇE‚/�1

j
®
jI � ˇEW jjxk

� Rxj C ˇEjxk
� Rxj

¯
;

jxkC1
� Rxj � j.I � ˇE‚/�1

j
®
.jI � ˇEW j C ˇE/jxk

� Rxj
¯
;

or, equivalently,

jxkC1
� Rxj � j.I � ˇE‚/�1

j
�
ˇE C jI � ˇEW j

�
jxk
� Rxj:

It follows that
jxkC1

� Rxj � jG�1
jT jxk

� Rxj:

In the present case, the matrix jG�1jT is nonnegative. According to [2, 3], if
�.jG�1jT / < 1; the iteration sequence ¹xkº of Technique I converges to the solu-
tion Rx of the AVE (1).

To establish the uniqueness, suppose that Ry is another solution of equation (1).
Thus,

A Rx � j Rxj D b;

and
A Ry � j Ryj D b;

which we rewrite as

Rx D .I � ˇE‚/�1
®
Rx � ˇEŒW Rx � .j Rxj C b/�

¯
;

and
Ry D .I � ˇE‚/�1

®
Ry � ˇEŒW Ry � .j Ryj C b/�

¯
;

respectively. It follows that

j Rx � Ryj � jG�1
jT j Rx � Ryj;

whereG D I � ˇE‚ and T D ˇE C jI � ˇEW j. Since �.jG�1jT / < 1, this implies
that Rx D Ry. This completes the proof.
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We next address Technique II. Recall that the equation (1) can be rewritten as
equation (4),

x D x � ˇEŒAx � jxj � b�;

or, equivalently, as

x D ˇ
®
x �EŒAx � jxj � b�

¯
C .1 � ˇ/x: (7)

Let� D ‡I , where I is the unit matrix and 0 < ‡ � 1. Equations (3) and (7), imply
successively that

x D ˇ
®
x �EŒ.W C�/x � .‚C�/x � jxj � b�

¯
C .1 � ˇ/x;

x � ˇE.‚C�/x D ˇ
®
x �EŒ.W C�/x � jxj � b�

¯
C .1 � ˇ/x;

and finally

.I � ˇE.‚C�//x D ˇ
®
x �EŒ.W C�/x � jxj � b�

¯
C .1 � ˇ/x:

The iteration sequence generated by our Technique II for solving equation (1) is
defined by

xkC1
D .I � ˇE.‚C�//�1

®
ˇ¹xk

�EŒ.W C�/xk
� jxk

j � b�º C .1 � ˇ/xk
¯
;

(8)
for k D 0; 1; 2; : : :

Next, we focus on the convergence of Technique II by using the subsequent theo-
rem.

Theorem 2.2. Let ¹xkº be the iterative sequences generated by Technique II and Rx
denote the solution of the AVE (1). Then

jxkC1
� Rxj � j xB�1

jC jxk
� Rxj;

where

xB D I � ˇE.‚C�/ and C D ˇE C jI � ˇE.W C�/j:

Moreover, if �.j xB�1jC/ < 1, then the sequence ¹xkº converges to the unique solution
Rx of the AVE (1).

Proof. Let Rx be a solution of (1). Then

Rx D .I � ˇE.‚C�//�1
®
ˇ¹ Rx �EŒ.W C�/ Rx � j Rxj � b�º C .1 � ˇ/ Rx

¯
: (9)

Upon subtracting equation (9) from equation (8), we get

xkC1
� Rx D .I � ˇE.‚C�//�1

®
ˇ¹.xk

� Rx/ �E.W C�/.xk
� Rx/

CE.jxk
j � j Rxjº C .1 � ˇ/.xk

� Rx/
¯
:
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Simplifying the right-hand side, we get

xkC1
� Rx D .I � ˇE.‚C�//�1

®
.I � ˇE.W C�//.xk

� Rx/C ˇE.jxk
j � j Rxj/

¯
:

Taking absolute values on both sides, we successively obtain

jxkC1
� Rxj � jI � ˇE.‚C�//�1

j
®
jI � ˇE.W C�/jjxk

� Rxj C ˇEjjxk
j � j Rxjj

¯
;

hence

jxkC1
� Rxj � jI � ˇE.‚C�//�1

j
®
jI � ˇE.W C�/jjxk

� Rxj C ˇEjxk
� Rxj

¯
;

or

jxkC1
� Rxj � jI � ˇE.‚C�//�1

j
®
.ˇE C jI � ˇE.W C�/j/jxk

� Rxj
¯
;

ending with
jxkC1

� Rxj � j xB�1
jC jxk

� Rxj;

where

xB D I � ˇE.‚C�/ and C D ˇE C jI � ˇE.W C�/j:

Clearly, if �.j xB�1jC/ < 1; then the iterative sequence ¹xkº generated by Tech-
nique II is convergent. The proof of the uniqueness is omitted, since it is similar to the
proof in Theorem 2.1.

3. Numerical experiments

In this section, we report results of several numerical investigations which demon-
strate the efficiency of the newly developed techniques with respect to the number of
iteration steps (Iters), CPU time (CPU), as well as the relative residual error (RRE),
Where ‘RRE’ is defined as

RRE WD
kAxk � jxkj � bk2

kbk2

and is subject to the bound RRE � 10�6.
Ahn [2] used the fixed-point principle to solve the linear complementarity prob-

lems. Some authors select the value of ˇ differently. For instance, Dehghan and
Hajarian [7] took ˇ D 1 in their work problems, while Mao et al. [23] divided the
parameter range into intervals. In this work, we used the same idea for AVEs and took
the parameters in the interval 0 < ‡ , ˇ � 1.
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Examples n Technique I Technique II
�.jG�1jT / �.j xB�1jC/

Example 3.1 100 0.4356 0.4286
1600 0.4828 0.4286

Example 3.2 64 0.5587 0.5546
1024 0.6199 0.6163

Example 3.3 1000 0.4926 0.5047
3000 0.4973 0.5098

Example 3.4 16 0.1375 0.2199
49 0.1444 0.2274

Table 1. Conditions for convergence of Theorems 2.1 and 2.2.

Initially, we performed numerical experiments in order to satisfy the convergence
conditions �.jG�1jT / < 1 and �.j xB�1jC/ < 1. Table 1 displays the results.

As shown in Table 1, we performed numerical experiments to test the convergence
conditions for both theorems. The results indicate that both approaches work well. To
evaluate the implementation of our newly developed techniques, the following tests
were conducted.

Example 3.1. Let A 2 Rn�n be of the form A D M C I and b 2 Rn be given by
A Rx � j Rxj D b with

M D Td.�1:5I; J;�0:5I / 2 Rn�n and Rx D .1:2; : : : ; 1:2/T 2 Rn

where J D Td.�1:5; 4;�0:5/ 2 Rf �f , I 2 Rf �f is the unit matrix, and f 2 D n.
In Example 3.1 and Example 3.2 below, we compare the proposed techniques I and II
with the AOR approach [18] and the mixed-type (MT) splitting approach [10]. Table 2
displays the numerical data.

Example 3.2. Let A 2 Rn�n be of the form A D M C 4I and let b 2 Rn be given
by A Rx � j Rxj D b with

M D Td.�I; J;�I / 2 Rn�n and Rx D ..�1/1; : : : ; .�1/n//T 2 Rn;

where J D Td.�1; 4;�1/ 2Rf �f , I 2Rf �f is the unit matrix and f 2 D n. Table 3
displays the results.

Tables 2 and 3 compare numerical features of the AOR, MT, and the newly devel-
oped techniques. The results demonstrate that the proposed techniques I and II are
superior to both the AOR and MT procedures considered.
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Techniques n 100 400 900 1600 4900

Iters 97 190 336 706 384
AOR CPU 0.4721 2.8203 3.2174 6.3887 9.2344

RRE 9.80e–07 9.61e–07 9.73e–07 9.84e–07 9.37e–07

Iters 88 157 250 386 342
MT CPU 0.4042 1.7954 3.0218 5.7627 8.8966

RRE 8.92e–07 9.66e–07 9.19e–07 9.57e–07 9.88e–07

Iters 42 62 79 94 103
Technique I CPU 0.1821 0.3227 0.9642 1.3403 1.9528

RRE 9.66e–07 9.79e–07 8.66e–07 8.83e–07 8.82e–07

Iters 19 26 31 35 52
Technique II CPU 0.1027 0.1632 0.7241 1.0971 1.4852

RRE 9.06e–07 8.81e–07 8.18e–07 8.67e–07 8.86e–07

Table 2. The effects of Example 3.1 with ‡ D 0:8 and ˇ D 1.

Techniques n 64 256 1024 4096

Iters 14 14 15 35
AOR CPU 0.3483 1.9788 2.3871 5.8097

RRE 5.21e-07 6.29e-07 6.54e-07 8.75e-07

Iters 14 14 15 25
MT CPU 0.3169 1.0953 1.9648 2.2195

RRE 4.32e-07 5.47e-07 5.07e-07 9.39e-07

Iters 11 11 10 9
Technique I CPU 0.1328 0.5326 1.6768 2.0363

RRE 9.44e-07 4.87e-07 6.32e-07 8.95e-07

Iters 11 11 10 9
Technique II CPU 0.1202 0.3573 0.8627 1.3492

RRE 9.83e-07 5.07e–07 6.54e–07 9.38e–07

Table 3. The outcomes of Example 3.2 with ‡ D 0:05 and ˇ D 1.
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Example 3.3. Suppose

A D Td.�1; 4;�1/ 2 Rn�n; Rx D ..�1/�1; : : : ; .�1/�n//T 2 Rn

and A Rx � j Rxj D b. For Example 3.3 and Example 3.4 below, we present a comparison
between the proposed techniques and the optimal parameter SOR-like approach [6]
(reported as SLA) and the shift splitting approach [28] (reported as SSA). Table 4
displays the results.

Example 3.4. Let Nh D 1=n and x� D n2. Consider the matrix

A D I ˝QC P ˝ I 2 R
x��x�;

where I 2Rn�n denotes again the unit matrix and˝ stands for the Kronecker product.
Moreover, Q and P are n � n tridiagonal matrices defined as follows:8̂̂<̂

:̂
Q D Td

�2C Nh
8

; 8;
2 � Nh

8

�
;

P D Td
�1C Nh

4
; 4;

1 � Nh

4

�
:

The vector is given by b D A Rx � j Rxj, where Rx D .1; 1; 1; : : : ; 1; 1/ 2 Rx�. The results
of computations are listed in Table 5.

Techniques n 1000 2000 3000 4000

Iters 18 18 18 18
SLA CPU 3.0156 13.1249 33.9104 65.1345

RRE 6.12e–07 6.13e–07 6.13e–07 6.15e–07

Iters 14 14 14 14
SSA CPU 2.8129 9.0955 17.3029 29.1645

RRE 8.92e–07 8.93e–07 8.94e–07 8.94e–07

Iters 11 11 11 11
Technique I CPU 2.1304 5.1618 9.2085 16.6924

RRE 7.48e–07 7.43e–07 7.41e–07 7.40e–07

Iters 12 12 12 12
Technique II CPU 1.0815 2.1425 3.2091 5.3009

RRE 6.30e–07 6.31e–07 6.32e–07 6.33e–07

Table 4. The outcomes of Example 3.3 with ‡ D 0:05 and ˇ D 1.
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Techniques x� 256 1296 2401 4096

SLA Iters 12 12 12 12
CPU 1.6492 3.1458 14.5518 82.6151
RRE 3.77e–07 3.74e–07 3.73e–07 3.72e–07

SSA Iters 8 8 8 8
CPU 0.3707 4.5734 22.7075 117.6810
RRE 1.54e–07 1.55e–07 1.56e–07 1.56e–07

Technique I Iters 6 6 6 6
CPU 0.1322 1.1309 7.0435 15.3732
RRE 2.26e–09 2.16e–09 2.14e–07 2.16e–09

Technique II Iters 4 4 4 4
CPU 0.0569 1.2082 1.9334 3.3582
RRE 2.18e–07 1.50e–07 1.29e–07 1.13e–07

Table 5. The outcomes for Example 3.4 with ‡ D 0:9 and ˇ D 1.

Tables 4 and 5 demonstrate that all of the tested techniques achieve an accurate
calculation of solutions of the AVE (1). In comparison with the existing techniques,
the ‘Iters’ and ‘CPU’ values in the proposed techniques I and II are superior. This
allows us to conclude that the proposed techniques are both highly effective and
implementable.

4. Conclusions

This paper introduced two new iterative techniques for computing solutions of equa-
tion (1). We confirmed that the proposed approaches lead to the solution of the AVE
(1) under suitable selections of the involved parameters. We reported results of some
numerical investigations which indicate that the presented techniques are implement-
able and effective. Theoretical comparisons as well as research of these iterative
procedures are attractive topics for future research.
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