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Uniform regularity for the flow of a chemically
reacting gaseous mixture

Jianzhu Sun and Tong Tang

Abstract. Uniform regularity plays an important role in the global existence of strong solutions
and large time behavior of global solutions. In this work, we prove the uniform regularity of
smooth solutions to the compressible flow of a chemically reacting gaseous mixture in T3.

1. Introduction

The flow of chemically reacting gaseous mixture is associated with a variety of phe-
nomena and processes: pollutant formation, biotechnology, fuel droplets in combus-
tion, sprays, and astrophysical plasma. Due to its numerous applications, the chem-
ically reacting gaseous mixture have been the subject of many theoretical research
and engineering. However, it is formidable and complex to describe and analyze
this model mathematically due to the complicate radiating and thermonuclear pro-
cesses, as well as a number of physical hypothesis. Therefore, simplification should be
introduced. It is well known that there are three classical different ways for simplifica-
tion: simplifying the reactive process, simplifying the fluid dynamics and simplifying
the coupling relationship. More precisely, a wide variety of nuclear reactions take
place inside the star and produce the burning of the constitutive elements, giving
rise to a self-consistent production of energy. As pointed out by Bebernes et al.
[2], Ducomet [10], Feireisl et al. [15], people introduce a simple reacting process
with first-order kinetics and it is coupled with a compressible Navier–Stokes–Possion
equations system. Inspired by [10, 15], we consider the following system of simple
reacting compressible flows in astrophysics:

@t�C div.�u/ D 0; (1.1)

@t .�u/C div.�u˝ u/Crp � ��u � .�C �/r divu D ��r�; (1.2)

@t .�Y /C div.�uY / � "�Y C k�Y D 0; (1.3)
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��� C e� D � in T3
� .0;1/; (1.4)

.�; u; Y /.�; 0/ D .�0; u0; Y0/.�/ in T3: (1.5)

Here, � denotes the density, u the velocity field, Y the reactant fraction, and � is a
potential function, � and � are two viscosity constants satisfying

� > 0 and �C
2

3
� � 0;

" and k are positive constants; and p WD a�
 is the pressure with the constants a > 0
and 
 � 1. Compared with [10,15], we neglect the temperature of the mixture and con-
sider a simple diffusion flux with a more complex and general Poisson equation (1.4).
This simplification leads to a possibility of considering the above system as isentropic
compressible models from the mathematical viewpoint.

Generally speaking, the highly complex nonlinearity and coupling shows well-
posedness is not an easy issue. In recent years, the corresponding study have paid a lot
of attentions. Let us recall some known results. Feireisl and his coauthors [16] studied
a multi-dimensional model for the dynamic combustion of a viscous, compressible,
radiative and reactive gas with higher order kinetics. They obtained the global exis-
tence of a weak solution, which relies on the concept of a variational solution. Based
on the seminal work of Feireisl, Donatelli and Trivisa [8] established the global exis-
tence of weak solutions with large initial data for a multi-dimensional combustion
model. And they [7] extended the result to a more general situation, where the heat
conductivity and viscosity depend on the temperature, pressure depends on the den-
sity, temperature and reactant. We refer readers to [3,9,10,17,19,20,22–25] for more
details and other results.

For the one-dimensional case, Ducomet [11] established the global existence and
exponential decay in H 1 of solutions to the one-dimensional model for q � 4. Later
on, Ducomet and Zlotnik [12–14] established the existence of global solutions to
the one-dimensional model under rather general assumptions on q. Moreover, they
obtained the exponential stabilization for solutions by constructing new Lyapunov
functionals. Chen, Hoff and Trivisa [4–6] studied the discontinuous solutions with
large discontinuous initial data for the one-dimensional model.

Before stating our main results, we recall the local existence of smooth solutions
to the problem (1.1)–(1.5). Since the system (1.1)–(1.5) is a parabolic-hyperbolic one,
the results in [27] imply the following.

Proposition 1.1 ([27]). Let s > 5
2

be an integer and assume that the initial data satisfy

�0; u0; Y0 2 H
s and

1

C0
� �0 (1.6)
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for a positive constant C0. Then the problem (1.1)–(1.5) has a unique smooth solution
.�; u; Y / satisfying

� 2 C `.Œ0; T /IH s�`/; u; Y 2 C `.Œ0; T /IH s�2`/; ` D 0; 1I
1

C
� � (1.7)

for some 0 < T � 1.

The aim of this paper is to prove uniform regularity estimates in .�;�; "/. We will
prove the following theorem.

Theorem 1.1. Let 0 < � < 1, 0 < � C � < 1, 0 < " < 1, 0 < 1
C0
� �0, 0 � Y0,

�0; u0; Y0 2 H
3.T3/. Let .�; u; Y; �/ be the unique local smooth solutions to the

problem (1.1)–(1.5). Then

k.�; u; Y /.�; t /kH3 � C and k�.�; t /kH5 � C in Œ0; T � (1.8)

hold true for some positive constants C and T0 .� T / independent of �, � and ".

We define

M.t/ WD 1C sup
0���t

°
k.�; u; Y; p/.�; �/kH3 C k@tu.�; �/kL2

C k@tY.�; �/kL2 C



1
�
.�; �/





L1

±
: (1.9)

We can prove:

Theorem 1.2. For any t 2 Œ0; T0/, we have that

M.t/ � C0.M0/ exp.tC.M// (1.10)

for some nondecreasing continuous functions C0.�/ and C.�/.

It follows from (1.10), see [1, 21], that

M.t/ � C: (1.11)

If we can prove Theorem 1.2, then Theorem 1.1 follows immediately. Therefore, we
only need to show Theorem 1.2.

In the following proofs, we will use the bilinear commutator and product estimates
due to Kato–Ponce [18],

kDs.fg/ � fDsgkLp � C.krf kLp1kD
s�1gkLq1 C kgkLp2kD

sf kLq2 /; (1.12)

kDs.fg/kLp � C.kf kLp1kD
sgkLq1 C kD

sf kLp2kgkLq2 /; (1.13)

with D D .�4/
1
2 , s > 0 and 1

p
D

1
p1
C

1
q1
D

1
p2
C

1
q2

.



J. Sun and T. Tang 256

2. Proof of Theorem 1.2

First, testing (1.1) by �q�1, we see that

1

q

d
dt

Z
�qdx D

�
1 �

1

q

� Z
�q divudx � kdivukL1

Z
�qdx;

and it is clear that
d
dt
k�kLq � kdivukL1k�kLq :

A routine computation gives rise to

k�kLq � k�0kLq exp
� Z t

0

kdivukL1d�
�
: (2.1)

Taking q !C1, we get

k�kL1 � k�0kL1 exp.tC.M//: (2.2)

Due to the mass equation (1.1), it follows that

@t
1

�
C u � r

1

�
�
1

�
divu D 0: (2.3)

Proceeding as (2.1), we multiply (2.3) by .1
�
/q�1 and get the following:

1

q

d
dt

Z �1
�

�q
dx D

�
1C

1

q

� Z �1
�

�q
divudx �

�
1C

1

q

�


1
�




q
Lq
kdivukL1 :

It is obvious to obtain that

d
dt




1
�





Lq
�

�
1C

1

q

�


1
�





Lq
kdivukL1 ;

which gives 


1
�





Lq
�




 1
�0





Lq

exp
��
1C

1

q

� Z t

0

kdivukL1d�
�
:

Sending q !C1 leads that


1
�





L1
�




 1
�0





L1

exp.tC.M//: (2.4)

Thus, combining (2.2) and (2.4), we have

kpkL1 C




 1
p





L1
� C0.M0/ exp.tC.M//: (2.5)
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It is easy to verify that

d
dt

Z
juj2dx D 2

Z
u@tudx � 2kukL2k@tukL2 � C.M/;

which implies
kukL2 � C0.M0/ exp.tC.M//: (2.6)

Testing (1.5) by ��� yields the following estimate:

k��k2
L2
C

Z
e� jr�j2dx D �

Z
���dx

�
1

2

Z
�2dx C

1

2

Z
j��j2dx;

which gives
k��kL2 � Ck�kL2 : (2.7)

We obtain the following equation by integrating (1.5) over T3:Z
e�dx D

Z
�dx D

Z
�0dx: (2.8)

Recalling the following well-known Poincaré inequality


� � ln
Z
e�dx





L2
� Ckr�kL2 .jT3

j D jŒ0; 1�3j D 1/ (2.9)

and
kr�k2

L2
� k�kL2k��kL2 ; (2.10)

we can prove that

k�kL1 � Ck�kH2 D Ck�kL2 C Ckr
2�kL2

� Ck�kL2 C Ck��kL2

� C C Ck�kL2 : (2.11)

It is evident that
Y � 0 in T3

� .0;1/: (2.12)

Multiplying (1.3) by Y and using (1.1), we observe that

1

2

d
dt

Z
�Y 2dx C "

Z
jrY j2dx C k

Z
�Y 2 D 0;

whence Z
Y 2dx C "

Z T

0

Z
jrY j2dxdt � C0.M0/ exp.tC.M//: (2.13)
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We now turn to obtain the higher regularity. First, we establish the higher estimate
for density. It is straightforward to show that

1


p
@tp C

1


p
u � rp C divu D 0: (2.14)

With the help of the proceeding inequalities (1.12) and (1.13), applying D3 to
(2.14) and testing by D3p give rise to

1

2

d
dt

Z
1


p
.D3p/2dx C

Z
D3pD3 divudx

D
1

2

Z
.D3p/2

h
div

� u

p

�
�

1


p2
@tp

i
dx

�

Z �
D3
� 1

p
@tp

�
�
1


p
D3@tp

�
D3pdx

�

Z
D3
� u

p
� rp �

u


p
� rD3p

�
D3pdx

� CkD3pk2
L2




 div
� u

p

�
�

1


p2
@tp





L1

C Ck@tpkL1




D3
� 1

p

�



L2
kD3pkL2

C C



r 1


p





L1
kD2@tpkL2kD

3pkL2

C CkrpkL1




D3
� u

p

�



L2
kD3pkL2 C




r u


p





L1
kD3pk2

L2

� C.M/C C.M/k@tpkL1 C C.M/kD2@tpkL2

� C.M/C C.M/ku � rp C 
p divukL1

C C.M/kD2.u � rp C 
p divu/kL2

� C.M/: (2.15)

Here we have used the following estimate [26]:


D3 1

p





L2
� C.M/kD3pkL2 � C.M/: (2.16)

Next, it is clear thatZ t

0

Z
j@tuj

2dxd� � t sup
Z
j@tuj

2dx � tC.M/: (2.17)
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OperatingD2 to (1.2) and testing byD2@tu, one gets by some direct calculations that

�

2

d
dt

Z
jD3uj2dx C

�C �

2

d
dt

Z
.D2 divu/2dx C

Z
�jD2@tuj

2dx

D �

Z
D2
rp �D2@tudx �

Z
D2.�u � ru/ �D2@tudx

�

Z
ŒD2.�@tu/ � �D

2@tu�D
2@tudx �

Z
D2.�r�/D2@tudx

� CkD3pkL2kD
2@tukL2 C Ck�kH2kuk

2
H3
kD2@tukL2

C C
�
kr�kL1kD@tukL2 C k@tukL1kD2�kL2

�
kD2@tukL2

C kD2.�r�/kL2kD
2@tukL2

� C.M/kD2@tukL2 C C.M/
�
kD@tukL2 C k@tukL1

�
kD2@tukL2

� C.M/kD2@tukL2 C C.M/

�
�
k@tuk

1
2

L2
kD2@tuk

1
2

L2
C k@tukL2 C k@tuk

1
4

L2
kD2@tuk

3
4

L2

�
kD2@tukL2

� C.M/kD2@tukL2 C C.M/
�
kD2@tuk

1
2

L2
C kD2@tuk

3
4

L2

�
kD2@tukL2

�
1

2

Z
�jD2@tuj

2dx C C.M/;

where we have used (1.12) and (1.13). Integrating the above inequality gives thatZ t

0

Z
jD2@tuj

2dxd� � C0.M0/ exp.tC.M//: (2.18)

Then, performing D3 to (1.2), multiplying by D3u, it follows from (1.1), (1.12)
and (1.13) that

1

2

d
dt

Z
�jD3uj2dx C �

Z
jD4uj2dx C .�C �/

Z
.D3 divu/2dx

C

Z
D3
rp �D3udx

D �

Z
.D3.�@tu/ � �D

3@tu/D
3udx

�

Z
.D3.�u � ru/ � �u � rD3u/D3udx �

Z
D3.�r�/D3udx

� C
�
kr�kL1kD2@tukL2 C k@tukL1kD3�kL2

�
kD3ukL2

C C
�
krukL1kD3.�u/kL2 C kr.�u/kL1kD3ukL2

�
kD3ukL2

C C
�
k�kL1kD4�kL2 C kr�kL1kD3�kL2

�
kD3ukL2

� C.M/C C.M/.kD2@tukL2 C k@tukL1/

� C.M/C kD2@tuk
2
L2
: (2.19)
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Now, it turns to the reaction fraction Y . The argument is analogous to that in
(2.18), we apply D2 to (1.3) and test by D2@tY , then we derive

"

2

d
dt

Z
.D3Y /2dx C

Z
�.D2@tY /

2dx

D �

Z
D2.k�Y / �D2@tY dx �

Z
D2.�u � rY / �D2@tY dx

�

Z �
D2.�@tY / � �D

2@tY
�
D2@tY dx

� CkD2.�Y /kL2kD
2@tY kL2

C C
�
k�ukL1kD3Y kL2 C krY kL1kD2.�u/kL2

�
kD2@tY kL2

C C
�
kr�kL1kD@tY kL2 C k@tY kL1kD2�kL2

�
kD2@tY kL2

� C.M/kD2@tY kL2 C C.M/.kD@tY kL2 C k@tY kL1/kD2@tY kL2

� C.M/kD2@tY kL2 C C.M/
�
k@tY k

1
2

L2
kD2@tY k

1
2

L2
C k@tY kL2

C k@tY k
1
4

L2
kD2@tY k

3
4

L2

�
kD2@tY kL2

� C.M/kD2@tY kL2 C C.M/
�
kD2@tY k

1
2

L2
C kD2@tY k

3
4

L2

�
kD2@tY kL2

�
1

2

Z
�jD2@tY j

2dx C C.M/;

which gives Z t

0

Z
jD2@tY j

2dxd� � C0.M0/ exp.tC.M//: (2.20)

Similar to (2.19), performing D3 to (1.3) and multiplying by D3u yield that

1

2

d
dt

Z
�jD3Y j2dx C "

Z
jD4Y j2dx

D �

Z �
D3.�@tY / � �D

3@tY
�
D3Y dx

�

Z �
D3.�u � rY / � �u � rD3Y

�
D3Y dx

� k

Z
D3.�Y / �D3Y dx

� C
�
kr�kL1kD2@tY kL2 C k@tY kL1kD3�kL2

�
kD3Y kL2

C C
�
kr.�u/kL1kD3Y kL2 C krY kL1kD3.�u/kL2

�
kD3Y kL2

C CkD3.�Y /kL2kD
3Y kL2

� C.M/C C.M/
�
kD2@tY kL2 C k@tY kL1

�
� C.M/C kD2@tY k

2
L2
: (2.21)



Uniform regularity for the flow of a chemically reacting gaseous mixture 261

Summing up (2.15), (2.19) and (2.21), we arrive at

1

2

d
dt

Z � 1

p
.D3p/2 C �jD3uj2 C �jD3Y j2

�
dx C �

Z
jD4uj2dx

C .�C �/

Z
.D3 divu/2dx C "

Z
.D4Y /2dx

C

Z �
D3pD3 divuCD3

rpD3u
�
dx

� C.M/C kD2@tuk
2
L2
C kD2@tY k

2
L2
: (2.22)

Noting that the last term of the left-hand side of (2.22) is zero, using (2.18) and
(2.20), we have

kD3.p; u; Y /.�; t /kL2 � C0.M0/ exp.tC.M//: (2.23)

On the other hand, from (1.2), it can be easily be shown that

k@tukL2 D



1
�

�
� �r� C ��uC .�C �/r divu � rp � �u � ru

�



L2

� C0.M0/ exp.tC.M//: (2.24)

According to the estimate in [26],

kD3�kL2 � C.1C kpkL1/3kf kW 3;1.I /kD
3pkL2 (2.25)

with � D f .p/ WD .p
a
/
1

 , and

I �
� 1

C0.M0/
exp.�tC.M//; C0.M0/ exp.tC.M//

�
;

it follows that
kD3�kL2 � C0.M0/ exp.tC.M//: (2.26)

Using a similar argument, we have

k@tY kL2 � C0.M0/ exp.tC.M//: (2.27)

Combining (2.4), (2.5), (2.6), (2.23), (2.24), (2.26) and (2.27), we conclude that (1.10)
holds true.

This completes the proof.
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3. Data availability

Data sharing is not applicable to this article as no data sets were generated or analysed
during the current study.
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[19] S. Kračmar, Y.-S. Kwon, Š. Nečasová, and A. Novotný, Weak solutions for a bifluid model
for a mixture of two compressible noninteracting fluids with general boundary data. SIAM
J. Math. Anal. 54 (2022), no. 1, 818–871 Zbl 07475770 MR 4376297

[20] Y.-S. Kwon, Convergence of the flow of a chemically reacting gaseous mixture to incom-
pressible Euler equations in a unbounded domain. Z. Angew. Math. Phys. 68 (2017), no. 6,
Paper No. 131 Zbl 1378.35233 MR 3717831

[21] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equa-
tions. Arch. Ration. Mech. Anal. 158 (2001), no. 1, 61–90 Zbl 0974.76072
MR 1834114

[22] P. B. Mucha, M. Pokorný, and E. Zatorska, Chemically reacting mixtures in terms of
degenerated parabolic setting. J. Math. Phys. 54 (2013), no. 7, 071501 Zbl 1302.76207
MR 3114200

[23] P. B. Mucha, M. Pokorný, and E. Zatorska, Approximate solutions to a model of two-
component reactive flow. Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 5, 1079–1099
Zbl 1304.35501 MR 3252894

[24] P. B. Mucha, M. Pokorný, and E. Zatorska, Heat-conducting, compressible mixtures
with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47
(2015), no. 5, 3747–3797 Zbl 1322.76052 MR 3403138

https://zbmath.org/?q=an:1027.85005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1710987
https://zbmath.org/?q=an:1078.35524&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1885092
https://zbmath.org/?q=an:1070.76044&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2188048
https://zbmath.org/?q=an:1083.35109&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2211579
https://zbmath.org/?q=an:1130.35108&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2191894
https://zbmath.org/?q=an:1323.76091&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2410865
https://zbmath.org/?q=an:1479.35670&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4342638
https://zbmath.org/?q=an:0671.35066&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=951744
https://zbmath.org/?q=an:07475770&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4376297
https://zbmath.org/?q=an:1378.35233&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3717831
https://zbmath.org/?q=an:0974.76072&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1834114
https://zbmath.org/?q=an:1302.76207&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3114200
https://zbmath.org/?q=an:1304.35501&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3252894
https://zbmath.org/?q=an:1322.76052&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3403138


J. Sun and T. Tang 264

[25] T. Piasecki and M. Pokorný, Weak and variational entropy solutions to the system describ-
ing steady flow of a compressible reactive mixture. Nonlinear Anal. 159 (2017), 365–392
Zbl 1365.76277 MR 3659836

[26] H. Triebel, Theory of function spaces. Monogr. Math. 78, Birkhäuser, Basel, 1983
Zbl 0546.46027 MR 781540

[27] A. I. Vol’pert and S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear
differential equations. (in Russian) Mat. Sb. (N.S.) 87(129) (1972), 504–528
Zbl 0239.35017 MR 0390528

Received 31 March 2022; revised 10 August 2022.

Jianzhu Sun
Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037,
P. R. China; jzsun@njfu.edu.cn

Tong Tang (corresponding author)
School of Mathematical Science, Yangzhou University, Yangzhou 225002, P. R. China;
tt0507010156@126.com

https://zbmath.org/?q=an:1365.76277&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3659836
https://zbmath.org/?q=an:0546.46027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=781540
https://zbmath.org/?q=an:0239.35017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0390528
mailto:jzsun@njfu.edu.cn
mailto:tt0507010156@126.com

	1. Introduction
	2. Proof of Theorem 1.2
	3. Data availability
	References

