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Sarkisov links from toric weighted blowups of P 4 at a point

Tiago Duarte Guerreiro

Abstract. We study Sarkisov links initiated by the toric weighted blowup of a point in P 4 using
variation of GIT. We completely classify which of these initiate Sarkisov links and describe the
links explicitly. Moreover, if X is the toric weighted blowup of P d at a point, we give a simple
criterion in terms of the weights of the blowup that characterises when X is weak Fano.

1. Introduction

The aim of this paper is to explicitly describe all possible toric Sarkisov links initiated
by a toric weighted blowup of a point in P3 or P4. We do this using variation of GIT
(vGIT). According to the Sarkisov program, see [9,15], a birational map X Ü Y=S

from a Fano variety of Picard rank 1 to a Mori fibre space can be decomposed into a
finite sequence of elementary Sarkisov links starting with the blowup of a centre inX .
Therefore, it is natural to try to understand Sarkisov links explicitly and a lot of work
has been done in that direction. See [1, 6–8, 10, 11, 14, 22–24].

In [5], Blanc and Lamy classify the curves in P3 whose blowup 'WX ! P3 pro-
duces a weak Fano 3-fold. Then X is a smooth manifold of Picard rank 2 and hence
equipped with two extremal contractions: One for which �KX is relatively ample and
another one associated with the linear system j �mKX j, where m� 0. The latter is
a small contraction if the movable cone of X is strictly larger than the nef cone of X .
In that case, there is a Sarkisov link, which the authors describe.

In this paper, we take a similar approach. Let X D P3 or P4. Given a toric
weighted blowup of a point 'W T ! X we decide whether T is in the Mori category
of terminal Q-factorial varieties. If it is, we compute the decomposition of the mov-
able cone of T into nef chambers. Notice that T does not need to be weak Fano for a
Sarkisov link to exist. In fact, we only need that the class of �KT is in the interior of
the movable cone of T .
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Our main result is the following:

Theorem 1.1. Let 'W T ! P4 be the toric .a; b; c; d/-weighted blowup of a point.
Then ' initiates a toric Sarkisov link from P4 if and only if .a; b; c; d/ is one of 421
quadruples up to permutation.

We also prove a complete result for toric weighted blowups of a point in P3, which
serves as a warm up for the much more challenging case of P4.

Proposition 1.2. Let 'W T ! P3 be the toric .1; a; b/-weighted blowup of a point.
Then ' initiates a toric Sarkisov link from P3 if and only if, up to permutation,

.a; b/ 2 ¹.1; 1/; .1; 2/; .2; 3/; .2; 5/º:

Throughout this paper we only consider toric .w1; : : : ; wd /-weighted blowups.
In particular, we do not describe all blowups which are locally analytically .1; a; b/-
weighted blowups as in Theorem 2.2.

All the links are explicitly described. Given the number of cases in Theorem 1.1,
we use the help of a Maple program written by the author.

2. Preliminaries

Weighted blowups and terminal singularities. We recall the definition of weighted
blowups:

Definition 2.1. Let ˛ D .˛1; : : : ; ˛n/ be positive integers and define the C�-action
on CnC1 by � � .u; x1; : : : ; xn/ D .��1u; �˛1x1; : : : ; �

˛nxn/. Let

T D .CnC1
nZ.x1; : : : ; xn//=C

�:

Then, the morphism 'W T ! Cn given by .u; x1; : : : ; xn/ 7! .u˛1x1; : : : ; u
˛nxn/ is

called the weighted blowup of Cn at the origin.

The following theorem says that in dimension three, a divisorial extraction centred
at a smooth point to a terminal Q-factorial variety is a weighted blowup.

Theorem 2.2 ([19, Theorem 2.2]). Let Y be a Q-factorial normal variety of dimen-
sion three with only terminal singularities, and let f W .Y � E/! .X 3 P / be an
algebraic germ of a divisorial contraction which contracts its exceptional divisor E
to a smooth point P . Then f is a weighted blowup. More precisely, we can take local
coordinates x, y, z at P and coprime positive integers a and b, such that f is the
weighted blowup of X with its weights wt.x; y; z/ D .1; a; b/. We call f a Kawakita
blowup of p.
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We recall the definition of a cyclic quotient singularity. Let �r be the cyclic group
of r th roots of unity. Define the action of �r on Cn by

�r �Cn
! Cn

."; .x1; : : : ; xn// 7! ."a1x1; : : : ; "
anxn/

where " is a primitive r root of unity and ai are integers. The cyclic quotient singu-
larity associated to the action above is the quotient X D Cn=�r which we denote
by

1

r
.a1; : : : ; an/:

In dimension three, terminal extractions centred at terminal cyclic quotient singular-
ities are also classified:

Theorem 2.3 ([20]). Let p � 1
r
.1; a; r � a/ be a germ of a 3-fold terminal quotient

singularity and f WE � Y ! � 2 X a divisorial contraction centred at � 3 p, then
� D p and f is the .1; a; r � a/-weighted blowup of p. We call f the Kawamata
blowup of p.

Example 2.4. The statement of Theorem 2.3 fails in higher dimensions. Let X D
P .1; 5; 7; 8; 10/ with homogeneous variables x, y, z, t , v. Let �W .x D z D t D 0/ �
1
5
.1; 2; 3/ 2 X . Then, the .1; 2; 3/-weighted blowup of � is terminal. Moreover, the

point p D �jzD0 is a cyclic quotient singularity of type 1
5
.1; 2; 3; 0/. Letm 2 Z�0 and

consider the family 'm of .1; 2; 3; 5m/-weighted blowup of p. Then 'm is terminal.

Fix d 2N. The classification of terminal d -fold singularities is a wide open prob-
lem settled completely only for d � 3. If we restrict to cyclic quotient singularities
the problem has been solved only very recently for d D 4 in [17]. Likewise, the clas-
sification of terminal extractions from these is also completely open, even for d D 3.
A fundamental application of this knowledge is the possibility, in principle, of con-
structing Sarkisov links from higher dimensional Fano varieties. Although terminal
singularities are not classified in general, the following is a criterion to check when a
cyclic quotient singularity of any dimension is terminal.

Theorem 2.5. [26, Theorem 4.11] A cyclic quotient singularity 1
r
.a1; : : : ; an/ is ter-

minal if and only if
nX
iD1

lai > r; for l D 1; : : : ; r � 1

where denotes the smallest residue modr .

Using Theorem 2.5, one can check effectively whether a weighted blowup is ter-
minal. The following is a consequence of [29, Corollary 2.6].
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Theorem 2.6. The .˛1; : : : ; ˛n/-weighted blowup of Cn at the origin has terminal
singularities if and only if

1

V
.˛1; : : : ; ˛n/

is terminal where V D �1C
Pn
iD1 ˛i .

The weighted blowup of Pd at a point. Let 'W T ! Pd be the toric .˛1; : : : ; ˛d /-
weighted blowup of Pd at the coordinate point p which we fix to be .1 W 0 W : : : W 0/
without loss of generality. Since we are blowing up a toric variety along a torus
invariant ideal it follows that T is toric of rank 2 and Cl.T / D ZŒH �C ZŒE�, where
H D '�OPd .1/ and E D ˆ�1.p/' P .˛1; : : : ; ˛d / is the exceptional divisor. Notice
that p is not in the support of OPd .1/. T is Q-factorial, since any Weil prime divisor
on T is a linear combination of Q-Cartier divisors. By [28, Theorem 2.2], T is pro-
jective since it is complete. The Cox ring of T is

Cox.T / D
M

m;n2Z�0

H 0.T;mH � nE/:

Since T is toric, the Cox ring of T is isomorphic to the (bi)-graded polynomial ring
CŒu; x0; : : : ; xd �. If

.u; x0; : : : ; xd / 7! .x0 W u
˛1x1 W : : : W u

˛dxd /

is the weighted blowup 'WT ! Pd at p, then we say that xi has bidegree .1; ˛i /. The
toric variety T is then represented by the matrix

u x0 x1 : : : xd

T W

�
0 1 1 : : : 1

�
�1 0 ˛1 : : : ˛d

where the vertical bar represents the irrelevant ideal which in this case is .u; x0/ \
.x1; : : : ; xd / and each row is a representation of a C�-action on CdC2. In other words,
the variety T is defined by the geometric quotient

T D
CdC2 nZ..u; x0/ \ .x1; : : : ; xd //

C� �C�
:

See [12, Theorem 2.1]. The variety T is built up from 2 � d affine patches. These are
of the form

.uxi 6D 0/ and .x0xi 6D 0/

where 1 � i � d . We have,

.uxi 6D 0/ ' Spec C
h
u; x0; : : : ; xd ;

1

u
;
1

xi

iC��C�

' Spec C
h x0

xiu˛i
;
x1

xi
u˛1�˛i ; : : : ;

xd

xi
u˛d�˛i

i
' Ad :
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On the other hand,

.x0xi 6D 0/ ' Spec C
h
u; x0; : : : ; xd ;

1

x0
;
1

xi

iC��C�

'
1

˛i
.�1; ˛1; : : : ; b̨i ; : : : ; ˛d /:

Example 2.7. Consider the 3-fold given by

u x0 x1 x2 x3

T W

�
0 1 1 1 1

�
.

�1 0 1 1 3

Then, the affine patch .x0x3 6D 0/ is isomorphic to

Spec C
h
u; x0; : : : ; xd ;

1

x0
;
1

xi

iC��C�

D Spec C
hux1
x0

;
ux2

x0
;
u3x3

x0
;
x31
x3x

2
0

;
x21x2

x3x
2
0

;
x1x

2
2

x3x
2
0

;
x32
x3x

2
0

i
D Spec CŒxz; yz; z3; x3; x2y; xy2; y3�

D Spec CŒx; y; z��3

where the action of �3 on C3 is given by .x; y; z/ 7! .�x; �y;�2z/. That is,

.x0x3 6D 0/ '
1

3
.1; 1; 2/:

Without loss of generality we can assume ˛i � ˛iC1. Let N 1.T / be the finite
dimensional vector space of Q-divisors modulo numerical equivalence. The effective
cone of T , Eff.T / � N 1.T /, is generated by the rays RCŒE�CRCŒH � ˛dE� and it
has a decomposition into smaller chambers. By [16, Proposition 1.11], there is a finite
number of birational maps fi WT Ü Yi , with Yi Mori dream spaces, such that

Eff.T / D
[
i

Ci ;

where

Ci D

´S
i f
�
i .Nef.Yi //CRCŒE� if ˛d�1 D ˛d ;S

i f
�
i .Nef.Yi //CRCŒE�CRCŒH � ˛dE� if ˛d�1 < ˛d :

Recall that the cone of movable divisors of T , Mov.T / � Eff.T /, is the cone
of divisors D for which the base locus of jDj has codimension at least 2 in T .
There is a finite number of small birational maps fj WT Ü Yj for which Mov.T / DS
j f
�
j .Nef.Yj //. We have

Nef.T / D RCŒH �CRCŒH � ˛1E� � RCŒH �CRCŒH � ˛d�1E� D Mov.T /:
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Theorem 2.8. Let 'W T ! Pd be the toric .˛1; : : : ; ˛d /-weighted blowup of a point
where d � 2. Suppose that T is normal. Then �KT is big. Moreover, T is weak Fano
if and only if Pd

iD1 ˛i � 1

d C 1
� min
1�i�d

˛i

with equality if and only if �KT is nef but not ample.

Proof. The variety T is toric since it is the blowup of a toric variety along a torus
invariant ideal. Its anticanonical divisor�KT is the sum of the torus invariant divisors,
[13, Theorem 8.2.3], in this case,

�KT � .d C 1/H �
� dX
iD1

˛i � 1
�
E:

Since Pic.T / ' Z2 and �KT is the sum of two Q-linearly independent effective
divisors, it follows that �KT is big. Let ˛ D min1�i�d ˛i . Then the nef cone of T is
RCŒH �CRCŒH � ˛E�. We can write �˛KT in terms of the generators of Nef.T / as

�˛KT �
�
.d C 1/˛ C 1 �

dX
iD1

˛i

�
H C

� dX
iD1

˛i � 1
�
.H � ˛E/:

Since
Pd
iD1 ˛i � 1 >0 it follows that �KT is nef if and only if

.d C 1/˛ C 1 �

dX
iD1

˛i � 0;

as we wanted to show.

Corollary 2.9. Let 'WT ! P3 be the .1; a; b/-Kawakita blowup of a point. Then

• T is Fano if and only if .a; b/ 2 ¹.1; 1/; .1; 2/º;

• T is a weak Fano but not Fano if and only if .a; b/ 2 ¹.1; 3/º.

Proof. By Theorem 2.8, we only have to check the inequality 4 � a � b � 0. Since
gcd.a; b/ D 1 we have .a; b/ 2 ¹.1; 1/; .1; 2/; .1; 3/º with equality only in the case
.a; b/ D .1; 3/.

Theorem 2.10. Let 'WT ! Pd be the toric .˛1; : : : ; ˛d /-weighted blowup of a point
where d � 2. Suppose that T is a normal weak Fano variety. Then,Pd

iD1 ˛i � 1

d C 1
<

d

q
…d
iD1˛i �

Pd
iD1 ˛i

d
:

Moreover, the second inequality is strict unless ' is the ordinary blowup of a point.
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Proof. Since T is a weak Fano it follows from [21, Theorem 2.2.16] that .�KT /d >0.
We have,

.�KT /
d
D

�
.d C 1/H �

� dX
iD1

˛i � 1
�
E

�d

D .d C 1/d �

�Pd
iD1 ˛i � 1

�d
…d
iD1˛i

:

Notice that since the point we blowup is not in the support of OPd .1/, we have
Ek �Hd�k D 0 for any 0 < k < d . Hence,Pd

iD1 ˛i � 1

d C 1
<

d

q
…d
iD1˛i :

The other inequality is the AM-GM inequality and it is known that equality holds if
and only if ˛ WD ˛1 D � � � D ˛d . In that case, suppose that ˛ > 0. Then, T is singular
along the exceptional divisor which is impossible since T is normal.

3. Sarkisov Links

Since T is a Mori dream space, a divisorial extraction 'WT ! Pd initiates a Sarkisov
link if and only if the class of the anticanonical divisor of T is in the interior of the
movable cone of T and any small Q-factorial modification T Ü T 0 is terminal. See
for instance [2, Lemma 2.9]. In that case, the construction of an elementary Sarkisov
link for T is naturally divided into two main cases, depending roughly on its Mori
chamber decomposition. Namely the behaviour of its movable cone of divisors near
the boundary of the effective cone of divisors of T .

(1) Fibration: the class of H � ˛d�1E is not big. In this case ˛d�1 D ˛d .

(2) Divisorial contraction: the class of H � ˛d�1E is big. In this case ˛d�1 <
˛d and therefore H � ˛d�1E 6�Q H � ˛dE. Moreover, we contract the
effective divisor H � ˛dE to an r-dimensional variety where

r D j¹˛i j ˛i D ˛d�1ºj � 1:

A Sarkisov link initiated by ' is of the form

T T1 � � � T 0

Pd F0 � � � F 0

'

˛0

�0

˛1ˇ0

�1 �n

'0

ˇn�1
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and dimF 0 � dimT 0, with equality if and only if we are in the second case. Moreover,
since ' is a projective birational toric morphism, the diagram above is a toric Sarkisov
link. See for instance [25, Theorem 0.2] or [6, Theorem 4.1].

Example 3.1. We give an example of how a small modification arises from variation
of GIT from a C� action. As mentioned in [27], Mori flips arise naturally in this
context.

For a Mori dream space, the GIT chambers and Mori chambers coincide, see [16,
Theorem 2.3]. Hence, the 2-ray game on a rank 2 toric variety T can be obtained by
variation of GIT as explained in [6, Section 4]. In this case, let T be the P1-bundle
T D ProjP1 E , where

E D OP1 ˚OP1.1/˚OP1.1/:

Then, T is
y1 y2 t x1 x2

T W

�
0 0 1 1 1

�
1 1 0 �1 �1

with Cox ring CŒy1; y2; t; x1; x2� and irrelevant ideal .y1; y2/ \ .t; x1; x2/ as shown
by the vertical bar. That is, we have an action of .C�/2 on C5 given by

.�; �/ � .y1; y2; t; x1; x2/ D .�y1; �y2; �t; ��
�1x1; ��

�1x2/:

The GIT chambers of T are depicted in Figure 1.
Choosing the character .0; 1/ constructs a variety isomorphic to P1. Notice we are

implicitly using the fact that Z˚ Z and HomZ..C�/2;C�/ are isomorphic abelian
groups.

This is given by

Proj
M
m�0

H 0.T;O.0;m// D Proj CŒy1; y2� ' P1

.0; 1/

.1; 0/

.1;�1/

Figure 1. A representation of the GIT chamber decomposition of T .
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and similarly with the ray generated by .1;�1/. The ray .1; 0/ constructs the non-Q-
factorial variety

Proj
M
m�0

H 0.T;O.m; 0// D Proj CŒt; y1x1; y1x2; y2x1; y2x2�

' .u11u22 � u12u21 D 0/ � P4

where uij WD yixj . This is a quadric cone Q whose only singular point is p D
.1 W 0 W 0 W 0 W 0/. On the other hand, choosing characters in the interior of the two GIT
chambers constructs varieties related by a small Q-factorial modification. Choosing
a character in the interior of the cone generated by

�
0
1

�
and

�
1
0

�
constructs a variety

isomorphic to T since these generate the Mori cone of T . On the other hand, choosing
a character in the interior of the cone generated by

�
1
0

�
and

�
1
�1

�
constructs a vari-

ety isomorphic to T 0, where T 0 has the same Cox ring of T but its irrelevant ideal is
.y1; y2; t / \ .x1; x2/. Consider the map f WT ! Q given by

.y1; y2; t; x1; x2/ 7! .t; y1x1; y1x2; y2x1; y2x2/

and similarly gWT 0 ! Q. Then f contracts the locus C�WP1 ' .x1 D x2 D 0/ � T
to p 2 Q and g contracts CCWP1 ' .y1 D y2 D 0/ � T 0. Notice that f and g are
isomorphisms away from the contracted loci. Hence, the map � W T Ü T 0 replacing
C� by CC is a small Q-factorial modification that we denote by .�1;�1; 1; 1/. In
fact, it is the Atyiah flop since KT � C� D KT 0 � CC D 0. We say that � is terminal
since T 0 is terminal (smooth, in fact). Moreover, the map

T 0 ! P1 D Proj
M
m�0

H 0.T 0;O.m;�m//; .y1; y2; t; x1; x2/ 7! .x1; x2/

is a fibration whose fibres are isomorphic to P2.

Lemma 3.2. Let 'WT ! Pd be the toric .1; 1; : : : ; 1; b/-weighted blowup of p. Then
�KT is nef if and only if b 2 ¹1; 2; 3º. The morphism ' initiates a toric Sarkisov link
if and only if b 2 ¹1; 2º. Moreover, the hyperplanes passing through p induce a conic
bundle structure on T if b D 1 or a divisorial contraction to Pd�2 � Pd .1; : : : ; 1; 2/

if b D 2.

Proof. The first assertion follows immediately from Theorem 2.8. Equality happens
only in the case b D 3. Let T be the ordinary blowup of Pd at a coordinate point.
Then,

Nef.T / D Mov.T / D RCŒH �CRCŒH �E� � RCŒE�CRCŒH �E� D Eff.T /
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and H � E is not big. The variety T has a conic bundle structure induced by the
hyperplanes passing through p. Indeed, it is given by the fibration

'0WT ! Proj
M
m�0

H 0.T;m.H �E// ' Pd�1

.u; x0; : : : ; xd / 7! .x1 W : : : W xd /:

(1)

On the other hand, H �E is effective but not big provided that b > 1. Indeed,

Nef.T / D Mov.T / D RCŒH �CRCŒH �E� � RCŒE�CRCŒH � bE� D Eff.T /:

By Theorem 2.8, �KT is in the interior of Nef.T / if and only if b < 3. Hence b D 2.
Consider the map given by the linear system of multiples of H �E,

'0WT ! Proj
M
m�0

H 0.T;m.H �E// ' Pd .1; 2; 1; : : : ; 1/

.u; x0; : : : ; xd / 7! .uxd W x0xd W x1 W : : : W xd�1/:

Then, '0 contracts the divisor Blp Pd�1 � T to Pd�2 and the restriction of '0 to
Blp Pd�1 is exactly the fibration (1) restricted to xd D 0.

3.1. Sarkisov links from P3

Proposition 3.3. Let 'WT ! P3 be the toric .1; a; b/-weighted blowup of a point.
Then ' initiates a toric Sarkisov link from P3 if and only if

.a; b/ 2 ¹.1; 1/; .1; 2/; .2; 3/; .2; 5/º:

Proof. By Lemma 3.2, we can assume 1 < a < b. In particular, b > 2. In this case, T
is a rank 2 toric variety with weight system

u x y z v

T W

�
0 1 1 1 1

�
.

�1 0 1 a b

(2)

Since 1 < a < b we have

Mov.T / D RCŒH �CRCŒH � aE� ¨ RCŒE�CRCŒH � bE� D Eff.T /:

For the Sarkisov link to exist the class of the anticanonical divisor of T must be in the
interior of Mov.T /. Since

�aKT � .3a � b/H C .aC b/.H � aE/

it follows that �KT is in the interior of Mov.T / if and only if 3a > b.
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E

H

H �E
H � aE

H � bE

Nef.T /

Figure 2. A representation of the Mori chamber decomposition of T . The outermost rays gener-
ate the cone of pseudo-effective divisors of T and in red is represented the subcone of movable
divisors of T .

Let D0 be a movable divisor in the interior of the cone generated by the rays
RCŒH �E�CRCŒH � aE� and suppose T 0 is the ample model forD0, that is, T 0 '
ProjR.T;D0/. Then Cox.T / D Cox.T 0/ but the irrelevant ideal of T 0 is .u; x; y/ \
.z;v/. By [16] there is a small Q-factorial modification � WT Ü T 0 which we describe
explicitly. Let Fy be the ample model of the divisor H �E. Then,

Fy ' Proj
M
m�0

H 0.T;m.H �E// D CŒy; : : : ; ui ; : : :�

where each uk is a monomial in the ideal .u; x/ \ .z; v/. Let ˛W T ! Fy be the
map given by .u; x; y; z; v/ 7! .y; : : : ; ui ; : : :/ and define similarly ˛0WT 0 ! Fy . Let
py 2 Fy be the point .1 W 0 W : : : W 0/. It is clear that ˛ contracts the locus LW .z D
v D 0/ � T to py and that ˛0 contracts L0W .u D x D 0/ � T 0. Moreover, L ' P1

and L0 ' P .a � 1; b � 1/ are contracted to the same point. The small modification �
replaces L with L0 and is denoted by

.1; 1; 1 � a; 1 � b/:

We find conditions on a and b for T 0 to be terminal. Since 3-dimensional terminal
singularities are isolated, we have gcd.a � 1; b � 1/ D 1. These are then the points

P1 D
1

a � 1
.�1;�1; b � 1/ and P2 D

1

b � 1
.�1;�1; a � 1/

and both need to be terminal. The point P1 is a terminal singularity if and only if

(1) �2 � 0 mod a � 1 and gcd.a � 1; b � 1/ D 1 or

(2) b � 2 mod a � 1.
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Case 1. We have that a D 2 or a D 3. If a D 2, then P1 is smooth and P2 D
1
b�1

.�1;�1; 1/ is terminal for every b � 2. However, �KT 2 Int Mov.T / if and only
if a < b < 3a. Hence b 2 ¹3; 5º. Notice that if .a; b/ D .2; 3/ the modification � is
Francia’s antiflip. If a D 3, the point P1 is terminal if and only if b is even. However,
the point P2 D 1

b�1
.�1;�1; 2/ is terminal only if b D 2 (in which case P2 is actually

smooth) which contradicts the assumption that b > a.

Case 2. We have a � 1 j b � 2. Since b < 3a, there is a positive integer m for which

m.a � 1/ D b � 2 < 3a � 2:

Hencem 2 ¹1; 2; 3º. IfmD 1, then b D aC 1 and the point P2 D 1
a
.�1;�1;a� 1/�

1
a
.a � 1; a � 1; a � 1/ is terminal if and only if a D 2 in which case b D 3. Ifm D 2,

then b D 2a and gcd.a; b/ D 1 if and only if a D 1 which contradicts the assumption
that a > 1. If m D 3, then b D 3a � 1 and

P2 D
1

3a � 2
.�1;�1; a � 1/ �

1

3a � 2
.3.a � 1/; 3.a � 1/; a � 1/:

But 3.a � 1/ � 1 mod 3a � 2 and so

P2 �
1

3a � 2
.3; 3; 1/

by changing the generator " of�3b�2 by the automorphism " 7! "�3. By Theorem 2.5,
we have 1 < 3a � 2 < 7. Hence a D 2 and b D 5.

To conclude, the only choices of .a; b/ for which both T and T 0 are terminal and
�KT 2 Int Mov.T / are

.a; b/ 2 ¹.1; 1/; .1; 2/; .2; 3/; .2; 5/º:

By [2, Lemma 2.9], the map '0 initiates a Sarkisov link precisely for these values of
a and b.

Corollary 3.4. Suppose ' is the toric .1;a;b/-weighted blowup of P3 at a coordinate
point where .a; b/ 2 ¹.2; 3/; .2; 5/º. Then ' initiates a toric Sarkisov link ending
with a divisorial contraction to a point in the terminal weighted projective space
P .1; b; b � 1; b � a/.

Proof. Consider the map '0WT 0 ! F given by the sectionsM
m�0

H 0.T 0; m.H � aE//:

The 3-fold F is isomorphic to the image of P3.1; b; b � 1; b � a/ via the Veronese
embedding given by the complete linear system jO.b � a/j. We write '0 explicitly.
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Recall that T 0 is the ample model of a divisor in the interior of the cone RCŒH �

E�CRCŒH � aE�. Let

A D

 
a � 1 1

b � 1 1

!
2 GL.2;Z/:

Multiplying the weight system of T 0 on the left byA yields an isomorphic toric variety
to T 0 given by

u x y z v

T 0 W

�
1 a a � 1 0 �.b � a/

�
.

1 b b � 1 b � a 0

Further, the hyperplane section E 0 WD T 0jvD0 is isomorphic to the weighted plane
P .1;a;a� 1/. The map '0 given by the sections which are multiples of the big divisor
H � aE is

'0WT 0 ! P .1; b; b � 1; b � a/

.u; x; y; z; v/ 7! .uv
1

b�a ; xv
a

b�a ; yv
a�1
b�a ; z/:

The map '0 is a divisorial contraction to the point

p D .0 W 0 W 0 W 1/ 2 P .1; b; b � 1; b � a/:

If .a; b/ D .2; 3/, the map '0 is a .1; 2; 1/-Kawakita blowup of the smooth point p
with exceptional divisor isomorphic to P .1; 1; 2/. If .a; b/ D .2; 5/, the map '0 is a
1
3
.1; 2;1/-Kawamata blowup of the terminal cyclic quotient singularity p � 1

3
.1; 2; 1/

with exceptional divisor isomorphic to P .1; 1; 2/. A summary of the Sarkisov links
can be found in Table 1.

.a; b/ � '0 Model

.1; 1/ Fibration P1-bundle over P2

.1; 2/ Divisorial contraction to P1 P .1; 1; 1; 2/

.2; 3/ .1; 1;�1;�2/
.1; 1; 2/-weighted blowup

of a smooth point
P .1; 1; 2; 3/

.2; 5/ .1; 1;�1;�4/ Kawamata blowup of 1
3
.1; 1; 2/ P .1; 3; 4; 5/

Table 1. Table summarising the results obtained. The first column denotes the weights of the
.1; a; b/-Kawakita blowup of a coordinate point. The second column denotes a terminal small
Q-factorial modification. The third column is the last birational morphism and the last column
denotes the new model of P 3.
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3.2. Sarkisov links from P4

We look at the same problem for extractions from a point in P4. This is much more
complicated than the previous case but our methods still allow for a definitive result.

Lemma 3.5. Let 'WT ! P4 be the toric .1; 1; 1;d/-weighted blowup of a point. Then
' initiates a toric Sarkisov link from P4 if and only if d 2 ¹1; 2º.

Proof. See Lemma 3.2.

Lemma 3.6. Let 'WT ! P4 be the toric .1; 1; c; d/-weighted blowup of a point with
1< c � d . Then ' initiates a toric Sarkisov link from P4 if and only if .c;d/2 ¹.2;d/ j
2 � d � 6º.

Proof. We have �KT � 5H � .d C c C 1/E and divide the proof in two subcases:
Suppose 1 < c D d . The movable cone of T is subdivided in two chambers. Let

T and T 0 be the ample models of each chamber. Then, there is a small Q-factorial
modification � between T and T 0. The weight system of T is

u x y z t v

T W

�
0 1 1 1 1 1

�
.

�1 0 1 1 d d

Let F D Proj
L
m�0H

0.T;O.m.H � E/// D Proj
L
m�0H

0.T 0;O.m.H � E///

and ˛W T ! F , ˇW T 0 ! F the associated contractions. The exceptional locus of ˛
is T jtDvD0 which is isomorphic to F1. On the other hand, the exceptional locus of ˇ
is S WD T 0juDxD0. Notice that if d > 2, T 0 contains a surface of singularities. Hence
d D 2, since we want T 0 to be terminal. Therefore S ' P1 � P1.

We conclude that the map � fits into the diagram

F1 � T
� //

˛
%%

T 0 � P1 � P1

ˇww

P1 � F

where ˛ and ˇ are the small contraction

.u; x; y; z; t; v/ 7! .y; z; ut; uv; xt; xv/:

Hence, the map � swaps the two degree 8 del Pezzo surfaces: the Hirzebruch surfaces
F1 and P1 � P1. This is a 4-dimensional analogue to the Atyiah flop where, over
each point of the base, P1 � F , we have a 3-fold Atyiah flop. Indeed, the 4-fold F

is isomorphic to
.u1u4 � u2u3 D 0/ � P .1; 1; 1; 1; 2; 2/
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with homogeneous variables y, z, u1, u2, u3, u4. Finally, the map

'0WT 0 ! Proj
M
m�0

H 0.T 0; m.H � 2E// ' P1

.u; x; y; z; t; v/ 7! .t W v/

is a fibration whose fibres are isomorphic to P .1; 1; 1; 2/. Notice that H � 2E is not
big.

Suppose 1 < c < d . We have �KT 2 Int Mov.T / if and only if 4c > d C 1. Let
T 0 be the ample model in the Mori chamber adjacent to Nef.T /. Then T and T 0 are
related by a small Q-factorial modification � . The surfaces S WD T jtDvD0 D F1 and

y z t v

S 0 W

�
1 1 1 1

�
0 0 1 � c 1 � d

are both P1-bundles over P1 and � jS is the composition of these fibrations. Moreover,
� is a fibre-wise small modification, that is, for each point p 2 P1, the fibre ˛�1.p/D
P1 in S is replaced with the corresponding fibre ˇ�1.p/ D P .c � 1; d � 1/ in S 0.

Suppose that c D 2. In that case � introduces the line of singularities

� �
1

d � 1
.�1;�1; 1/ � S 0

which is clearly terminal for any d > 1. Suppose on the other hand that c > 2. We
claim that T 0 is not terminal for any d > c. We use the observation that � is a fibre-wise
small modification. Over each point of the base of � we extract the line of singularities

� �
1

d � 1
.�1;�1; c � 1/ � S 0

and � is terminal if and only if

• �2 � 0 mod d � 1 (and gcd.b � 1; c � 1/ D 1/, or

• c � 2 � 0 mod d � 1.

For the first case, d � 1 j 2 which implies that d 2 ¹2; 3º. This is not possible since
we assumed d > c > 2. For the second case, notice that there is m 2 ZC for which
m.d � 1/ D c � 2 < d � 2 since c < d which is impossible. Hence, if c > 2, the
modification � introduces a line of non-terminal singularities over each point of the
base. Hence S 0 is not terminal and we conclude that the small modification T Ü T 0

is terminal if and only if c D 2 as we claimed.
Since c D 2, it follows that d 2 ¹3; 4; 5; 6º. Consider the map '0WT 0 ! F where

F D Proj
M
m�0

H 0.T 0; m.H � 2E// ' P .1; d; d � 1; d � 1; d � 2/:
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The map '0 is a divisorial contraction to the point p0D .0 W 0 W 0 W 0 W 1/2P .1;d;d � 1;

d � 1;d � 2/. The point p0 is smooth if and only if d D 3 and is a terminal cyclic quo-
tient singularity of type 1

d�2
.1; d; d � 1; d � 1/ otherwise. Notice that in this case,

H � 2E is a big divisor.

Lemma 3.7. Let 'WT ! P4 be the toric .1; b; c; d/-weighted blowup of a point with
1 < b � c � d , where one of the inequalities is an equality. Then ' initiates a toric
Sarkisov link from P4 if and only if

.b; c; d/ 2 ¹.2; 3; 3/; .2; 5; 5/; .2; 2; 3/; .2; 2; 5/; .3; 3; 4/; .3; 3; 8/º:

Proof. Since T is terminal it follows that gcd.b; c;d/D 1. Otherwise, the exceptional
divisor contains a surface of singularities. In particular, at least one of the inequalities
in b � c � d is strict.

We have �KT D 5H � .b C c C d/E.
Suppose 1 < b < c D d . The following holds:

Mov.T / D RCŒH �CRCŒH � cE� ¨ RCŒE�CRCŒH � cE� D Eff.T /:

The anticanonical divisor of T is in the interior of Mov.T / since �KT D 2H C
2.H � cE/CH � bE whereH � bE is in the interior of Mov.T / by the assumption
b < c. The movable cone of T is subdivided into three chambers.

Nef.T / D RCŒH �CRCŒH �E�;

Nef.T1/ D RCŒH �E�CRCŒH � bE�;

Nef.T2/ D RCŒH � bE�CRCŒH � cE�:

There is a sequence of small Q-factorial modifications T Ü T1 Ü T2. The
contraction ˛W T ! F where F D Proj

L
m�0H

0.T;m.H �E// has exceptional
locus isomorphic to P1 and contracts it to a point in F . On the other side, we have
˛0W T 0 ! F whose exceptional locus is isomorphic to P .b � 1; c � 1; c � 1/. We
claim that T 0 is terminal if and only if b D 2. Notice that gcd.b � 1; c � 1/ D 1 and
T 0 has an extra curve of singularities � of type 1

c�1
.�1;�1; b � 1/. Hence, if b D 2,

the map T Ü T 0 adds a curve of singularities which is of type 1
c�1

.�1;�1; 1/ and
therefore T 0 is terminal. On the other hand, suppose T 0 is terminal. Notice that � is
terminal if and only if

• �2 � 0 mod c � 1 (and gcd.b � 1; c � 1/ D 1/, or

• b � 2 � 0 mod c � 1.

For the first case c � 1 j 2 which implies that c 2 ¹2; 3º. We assumed c > b > 1

and so c D 3 and b D 2. For the second case, notice that there is m 2 ZC for which
m.c � 1/ D b � 2 < c � 2 since b < c which is impossible. We conclude that the
small modification T Ü T 0 is terminal if and only if b D 2 as we claimed.
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We now proceed to the second small modification T 0 Ü T 00. We consider

F 0 D Proj
M
m�0

H 0.T 0; m.H � bE//

and ˇW T 0 ! F 0, ˇ0W T 00 ! F 0 given by the sections of multiples of the movable
divisor H � bE. Then, ˇ contracts the surface P .1; 1; 2/ to a point in F and ˇ0

extracts the line P .c � 2; c � 2/ introducing the line of singularities

L �
1

c � 2
.�1;�2;�1/

in T 00. By terminality, it follows that c � 2 j �2 and gcd.2; c � 2/ D 1 or c � 2 j �3.
In the first case, c D 3 and L is smooth in T 00. In the second case, c 2 ¹3; 5º and
L � 1

3
.1; 1; 2/. We conclude that if 1 < b < c D d the 4-folds T , T 0 and T 00 are

terminal if and only if
.b; c; d/ 2 ¹.2; 3; 3/; .2; 5; 5/º:

Suppose 1 < b D c < d . We have

Mov.T / D RCŒH �CRCŒH � bE� ¨ RCŒE�CRCŒH � dE� D Eff.T /

and
�bKT � .3b � d/H C .2b C d/.H � bE/:

Hence, it is in the interior of Mov.T / if and only if d < 3b. The movable cone of T
is subdivided into two chambers,

Nef.T / D RCŒH �CRCŒH �E�;

Nef.T 0/ D RCŒH �E�CRCŒH � bE�:

Hence, there is a small modification � W T Ü T 0 that we determine: Consider the
movable divisorH �E and F D Proj

L
m�0H

0.T;m.H �E//. Let ˛WT !F and
˛0W T 0 ! F be the associated contractions. The exceptional loci of ˛ and ˛0 are P1

and P .b � 1; b � 1; d � 1/, respectively. Hence gcd.b � 1; d � 1/ D 1. Therefore, �
introduces a curve of singularities

� �
1

b � 1
.�1;�1; d � 1/

and a point p � 1
d�1

.�1;�1; b � 1; b � 1/. The curve � is terminal if and only if

(1) �2 � 0 mod b � 1 (and gcd.b � 1; d � 1/ D 1/, or

(2) d � 2 � 0 mod b � 1.
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Case 1. We have b 2 ¹2; 3º. Since d < 3b we have the following possibilities:

.b; d/ 2 ¹.2; 3/; .2; 5/; .3; 4/; .3; 8/º:

The point p is terminal in each of these cases.
Case 2. By assumption there is a positive integer m for which

m.b � 1/ D d � 2 < 3b � 2:

Therefore, m 2 ¹1; 2; 3º. If m D 1, then b D d � 1 and � is terminal for every d .
However, the point p � 1

d�1
.1; 1; 1; 1/, where d > 2 is terminal if and only if d 2

¹3; 4º. The possibilities are therefore

.b; d/ 2 ¹.2; 3/; .3; 4/º:

If m D 2, then d D 2b and gcd.b; c; d/ > 1. If m D 3, then d D 3b � 1. The curve
� is terminal. On the other hand,

p �
1

3b � 2
.�1;�1; b � 1; b � 1/ �

1

3b � 2
.3.b � 1/; 3.b � 1/; b � 1; b � 1/:

But .3b � 5/.b � 1/ � 1 mod 3b � 2 and so,

p �
1

3b � 2
.3; 3; 1; 1/

by changing the generator " of�3b�2 by the automorphism " 7! "3b�5. Now it is clear
that 1 < 3b � 2 < 8, that is, b 2 ¹2; 3º. The possibilities are

.b; d/ 2 ¹.2; 5/; .3; 8/º:

We conclude that if 1 < b D c < d the 4-folds T and T 0 are terminal if and only if

.b; c; d/ 2 ¹.2; 2; 3/; .2; 2; 5/; .3; 3; 4/; .3; 3; 8/º:

Lemma 3.8. Let 'WT ! P4 be the toric .a; b; c; d/-weighted blowup of a point with
1 < a � b < c D d . Then ' initiates a toric Sarkisov link from P4 if and only if

.a; b; c; d/ 2 ¹.2; 3; 5; 5/º:

Moreover, the Sarkisov link ends with a fibration to P1 whose fibres are isomorphic
to P .1; 2; 3; 5/.

Proof. Since T is terminal it follows that gcd.b; c/ D 1. Otherwise, the exceptional
divisor contains a surface of singularities. We have

�KT D 5H � .aC b C c C d � 1/E:
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Suppose 1 < a D b < c D d . The following holds:

Mov.T / D RCŒH �CRCŒH � cE� ¨ RCŒE�CRCŒH � cE� D Eff.T /:

The anticanonical divisor of T is in the interior of Mov.T / since

�cKT D .3c � 2aC 1/H C .2aC 2c � 1/.H � cE/

and a < c by assumption. The movable cone of T is subdivided into two chambers,

Nef.T / D RCŒH �CRCŒH � aE�;

Nef.T1/ D RCŒH � aE�CRCŒH � cE�:

Hence, there is a small Q-factorial modification � WT Ü T1. The divisor H � cE is
in the boundary of Eff.T / and so it is not big. Let

F D Proj
M
m�0

H 0.T;m.H � cE// D P1

and '0WT ! P1 be the associated contraction. This is a fibration whose fibres are iso-
morphic to P .1;c;c � a;c � a/. By terminality we have aD 1 and cD 2 contradicting
the assumption that a > 1. See Lemma 3.6, where the case of a .1; 1; 2; 2/-weighted
blowup is treated.

Suppose 1 < a < b < c D d . The following holds:

Mov.T / D RCŒH �CRCŒH � cE� ¨ RCŒE�CRCŒH � cE� D Eff.T /:

The anticanonical divisor of T is in the interior of Mov.T / if and only if 3c >
a C b � 1 since �cKT D .3c � a � b C 1/H C .a C b C 2c � 1/.H � cE/. The
movable cone of T is subdivided into three chambers,

Nef.T / D RCŒH �CRCŒH � aE�;

Nef.T1/ D RCŒH � aE�CRCŒH � bE�;

Nef.T2/ D RCŒH � bE�CRCŒH � cE�:

Hence, there is a small Q-factorial modification � W T Ü T1 Ü T2. The divisor
H � cE is in the boundary of Eff.T / and so it is not big. Let

F D Proj
M
m�0

H 0.T;m.H � cE// D P1

and '0WT ! P1 be the associated contraction. This is a fibration whose fibres are
isomorphic to P .1; d � b; d � a; d/. By terminality and the assumption that a > 1
we have a D 2, b D 3, c D 5, d D 5.
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The remaining cases. Given the vast number of possibilities for the weights of
the weighted blowup of P4, we end the classification with the help of the computer.
To be clear the remaining cases are the weighted blowups of weights .a;b; c;d/where

(1) 1 < a � b � c < d , with exactly one equality;

(2) 0 < a < b < c < d .

The main idea of the proof is the use of the classification of terminal Q-factorial Fano
4-fold weighted projective spaces due to Kasprzyk, in [18, Theorem 3.5]. A much
more general statement is due to Birkar and asserts that for every d 2 N, the family
of d -dimensional Fano varieties with terminal singularities is bounded; see [3, 4].

If the toric weighted blowup of a point in P4 initiates a Sarkisov link to a Fano
4-fold, then it must be a weighted projective space. More concretely, if the toric
.a; b; c; d/-weighted blowup initiates a Sarkisov link to a Fano 4-fold X 0, then X 0

is isomorphic to P .1; d � c; d � b; d � a; d/.

Lemma 3.9. Let 'WT ! P4 be the toric .a; b; c; d/-weighted blowup of a point with
1 < a � b � c < d with exactly one equality. Then ' initiates a toric Sarkisov link
from P4 if and only if

.a; b; c; d/ 2 ¹.2; 2; 3; 5/; .2; 2; 3; 7/; .3; 3; 4; 5/; .3; 3; 4; 10/; .4; 4; 5; 7/;

.5; 5; 6; 8/; .2; 3; 3; 4/; .2; 5; 5; 6/º

up to permutation.

Proof. We use the classification of Q-factorial terminal weighted projective spaces of
dimension four in [18]. As we observed, if the toric .a; b; c; d/-weighted blowup of a
point in P4 initiates a Sarkisov link to X then X is isomorphic to P .1; d � c; d � b;

d � a; d/.
Suppose 1 < a D b < c < d . We have �KT D 5H � .2a C c C d � 1/E.

Moreover, �KT is in the interior of the movable cone of T if and only if 4c >
2aC d � 1 since

Mov.T / D RCŒH �CRCŒH � cE� ¨ RCŒE�CRCŒH � dE� D Eff.T /

and�cKT D .4c � 2a� d C 1/H C .2aC cC d � 1/.H � cE/. The movable cone
of T is subdivided into two chambers,

Nef.T / D RCŒH �CRCŒH � aE�;

Nef.T 0/ D RCŒH � aE�CRCŒH � cE�:
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And let � W T Ü T1 be the induced small Q-factorial modification. Then, � fits into
the diagram

S � T
� //

˛
%%

T 0 � S 0

ˇxx

P1 � F

where S and S 0 are geometrically ruled surfaces contracted to P1. More concretely,

u x y z

S W

�
0 1 1 1

�
,

1 a 0 0

y z t v

S 0 W

�
1 1 1 1

�
.

0 0 a � c a � d

Given a terminal Q-factorial weighted projective space P .1; d � c; d � a; d � a; d/,
we consider its associated toric .a; a; c; d/-weighted blowup 'W T ! P4 and use
Algorithm 2 to understand which ' are in the Mori category. These are the following:

.a; a; c; d/ 2 ¹.2; 2; 3; 5/; .2; 2; 3; 7/; .3; 3; 4; 5/; .3; 3; 4; 10/; .4; 4; 5; 7/; .5; 5; 6; 8/º:

For each of the six tuples it is easy to check terminality of T 0. Hence, T and T 0 are
terminal and we consider the map '0W T 0 ! P .1; d � c; d � a; d � a; d/ given by
the sections which are multiples of the big divisor H � cE. The map ' is a divisorial
contraction to a terminal cyclic quotient singularity of type 1

d�c
.1; d; d � a; d � a/.

Suppose 1 < a < b D c < d . Given a terminal Q-factorial terminal weighted pro-
jective space P .1; d � b;d � b;d � a;d/ we consider its associated toric .a; b; b; d/-
weighted blowup 'WT ! P4. By the assumption that 0 < a < b D c < d we have

Mov.T / D RCŒH �CRCŒH � bE� ¨ RCŒE�CRCŒH � dE� D Eff.T /:

The anticanonical divisor of T is in the interior of Mov.T / if and only if 3b >
a C d � 1 since �bKT D .3b � a � d C 1/H C .a C 2b C d � 1/.H � bE/. The
movable cone of T is subdivided into two chambers:

Nef.T / D RCŒH �CRCŒH � aE�;

Nef.T1/ D RCŒH � aE�CRCŒH � bE�:

Hence, there is a small Q-factorial modification � WT Ü T1 which is the anti-flip

.�1;�a; b � a; b � a; d � a/:

We use Algorithm 2 to understand which are the .a; b; b; d/-weighted blowups in
the Mori category. These are the following:

.a; b; b; d/ 2 ¹.2; 3; 3; 4/; .2; 5; 5; 6/º:
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For each of the two tuples it is easy to check terminality of T 0. Hence, T and T 0

are terminal and we consider the map '0WT 0! P .1; d; d � a; d � b; d � b/ given by
the sections which are multiples of the big divisor H � bE. The map ' is a divisorial
contraction centred at P1 � P .1; d; d � a; d � b; d � b/.

Lemma 3.10. Let 'W T ! P4 be the toric .a; b; c; d/-weighted blowup of a point
with 0 < a < b < c < d . Then ' initiates a toric Sarkisov link from P4 if and only if
.a; b; c; d/ is one of 399 quadruples up to permutation.

Proof. As we observed, if the toric .a; b; c; d/-weighted blowup of a point in P4

initiates a Sarkisov link to X then X is isomorphic to P .1; d � c; d � b; d � a; d/.
By the assumption that 0 < a < b < c < d we have

Mov.T / D RCŒH �CRCŒH � cE� ¨ RCŒE�CRCŒH � dE� D Eff.T /:

The anticanonical divisor of T is in the interior of Mov.T / if and only if 4c > aC
bC d � 1 since �cKT D .4c � a� b � d C 1/H C .aC bC cC d � 1/.H � cE/.
The movable cone of T is subdivided into three chambers,

Nef.T / D RCŒH �CRCŒH � aE�;

Nef.T1/ D RCŒH � aE�CRCŒH � bE�;

Nef.T2/ D RCŒH � bE�CRCŒH � cE�:

Hence, there is a small Q-factorial modification � W T Ü T2 which can be decom-
posed as

.�1;�a; b � a; c � a; d � a/; .�1;�b; a � b; c � b; d � b/:

LetX DP .1;d � c;d � b;d � a;d/ and consider the corresponding toric .a;b;c;d/-
weighted blowup 'W T ! P4. We check whether ' is an extraction in the Mori
category with Algorithm 2. For each of these we check terminality of the singular-
ities introduced by � , using Algorithm 4.

This is the case for exactly 399 tuples. For each of those tuples, T , T1 and T2 are
terminal Q-factorial 4-folds and '0WT2! X is a KT2

-negative divisorial contraction.

The final result of our paper is the following theorem:

Theorem 3.11. Let 'W T ! P4 be the toric .a; b; c; d/-weighted blowup of a point.
Then ' initiates a toric Sarkisov link from P4 if and only if .a; b; c; d/ is one of 421
quadruples up to permutation.
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4. Appendix: Code

In this section, we present the pseudo-code that checks terminality at each step of the
Sarkisov program. We use them in the proof of Lemmas 3.9 and 3.10.

The auxiliary Algorithm 1 is an implementation of Theorem 2.5.

Algorithm 1 Terminality of cyclic quotient singularity
Input List L; Integer V

1: procedure TERMINALSINGQ
2: Q true
3: l length of L
4: sumtest 1
5: for k D 1; : : : ; V � 1 do
6: while sumtest > V do
7: sumtest 

Pl
iD1.LŒi � � k mod V /

8: if sumtest � V then
9: Q false

10: Q;

Example 4.1.

TERMINALSINGQ.Œ1; 14; 13; 10�; 7/ D true;

TERMINALSINGQ.Œ1; 1; 4; 3�; 9/ D false;

TERMINALSINGQ.Œ�1; 3; 2�; 5/ D true:

Algorithm 2 is an implementation of Theorem 2.6.

Algorithm 2 Terminality of weighted blowup of a point
Input List L

1: procedure TERMINALBLOWUPQ
2: V  �1C

P
x2L x

3: TERMINALSINGQ.L; V /;

Example 4.2.

TERMINALBLOWUPQ.Œ1; 3; 5�/ D true;

TERMINALBLOWUPQ.Œ2; 3; 5�/ D false;

TERMINALBLOWUPQ.Œ2; 3; 6; 7�/ D true:
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The auxiliary Algorithm 3 gives the list of singularity indices of a weighted pro-
jective space.

Algorithm 3 Singularity indices of a weighted projective space
Input List L

1: procedure SINGLIST

2: Laux  empty list
3: L>1  sublist of elements of L bigger than 1
4: Lp  powerset of L>1
5: k  1

6: while k � length of Lp do
7: if gcd.LpŒk�/ > 1 then
8: Laux  Append gcd.LpŒk�/ to Laux

k  k C 1

9: Laux;

Example 4.3. The weighted projective space P .1; 1; 3; 6; 8/ has the following basket
of singularities

B D

²
1

6
.1; 1; 2; 3/;

1

8
.1; 1; 3; 6/;

1

2
.1; 1; 1/;

1

3
.1; 1; 2/

³
:

The indices of the singularities are ¹2; 3; 6; 8º. Indeed,

SINGLIST.Œ1; 1; 3; 6; 8�/ D Œ8; 6; 2; 3�:

Example 4.4. Notice the following behaviour:

SINGLIST.Œ7; 7; 3; 6; 8�/ D Œ7; 8; 6; 2; 3�;

SINGLIST.Œ�7;�7; 3; 6; 8�/ D Œ8; 6; 2; 3�:

This is necessary because we want to check terminality of small Q-factorial modific-
ations. See Example 4.5.

Algorithm 4 checks if a weighted projective space is terminal. More generally,
given a list of integers L it checks whether any positive integer in L is an index of a
terminal cyclic quotient singularity with weights the elements of L. This is the core
algorithm used to obtain Theorem 3.11.

Example 4.5. From Theorem 3.3 only four triples – up to permutation – .1; a; b/
are the weights of a weighted blowup of P3 at a point which initiate a Sarkisov link.
Indeed, take the .1; 3; 4/-weighted blowup of a point. Then,
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Algorithm 4 Terminality of a weighted projective space
Input List L

1: procedure TERMINALWPSQ
2: Laux  empty list
3: Lp  powerset of L
4: Lsing  SINGLIST(L)
5: k  1

6: while k � length of Lsing do
7: if TERMINALSINGQ.L;LsingŒk�/ then
8: Laux  Append 0 to Laux

9: else
10: Laux  Append 1 to Laux

11: k  k C 1

12:
13: if

P
x2Laux

x D 0 then
14: true
15: else
16: false;

u x y z t

T W

�
0 1 1 1 1

�
�1 0 1 3 4

is a terminal Q-factorial variety isomorphic in codimension 1 to

u x y z t

T 0 W

�
0 1 1 1 1

�
.

�1 �1 0 2 3

The isomorphism in codimension 1 is � WT Ü T 0 which contracts � D P1 and intro-
duces � 0 D P .2; 3/. On T 0, � 0 has a 1

2
.1; 1; 1/ terminal singularity and a 1

3
.1; 1; 1/

(strictly) canonical singularity. The fact that there is a non-terminal singularity in T 0

is captured by
TERMINALWPSQ.Œ�1;�1; 2; 3�/ D false:

Acknowledgements. The author would like to thank Hamid Abban, Ivan Cheltsov
and Erik Paemurru for many conversations and interest.

Funding. This work has been supported by the EPSRC grant ref. EP/V048619/1.



T. Duarte Guerreiro 308

References

[1] H. Abban, I. Cheltsov, and J. Park, On geometry of Fano threefold hypersurfaces. In
Rationality of varieties, pp. 1–14, Progr. Math. 342, Birkhäuser/Springer, Cham, 2021
MR 4383692

[2] H. Ahmadinezhad and A.-S. Kaloghiros, Non-rigid quartic 3-folds. Compos. Math. 152
(2016), no. 5, 955–983 Zbl 1388.14043 MR 3505644

[3] C. Birkar, Anti-pluricanonical systems on Fano varieties. Ann. of Math. (2) 190 (2019),
no. 2, 345–463 Zbl 1470.14078 MR 3997127

[4] C. Birkar, Singularities of linear systems and boundedness of Fano varieties. Ann. of Math.
(2) 193 (2021), no. 2, 347–405 Zbl 1469.14085 MR 4224714

[5] J. Blanc and S. Lamy, Weak Fano threefolds obtained by blowing-up a space curve and
construction of Sarkisov links. Proc. Lond. Math. Soc. (3) 105 (2012), no. 5, 1047–1075
Zbl 1258.14015 MR 2997046

[6] G. Brown and F. Zucconi, Graded rings of rank 2 Sarkisov links. Nagoya Math. J. 197
(2010), 1–44 Zbl 1194.14059 MR 2649280

[7] L. Campo, Sarkisov links for index 1 fano 3-folds in codimension 4. 2020,
arXiv:2011.12209. To appear in Math. Nachr.

[8] I. Cheltsov and J. Park, Birationally rigid Fano threefold hypersurfaces. Mem. Amer. Math.
Soc. 246 (2017), no. 1167 Zbl 1383.14004 MR 3605615

[9] A. Corti, Factoring birational maps of threefolds after Sarkisov. J. Algebr. Geom. 4 (1995),
no. 2, 223–254 Zbl 0866.14007 MR 1311348

[10] A. Corti and M. Mella, Birational geometry of terminal quartic 3-folds. I. Amer. J. Math.
126 (2004), no. 4, 739–761 Zbl 1063.14016 MR 2075480

[11] A. Corti, A. Pukhlikov, and M. Reid, Fano 3-fold hypersurfaces. In Explicit birational
geometry of 3-folds, pp. 175–258, London Math. Soc. Lecture Note Ser. 281, Cambridge
Univ. Press, Cambridge, 2000 Zbl 0960.14020 MR 1798983

[12] D. A. Cox, The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4
(1995), no. 1, 17–50 Zbl 0846.14032 MR 1299003

[13] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties. Grad. Stud. Math. 124, Amer-
ican Mathematical Society, Providence, RI, 2011 Zbl 1223.14001 MR 2810322

[14] T. Duarte Guerreiro, Explicit Birational Geometry of Fano 3-folds of higher index. Ph.D.
thesis, Loughborough University, 2021

[15] C. D. Hacon and J. McKernan, The Sarkisov program. J. Algebr. Geom. 22 (2013), no. 2,
389–405 Zbl 1267.14024 MR 3019454

[16] Y. Hu and S. Keel, Mori dream spaces and GIT. Michigan Math. J. 48 (2000), no. 1,
331-348 Zbl 1077.14554 MR 1786494

[17] Ó. Iglesias-Valiño and F. Santos, The complete classification of empty lattice 4-simplices.
Rev. Mat. Iberoam. 37 (2021), no. 6, 2399–2432 Zbl 1472.52017 MR 4310297

[18] A. Kasprzyk, Classifying terminal weighted projective space. 2013, arXiv:1304.3029
[19] M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth

points. Invent. Math. 145 (2001), no. 1, 105–119 Zbl 1091.14007 MR 1839287

https://mathscinet.ams.org/mathscinet-getitem?mr=4383692
https://zbmath.org/?q=an:1388.14043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3505644
https://zbmath.org/?q=an:1470.14078&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3997127
https://zbmath.org/?q=an:1469.14085&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4224714
https://zbmath.org/?q=an:1258.14015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2997046
https://zbmath.org/?q=an:1194.14059&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2649280
https://arxiv.org/abs/2011.12209
https://zbmath.org/?q=an:1383.14004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3605615
https://zbmath.org/?q=an:0866.14007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1311348
https://zbmath.org/?q=an:1063.14016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2075480
https://zbmath.org/?q=an:0960.14020&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1798983
https://zbmath.org/?q=an:0846.14032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1299003
https://zbmath.org/?q=an:1223.14001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2810322
https://zbmath.org/?q=an:1267.14024&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3019454
https://zbmath.org/?q=an:1077.14554&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1786494
https://zbmath.org/?q=an:1472.52017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4310297
https://arxiv.org/abs/1304.3029
https://zbmath.org/?q=an:1091.14007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1839287


Sarkisov links from toric weighted blowups of P 4 at a point 309

[20] Y. Kawamata, Divisorial contractions to 3-dimensional terminal quotient singularities. In
Higher-dimensional complex varieties (Trento, 1994), pp. 241–246, de Gruyter, Berlin,
1996 Zbl 0894.14019 MR 1463182

[21] R. Lazarsfeld, Positivity in algebraic geometry. II. Ergeb. Math. Grenzgeb., 3. Folge, A
Series of Modern Surveys in Mathematics 49, Springer, Berlin, 2004 Zbl 1093.14500
MR 2095472

[22] T. Okada, Birational Mori fiber structures of Q-Fano 3-fold weighted complete intersec-
tions. Proc. Lond. Math. Soc. (3) 109 (2014), no. 6, 1549–1600 Zbl 1349.14056
MR 3293158

[23] T. Okada, Birationally superrigid Fano 3-folds of codimension 4. Algebra Number Theory
14 (2020), no. 1, 191–212 Zbl 1469.14088 MR 4076811

[24] E. Paemurru, Birational geometry of sextic double solids with a compound An singularity.
2021, arXiv:2101.00501

[25] M. Reid, Decomposition of toric morphisms. In Arithmetic and geometry, Vol. II, pp. 395–
418, Progr. Math. 36, Birkhäuser Boston, Boston, MA, 1983 Zbl 0571.14020
MR 717617

[26] M. Reid, Young person’s guide to canonical singularities. In Algebraic geometry, Bowdoin,
1985 (Brunswick, Maine, 1985), pp. 345–414, Proc. Sympos. Pure Math. 46, Amer. Math.
Soc., Providence, RI, 1987 MR 927963

[27] M. Reid, What is a flip? Unplublished manuscript from Utah Seminar, 1992
[28] M. Rossi and L. Terracini, A Q-factorial complete toric variety with Picard number 2 is

projective. J. Pure Appl. Algebra 222 (2018), no. 9, 2648–2656 Zbl 1420.14120
MR 3783011

[29] G. Sankaran and F. Santos, Blowups with log canonical singularities. Geom. Topol. 25
(2021), no. 4, 2145–2166 Zbl 07379444 MR 4286371

Received 14 June 2022; revised 30 August 2022.

Tiago Duarte Guerreiro
Department of Mathematical Sciences, Loughborough University, Leicestershire,
United Kingdom; t.duarteguerreiro@essex.ac.uk

https://zbmath.org/?q=an:0894.14019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1463182
https://zbmath.org/?q=an:1093.14500&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2095472
https://zbmath.org/?q=an:1349.14056&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3293158
https://zbmath.org/?q=an:1469.14088&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4076811
https://arxiv.org/abs/2101.00501
https://zbmath.org/?q=an:0571.14020&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=717617
https://mathscinet.ams.org/mathscinet-getitem?mr=927963
https://zbmath.org/?q=an:1420.14120&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3783011
https://zbmath.org/?q=an:07379444&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4286371
mailto:t.duarteguerreiro@essex.ac.uk

	1. Introduction
	2. Preliminaries
	3. Sarkisov Links
	3.1. Sarkisov links from \mathbbP3̂
	3.2. Sarkisov links from \mathbbP4̂

	4. Appendix: Code
	References

