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Deformations of Legendrian curves

Marco Silva Mendes and Orlando Neto

Abstract. We construct versal and equimultiple versal deformations of the parametrization of
a Legendrian curve.

1. Introduction

Legendrian varieties are analytic subsets of the projective cotangent bundle of a
smooth manifold or, more generally, of a contact manifold. They are projectiviza-
tions of conic Lagrangian varieties. These are specifically important in -modules
theory and microlocal analysis (see [6—8]). Its deformation theory is still an almost
virgin territory (see [2, 10]).

In Sections 2, 3 and 4, we introduce the languages of contact geometry and defor-
mation theory. In Sections 5 and 6, we construct the semiuniversal and equimultiple
semiuniversal deformations of the parametrization of a germ of a Legendrian curve,
extending to Legendrian curves previous results on deformations of germs of plane
curves (see [5]). We show in the proof of Theorem 5.4 that the category of Legendrian
curves verifies Schlessinger’s condition for formal versality. We will follow the defin-
itions and notations of [5].

The results will be useful to the study of equisingular deformations of Legendrian
curves and its moduli spaces in forthcoming articles.

2. Contact geometry

Let (X, Ox) be a complex manifold of dimension 3. A differential form w of degree 1
is said to be a contact form if @ A dw never vanishes. Let @ be a contact form. By
Darboux’s theorem for contact forms there is locally a system of coordinates (x, y, p)
such that w = dy — pdx. If w is a contact form and f is a holomorphic function that
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never vanishes, fw is also a contact form. We say that a locally free subsheaf &£ of
Q} is a contact structure on X if £ is locally generated by a contact form. If £ is a
contact structure on X the pair (X, £) is said to be a contact manifold. Let (X1, £1)
and (X2, £2) be contact manifolds. Let y : X; — X, be a holomorphic map. We
say that y is a contact transformation if y*w is a local generator of £; for a local
generator @ of £,.

Let @ = £dx + ndy denote the canonical 1-form of 7*C? = C? x C?. Let

7 :P*C?=C?xP' > C?

be the projective cotangent bundle of C2, given by m(x, y;€ : n) = (x,y). Let U
[V] be the open subset of P*C? defined by 1 # 0 [ # 0]. Then 8/n [0/£] defines
a contact form dy — pdx [dx — qdy] on U [V], where p = —&/n [q = —n/&].
Moreover, dy — pdx and dx — qdy define a structure of contact manifold on P*C?2.

Further, if ®(x, y) = (a(x,y),b(x,y)) witha,b € C{x, y} is an automorphism
of (C2,(0,0)), we associate to ® the germ of contact transformation

x : (P*C2,(0,0:0: 1)) — (P*C?,(0,0; —3xb(0,0) : 9xa(0,0)))
defined by
x(x,yi§:n) = (a(x,y),b(x,y):0,b§ — dxbn : —dyaf + dxan). 2.1

If D® g0y leaves invariant {y = 0}, then d,b(0,0) = 0, d,a(0,0) # 0 as well as
x(0,0;0:1) = (0,0;0 : 1). Moreover,

x(x.y.p) = (a(x,).b(x,y), (9ybp + 0xb)/(dyap + 9xa)).

Let (X, £) be a contact manifold. A curve L in X is said to be Legendrian if
1*w = 0 for each section w of £, where:1 : L — X.
Let Z be the germ at (0, 0) of an irreducible plane curve parametrized by

p(1) = (x(1), y(@)). (22)
We define the conormal of Z as the curve parametrized by
Y1) = (x(@), y(0):=y'(t) : X' (1)) (23)

The conormal of Z is the germ of a Legendrian curve of P*C?2. We will denote the
conormal of Z by IP5C? and the parametrization (2.3) by €on ¢.

Assume that the tangent cone C(Z) is defined by the equation ax + by = 0,
with (a, b) # (0,0). Then IP’;CZ is a germ of a Legendrian curve at (0,0;a : b). Let
f € C{t}. We say the f has order k and write ord f = k orord; f =k if f/tFisa
unit of C{¢}.
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Remark 2.1. Let Z be the plane curve parametrized by (2.2). Let L = P%C?. Then

i) C(Z)={y=0}ifandonlyifordy > ordx.If C(Z) = {y = 0}, L admits
the parametrization

V(1) = (x(2), y (@), y' (1) /x' (1))

on the chart (x, y, p).

(i) C(Z)={y=0}andC(L) ={x =y =0}ifandonlyifordx <ordy <
2ord x;

(iii)) C(Z)={y=0}and{x =y =0} Z C(L) C{y =0} ifand only iford y >
2ord x;

@iv) C(L)={y =p =0}ifandonlyifordy > 2ord x;

(v)  multL <multZ. Moreover, mult L = mult Z if and only if ord y > 2 ord x.

If L is the germ of a Legendrian curve at (0,0;a : b), w(L) is a germ of a plane
curve of (C2, (0,0)). Notice that all branches of 7 (L) have the same tangent cone.

If Z is the germ of a plane curve with irreducible tangent cone, the union L of the
conormal of the branches of Z is a germ of a Legendrian curve. We say that L is the
conormal of Z.

If C(Z) has several components, the union of the conormals of the branches of Z
is a union of several germs of Legendrian curves.

If L is a germ of Legendrian curve, L is the conormal of 7w (L).

We consider the symplectic form dp A dx in the vector space C2, with coordin-
ates x, p. We associate to each symplectic linear automorphism

(p,x) = (ap + Bx,yp + 8x)

of C2 the contact transformation
1 1
(x.y.p)— (yp+8x.y + anpz + Byxp + 5/35162’0!17 + Bx). (2.4)

We say that (2.4) is a paraboloidal contact transformation.
Inthecase = § = 0and y = —f = 1, we get the so called Legendre transfor-
mation

Y(x,y,p) = (p,y — px,—x).

We say that a germ of a Legendrian curve L of (P*C?2, (0,0;a : b)) is in generic
position if C(L) 2 7~1(0,0).

Remark 2.2. Let L be the germ of Legendrian curve on a contact manifold (X, &£)
at a point o. By Darboux’s theorem for contact forms there is a germ of a contact
transformation y : (X, 0) — (U, (0,0, 0)), where U = {n # 0} is the open subset
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of P*C? considered above. Hence C(m(y(L))) = {y = 0}. Applying a convenient
paraboloidal transformation to y(L) we can assume that C(y(L)) = Dy(0)(C(L)) 2
{x = y =0}. Hence y(L) is in generic position. If C(L) is irreducible, we can assume
C(x(L) ={y=p =0}

Following the above remark, from now on we will always assume that every

3

Legendrian curve germ is embedded in (C¢, | ).

), where ® = dy — pdx.

Example 2.3. The plane curve Z = {y? — x3 = 0} admits a parametrization ¢(t) =
(t2,13). The conormal L of Z admits the parametrization v (f) = (¢2, 1, 31). Hence
C(L) = #~1(0,0) and L is not in generic position. If y is the Legendre transforma-
tion, C(x(L)) ={y = p = 0} and y(L) is in generic position. Moreover, w(y (L)) is
a smooth curve.

Example 2.4. The plane curve Z = {(y? — x3)(y? — x°) = 0} admits a parametriz-
ation given by
pi(t) = (2. 107), () = (2% 12°).

The conormal L of Z admits the parametrization given by
(2,33 (12,523
WI(tl) - tl 7t1 72t1 ’ WZ(tZ) - t2 ’t2 72t2 .

Hence C(L;) = n~1(0,0) and L is not in generic position. If y is the paraboloidal
contact transformation

1
X:(x,y,p)f—>(x+p,y+5p2,p),

then y(L) has branches with parametrization given by

3 9 3
1 (W) () = (112 + 2t + o1, —11),

2 8 2
5 25 5
x(W2)(t2) = (t22 + ?‘23,&5 + §l26, 5123)-

Then
C(x(L1) ={y =p—x =0}, C(x(L2)) ={y=p=0}

and L is in generic position.

3. Relative contact geometry

Setx = (x1,...,xp) and z = (z1, ..., Zm). Let I be an ideal of the ring C{z}. Let I
be the ideal of C{x, z} generated by /.
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Lemma3.l. (a) Let f € C{x,z}, f = Y, doX® with ay € C{z}. Then f € T
if and only if ay € I for each a.
(b) Iff el thendy, felforl <i<n.
(¢) Letay,...,an—1 € C{x,z}. Let b, By € 1. Assume that 0x, Bo = 0. If B is the
solution of the Cauchy problem

n—1

0x, =Y aidx;B=b, B —PocCix zx, 3.1)
i=1

then B € T.

Proof. There are g1,...,g¢ € C{z} suchthat I = (g1,...,g¢).If ay € I foreach «,
there are h; o € C{z} such thata, = Zle h; ogi. Hence

¢
f = Z (Zhi,axo‘)gi el.
i=1 o
If f €I, there are H; € C{x,z} such that f = Zf=1 H;g;. There are b; o, € C{z}
such that H; = ), b; oXx*. Therefore, a, = Zf=1 biwgi €1.
We can perform a change of variables that rectifies the vector field

n—1
axn - E aiaxp
i=1

leaving invariant the hypersurface {x, = 0} and reducing the Cauchy problem (3.1)
to the Cauchy problem

dx,8 =0, B — Bo € Ci{x,z}x,.
Hence, statements (b) and (c) follow from (a). [

Let J be an ideal of C{z} contained in /. Let X, S and T be analytic spaces with
local rings (C{X} (C{z}/l and C{z}/] Hence, X x S and X x T have local rings
O .= (C{X z}/T and O = C{x, z)/J. Letay,...,ap_1.b e @ and g € O/x,0. Let
ai,b € O and g e o /xn(9 be representatives of a;, b and g. Consider the Cauchy

problems
n—1

ey f+ D aids f=b,  f+x,0=¢ (3.2)

i=1

and
n—1

e, £+ > a0y f=b,  f+x,0=g (3.3)
i=1
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Theorem 3.2. The following statements hold.
(a) There is one and only one solution of the Cauchy problem (3.3).
(b) If f is a solution of 3.2),f = f + T is a solution of (3.3).

(¢) Iffis a solution of (3.3) there is a representative f of f that is a solution

of (3.2).

Proof. By Lemma 3.1, dy; I = I.Hence (b) holds.

Assume J = (0). The existence and uniqueness of the solution of (3.2) is a special
case of the classical Cauchy—Kowalevski Theorem. There is one and only one formal
solution of (3.2). Its convergence follows from the majorant method.

The existence of a solution of (3.3) follows from (b).

Let f;, f, be two solutions of (3.3). Let f; be a representative of f; for j = 1,2.
Then

n—1
Or,(fo— S+ D aidy,(fr— f)eT
i=1
and
fz—f1+xn(9€7+xn(9.

By Lemma 3.1, f, — f1 € I. Therefore f; = f,. This ends the proof of statement (a).

Statement (c¢) follows from statements (a) and (b). ]
Set Qy g = Dj—; Odx;. We say that the elements of Qy ¢ are germs of relative

differential forms on X x S. Themapd : O — Q x|s given by df =371 0x, fdx;
is said to be the relative differential of f.

Assume that dim X = 3 and let &£ be a contact structureon X.Letp: X xS — X
be the first projection. Let w be a generator of &£. We will denote by £ the sub -
module of €2 }1(‘ s generated by p*w. We say that £ is a relative contact structure of
X x §. The pair (X x S, £s) is called a relative contact manifold. We say that an
isomorphism of analytic spaces

X:XxS—->XxS§ (3.4

is a relative contact transformation if y(0,s) = (0,s), y*w € £s foreachw € £g
and the following diagram commutes:

1
.

%,

X

S~ XxS 35

X

L X

L N
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The demand of the commutativity of diagram (3.5) is a very restrictive condi-
tion but these are the only relative contact transformations we will need. We can and
will assume that the local ring of X equals C{x, y, p} and that £ is generated by
dy — pdx.

Set O = C{x, y, p,z}/fand@ = C{x, y, p.z}/J. Let my be the maximal ideal
of C{x, y, p}. Let m [11] be the maximal ideal of C{z}/I [C{z}/J]. Let u [@1] be the
ideal of O [(5] generated by mym [ty ).

Remark 3.3. If (3.4) is a relative contact transformation, there are «, 8, y € n such
that 0, € n and

xx,y,p2)=(x+a,y+B,p+y2). (3.6)

Theorem 3.4. (@) Let y: X xS — X xS be the relative contact transforma-
tion (3.6). There is Bo € n such that 0,0 = 0, 0xBo € nand B is the solution
of the Cauchy problem

(1 da Ba) B doa 0B O 0B Oda

to-+pos P = oo =po-  P—PocpO B7)
0x ay

ap Topady apox op’

and

B 1+8a+ da\ ! 8ﬂ+ B da  da (3.8)
v= dx pay 0x p8y 0x pay ' )

(b) Givena, Bo € 1 such that 9,80 = 0 and 0xBo € 1, there is a unique contact
transformation x verifying the conditions of statement (a). We will denote y
by Xa.po-

(c) Assume S and T are the analytic spaces defined right after Lemma 3.1. Given
a relative contact transformation ¥ : X X T — X x T there is one and only
one contact transformation y : X X S — X x § such that the diagram

XxS—*sxx8

I

XxT 2 xxT

commautes.

(d) Given a, By € n and &',50 € 1 such that 3,0 = 0, a,,[éo =0, 0580 €1,
dxBo € and &, Bo are representatives of a, Bo, set Y = Ya,p, and ¥ = x5 Bo-
Then diagram (3.9) commutes.

Proof. Statements (a) and (b) are a relative version of [1, Theorem 3.2] (see also [9]).
In [1] we assume S = {0}. The proof works as long S is smooth. The proof in the
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singular case depends on the singular variant of the Cauchy—Kowalevski Theorem
introduced in Theorem 3.2. Statement (c) follows from statement (b) of Theorem 3.2.
Statement (d) follows from statement (¢) of Theorem 3.2. ]

Remark 3.5. (1) The inclusion S < T is said to be a small extension if the surjective
map O — Os has one-dimensional kernel. If the kernel is generated by &, we have
that, as complex vector spaces, O = Og @ ¢C. Every extension of Artinian local
rings factors through small extensions.

Theorem 3.6. Let S — T be a small extension such that Os = C{z} and
Or = Clz,e}/(e*, ez1,...,82m) = C{z} ® Ce.

Assume x : X x § — X x § is a relative contact transformation given at the ring
level by
(x,y.p) = (Hy, Ha, H3),

o, Bo € my, such that 3,0 = 0 and Bo € (x2,y). Then, there are uniquely determined
B,y € my suchthat 8 — Bo € pOx and ¥y : X xT — X x T, given by

X(x,y,p.z,¢) = (Hi +¢ea, H, +¢f, H3 + €y,2, ),

is a relative contact transformation extending y (see diagram (3.9)). Moreover, the

Cauchy problem (3.7) for ¥ takes the simplified form
ap do
- =Po  B=PocCix,y.pip (3.10)
dp "~ Ip

and

_9%B (aﬂ 30‘)_ 2 0 3.11)

AP dy  ox ay’
Proof. We have that ¥ is a relative contact transformation if and only if there is

fi=f"+ef" €Ori{x,y, p} with f ¢ (x,y, p)Or{x,y. p}. f' € Osi{x.y, p},
f" e C{x,y, p} = Ox such that

d(Hy +¢f) — (Hs + ey)d(H; + ea) = f(dy — pdx). (3.12)
Since y is a relative contact transformation we can suppose that
dH2 — H3dH1 = f,(dy — pdx)

Using the fact that smg, = 0 we see that (3.12) is equivalent to

B _ O _%4_ (8,3 805)_ 2 0

do P O f"—%— do
Bp_pap’ V= P ay’

P dy ox ~ y p@'
As B — Bo € (p)C{x, y, p} we have that 8, and consequently y, are completely
determined by « and fy. ]
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Remark 3.7. Seta = Y, ax p*, B =3, Bep*, v = Xk vi P, where o, Br, vk €
C{x, y} foreach k > 0 and By € (x2, y). Under the assumptions of Theorem 3.6,

(i) Be="Pax_y, fork>1.

(i1) Moreover,

_ %o _ %o _9x
Yo =y " dy  ox
1 aOlk_l 1 aOlk_z
= —— — k>2.
Vk k ox k—1 ay ’ -
Since 3 9 5
_ 0 (%%
8y7/0 - 8x< 0x + )/1>’
Bo is the solution of the Cauchy problem
0 0 dot
ﬁ=J/0, ﬁ=—0+71, Bo € (x.y).
0x dy 0x

4. Categories of deformations

A category € is said to be a groupoid if all morphisms of € are isomorphisms.

Let p : § — € be a functor. Let S be an object of €. We will denote by &(S) the
subcategory of § given by the following conditions:
* Wis an object of F(S) if p(¥) = S.
ey is a morphism of §(S) if p(y) = ids.

Let y [W] be a morphism [an object] of #. Let f, [S] be a morphism [an object]
of €. We say that y [¥] is a morphism [an object] of & over f [S]if p(y) = f
[p(¥) = S].

A morphism y’ : ¥ — W of & over f : S’ — S is said to be cartesian if for each
morphism y” : ¥’ — ¥ of § over f there is exactly one morphism y : ¥ — ¥’
over ids’ such that ¥’ o y = x”. If the morphism y’ : W' — W over f is cartesian, W’
is well defined up to a unique isomorphism. We will denote ¥’ by f*W or ¥ xg S’.

We say that  is a fibered category over € if

(1) For each morphism f : S — S in € and each object W of & over S there is

a morphism y’ : ¥/ — W over f that is cartesian.

(2) The composition of cartesian morphisms is cartesian.
A fibered groupoid is a fibered category such that %(S) is a groupoid for each S € €.

Remark 4.1. If p : § — € satisfies (1) and F(S) is a groupoid for each object S
of €, then  is a fibered groupoid over €.
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Let 2n be the category of analytic complex space germs. Let 0 denote the complex
vector space of dimension 0. Let p : § — 2n be a fibered category.

Definition 4.2. Let 7" be an analytic complex space germ. Let i [W¥] be an object of
&(0) [F(T)]. We say that W is a versal deformation of y if given

* aclosed embedding f : T" — T’,

e amorphism of complex analytic space germs g : T” — T,

» anobject ¥ of F(T’) such that f*V' ~ g*¥

There is a morphism of complex analytic space germs & : T" — T such that
hof =g and WYY x> U,

If W is versal and for each W’ the tangent map 7'(h) : Ty» — Tr is determined by ¥/,
then W is called a semiuniversal deformation of yr.

Let T be a germ of a complex analytic space. Let A be the local ring of 7" and let
m be the maximal ideal of A. Let T}, be the complex analytic space with local ring
A/m™ for each positive integer n. The canonical morphisms

A— A/m" and A/m" — A/m"T!

induce morphisms «, : T, — T and B, : Ty41 — Ty.
A morphism f : T” — T" induces morphisms f, : 7,/ — T,, such that the diagram

T// f T/

T” T,;
J fn+l J
TI;/-FI n+1

commutes.

Definition 4.3. We will follow the terminology of Definition 4.2. Let g, = g o a;,. We
say that W is a formally versal deformation of 1 if there are morphisms &, : T, — T
such that

hpo fo=2gn  hnoP,=hpy1 and AV =a "W,

If W is formally versal and for each W' the tangent maps T'(hy) : Ty, — Tr are
determined by o, * W', then W is called a formally semiuniversal deformation of .
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Theorem 4.4 ([4, Theorem 5.2]). Let § — € be a fibered groupoid. Let W € %(0).
If there is a versal deformation of Vr, every formally versal [semiuniversal] deforma-
tion of  is versal [semiuniversal].

Let Z be a curve of C” with irreducible components Z1,. .., Z,. Set C= |_|;=1 C;
where each C; is a copy of C. Let ¢; be a parametrization of Z;, 1 <i <r.Letg:C —
C" be the map such that ¢| ¢, = %is 1 <1i <r. We say that ¢ is the parametrization
of Z. All the results of this section should be read locally at 0 € C;.

Let T be an analytic space. A morphism of analytic spaces ® : C x T — C* x T

is called a deformation of ¢ over T if the diagram
—(p) cn

T—2.,CcnxT

idr l

T ——T

C

— X +—Al

commutes. The analytic space T is called the base space of the deformation.
We will denote by ®; the composition

_ _ ®
CixT—-CxT—->C"xT—C", 1<i<r.

The maps ®;, 1 <i < r, determine ®.
Let ® be a deformation of ¢ over T'. Let f : T’ — T be a morphism of analytic
spaces. We will denote by f*® the deformation of ¢ over T’ given by

(f*®)i = @; o (idg, x f).

We say that f*® is the pullback of ® by f.

Let & : C x T — C" x T be another deformation of ¢ over 7. A morphism from
@’ into ® is a pair (y,&) where y : C" x T - C*"xTand§ :CxT — C x T are
isomorphisms of analytic spaces such that the diagram

T« CxT—2C"xT——T

ar | & C—2sCnx{o}|x |iar

, |

T+—CxT——C"xT ——T

commutes.
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Let @' be a deformation of ¢ over S and f : S — T a morphism of analytic
spaces. A morphism of ® into ® over f is a morphism from @' into f*®. There
is a functor p that associates 7" to a deformation W over 7" and f to a morphism of
deformations over f.

Given s € T let Z; be the curve parametrized by the composition

@x{s}%@ng(C”xT—MC".

We say that Z; is the fibre of the deformation ® at the point s.

Assume ®; (#;,8) = (X1,; (4,5), ..., Xn,i(ti,s)), | <i <r.Assume Z; has multi-
plicity m;. We say that ®; is equimultiple if X;; € (™) foreach1 <i <r, 1 <j <n.
We say that ® is equimultiple if each ®; is equimultiple.

Assume Z is a plane curve. Set

®; (1;,8) = (Xi(1i.9). Yi (ti.9)), 1<i<r 4.1)

We will denote by Def, [Def;"] the category if> defor_m)c)ztions [equimultiple deform-
ations] of ¢. We say that ® is an object of Def, [Def,] if P is equimultiple and
Yie (X)) [Yi € (X)), 1<i <7,

If T is reduced, dl> € Def" [Ecg)f(p, ﬂ)f)q,] if and only if all fibres of ® are equi-
multiple [have tangent cone {y = 0}, have tangent cone {y = 0} and are in generic
position].

Consider in C? the contact structure given by the differential form w =dy — pdx.
Assume Z is a Legendrian curve parametrized by ¢ : C — C3. Let W be a deforma-
tion of Y given by

‘I’i(ti,S):(Xi(ti,S),Yi(ti,S),Pi(ti,S)), lil <r. (42)

We say that W is a Legendrian deformation of ¥ if W¥(p*w) =0 for 1 <i <r.
We say that (y, £) is an isomorphism of Legendrian deformations if y is a relative
contact transformation. We will denote by 0‘531‘]# [@f@m] the category of Legendrian
[equimultiple Legendrian] deformations of . All deformations are assumed to have
trivial section.

Assume that ¥ = €on ¢ parametrizes a germ of a Legendrian curve L, in generic

position. If (4.1) defines an object of E}" , setting
P;i(ti,s) := 0, Yi(ti,8)/ 0y, Xi (1, ), 1<i=<r

the deformation W given by (4.2) is a Legendrian deformation of yr. We say that ¥
is the conormal of ® and denote ¥ by €on ®. If ¥ € ;6&” is given by (4.2), the
deformation @ of ¢ given by (4.1) is said to be the plane projection of V. We will
denote ® by W”.
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We define in this way the functors
—_ —— —— o
€on : Pef, — Defy,, 7 : Defy — Def,.

Notice that the conormal of the plane projection of a Legendrian deformation always
exists_ar_l)d we have that Con(¥7") = W for each ¥ € Defy, and (Con )™ = O where
D € Def,,.

Example 4.5. Set ¢(t) = (¢,0), ¥ = €Cong and X(¢,s) = ¢, Y(¢,s) = st. Then we
get P(t,s) = s and although X, Y define an object of Def’", its conormal W is not
an element of Defy,, because W is a deformation with section s — (0,0, s, ).

Example 4.6. Set ¢(t) = (t2,1°), X(t,5) = t2, Y(t,5) :_li + st3. Then we get
2P(t,s) = 5t3 + 3st. Although X, Y defines an object of Def,, its conormal is not
equimultiple.

Remark 4.7. Under the assumptions above,
—» — — —»
Con(Defy,) C Defy" and (Defy™™ C Defy.

Remark 4.8. If € is one of the categories Sl/)gf,/,, i/);f;m, then p : € — An is a fibered
groupoid.

5. Equimultiple versal deformations

For Sophus Lie a contact transformation was a transformation that takes curves into
curves, instead of points into points. We can recover the initial point of view. Given a
plane curve Z at the origin, with tangent cone {y = 0}, and a contact transformation
x from a neighbourhood of (0; dy) into itself, y acts on Z in the following way: y - Z
is the plane projection of the image by y of the conormal of Z. We can define in a
similar way the action of a relative contact transformation on a deformation of a plane
curve Z, obtaining ar&th»er deformation of Z.

We say that ® € Def,(T) is trivial (relative to the action of the group of relative
contact transformations over 7') if there is y such that y - ® := 7 o y o €on P is the
constant deformation of ¢ over 7', given by

(ti.s) = @i(t;), i=1,....r

Let Z be the germ of a plane curve parametrized by ¢ : C — C2. In the following,
we will identify each ideal of @z with its image by ¢* : Oz — Og. Hence,

X1 )1 r
(9z=C{ SR }c@@{zi}=0@.

i=1
Xr Yr
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Set X = [X1,...,X,]", where x; is the derivative of x; with respectto #;, 1 <i <r.
Let
.. .0 .0
Q= Xa + ya
be an element of the free OF-module

9 i)
ey @ 9y, (5.1)

Notice that (5.1) has a structure of @z-module induced by ¢*.
Let m; be the multiplicity of Z;, 1 <i < r. Consider the OF-module

i 9 N 2m 0
(@zi l@{zi}a) ® (EBtf ’C{ti}@). (5.2)
i=1 i=1

Let mg¢ be the sub Oi-module of (5.2) generated by

(a ar) 5(8 +y 0
1,-..,Up 8X yay ’

where a; € t;C{t;},1 <i <r.Fori =1,...,r set p; = y;/x;. Foreach k > 0 set

p* =[pf.....pf]"

Let ] be the sub ©Oz-module of (5.2) generated by

] k d
k ° M k+1 Y k> 1.
P 8x+k+1p ay’ -
Set

o (@ cid) e (@ 7 cln )
Y — . 7T
mgg + (¥ )5y ® (2 y)gy + 1

Given a category € we will denote by € the set of isomorphism classes of ele-
ments of €.

Theorem 5.1. Let  be the parametrization of a germ of a Legendrian curve L of a
contact manifold X. Let y : X — C3 be a contact transformation such that y(L) is
in generic position. Let ¢ be the plane projection of y o . Then there is a canonical
isomorphism

Defy" (Te) — My,

—— —>
Proof. Let W € Defy"(T;). Then, W is the conormal of its projection ® € Defy, (T)
(see Remark 4.7). Moreover, W is given by

V(t;,e) = (x; + €ai, yi + ebi, pi + eci),
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where a;, b;,c; € C{t;}, orda; > m;,ordb; >2m;,i = 1,...,r. The deformation W
is trivial if and only if @ is trivial for the action of the relative contact transformations.
Moreover, @ is trivial if and only if there are

&) =1 =t; + ¢eh;,
x(x,y,p.e) =(x+ea,y+eB,p+eye),

such that y is a relative contact transformation, where «, 8,y € (x, y, p)C{x, y, p},
&; is an isomorphism, where ; € ;C{t;}, 1 <i <r, and

xi(ti) + eai(t;) = xi (&) + ea(x; (&), yi (&), pi(@i)),

yi(ti) + ebi(t;) = yi(t) + eB(xi (@), yi (1), pi (%)),
fori =1,...,r. By Taylor’s formula x; (7;) = x; (t;) + eX; (t; ) hi (t;), vi (i) = yi (t;) +
yi(ti)h; (1) and

ea(xi (%), yi (@), pi(6) = ea(x;(t:), yi(t:), pi(t:)),

eB(xi (i), yi (), pi (1) = eB(xi (t:), yi(t:), pi (1)),

fori = 1,...,r. Hence ® is trivialized by y if and only if

a;i(ti) = Xi (t)hi (t) + a(xi (), yi(4), pi(t:)), (5.3)
bi(t;) = yi(ti)hi(t:) + B(xi (1), yi (), pi (1)), 54
fori =1,...,r. By Remark 3.7 (i), (5.3) and (5.4) are equivalent to the condition
ad d ad 0 ~
—+b &6 V) — 2 y)—+1.
az-+ ayem@<p+(x y)ax@(x y)ay+ u

Set

— (69,—1 i (C{tl}ax) (@l 14 C{t,}ay)
mé‘p+(x7Y)g@(x,y)5 ,

W = (@Llfimi(C{li}%) ® (@Lllfm"C{ti}%)'

mgg + (x,y) L @ (xz,y)%

By [5, Proposition 2.27],
DefSM(T,) = M,

A similar argument shows that
—>
Det,(T,) = M,

We have linear maps

~

1T >
My, < M, — M,. (5.5)
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Theorem 5.2 ([5, II, Proposition 2.27 (3)]). Set k = dim M,,. Let

,
a/ b e @Pi"Cly).  1<j<k
i=1

If . .
0 d @ ad i 0
a/ — 4b— = : +| | =, 1<j <k, (5.6)
dx By ] ax | dy
aj b

represents a basis of M, the deformation ® : C x C¥ — C2 x C* given b
P g y

k k
Xi(ti.s) = xi(t) + Y _al (t)s;. Yi(tios) = yi(t:) + Y _ b (t)sj.  (5.7)

j=1 =1

i =1,...,r, is a semiuniversal deformation of ¢ in Def,"

Lemma 5.3. Ser % = dim M,. Let a/ € 691—1 M Clt), b e @l_l 2" C L),

1<j< k. If (5.6) represents a basis of Mw, the deformation d> given by (5.7),
—>

1 <i <r, is a semiuniversal deformation of ¢ in Def,. Moreover, ‘€0n<_l>»is a versal

deformation of y = €ong in J/)Ef em,

Proof. We only show the completeness of CI> and €on CD Since the linear 1nclu—
sion map 1 referred in (5.5) is injective, the deformation Q> 1s the restriction to M
of the deformation ® introduced in Theorem 5.2. Let @y € {Oef »(T). Since ®q €
Def,"(T), t@ is a morphism o_f»analytlc space_s»f T — M, such that g = f*P.
Since ®¢ € Defy,(T), f(T) C M, Hence f*od = f*o.

fve !Defem(T) then W” e J)ef (T). Hence»there is f: T — M(p such that
T~ f* 3. Therefore VU ="%€on¥”" = €on f*® = f*€on 3. ]

Theorem 5.4. Lera’ € @)_, 1/ C{t;}, b/ € B]_, f”’"(C{ti}, 1 <j <4{ Assume
that (5.6) represents a basis [a system of generators] of M(p. Let ® be the deformation
given by (5.7), 1 <i < r. Then €on ® is a semiuniversal [versal] deformation of

Y = Cong in J/)Effpm.

Proof. By Theorem 4.4 and Lemma 5.3 it is enough to show that €on ® is formally
semiuniversal [versal].
Let 1 : T' < T be a small extension. Let ¥ € @f@m(T). Set ¥/ = 1*W, Let
n' : T — C* be a morphism of complex analytic spaces. Assume that (', &) define
an isomorphism
n*€on® = V',
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We need to find y : T — C* and y, € such that 7’ = 5o and y, £ define an isomor-
phism
n*€ond = W

that extends (y’, &’). Let A [A’] be the local ring of T [T"]. Let § be the generator of
Ker(A — A’). We can assume A’ = C{z}/I, wherez = (z1,...,zn). Set

=C{z} and A= Clz, e}/ (%, ez1,....82m).

Let niy be the maximal ideal of A. Since m46 = 0 and § € 1y, there is a morphism
of local analytic algebras from A onto A that takes ¢ into § such that the diagram

||

commutes. Assume 7 [7’] has local ring A [;17 ]. We also denote by i the morphism
i’ <> 7. We denote by « the morphisms 7 <> 7 and T’ <> 7’. Let ¥ € c6&1‘;‘“({) be a
lifting of W.

We fix a linear map o : A’ <> A’ such that k*0 = idar. Set ¥ = Yo (@).0(Bo)s
where y' = xo,p,. Define i’ by 7*s; = o(n'*s;),i =1,...,£. Let £’ be the lifting of
&’ determined by o. Then

(5.8)

:l;(—sz

U= )A("_l o * €on ® ogl_l

is a lifting of W' and o
F oW ot =7*€ond. (5.9)

By Theorem 3.4 it is enough to find liftings ¥, 'é nof y, E’ , 7 such that
-V oE =70

in order to prove the theorem.
Consider the commutative diagram of full arrows

Cxf'C—3Cxf oy C xCt
l@/ J\T/ lfonfb

C3xf 3 C3XF O3 % L
P
S Mot
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If €on @ is given by
Xi(t;,s), Yi(ti,s), Pi(ti,s) € C{s,t;},
then 77”* €on ® is given by
Xi(.7 (). Yi(t:.7 (@), Pi(1;.7(2) € A} = Clz.1;}
fori =1,...,r. Suppose that U is given by
U/(t;,z), V/(ti,z), W/(ti,z) € C{z,1;}.
Then, ¥ must be given by
Uy =U +eup, Vi =V +ev;, Wy = W/ + ew; € Alt;} = Cfz.t;} ® eC{t;)

with u;, v;,w; € C{t;} andi = 1,...,r. By definition of deformation we have that,
for each i,
Ui, Vi, Wi) = (xi(t;), yi(t;), pi(t;)) mod m 7.

Suppose 77’ : i’ — C* is given by (7). . ., 1), with 77, € C{z}. Then 7 must be given by
=7 + & for some 7° = (73, ....72) € C*. Suppose that 7' : C3 x ' — C3 x T’
is given at the ring level by

(x,y,p) — (H{, Hy, H}),

such that H' = id mod m g, with H] € (x, y, p)A'{x, y, p}. Let E:Cxi'—>Cx7
be an automorphism given at the ring level by

t; l—)h;,

such that 2" = id mod m 3, with &} € (¢;)C{z, t;}.
Then, it follows from (5.9) that
Xi(t:.7) = H{(U(h}). V (hy), W[ (h})).
Yi(ti, ) = Hy(U/ (hy), Vi (h}), W[ (hy)), (5.10)
Pi(t;, ) = Hy(U] (hy), Vi (h}), W[ (hy)).

Now, 77’ must be extended to 7 such that the first two previous equations extend as
well. That is, we must have

Xi(t;,7) = (H, + ea)(U; (h} + eh?), Vi(h; + eh?), W; (h: + eh?)),  (5.11)
Y;(t;,7) = (Hy + eB) (Ui (h; + h?), Vi(h; + eh)), Wi (h} + h?)),

withe, 8 € (x,y, p)C{x, y, p}, and h? € (¢;)C{t;} such that

(x,y,p) > (H| + ea, Hy + B, H; + €y)
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gives a relative contact transformation over 7 for some y € (x, y, p)C{x, y, p}. The
existence of this extended relative contact transformation is guaranteed by Theo-
rem 3.6. Moreover, again by Theorem 3.6, this extension depends only on the choices
of a and By. So, we need only to find «, Bo, 7° and 4 such that (5.11) holds. Using
Taylor’s formula and £2 = 0 we see that

X (.7 + e7°) = X (4, 7] >+sZ (zl, 7

(emg=0) =Xt 7 )+eZ (zl,O)n,, (5.12)
)

Yilts, 7+ 6l) = Y. ) + £ 3 == (1, 0)7).
j=1 %%

Again, by Taylor’s formula and noticing that em 7 = 0, em 7, = O in A, h' = id mod
m g, and (U;, Vi) = (x;(t;), yi(#;)) mod m 7 we see that
Ui (ki + eh?) = Ui (h}) + eU; (h})hy
= Uj (h}) + e(ih} + uy), (5.13)
Vilhi +eh) = V{(h)) + (il + vi),

where U;, V; were defined in the previous page. Now, H' = id mod m 7, so

0H| | mod 0H| 0H{ . A{ N
=1 mod m 7, m Ax,
0x 4 By 8p 4 Vo P
In particular,
BH/ 0H]
=g—=0.
“ oy ap

By this and arguing as in (5.12) and (5.13) we see that

(H{ + ea)(U/(h}) + e(Xih} + i), Vi (h) + e(yihi + vi),
W/ (h}) + e(pih) + wy))
= H{(U{(h}), V{(h}), W/ (h}))
+ (U (h)), Vi (), W/ (h})) + 1(:h] + ;)
= H{(U/(h}), V{ (h}), W] (h})) + e(a(xi, i, pi) + Xih? + i), (HS + &f)
(U] (h}) + e(xih +up), V] (h}) + e(yih) + vi), W/ (k) + e(pih) + wi))
= Hy(U! (W), V] (h}). W] (h}))) + e(B(xi. yi, pi) + ¥ih? + v;).
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Substituting this in (5.11) and using (5.10) and (5.12) we see that we have to find
= @.....7) e C* and A such that

(X 0Y;
(1) = T .00 52 46.0)) = 0 ). )
j=1 J

Sj
— (o (1), yi (1), pi (), B(xi (1), yi (1), pi(1:))).  (5.14)
Note that, because of Remark 3.7 (i),
(i (t). yi(t:)., pi(t:)). BCxi (). yi (1), pi(8:))) € T

for each i. Also note that U € J’)Ef;m(f) means that u; € timiC{ti}, v; € tl.zmi(C{ti}.
Then, if the vectors

X X, 9 Y 3Y, 9
(—1(z1,0), o —(z,,O))— +{L,0),..., —(z,,O))
; ox as; ;

as; s, ds; dy

. ‘ 9 . , 9 .
= (@] (t).....af ()5 + (b{(zl),...,b;(zr))w j=1,....¢

form a basis of [generate] ]\71(,), we can solve (5.14) with unique ﬁ(l) - ﬁg [respect-
ively, solve] for all i = 1, ..., r. This implies that the conormal of ® is a formally
semiuniversal [respectively, versal] equimultiple deformation of v over C*. |

6. Versal deformations

Let f € C{x1,...,x,}. We will denote by | fdx; the solution of the Cauchy problem

0
Xi

Let ¢ be a Legendrian curve with parametrization given by
ti = (xi (1), yi(t:), pi(ti)), i=1,....r (6.1)

We will say that the fake plane projection of (6.1) is the plane curve o with paramet-
rization given by
;i = (xi(li),pi(l‘i)), i=1,...,r (6.2)
We will denote o by ¥ .
Given a plane curve o with parametrization (6.2), we will say that the fake conor-
mal of o is the Legendrian curve ¥ with parametrization (6.1), where

yi(ti) = /Pi(li)ffi(fi)dti-
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We will denote ¥ by Cony o. Applying the construction above to each fibre of a
deformation we obtain functors

Ty J/);fw — Def,, Cony : Def; — J/)Efv,.

Notice that
‘C’onf(\I'”f) =W, (‘C’onf(E))”f =X (6.3)

for each W e Jl/)sz and each ¥ € Def,.
Let ¢ be the parametrization of a Legendrian curve given by (6.1). Let o be the
fake plane projection of ¥. Set & := x% + p%. Let I/ be the linear subspace of

) ' (A 0 T 9
m@g @m(ﬁa = (@[iC{li}a) ® (@tic{li}@)

i=1 i=1

generated by

9

3 /0 b} 3 Bo  Bo \ 0
“05‘(%+%P)P@’ (Tf*a—;)@

and 51 0 ) )
kO b (9% ky1 | 9% k+2) O k> 1
HP oy k+1<3xp 8yp )8p’ -
where oy € (x,y), Bo € (x2,y) foreach k > 0. Set
9 9

M, =
m@6+lf

g

Theorem 6.1. Assuming the notations above, Sl/)gfv, (T,) = Mg .

Proof. Let W € Defy (T,) be given by
Vi (ti,e) = (Xi, Yi, Pi) = (x; +ea;, yi + ¢€bi, pi + &ci),
where x;, y;, p; define the parametrization ¥;, as well as a;, b;, ¢; € C{t;}t; and
Y; = [ Pidy; Xidt;,i =1,...,r. Hence
bi=/()'cici+dipi)dl‘i, i=1,...,r

By (6.3), W is trivial if and only if there an isomorphism & : C x T, — C x T, given
by
Zi—>fi=ti+8hi, h; € C{t;}t;, i=1,...,r,
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and a relative contact transformation y : C® x T, — C3 x T, given by

(x,y,p, &)~ (x+ea,y+eB,p+eye)

such that
Xi = xi(t;) + ea(x; (5), yi (%), pi (1)),
P; = pi(t;) + ey (xi (%), yi (5), pi (%)),
i =1,...,r. Following the argument of the proof of Theorem 5.1, W"/ is trivial if
and only if
aj(t;) = Xi(t;)h;i (t;) + a(x;(t), yi (t:), pi (L)),
ci(ti) = pi(t)hi(t;) + y(xi(t:), yi(t:), pi(ti)),
i =1,...,r. The result follows from Remark 3.7 (ii). n

Lemma 6.2. Let  be the parametrization of a Legendrian curve. Let ® be a semi-
universal deformation in Def; of the fake plane projection o of . Then €ony ® is a
versal deformation of ¥ in Defy,.

Proof. Tt follows from the argument of Lemma 5.3. ]

Theorem 6.3. Leta’, ¢/ € mg such that

. d . d a 0 ‘i i
a/ — == | =+ | (6.4)
ax ap | ox | dp
aj ¢/

1 < j <, represents a basis [a system of generators] of Maf . Let ® € Def, be given
by

¢ ¢
Xi(ti,8) = xi(t;) + Zaij(ti)sﬁ Pi(ti,s) = pi(ti) + Zcij(ti)sja (6.5)

j=1 =1
i =1,...,r. Then €ons ® is a semiuniversal [versal] deformation of Y in f);fl/,.
Proof. Tt follows from the argument of Theorem 5.4 and Remark 3.7 (ii). ]

Remark 6.4. The category of [equimultiple] deformations of parametrizations of
Legendrian curves is unobstructed. In particular, the base space of any versal deform-
ation is smooth.
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7. Examples

Example 7.1. Let ¢(1) = (¢3,1'%), y(t) = (¢3.11°, 12¢7), o (1) = (3, 1247). The
deformations given by

X(t,s) =13, o
Y(t,8) = s1t* + 521° + 5317 + s41% + 110 + 5501 4 5611 '
X(t,s) = s1t + 521> + 13,

(t.s) =51t + 52 a2

Y(t,8) = s3t + 54t + s5t* + 561> + 577 4 55t% + 110 4 591 4 570114

are respectively
* an equimultiple semiuniversal deformation, see (7.1);
e asemiuniversal deformation, see (7.2),

of ¢. The conormal of the deformation given by
X(t,s) =13, Y(t,s) = s1t” + 52t + 110 4 g3t

is an equimultiple semiuniversal deformation of . The fake conormal of the deform-
ation given by

10
X(t,s) = s1t + 521> + 13, P(t,s) = 53t + s4t? + s5t* + s61° + ?ﬂ + 5718

is a semiuniversal deformation of the fake conormal of 0. The conormal of the defor-
mation given by

X(t,8) = st + 5212 + 13,
Y(t,s) = ast? + ast® + ast* + ast® + agt®

+art” + agt® + aot? + ajot'® + gyt

with
5153 S154 + 25253 353 + 25284
Oy = —(—, Q3 = ——————, 04 = —/—,
2 3 4
3S4 + 5155 2S2S5 + 5156 3S5 + 2S2S6
aS == —’ a6 - —7 a7 = —’
5 6 7
10s1 + 9s¢ 35157 + 208, - §287
g = ————, Qg = ————, a1 = _—,
s 24 ? 27 10 5
3S7
o= —,
11 11

is a semiuniversal deformation of .
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Example 7.2. Let Z = {(x,y) € C?: (y? — x°)(y? — x”) = 0}. Consider the para-
metrization ¢ of Z given by

xim) =1, ) =15, 0@ =15, n) =1,
Let o be the fake projection of the conormal of ¢ given by
2 3.3 2 75
xi(t) =17, pi(h) = 511, X2(t2) =1y, pa(ta) = Etz'

The deformations given by

X1(t1,8) = t7, Yi(t1.8) = 1t + 17,

Xa(t2,8) = 13, Ya(ta,s) = sat3 + s3t5 + saty + s5t5 (7.3)
+ sets 4+ ] + 575 + s5t,° + 59152

Xi(t1,8) = sity + 15, Yi(t1,8) = 53ty + sat; + 17,

Xa(t2,8) = sata + 13, Ya(ta,s) = sty + set2 + 5713 + sty

(7.4)
+ 59[25 + S10[26 + [27 + Snl§

+ S121210 + S131212;
are respectively
* an equimultiple semiuniversal deformation, see (7.3);

e asemiuniversal deformation, see (7.4),

of ¢. The conormal of the deformation given by

Xi(t1,8) = 17, Yi(t1,8) =7,
X _ 42 _ 4 5 6 7 8.
2(t2.8) =13, Ya(tz,8) = 8115 + 5213 + 5317 + 1, + 54ty

is an equimultiple semiuniversal deformation of the conormal of ¢. The fake conormal
of the deformation given by

5
X]([l,S)Zsltl +l12, Pl(ll,S)=S3l1+§[f,

7
Xo(t2.8) = solr + 13, Pa(t2.8) = sala + S5t + set3 + 5715 + Etf + sst3;

is a semiuniversal deformation of the fake conormal of o. The conormal of the defor-
mation given by

X1(t1,8) = s1t1 + 17, Yi(t1.8) = aatf + st} + out] + 17,

Xa(t2,8) = sat2 + 13, Ya(ta,s) = Bats + Bst; + Pats + Bsts
+ Bots + Bty + Bsts;
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with
5153 253 581
oy = —, a3 = ——, oy = —,
2T T3 Y78
8284 . 2854 + 5285 B 2855 + 5256
/32 - 2 ’ ﬂ3 - 3 ) ﬁ4 - 4 £
256 + §287 4S7 + 7S2 5288
== - = — =14 =,
Bs s o3 B B + =
258
/38 = ?7
is a semiuniversal deformation of the conormal of ¢.

During the preparation of this paper all non trivial calculations were made with

the help of the Computer Algebra System [3].
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