Deformations of Legendrian curves

Marco Silva Mendes and Orlando Neto

Abstract. We construct versal and equimultiple versal deformations of the parametrization of a Legendrian curve.

1. Introduction

Legendrian varieties are analytic subsets of the projective cotangent bundle of a smooth manifold or, more generally, of a contact manifold. They are projectivizations of conic Lagrangian varieties. These are specifically important in D -modules theory and microlocal analysis (see [\[6](#page-24-0)[–8\]](#page-24-1)). Its deformation theory is still an almost virgin territory (see [\[2,](#page-24-2) [10\]](#page-24-3)).

In Sections [2,](#page-0-0) [3](#page-3-0) and [4,](#page-8-0) we introduce the languages of contact geometry and deformation theory. In Sections [5](#page-12-0) and [6,](#page-19-0) we construct the semiuniversal and equimultiple semiuniversal deformations of the parametrization of a germ of a Legendrian curve, extending to Legendrian curves previous results on deformations of germs of plane curves (see [\[5\]](#page-24-4)). We show in the proof of Theorem [5.4](#page-15-0) that the category of Legendrian curves verifies Schlessinger's condition for formal versality. We will follow the definitions and notations of [\[5\]](#page-24-4).

The results will be useful to the study of equisingular deformations of Legendrian curves and its moduli spaces in forthcoming articles.

2. Contact geometry

Let (X, \mathcal{O}_X) be a complex manifold of dimension 3. A differential form ω of degree 1 is said to be a *contact form* if $\omega \wedge d\omega$ never vanishes. Let ω be a contact form. By Darboux's theorem for contact forms there is locally a system of coordinates (x, y, p) such that $\omega = dy - pdx$. If ω is a contact form and f is a holomorphic function that

²⁰²⁰ Mathematics Subject Classification. Primary 53D10; Secondary 32S30.

Keywords. Deformations of the parametrization, equimultiple deformations, semiuniversal deformations, Legendrian curves, relative contact transformations.

never vanishes, $f\omega$ is also a contact form. We say that a locally free subsheaf $\mathcal L$ of Ω_X^1 is a *contact structure* on X if X is locally generated by a contact form. If X is a contact structure on X the pair (X, \mathcal{L}) is said to be a *contact manifold*. Let (X_1, \mathcal{L}_1) and (X_2, \mathcal{L}_2) be contact manifolds. Let $\chi : X_1 \to X_2$ be a holomorphic map. We say that χ is a *contact transformation* if $\chi^* \omega$ is a local generator of \mathcal{L}_1 for a local generator ω of \mathcal{L}_2 .

Let $\theta = \xi dx + \eta dy$ denote the canonical 1-form of $T^* \mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{C}^2$. Let

$$
\pi: \mathbb{P}^* \mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{P}^1 \to \mathbb{C}^2
$$

be the *projective cotangent bundle* of \mathbb{C}^2 , given by $\pi(x, y; \xi : \eta) = (x, y)$. Let U [V] be the open subset of $\mathbb{P}^*\mathbb{C}^2$ defined by $\eta \neq 0$ [$\xi \neq 0$]. Then θ/η [θ/ξ] defines a contact form $dy - pdx$ $[dx - qdy]$ on U [V], where $p = -\frac{\xi}{\eta}$ $[q = -\frac{\eta}{\xi}]$. Moreover, $dy - pdx$ and $dx - qdy$ define a structure of contact manifold on $\mathbb{P}^*\mathbb{C}^2$.

Further, if $\Phi(x, y) = (a(x, y), b(x, y))$ with $a, b \in \mathbb{C}\{x, y\}$ is an automorphism of $(\mathbb{C}^2, (0,0))$, we associate to Φ the germ of contact transformation

$$
\chi: (\mathbb{P}^* \mathbb{C}^2, (0,0;0:1)) \to (\mathbb{P}^* \mathbb{C}^2, (0,0; -\partial_x b(0,0) : \partial_x a(0,0)))
$$

defined by

$$
\chi(x, y; \xi : \eta) = \big(a(x, y), b(x, y); \partial_y b\xi - \partial_x b\eta : -\partial_y a\xi + \partial_x a\eta\big). \tag{2.1}
$$

If $D\Phi_{(0,0)}$ leaves invariant $\{y=0\}$, then $\partial_x b(0,0) = 0$, $\partial_x a(0,0) \neq 0$ as well as $\chi(0, 0; 0: 1) = (0, 0; 0: 1)$. Moreover,

$$
\chi(x, y, p) = (a(x, y), b(x, y), (\partial_y bp + \partial_x b) / (\partial_y ap + \partial_x a)).
$$

Let (X, \mathcal{L}) be a contact manifold. A curve L in X is said to be *Legendrian* if $u^*\omega = 0$ for each section ω of \mathcal{L} , where $u : L \hookrightarrow X$.

Let Z be the germ at $(0, 0)$ of an irreducible plane curve parametrized by

$$
\varphi(t) = (x(t), y(t)).\tag{2.2}
$$

We define the *conormal* of Z as the curve parametrized by

$$
\psi(t) = (x(t), y(t); -y'(t) : x'(t)).
$$
\n(2.3)

The conormal of Z is the germ of a Legendrian curve of $\mathbb{P}^*\mathbb{C}^2$. We will denote the conormal of Z by $\mathbb{P}_{Z}^{*}\mathbb{C}^{2}$ and the parametrization [\(2.3\)](#page-1-0) by \mathcal{C} on φ .

Assume that the tangent cone $C(Z)$ is defined by the equation $ax + by = 0$, with $(a, b) \neq (0, 0)$. Then $\mathbb{P}_{Z}^{*} \mathbb{C}^{2}$ is a germ of a Legendrian curve at $(0, 0; a:b)$. Let $f \in \mathbb{C}{t}$. We say the f has order k and write ord $f = k$ or ord_t $f = k$ if f/t^k is a unit of $\mathbb{C}{t}$.

Remark 2.1. Let Z be the plane curve parametrized by [\(2.2\)](#page-1-1). Let $L = \mathbb{P}_{Z}^{*}\mathbb{C}^{2}$. Then

(i) $C(Z) = \{y = 0\}$ if and only if ord $y > \text{ord } x$. If $C(Z) = \{y = 0\}$, L admits the parametrization

$$
\psi(t) = (x(t), y(t), y'(t)/x'(t))
$$

on the chart (x, y, p) .

- (ii) $C(Z) = \{y = 0\}$ and $C(L) = \{x = y = 0\}$ if and only if ord $x <$ ord $y <$ 2 ord x^2
- (iii) $C(Z) = \{y = 0\}$ and $\{x = y = 0\} \nsubseteq C(L) \subset \{y = 0\}$ if and only if ord $y \ge$ 2 ord x ;
- (iv) $C(L) = \{v = p = 0\}$ if and only if ord $v > 2$ ord x;
- (v) mult $L \le \text{mult } Z$. Moreover, mult $L = \text{mult } Z$ if and only if ord $y \ge 2$ ord x.

If L is the germ of a Legendrian curve at $(0, 0; a:b)$, $\pi(L)$ is a germ of a plane curve of $(\mathbb{C}^2, (0, 0))$. Notice that all branches of $\pi(L)$ have the same tangent cone.

If Z is the germ of a plane curve with irreducible tangent cone, the union L of the conormal of the branches of Z is a germ of a Legendrian curve. We say that L is the *conormal* of Z.

If $C(Z)$ has several components, the union of the conormals of the branches of Z is a union of several germs of Legendrian curves.

If L is a germ of Legendrian curve, L is the conormal of $\pi(L)$.

We consider the symplectic form $dp \wedge dx$ in the vector space \mathbb{C}^2 , with coordinates x , p . We associate to each symplectic linear automorphism

$$
(p, x) \mapsto (\alpha p + \beta x, \gamma p + \delta x)
$$

of \mathbb{C}^2 the contact transformation

$$
(x, y, p) \mapsto (\gamma p + \delta x, y + \frac{1}{2}\alpha\gamma p^2 + \beta\gamma x p + \frac{1}{2}\beta\delta x^2, \alpha p + \beta x). \tag{2.4}
$$

We say that [\(2.4\)](#page-2-0) is a *paraboloidal contact transformation*.

In the case $\alpha = \delta = 0$ and $\gamma = -\beta = 1$, we get the so called *Legendre* transformation

$$
\Psi(x, y, p) = (p, y - px, -x).
$$

We say that a germ of a Legendrian curve L of $(\mathbb{P}^*\mathbb{C}^2, (0,0; a:b))$ is in *generic position* if $C(L) \not\supset \pi^{-1}(0,0)$.

Remark 2.2. Let L be the germ of Legendrian curve on a contact manifold (X, \mathcal{L}) at a point o. By Darboux's theorem for contact forms there is a germ of a contact transformation $\chi: (X, o) \to (U, (0, 0, 0))$, where $U = {\eta \neq 0}$ is the open subset

of $\mathbb{P}^*\mathbb{C}^2$ considered above. Hence $C(\pi(\chi(L))) = \{y = 0\}$. Applying a convenient paraboloidal transformation to $\chi(L)$ we can assume that $C(\chi(L)) = D\chi(o)(C(L)) \not\supset$ $\{x = y = 0\}$. Hence $\chi(L)$ is in generic position. If $C(L)$ is irreducible, we can assume $C(\chi(L)) = \{y = p = 0\}.$

Following the above remark, from now on we will always assume that every Legendrian curve germ is embedded in $(\mathbb{C}^3_{(x,y,p)}, \omega)$, where $\omega = dy - pdx$.

Example 2.3. The plane curve $Z = \{y^2 - x^3 = 0\}$ admits a parametrization $\varphi(t) =$ (t^2, t^3) . The conormal L of Z admits the parametrization $\psi(t) = (t^2, t^3, \frac{3}{2}t)$. Hence $C(L) = \pi^{-1}(0,0)$ and L is not in generic position. If χ is the Legendre transformation, $C(\chi(L)) = \{y = p = 0\}$ and $\chi(L)$ is in generic position. Moreover, $\pi(\chi(L))$ is a smooth curve.

Example 2.4. The plane curve $Z = \{(y^2 - x^3)(y^2 - x^5) = 0\}$ admits a parametrization given by

$$
\varphi_1(t_1) = (t_1^2, t_1^3), \qquad \varphi_2(t_2) = (t_2^2, t_2^5).
$$

The conormal L of Z admits the parametrization given by

$$
\psi_1(t_1) = (t_1^2, t_1^3, \frac{3}{2}t_1), \qquad \psi_2(t_2) = (t_2^2, t_2^5, \frac{5}{2}t_2^3).
$$

Hence $C(L_1) = \pi^{-1}(0,0)$ and L is not in generic position. If χ is the paraboloidal contact transformation

$$
\chi: (x, y, p) \mapsto (x + p, y + \frac{1}{2}p^2, p),
$$

then $\chi(L)$ has branches with parametrization given by

$$
\chi(\psi_1)(t_1) = \left(t_1^2 + \frac{3}{2}t_1, t_1^3 + \frac{9}{8}t_1^2, \frac{3}{2}t_1\right),
$$

$$
\chi(\psi_2)(t_2) = \left(t_2^2 + \frac{5}{2}t_2^3, t_2^5 + \frac{25}{8}t_2^6, \frac{5}{2}t_2^3\right).
$$

Then

$$
C(\chi(L_1)) = \{ y = p - x = 0 \}, \qquad C(\chi(L_2)) = \{ y = p = 0 \}
$$

and L is in generic position.

3. Relative contact geometry

Set $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{z} = (z_1, \ldots, z_m)$. Let I be an ideal of the ring $\mathbb{C}\{\mathbf{z}\}\$. Let \widetilde{I} be the ideal of $\mathbb{C}\{x, z\}$ generated by I.

Lemma 3.1. (a) Let $f \in \mathbb{C}\{\mathbf{x}, \mathbf{z}\}\text{, } f = \sum_{\alpha} a_{\alpha} \mathbf{x}^{\alpha}$ with $a_{\alpha} \in \mathbb{C}\{\mathbf{z}\}\text{. Then } f \in \tilde{I}$ *if and only if* $a_\alpha \in I$ *for each* α *.*

- (b) If $f \in \tilde{I}$, then $\partial_{x_i} f \in \tilde{I}$ for $1 \leq i \leq n$.
- (c) Let $a_1, \ldots, a_{n-1} \in \mathbb{C} \{ \mathbf{x}, \mathbf{z} \}$. Let $b, \beta_0 \in \tilde{I}$. Assume that $\partial_{x_n} \beta_0 = 0$. If β is the *solution of the Cauchy problem*

$$
\partial_{x_n} \beta - \sum_{i=1}^{n-1} a_i \partial_{x_i} \beta = b, \qquad \beta - \beta_0 \in \mathbb{C} \{ \mathbf{x}, \mathbf{z} \} x_n,
$$
 (3.1)

then $\beta \in \tilde{I}$.

Proof. There are $g_1, \ldots, g_\ell \in \mathbb{C}\{\mathbf{z}\}\$ such that $I = (g_1, \ldots, g_\ell)$. If $a_\alpha \in I$ for each α , there are $h_{i,\alpha} \in \mathbb{C} \{z\}$ such that $a_{\alpha} = \sum_{i=1}^{\ell} h_{i,\alpha} g_i$. Hence

$$
f = \sum_{i=1}^{\ell} \Big(\sum_{\alpha} h_{i,\alpha} \mathbf{x}^{\alpha} \Big) g_i \in \widetilde{I}.
$$

If $f \in \tilde{I}$, there are $H_i \in \mathbb{C}\{\mathbf{x}, \mathbf{z}\}\$ such that $f = \sum_{i=1}^{\ell} H_i g_i$. There are $b_{i,\alpha} \in \mathbb{C}\{\mathbf{z}\}\$ such that $H_i = \sum_{\alpha} b_{i,\alpha} \mathbf{x}^{\alpha}$. Therefore, $a_{\alpha} = \sum_{i=1}^{\ell} b_{i,\alpha} g_i \in I$.

We can perform a change of variables that rectifies the vector field

$$
\partial_{x_n} - \sum_{i=1}^{n-1} a_i \partial_{x_i},
$$

leaving invariant the hypersurface $\{x_n = 0\}$ and reducing the Cauchy problem [\(3.1\)](#page-4-0) to the Cauchy problem

$$
\partial_{x_n}\beta = b, \qquad \beta - \beta_0 \in \mathbb{C}\{\mathbf{x}, \mathbf{z}\} x_n.
$$

Hence, statements (b) and (c) follow from (a) .

Let J be an ideal of $\mathbb{C}\{z\}$ contained in I. Let X, S and T be analytic spaces with local rings $\mathbb{C}\{x\}$, $\mathbb{C}\{z\}/I$ and $\mathbb{C}\{z\}/J$. Hence, $X \times S$ and $X \times T$ have local rings $\mathcal{O} := \mathbb{C}\{\mathbf{x}, \mathbf{z}\}/\widetilde{I}$ and $\widetilde{\mathcal{O}} := \mathbb{C}\{\mathbf{x}, \mathbf{z}\}/\widetilde{J}$. Let $\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}, \mathbf{b} \in \mathcal{O}$ and $\mathbf{g} \in \mathcal{O}/x_n\mathcal{O}$. Let $a_i, b \in \overline{\mathcal{O}}$ and $g \in \overline{\mathcal{O}}/x_n\overline{\mathcal{O}}$ be representatives of a_i , b and g. Consider the Cauchy problems

$$
\partial_{x_n} f + \sum_{i=1}^{n-1} a_i \partial_{x_i} f = b, \qquad f + x_n \tilde{\mathcal{O}} = g \tag{3.2}
$$

п

and

$$
\partial_{x_n} \mathbf{f} + \sum_{i=1}^{n-1} \mathbf{a}_i \partial_{x_i} \mathbf{f} = \mathbf{b}, \qquad \mathbf{f} + x_n \mathcal{O} = \mathbf{g}. \tag{3.3}
$$

Theorem 3.2. *The following statements hold.*

- (a) *There is one and only one solution of the Cauchy problem* [\(3.3\)](#page-4-1)*.*
- (b) If f is a solution of [\(3.2\)](#page-4-2), $\mathbf{f} = f + \tilde{I}$ is a solution of [\(3.3\)](#page-4-1).
- (c) *If* f *is a solution of* [\(3.3\)](#page-4-1) *there is a representative* f *of* f *that is a solution of* [\(3.2\)](#page-4-2)*.*

Proof. By Lemma [3.1,](#page-4-3) $\partial_{x_i} \tilde{I} = \tilde{I}$. Hence (b) holds.

Assume $J = (0)$. The existence and uniqueness of the solution of [\(3.2\)](#page-4-2) is a special case of the classical Cauchy–Kowalevski Theorem. There is one and only one formal solution of [\(3.2\)](#page-4-2). Its convergence follows from the majorant method.

The existence of a solution of (3.3) follows from (b).

Let f_1, f_2 be two solutions of [\(3.3\)](#page-4-1). Let f_i be a representative of f_i for $j = 1, 2$. Then

$$
\partial_{x_n}(f_2 - f_1) + \sum_{i=1}^{n-1} a_i \partial_{x_i}(f_2 - f_1) \in \widetilde{I}
$$

and

$$
f_2 - f_1 + x_n \widetilde{\mathcal{O}} \in \widetilde{I} + x_n \widetilde{\mathcal{O}}.
$$

By Lemma [3.1,](#page-4-3) $f_2 - f_1 \in \tilde{I}$. Therefore $f_1 = f_2$. This ends the proof of statement (a). Statement (c) follows from statements (a) and (b).

Set $\Omega^1_{X|S} = \bigoplus_{i=1}^n \mathcal{O} dx_i$. We say that the elements of $\Omega^1_{X|S}$ are *germs of relative differential forms* on $X \times S$. The map $d : \mathcal{O} \to \Omega^1_{X|S}$ given by $df = \sum_{i=1}^n \partial_{x_i} f dx_i$ is said to be the *relative differential* of f .

Assume that dim $X = 3$ and let $\mathcal L$ be a contact structure on X. Let $\rho : X \times S \to X$ be the first projection. Let ω be a generator of \mathcal{L} . We will denote by \mathcal{L}_S the sub \mathcal{O} module of $\Omega^1_{X|S}$ generated by $\rho^*\omega$. We say that \mathscr{L}_S is a *relative contact structure* of $X \times S$. The pair $(X \times S, \mathcal{L}_S)$ is called a relative contact manifold. We say that an isomorphism of analytic spaces

$$
\chi: X \times S \to X \times S \tag{3.4}
$$

is a *relative contact transformation* if $\chi(\mathbf{0}, s) = (0, s)$, $\chi^* \omega \in \mathcal{L}_S$ for each $\omega \in \mathcal{L}_S$ and the following diagram commutes:

$$
X \xrightarrow{\text{id}_X} X
$$
\n
$$
X \times S \xrightarrow{\chi} X \times S
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
S \xrightarrow{\text{id}_S} S.
$$
\n(3.5)

The demand of the commutativity of diagram (3.5) is a very restrictive condition but these are the only relative contact transformations we will need. We can and will assume that the local ring of X equals $\mathbb{C}\{x, y, p\}$ and that $\mathcal L$ is generated by $dy - pdx$.

Set $\mathcal{O} = \mathbb{C}\{x, y, p, z\}/\tilde{I}$ and $\tilde{\mathcal{O}} = \mathbb{C}\{x, y, p, z\}/\tilde{J}$. Let m_X be the maximal ideal of $\mathbb{C}\{x, y, p\}$. Let \mathfrak{m} [m̃] be the maximal ideal of $\mathbb{C}\{\mathbf{z}\}/I$ [$\mathbb{C}\{\mathbf{z}\}/J$]. Let \mathfrak{n} [m̃] be the ideal of $\mathcal{O}[\overline{\mathcal{O}}]$ generated by $m_Xm \overline{m}$.

Remark 3.3. If [\(3.4\)](#page-5-1) is a relative contact transformation, there are α , β , $\gamma \in \mathfrak{n}$ such that $\partial_x \beta \in \mathfrak{n}$ and

$$
\chi(x, y, p, \mathbf{z}) = (x + \alpha, y + \beta, p + \gamma, \mathbf{z}).
$$
\n(3.6)

Theorem 3.4. (a) Let $\chi : X \times S \to X \times S$ be the relative contact transforma*tion* [\(3.6\)](#page-6-0). There is $\beta_0 \in \mathfrak{n}$ *such that* $\partial_p \beta_0 = 0$, $\partial_x \beta_0 \in \mathfrak{n}$ *and* β *is the solution of the Cauchy problem*

$$
\left(1 + \frac{\partial \alpha}{\partial x} + p\frac{\partial \alpha}{\partial y}\right)\frac{\partial \beta}{\partial p} - p\frac{\partial \alpha}{\partial p}\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial p}\frac{\partial \beta}{\partial x} = p\frac{\partial \alpha}{\partial p}, \qquad \beta - \beta_0 \in p\mathcal{O} \quad (3.7)
$$

and

$$
\gamma = \left(1 + \frac{\partial \alpha}{\partial x} + p\frac{\partial \alpha}{\partial y}\right)^{-1} \left(\frac{\partial \beta}{\partial x} + p\left(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} - p\frac{\partial \alpha}{\partial y}\right)\right).
$$
 (3.8)

- (b) *Given* α , $\beta_0 \in \mathfrak{n}$ *such that* $\partial_p \beta_0 = 0$ *and* $\partial_x \beta_0 \in \mathfrak{n}$ *, there is a unique contact transformation verifying the conditions of statement (a). We will denote by* χ_{α,β_0} .
- (c) *Assume* S *and* T *are the analytic spaces defined right after Lemma* [3.1](#page-4-3)*. Given a relative contact transformation* $\widetilde{\chi}: X \times T \to X \times T$ *there is one and only one contact transformation* $\chi: X \times S \to X \times S$ such that the diagram

$$
X \underset{X \times T}{\times} S \xrightarrow{\chi} X \underset{X \times T}{\times} S
$$
\n
$$
\downarrow^{\chi} X \times T \xrightarrow{\tilde{\chi}} X \times T
$$
\n(3.9)

commutes.

(d) *Given* α , $\beta_0 \in \mathfrak{n}$ *and* $\widetilde{\alpha}$, $\widetilde{\beta}_0 \in \widetilde{\mathfrak{n}}$ *such that* $\partial_p \beta_0 = 0$, $\partial_p \widetilde{\beta}_0 = 0$, $\partial_x \beta_0 \in \mathfrak{n}$, $\partial_x \widetilde{\beta}_0 \in \widetilde{\pi}$ and $\widetilde{\alpha}$, $\widetilde{\beta}_0$ are representatives of α , β_0 , set $\chi = \chi_{\alpha,\beta_0}$ and $\widetilde{\chi} = \chi_{\widetilde{\alpha},\widetilde{\beta}_0}$. *Then diagram* [\(3.9\)](#page-6-1) *commutes.*

Proof. Statements (a) and (b) are a relative version of [\[1,](#page-24-5) Theorem 3.2] (see also [\[9\]](#page-24-6)). In [\[1\]](#page-24-5) we assume $S = \{0\}$. The proof works as long S is smooth. The proof in the singular case depends on the singular variant of the Cauchy–Kowalevski Theorem introduced in Theorem [3.2.](#page-5-2) Statement (c) follows from statement (b) of Theorem [3.2.](#page-5-2) Statement (d) follows from statement (c) of Theorem [3.2.](#page-5-2)

Remark 3.5. (1) The inclusion $S \hookrightarrow T$ is said to be a *small extension* if the surjective map $\mathcal{O}_T \rightarrow \mathcal{O}_S$ has one-dimensional kernel. If the kernel is generated by ε , we have that, as complex vector spaces, $\mathcal{O}_T = \mathcal{O}_S \oplus \varepsilon \mathbb{C}$. Every extension of Artinian local rings factors through small extensions.

Theorem 3.6. Let $S \hookrightarrow T$ be a small extension such that $\mathcal{O}_S \cong \mathbb{C}\{\mathbf{z}\}\$ and

$$
\mathcal{O}_T \cong \mathbb{C}\{\mathbf{z},\varepsilon\}/(\varepsilon^2,\varepsilon z_1,\ldots,\varepsilon z_m) = \mathbb{C}\{\mathbf{z}\}\oplus \mathbb{C}\varepsilon.
$$

Assume $\chi: X \times S \to X \times S$ is a relative contact transformation given at the ring *level by*

$$
(x, y, p) \mapsto (H_1, H_2, H_3),
$$

 $\alpha, \beta_0 \in \mathfrak{m}_X$, such that $\partial_p\beta_0 = 0$ and $\beta_0 \in (x^2, y)$. Then, there are uniquely determined $\beta, \gamma \in \mathfrak{m}_X$ such that $\beta - \beta_0 \in p \mathcal{O}_X$ and $\widetilde{\chi}: X \times T \to X \times T$, given by

$$
\widetilde{\chi}(x, y, p, \mathbf{z}, \varepsilon) = (H_1 + \varepsilon \alpha, H_2 + \varepsilon \beta, H_3 + \varepsilon \gamma, \mathbf{z}, \varepsilon),
$$

is a relative contact transformation extending (see diagram [\(3.9\)](#page-6-1)*). Moreover, the Cauchy problem* [\(3.7\)](#page-6-2) *for* z *takes the simplified form*

$$
\frac{\partial \beta}{\partial p} = p \frac{\partial \alpha}{\partial p}, \qquad \beta - \beta_0 \in \mathbb{C} \{x, y, p\} p \tag{3.10}
$$

and

$$
\gamma = \frac{\partial \beta}{\partial x} + p \Big(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} \Big) - p^2 \frac{\partial \alpha}{\partial y}.
$$
 (3.11)

Proof. We have that $\tilde{\chi}$ is a relative contact transformation if and only if there is $f := f' + \varepsilon f'' \in \mathcal{O}_T\{x, y, p\}$ with $f \notin (x, y, p)\mathcal{O}_T\{x, y, p\}, f' \in \mathcal{O}_S\{x, y, p\},$ $f'' \in \mathbb{C} \{x, y, p\} = \mathcal{O}_X$ such that

$$
d(H_2 + \varepsilon \beta) - (H_3 + \varepsilon \gamma)d(H_1 + \varepsilon \alpha) = f(dy - pdx).
$$
 (3.12)

Since χ is a relative contact transformation we can suppose that

$$
dH_2 - H_3dH_1 = f'(dy - pdx).
$$

Using the fact that $\epsilon \mathfrak{m}_{\mathcal{O}_T} = 0$ we see that [\(3.12\)](#page-7-0) is equivalent to

$$
\frac{\partial \beta}{\partial p} = p \frac{\partial \alpha}{\partial p}, \qquad \gamma = \frac{\partial \beta}{\partial x} + p \Big(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} \Big) - p^2 \frac{\partial \alpha}{\partial y}, \qquad f'' = \frac{\partial \beta}{\partial y} - p \frac{\partial \alpha}{\partial y}.
$$

As $\beta - \beta_0 \in (p) \mathbb{C} \{x, y, p\}$ we have that β , and consequently γ , are completely determined by α and β_0 .

Remark 3.7. Set $\alpha = \sum_k \alpha_k p^k$, $\beta = \sum_k \beta_k p^k$, $\gamma = \sum_k \gamma_k p^k$, where $\alpha_k, \beta_k, \gamma_k \in$ $\mathbb{C}\{x, y\}$ for each $k \ge 0$ and $\beta_0 \in (x^2, y)$. Under the assumptions of Theorem [3.6,](#page-7-1)

- (i) $\beta_k = \frac{k-1}{k} \alpha_{k-1}$, for $k \ge 1$.
- (ii) Moreover,

$$
\gamma_0 = \frac{\partial \beta_0}{\partial x}, \qquad \gamma_1 = \frac{\partial \beta_0}{\partial y} - \frac{\partial \alpha_0}{\partial x},
$$

$$
\gamma_k = -\frac{1}{k} \frac{\partial \alpha_{k-1}}{\partial x} - \frac{1}{k-1} \frac{\partial \alpha_{k-2}}{\partial y}, \qquad k \ge 2.
$$

Since

$$
\frac{\partial}{\partial y}\gamma_0 = \frac{\partial}{\partial x}\Big(\frac{\partial \alpha_0}{\partial x} + \gamma_1\Big),\,
$$

 β_0 is the solution of the Cauchy problem

$$
\frac{\partial \beta_0}{\partial x} = \gamma_0, \qquad \frac{\partial \beta_0}{\partial y} = \frac{\partial \alpha_0}{\partial x} + \gamma_1, \qquad \beta_0 \in (x^2, y).
$$

4. Categories of deformations

A category $\mathfrak C$ is said to be a *groupoid* if all morphisms of $\mathfrak C$ are isomorphisms.

Let $p : \mathfrak{F} \to \mathfrak{C}$ be a functor. Let S be an object of \mathfrak{C} . We will denote by $\mathfrak{F}(S)$ the subcategory of $\mathfrak F$ given by the following conditions:

- Ψ is an object of $\mathfrak{F}(S)$ if $p(\Psi) = S$.
- χ is a morphism of $\mathfrak{F}(S)$ if $p(\chi) = id_S$.

Let χ [Ψ] be a morphism [an object] of \mathfrak{F} . Let f, [S] be a morphism [an object] of C. We say that χ [Ψ] is a morphism [an object] of \mathfrak{F} over f [S] if $p(\chi) = f$ $[p(\Psi) = S].$

A morphism $\chi' : \Psi' \to \Psi$ of $\mathfrak F$ over $f : S' \to S$ is said to be *cartesian* if for each morphism $\chi'' : \Psi'' \to \Psi$ of $\mathfrak F$ over f there is exactly one morphism $\chi : \Psi'' \to \Psi'$ over $\mathrm{id}_{S'}$ such that $\chi' \circ \chi = \chi''$. If the morphism $\chi' : \Psi' \to \Psi$ over f is cartesian, Ψ' is well defined up to a unique isomorphism. We will denote Ψ' by $f^* \Psi$ or $\Psi \times_S S'$.

We say that \mathfrak{F} is a *fibered category* over $\mathfrak C$ if

- (1) For each morphism $f : S' \to S$ in $\mathfrak C$ and each object Ψ of $\mathfrak F$ over S there is a morphism $\chi' : \Psi' \to \Psi$ over f that is cartesian.
- (2) The composition of cartesian morphisms is cartesian.

A fibered groupoid is a fibered category such that $\mathfrak{F}(S)$ is a groupoid for each $S \in \mathfrak{C}$.

Remark 4.1. If $p : \mathfrak{F} \to \mathfrak{C}$ satisfies (1) and $\mathfrak{F}(S)$ is a groupoid for each object S of $\mathfrak C$, then $\mathfrak F$ is a fibered groupoid over $\mathfrak C$.

Let $\mathfrak{A}n$ be the category of analytic complex space germs. Let 0 denote the complex vector space of dimension 0. Let $p : \mathfrak{F} \to \mathfrak{A}$ be a fibered category.

Definition 4.2. Let T be an analytic complex space germ. Let ψ [Ψ] be an object of $\mathfrak{F}(0)$ [$\mathfrak{F}(T)$]. We say that Ψ is a *versal deformation* of ψ if given

- a closed embedding $f : T'' \hookrightarrow T'$,
- a morphism of complex analytic space germs $g: T'' \to T$,
- an object Ψ' of $\mathfrak{F}(T')$ such that $f^*\Psi' \cong g^*\Psi$.

There is a morphism of complex analytic space germs $h: T' \to T$ such that

$$
h \circ f = g
$$
 and $h^* \Psi \cong \Psi'.$

If Ψ is versal and for each Ψ' the tangent map $T(h) : T_{T'} \to T_T$ is determined by Ψ' , then Ψ is called a *semiuniversal deformation* of Ψ .

Let T be a germ of a complex analytic space. Let A be the local ring of T and let m be the maximal ideal of A. Let T_n be the complex analytic space with local ring A/\mathfrak{m}^n for each positive integer n. The canonical morphisms

$$
A \to A/\mathfrak{m}^n
$$
 and $A/\mathfrak{m}^n \to A/\mathfrak{m}^{n+1}$

induce morphisms $\alpha_n : T_n \to T$ and $\beta_n : T_{n+1} \to T_n$.

A morphism $f: T'' \to T'$ induces morphisms $f_n: T''_n \to T'_n$ n' such that the diagram

commutes.

Definition 4.3. We will follow the terminology of Definition [4.2.](#page-9-0) Let $g_n = g \circ \alpha_n''$ $\binom{n}{n}$. We say that Ψ is a *formally versal deformation* of ψ if there are morphisms $h_n : T'_n \to T$ such that

$$
h_n \circ f_n = g_n
$$
, $h_n \circ \beta'_n = h_{n+1}$ and $h_n^* \Psi \cong {\alpha'_n}^* \Psi'$.

If Ψ is formally versal and for each Ψ' the tangent maps $T(h_n)$: $T_{T'_n} \to T_T$ are determined by α' n'_{n} ^{*} Ψ' , then Ψ is called a *formally semiuniversal deformation* of ψ .

Theorem 4.4 ([\[4,](#page-24-7) Theorem 5.2]). Let $\mathfrak{F} \to \mathfrak{C}$ be a fibered groupoid. Let $\psi \in \mathfrak{F}(0)$. If there is a versal deformation of ψ , every formally versal [semiuniversal] deforma*tion of is versal [semiuniversal].*

Let Z be a curve of \mathbb{C}^n with irreducible components $Z_1,\ldots,Z_r.$ Set $\bar{\mathbb{C}} = \bigsqcup_{i=1}^r \bar{C}_i$ where each $\overline{C_i}$ is a copy of $\mathbb C$. Let φ_i be a parametrization of Z_i , $1 \le i \le r$. Let $\varphi : \overline{\mathbb C} \to$ \mathbb{C}^n be the map such that $\varphi|_{\overline{C}_i} = \varphi_i$, $1 \leq i \leq r$. We say that φ is the *parametrization* of Z. All the results of this section should be read locally at $0 \in \overline{C_i}$.

Let T be an analytic space. A morphism of analytic spaces $\Phi : \overline{\mathbb{C}} \times T \to \mathbb{C}^n \times T$ is called a *deformation of* φ *over* T if the diagram

commutes. The analytic space T is called the *base space* of the deformation.

We will denote by Φ_i the composition

$$
\overline{C}_i \times T \hookrightarrow \overline{\mathbb{C}} \times T \xrightarrow{\Phi} \mathbb{C}^n \times T \to \mathbb{C}^n, \qquad 1 \le i \le r.
$$

The maps Φ_i , $1 \leq i \leq r$, determine Φ .

Let Φ be a deformation of φ over T. Let $f : T' \to T$ be a morphism of analytic spaces. We will denote by $f^*\Phi$ the deformation of φ over T' given by

$$
(f^*\Phi)_i = \Phi_i \circ (\mathrm{id}_{\overline{C}_i} \times f).
$$

We say that $f^*\Phi$ is the *pullback* of Φ by f.

Let $\Phi' : \overline{\mathbb{C}} \times T \to \mathbb{C}^n \times T$ be another deformation of φ over T. A morphism from Φ' into Φ is a pair (χ, ξ) where $\chi : \mathbb{C}^n \times T \to \mathbb{C}^n \times T$ and $\xi : \overline{\mathbb{C}} \times T \to \overline{\mathbb{C}} \times T$ are isomorphisms of analytic spaces such that the diagram

commutes.

Let Φ' be a deformation of φ over S and $f : S \to T$ a morphism of analytic spaces. A *morphism of* Φ' *into* Φ *over* f is a morphism from Φ' into $f^*\Phi$. There is a functor p that associates T to a deformation Ψ over T and f to a morphism of deformations over f .

Given $s \in T$ let Z_s be the curve parametrized by the composition

$$
\overline{\mathbb{C}} \times \{s\} \hookrightarrow \overline{\mathbb{C}} \times T \stackrel{\Phi}{\to} \mathbb{C}^n \times T \to \mathbb{C}^n.
$$

We say that Z_s is the *fibre of the deformation* Φ *at the points.*

Assume $\Phi_i(t_i, \mathbf{s}) = (X_{1,i}(t_i, \mathbf{s}), \dots, X_{n,i}(t_i, \mathbf{s})), 1 \le i \le r$. Assume Z_i has multiplicity m_i . We say that Φ_i is equimultiple if $X_{j,i} \in (t^{m_i})$ for each $1 \le i \le r, 1 \le j \le n$. We say that Φ is *equimultiple* if each Φ_i is equimultiple.

Assume Z is a plane curve. Set

$$
\Phi_i(t_i, \mathbf{s}) = (X_i(t_i, \mathbf{s}), Y_i(t_i, \mathbf{s})), \qquad 1 \le i \le r. \tag{4.1}
$$

We will denote by $\mathcal{D}ef_{\varphi}^{\text{em}}$ [$\mathcal{D}ef_{\varphi}^{\text{em}}$] the *category of deformations [equimultiple deformations]* of φ . We say that Φ is an object of $\mathcal{D}ef_{\varphi}$ [$\mathcal{D}ef_{\varphi}$] if Φ is equimultiple and $Y_i \in (t_i X_i) [Y_i \in (X_i^2)], 1 \le i \le r.$ \xrightarrow{r} \rightarrow

If T is reduced, $\Phi \in \mathcal{D}ef_{\varphi}^{\text{em}}$ [$\mathfrak{Def}_{\varphi},$ $\mathcal{D}ef_{\varphi}$] if and only if all fibres of Φ are equimultiple [have tangent cone $\{y = 0\}$, have tangent cone $\{y = 0\}$ and are in generic position].

Consider in \mathbb{C}^3 the contact structure given by the differential form $\omega = dy - pdx$. Assume Z is a Legendrian curve parametrized by $\psi : \overline{\mathbb{C}} \to \mathbb{C}^3$. Let Ψ be a deformation of ψ given by

$$
\Psi_i(t_i, \mathbf{s}) = (X_i(t_i, \mathbf{s}), Y_i(t_i, \mathbf{s}), P_i(t_i, \mathbf{s})), \qquad 1 \le i \le r. \tag{4.2}
$$

We say that Ψ is a *Legendrian deformation of* ψ if $\Psi_i^*(\rho^*\omega) = 0$ for $1 \le i \le r$. We say that (χ, ξ) is an isomorphism of Legendrian deformations if χ is a relative contact transformation. We will denote by $\widehat{\mathcal{D}ef}_{\psi}$ [$\widehat{\mathcal{D}ef}_{\psi}^{\text{em}}$] the category of Legendrian [equimultiple Legendrian] deformations of ψ . All deformations are assumed to have [equimultiple Legendrian] deformations of ψ . All deformations are assumed to have trivial section.

Assume that $\psi = \mathcal{C}$ on φ parametrizes a germ of a Legendrian curve L, in generic position. If [\(4.1\)](#page-11-0) defines an object of $\xrightarrow{\text{HZCS}}$ $\mathcal{D}ef_{\varphi}$, setting

$$
P_i(t_i, \mathbf{s}) := \partial_{t_i} Y_i(t_i, \mathbf{s}) / \partial_{t_i} X_i(t_i, \mathbf{s}), \qquad 1 \le i \le r,
$$

the deformation Ψ given by [\(4.2\)](#page-11-1) is a Legendrian deformation of ψ . We say that Ψ is the *conormal of* Φ and denote Ψ by \mathcal{C} on Φ . If $\Psi \in \widehat{\mathcal{D}ef}_{\Psi}$ is given by [\(4.2\)](#page-11-1), the deformation Φ of φ given by [\(4.1\)](#page-11-0) is said to be the *plane projection of* Ψ . We will denote Φ by Ψ^{π} .

We define in this way the functors

$$
\mathcal{C}\text{on}: \overrightarrow{\mathcal{D}\text{ef}}_{\varphi} \to \widehat{\mathcal{D}\text{ef}}_{\psi}, \qquad \pi: \widehat{\mathcal{D}\text{ef}}_{\psi} \to \overrightarrow{\mathcal{D}\text{ef}}_{\varphi}.
$$

Notice that the conormal of the plane projection of a Legendrian deformation always exists and we have that $\mathcal{C}on(\Psi^{\pi}) = \Psi$ for each $\Psi \in \widehat{\mathcal{D}ef}_{\psi}$ and $(\mathcal{C}on \Phi)^{\pi} = \Phi$ where $\Phi \in \widehat{\mathcal{D}ef}_{\omega}$. $\Phi \in \overline{\mathcal{D}\text{ef}}_{\varphi}.$

Example 4.5. Set $\varphi(t) = (t, 0), \psi = \mathcal{C}$ on φ and $X(t, s) = t$, $Y(t, s) = st$. Then we get $P(t, s) = s$ and although X, Y define an object of $\mathcal{D}ef_{\varphi}^{\text{em}}$, its conormal Ψ is not an element of $\widehat{\mathcal{D}ef}_{w}$, because Ψ is a deformation with section $s \mapsto (0,0,s,s)$.

Example 4.6. Set $\varphi(t) = (t^2, t^5), X(t, s) = t^2, Y(t, s) = t^5 + st^3$. Then we get $2P(t, s) = 5t^3 + 3st$. Although X, Y defines an object of $\widehat{\mathcal{Def}}_{\varphi}$, its conormal is not equimultiple.

Remark 4.7. Under the assumptions above,

$$
\mathcal{C}on(\overrightarrow{\mathcal{D}ef_{\varphi}})\subset \widehat{\mathcal{D}ef_{\psi}^{\text{em}}}\qquad \text{and}\qquad (\widehat{\mathcal{D}ef_{\psi}^{\text{em}}})^{\pi}\subset \overrightarrow{\mathcal{D}ef_{\varphi}}.
$$

Remark 4.8. If $\mathfrak C$ is one of the categories $\widehat{\mathcal{D}ef}_{\psi}$, $\widehat{\mathcal{D}ef}_{\psi}^{\text{em}}$, then $p : \mathfrak C \to \mathfrak A n$ is a fibered groupoid. groupoid.

5. Equimultiple versal deformations

For Sophus Lie a contact transformation was a transformation that takes curves into curves, instead of points into points. We can recover the initial point of view. Given a plane curve Z at the origin, with tangent cone $\{y = 0\}$, and a contact transformation γ from a neighbourhood of $(0; dy)$ into itself, γ acts on Z in the following way: $\gamma \cdot Z$ is the plane projection of the image by χ of the conormal of Z. We can define in a similar way the action of a relative contact transformation on a deformation of a plane curve Z, obtaining another deformation of Z.

We say that $\Phi \in \overline{\mathcal{Def}}_{\varphi}(T)$ is *trivial* (relative to the action of the group of relative contact transformations over T) if there is χ such that $\chi \cdot \Phi := \pi \circ \chi \circ \mathcal{C}$ on Φ is the constant deformation of φ over T, given by

$$
(t_i, \mathbf{s}) \mapsto \varphi_i(t_i), \qquad i = 1, \ldots, r.
$$

Let Z be the germ of a plane curve parametrized by $\varphi : \overline{\mathbb{C}} \to \mathbb{C}^2$. In the following, we will identify each ideal of \mathcal{O}_Z with its image by $\varphi^* : \mathcal{O}_Z \to \mathcal{O}_{\overline{C}}$. Hence,

$$
\mathcal{O}_Z = \mathbb{C}\left\{\begin{bmatrix} x_1 \\ \vdots \\ x_r \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_r \end{bmatrix}\right\} \subset \bigoplus_{i=1}^r \mathbb{C}\{t_i\} = \mathcal{O}_{\overline{\mathbb{C}}}.
$$

Set $\dot{\mathbf{x}} = [\dot{x}_1, \dots, \dot{x}_r]^t$, where \dot{x}_i is the derivative of x_i with respect to t_i , $1 \le i \le r$. Let

$$
\dot{\varphi} := \dot{\mathbf{x}} \frac{\partial}{\partial x} + \dot{\mathbf{y}} \frac{\partial}{\partial y}
$$

be an element of the free $\mathcal{O}_{\overline{C}}$ -module

$$
\mathcal{O}_{\overline{\mathbb{C}}}\frac{\partial}{\partial x}\oplus \mathcal{O}_{\overline{\mathbb{C}}}\frac{\partial}{\partial y}.\tag{5.1}
$$

Notice that [\(5.1\)](#page-13-0) has a structure of \mathcal{O}_Z -module induced by φ^* .

Let m_i be the multiplicity of Z_i , $1 \le i \le r$. Consider the $\mathcal{O}_{\overline{C}}$ -module

$$
\left(\bigoplus_{i=1}^r t_i^{m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial x}\right) \oplus \left(\bigoplus_{i=1}^r t_i^{2m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial y}\right).
$$
\n(5.2)

Let $\mathfrak{m}_{\overline{C}}\dot{\varphi}$ be the sub $\mathcal{O}_{\overline{C}}$ -module of [\(5.2\)](#page-13-1) generated by

$$
(a_1,\ldots,a_r)\bigg(\dot{\mathbf{x}}\frac{\partial}{\partial x}+\dot{\mathbf{y}}\frac{\partial}{\partial y}\bigg),\,
$$

where $a_i \in t_i \mathbb{C} \{t_i\}, 1 \le i \le r$. For $i = 1, ..., r$ set $p_i = \dot{y}_i / \dot{x}_i$. For each $k \ge 0$ set

$$
\mathbf{p}^k = [p_1^k, \dots, p_r^k]^t.
$$

Let \hat{I} be the sub \mathcal{O}_Z -module of [\(5.2\)](#page-13-1) generated by

$$
\mathbf{p}^k \frac{\partial}{\partial x} + \frac{k}{k+1} \mathbf{p}^{k+1} \frac{\partial}{\partial y}, \qquad k \ge 1.
$$

Set

$$
\widehat{M}_{\varphi} = \frac{\left(\bigoplus_{i=1}^{r} t_i^{m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial x}\right) \oplus \left(\bigoplus_{i=1}^{r} t_i^{2m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial y}\right)}{\mathfrak{m}_{\overline{\mathbb{C}}}\varphi + (x, y) \frac{\partial}{\partial x} \oplus (x^2, y) \frac{\partial}{\partial y} + \widehat{I}}.
$$

Given a category $\mathfrak C$ we will denote by $\mathfrak C$ the set of isomorphism classes of elements of C.

Theorem 5.1. Let ψ be the parametrization of a germ of a Legendrian curve L of a *contact manifold* X*. Let* χ : $X \to \mathbb{C}^3$ *be a contact transformation such that* χ (*L*) *is in generic position. Let* φ *be the plane projection of* $\chi \circ \psi$ *. Then there is a canonical isomorphism*

$$
\widehat{\underline{\mathcal{D}}\mathrm{ef}}_{\psi}^{\mathrm{em}}(T_{\varepsilon}) \xrightarrow{\sim} \widehat{M}_{\varphi}.
$$

Proof. Let $\Psi \in \widehat{\mathcal{D}\text{ef}}_{\psi}^{\text{em}}(T_{\varepsilon})$. Then, Ψ is the conormal of its projection $\Phi \in \widehat{\mathcal{D}\text{ef}}_{\varphi}$ (see Remark 4.7). Moreover, Ψ is given by $\mathfrak{Def}_{\varphi}(T_{\varepsilon})$ (see Remark [4.7\)](#page-12-1). Moreover, Ψ is given by

$$
\Psi_i(t_i,\varepsilon)=(x_i+\varepsilon a_i,y_i+\varepsilon b_i,p_i+\varepsilon c_i),
$$

where $a_i, b_i, c_i \in \mathbb{C} \{t_i\}$, ord $a_i \geq m_i$, ord $b_i \geq 2m_i$, $i = 1, ..., r$. The deformation Ψ is trivial if and only if Φ is trivial for the action of the relative contact transformations. Moreover, Φ is trivial if and only if there are

$$
\xi_i(t_i) = \tilde{t}_i = t_i + \varepsilon h_i,
$$

$$
\chi(x, y, p, \varepsilon) = (x + \varepsilon \alpha, y + \varepsilon \beta, p + \varepsilon \gamma, \varepsilon),
$$

such that γ is a relative contact transformation, where $\alpha, \beta, \gamma \in (x, y, p) \mathbb{C} \{x, y, p\}$, ξ_i is an isomorphism, where $h_i \in t_i \mathbb{C} \{t_i\}$, $1 \le i \le r$, and

$$
x_i(t_i) + \varepsilon a_i(t_i) = x_i(\tilde{t}_i) + \varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
$$

\n
$$
y_i(t_i) + \varepsilon b_i(t_i) = y_i(\tilde{t}_i) + \varepsilon \beta(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
$$

for $i = 1, \ldots, r$. By Taylor's formula $x_i(\tilde{t}_i) = x_i(t_i) + \varepsilon \dot{x}_i(t_i) h_i(t_i), y_i(\tilde{t}_i) = y_i(t_i) +$ $\epsilon \dot{v}_i(t_i)h_i(t_i)$ and

$$
\varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)) = \varepsilon \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),
$$

$$
\varepsilon \beta(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)) = \varepsilon \beta(x_i(t_i), y_i(t_i), p_i(t_i)),
$$

for $i = 1, \ldots, r$. Hence Φ is trivialized by χ if and only if

$$
a_i(t_i) = \dot{x}_i(t_i)h_i(t_i) + \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),
$$
\n(5.3)

$$
b_i(t_i) = \dot{y}_i(t_i)h_i(t_i) + \beta(x_i(t_i), y_i(t_i), p_i(t_i)),
$$
\n(5.4)

for $i = 1, \ldots, r$. By Remark [3.7](#page-8-1) (i), [\(5.3\)](#page-14-0) and [\(5.4\)](#page-14-1) are equivalent to the condition

$$
\mathbf{a}\frac{\partial}{\partial x} + \mathbf{b}\frac{\partial}{\partial y} \in \mathfrak{m}_{\overline{C}}\dot{\varphi} + (x, y)\frac{\partial}{\partial x} \oplus (x^2, y)\frac{\partial}{\partial y} + \hat{I}.
$$

Set

$$
M_{\varphi} = \frac{\left(\bigoplus_{i=1}^{r} t_{i}^{m_{i}} \mathbb{C}\{t_{i}\}\frac{\partial}{\partial x}\right) \oplus \left(\bigoplus_{i=1}^{r} t_{i}^{m_{i}} \mathbb{C}\{t_{i}\}\frac{\partial}{\partial y}\right)}{\mathfrak{m}_{\overline{\mathbb{C}}}\dot{\varphi} + (x, y)\frac{\partial}{\partial x} \oplus (x, y)\frac{\partial}{\partial y}},
$$

$$
\overrightarrow{M}_{\varphi} = \frac{\left(\bigoplus_{i=1}^{r} t_{i}^{m_{i}} \mathbb{C}\{t_{i}\}\frac{\partial}{\partial x}\right) \oplus \left(\bigoplus_{i=1}^{r} t_{i}^{2m_{i}} \mathbb{C}\{t_{i}\}\frac{\partial}{\partial y}\right)}{\mathfrak{m}_{\overline{\mathbb{C}}}\dot{\varphi} + (x, y)\frac{\partial}{\partial x} \oplus (x^{2}, y)\frac{\partial}{\partial y}}.
$$

By [\[5,](#page-24-4) Proposition 2.27],

$$
\underline{\mathfrak{Def}}_{\varphi}^{\text{em}}(T_{\varepsilon}) \cong M_{\varphi}.
$$

A similar argument shows that

$$
\overrightarrow{\underline{Def}}_{\varphi}(T_{\varepsilon}) \cong \overrightarrow{M}_{\varphi}.
$$
\n
$$
M_{\varphi} \xleftarrow{l} \overrightarrow{M}_{\varphi} \Rightarrow \widehat{M}_{\varphi}.
$$
\n(5.5)

We have linear maps

Theorem 5.2 ([\[5,](#page-24-4) II, Proposition 2.27 (3)]). *Set* $k = \dim M_{\varphi}$. Let

$$
\mathbf{a}^j, \mathbf{b}^j \in \bigoplus_{i=1}^r t_i^{m_i} \mathbb{C} \{t_i\}, \qquad 1 \le j \le k.
$$

If

$$
\mathbf{a}^j \frac{\partial}{\partial x} + \mathbf{b}^j \frac{\partial}{\partial y} = \begin{bmatrix} a_1^j \\ \vdots \\ a_r^j \end{bmatrix} \frac{\partial}{\partial x} + \begin{bmatrix} b_1^j \\ \vdots \\ b_r^j \end{bmatrix} \frac{\partial}{\partial y}, \qquad 1 \le j \le k,
$$
 (5.6)

represents a basis of M_{φ} *, the deformation* $\Phi : \overline{\mathbb{C}} \times \mathbb{C}^k \to \mathbb{C}^2 \times \mathbb{C}^k$ given by

$$
X_i(t_i, \mathbf{s}) = x_i(t_i) + \sum_{j=1}^k a_i^j(t_i) s_j, \qquad Y_i(t_i, \mathbf{s}) = y_i(t_i) + \sum_{j=1}^k b_i^j(t_i) s_j, \qquad (5.7)
$$

 $i = 1, \ldots, r$, is a semiuniversal deformation of φ in $\mathcal{D}ef^{\text{em}}_{\varphi}$.

Lemma 5.3. *Set* $\overrightarrow{k} = \dim \overrightarrow{M}_g$ $\overrightarrow{M}_{\varphi}$. Let $\mathbf{a}^j \in \bigoplus_{i=1}^r t_i^{m_i} \mathbb{C} \{t_i\}, \ \mathbf{b}^j \in \bigoplus_{i=1}^r t_i^{2m_i} \mathbb{C} \{t_i\},\$ $1 \leq j \leq \overrightarrow{k}$. k *. If* [\(5.6\)](#page-15-1) *represents a basis of* $\overset{\bigcup\, l}{\rightarrow}$ M_{φ} , the deformation $\stackrel{\smile}{\twoheadrightarrow}$ ˆ *given by* [\(5.7\)](#page-15-2)*,* $1 \leq j \leq \kappa$, *i_j* (*5.6)* represents a basis of $m\varphi$, $\frac{m\epsilon}{2}$
 $1 \leq i \leq r$, is a semiuniversal deformation of φ in $\overline{\mathcal{D}}$ ef₍ \mathfrak{Def}_{φ} *. Moreover,* Con \rightarrow ˆ *is a versal deformation of* $\psi = \mathcal{C}$ on φ *in* $\widehat{\mathcal{D}} \in \mathbf{f}_{\psi}^{\text{em}}$.

Proof. We only show the completeness of \rightarrow Φ and \mathcal{C} on \rightarrow Φ . Since the linear inclusion map ι referred in [\(5.5\)](#page-14-2) is injective, the deformation $\stackrel{\Psi}{\twoheadrightarrow}$ Φ is the restriction to $\stackrel{\text{cu}}{\rightarrow}$ $\lim_{n \to \infty}$ the restriction to M_{φ} of the deformation Φ introduced in Theorem [5.2.](#page-15-3) Let $\Phi_0 \in \overline{\mathcal{D}\text{ef}}_{\varphi}(T)$. Since $\Phi_0 \in$ $\mathcal{D} \text{ef}^{\text{em}}_{\varphi}(T)$, there is a morphism of analytic spaces $f: T \to M_{\varphi}$ such that $\Phi_0 \cong f^* \Phi$. Since $\Phi_0 \in \overline{\mathcal{D}} \text{ef}_{\varphi}(T)$, $f(T) \subset \overline{M}_{\varphi}$. Hence $f^* \overrightarrow{\Phi} = f^* \Phi$.

If $\Psi \in \widehat{\mathcal{D}} \text{ef}_{\psi}^{\text{em}}(T)$, then $\Psi^{\pi} \in \widehat{\mathcal{D}} \text{ef}_{\varphi}(T)$. Hence there is $f : T \to \overrightarrow{M}_{\varphi}$
 $\cong f^* \overrightarrow{\Phi}$. Therefore, $\Psi = \mathcal{C}$ on $\Psi^{\pi} \cong \mathcal{C}$ on $f^* \overrightarrow{\Phi} = f^* \mathcal{C}$ on $\overrightarrow{\Phi}$. \overline{M}_{φ} such that $\Psi^{\pi} \cong f^* \overrightarrow{\Phi}$. Therefore, $\Psi = \mathcal{C}$ on $\Psi^{\pi} \cong \mathcal{C}$ on $f^* \overrightarrow{\Phi} = f^* \mathcal{C}$ on $\overrightarrow{\Phi}$. $\breve{\Phi}$.

Theorem 5.4. Let $\mathbf{a}^j \in \bigoplus_{i=1}^r t_i^{m_i} \mathbb{C} \{t_i\}$, $\mathbf{b}^j \in \bigoplus_{i=1}^r t_i^{2m_i} \mathbb{C} \{t_i\}$, $1 \leq j \leq \ell$. Assume *that* [\(5.6\)](#page-15-1) *represents a basis [a system of generators] of* \widehat{M}_{φ} *. Let* Φ *be the deformation given by* [\(5.7\)](#page-15-2), $1 \le i \le r$. Then $\mathfrak{Con} \Phi$ *is a semiuniversal [versal] deformation of* $\psi = \mathcal{C}$ on φ *in* $\widehat{\mathcal{D}}$ ef^{em}.

Proof. By Theorem [4.4](#page-10-0) and Lemma [5.3](#page-15-4) it is enough to show that \mathcal{C} on Φ is formally semiuniversal [versal].

Let $\iota : T'$ Let $\iota : T' \hookrightarrow T$ be a small extension. Let $\Psi \in \widehat{\mathcal{D}\mathrm{ef}}_{\psi}^{\mathrm{em}}(T)$. Set $\Psi' = \iota^* \Psi$. Let $\eta' : T' \to \mathbb{C}^{\ell}$ be a morphism of complex analytic spaces. Assume that (χ', ξ') define $\psi^{em}(T)$. Set $\Psi' = i^* \Psi$. Let an isomorphism

$$
\eta'^* \operatorname{Con} \Phi \cong \Psi'.
$$

We need to find $\eta: T \to \mathbb{C}^{\ell}$ and χ, ξ such that $\eta' = \eta \circ \iota$ and χ, ξ define an isomorphism

$$
\eta^* \operatorname{Con} \Phi \cong \Psi
$$

that extends (χ', ξ') . Let A [A'] be the local ring of T [T']. Let δ be the generator of Ker($A \rightarrow A'$). We can assume $A' \cong \mathbb{C}\{\mathbf{z}\}/I$, where $\mathbf{z} = (z_1, \dots, z_m)$. Set

$$
\widetilde{A}' = \mathbb{C}\{\mathbf{z}\}\
$$
 and $\widetilde{A} = \mathbb{C}\{\mathbf{z}, \varepsilon\}/(\varepsilon^2, \varepsilon z_1, \ldots, \varepsilon z_m).$

Let m_A be the maximal ideal of A. Since $m_A \delta = 0$ and $\delta \in m_A$, there is a morphism of local analytic algebras from \tilde{A} onto A that takes ε into δ such that the diagram

commutes. Assume \tilde{t} [\tilde{t}'] has local ring \tilde{A} [\tilde{A}']. We also denote by ι the morphism $\tilde{t}' \hookrightarrow \tilde{t}$. We denote by κ the morphisms $T \hookrightarrow \tilde{t}$ and $T' \hookrightarrow \tilde{t}'$. Let $\tilde{\Psi} \in \widehat{\mathcal{D}} \in \widehat{\mathcal{L}}_{\psi}^{\text{rem}}$
lifting of Ψ . $\dot{\psi}^{\text{em}}(\tilde{t})$ be a lifting of Ψ .

We fix a linear map $\sigma : A' \hookrightarrow \tilde{A}'$ such that $\kappa^* \sigma = \mathrm{id}_{A'}$. Set $\tilde{\chi}' = \chi_{\sigma(\alpha), \sigma(\beta_0)}$, where $\chi' = \chi_{\alpha,\beta_0}$. Define $\tilde{\eta}'$ by $\tilde{\eta}''^* s_i = \sigma(\eta'^* s_i)$, $i = 1, ..., \ell$. Let $\tilde{\xi}'$ be the lifting of ξ' determined by σ . Then

$$
\widetilde{\Psi}' := \widetilde{\chi}'^{-1} \circ \widetilde{\eta}'^* \operatorname{Con} \Phi \circ \widetilde{\xi}'^{-1}
$$

is a lifting of Ψ' and

$$
\tilde{\chi}' \circ \tilde{\Psi}' \circ \tilde{\xi}' = \tilde{\eta}'^* \operatorname{Con} \Phi. \tag{5.9}
$$

By Theorem [3.4](#page-6-3) it is enough to find liftings $\tilde{\chi}$, $\tilde{\xi}$, $\tilde{\eta}$ of $\tilde{\chi}'$, $\tilde{\xi}'$, $\tilde{\eta}'$ such that

$$
\widetilde{\chi}\cdot \widetilde{\Psi}^{\pi}\circ \widetilde{\xi}=\widetilde{\eta}^*\Phi
$$

in order to prove the theorem.

Consider the commutative diagram of full arrows

If \mathfrak{C} on Φ is given by

$$
X_i(t_i, \mathbf{s}), Y_i(t_i, \mathbf{s}), P_i(t_i, \mathbf{s}) \in \mathbb{C} \{ \mathbf{s}, t_i \},
$$

then $\tilde{\eta}^{\prime *}$ Con Φ is given by

$$
X_i(t_i, \widetilde{\eta}'(\mathbf{z})), Y_i(t_i, \widetilde{\eta}'(\mathbf{z})), P_i(t_i, \widetilde{\eta}'(\mathbf{z})) \in \widetilde{A}'\{t_i\} = \mathbb{C}\{\mathbf{z}, t_i\}
$$

for $i = 1, ..., r$. Suppose that $\tilde{\Psi}'$ is given by

$$
U'_{i}(t_{i},\mathbf{z}), V'_{i}(t_{i},\mathbf{z}), W'_{i}(t_{i},\mathbf{z}) \in \mathbb{C}\{\mathbf{z},t_{i}\}.
$$

Then, $\tilde{\Psi}$ must be given by

$$
U_i = U'_i + \varepsilon u_i, \ V_i = V'_i + \varepsilon v_i, \ W_i = W'_i + \varepsilon w_i \in \widetilde{A}\{t_i\} = \mathbb{C}\{\mathbf{z}, t_i\} \oplus \varepsilon \mathbb{C}\{t_i\}
$$

with $u_i, v_i, w_i \in \mathbb{C} \{t_i\}$ and $i = 1, \ldots, r$. By definition of deformation we have that, for each i ,

$$
(U_i, V_i, W_i) = (x_i(t_i), y_i(t_i), p_i(t_i)) \text{ mod } \mathfrak{m}_{\tilde{A}}.
$$

Suppose $\tilde{\eta}' : \tilde{t}' \to \mathbb{C}^{\ell}$ is given by $(\tilde{\eta}'_1)$ $\tilde{\eta}'_1,\ldots,\tilde{\eta}'_\ell$ $\tilde{\eta}'_l$, with $\tilde{\eta}'_i \in \mathbb{C} \{ \mathbf{z} \}$. Then $\tilde{\eta}$ must be given by $\widetilde{\eta} = \widetilde{\eta}' + \varepsilon \widetilde{\eta}^0$ for some $\widetilde{\eta}^0 = (\widetilde{\eta}_1^0, \ldots, \widetilde{\eta}_{\ell}^0) \in \mathbb{C}^{\ell}$. Suppose that $\widetilde{\chi}' : \mathbb{C}^3 \times \widetilde{t}' \to \mathbb{C}^3 \times \widetilde{T}'$ is given at the ring level by

$$
(x, y, p) \mapsto (H'_1, H'_2, H'_3),
$$

such that $H' = \text{id} \mod \mathfrak{m}_{\widetilde{A'}}$ with $H'_i \in (x, y, p)A'\{x, y, p\}$. Let $\widetilde{\xi}' : \overline{\mathbb{C}} \times \widetilde{t}' \to \overline{\mathbb{C}} \times \widetilde{t}'$ be an automorphism given at the ring level by

$$
t_i \mapsto h'_i,
$$

such that $h' = id \mod \mathfrak{m}_{\tilde{A}'}$ with $h'_i \in (t_i) \mathbb{C} \{ \mathbf{z}, t_i \}.$

Then, it follows from [\(5.9\)](#page-16-0) that

$$
X_i(t_i, \tilde{\eta}') = H'_1(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)),
$$

\n
$$
Y_i(t_i, \tilde{\eta}') = H'_2(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)),
$$

\n
$$
P_i(t_i, \tilde{\eta}') = H'_3(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)).
$$
\n(5.10)

Now, $\tilde{\eta}'$ must be extended to $\tilde{\eta}$ such that the first two previous equations extend as well. That is, we must have

$$
X_i(t_i, \tilde{\eta}) = (H'_1 + \varepsilon \alpha)(U_i(h'_i + \varepsilon h_i^0), V_i(h'_i + \varepsilon h_i^0), W_i(h'_i + \varepsilon h_i^0)),
$$
 (5.11)

$$
Y_i(t_i, \tilde{\eta}) = (H'_2 + \varepsilon \beta)(U_i(h'_i + \varepsilon h_i^0), V_i(h'_i + \varepsilon h_i^0), W_i(h'_i + \varepsilon h_i^0)),
$$

with $\alpha, \beta \in (x, y, p) \mathbb{C} \{x, y, p\}$, and $h_i^0 \in (t_i) \mathbb{C} \{t_i\}$ such that

$$
(x, y, p) \mapsto (H'_1 + \varepsilon \alpha, H'_2 + \varepsilon \beta, H'_3 + \varepsilon \gamma)
$$

gives a relative contact transformation over \tilde{t} for some $\gamma \in (x, y, p) \mathbb{C} \{x, y, p\}$. The existence of this extended relative contact transformation is guaranteed by Theorem [3.6.](#page-7-1) Moreover, again by Theorem [3.6,](#page-7-1) this extension depends only on the choices of α and β_0 . So, we need only to find α , β_0 , $\tilde{\eta}^0$ and h_i^0 such that [\(5.11\)](#page-17-0) holds. Using Taylor's formula and $\varepsilon^2 = 0$ we see that

$$
X_i(t_i, \tilde{\eta}' + \varepsilon \tilde{\eta}^0) = X_i(t_i, \tilde{\eta}') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial X_i}{\partial s_j}(t_i, \tilde{\eta}') \tilde{\eta}_j^0
$$

\n
$$
(\varepsilon \mathfrak{m}_{\tilde{A}} = 0) = X_i(t_i, \tilde{\eta}') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial X_i}{\partial s_j}(t_i, 0) \tilde{\eta}_j^0,
$$

\n
$$
Y_i(t_i, \tilde{\eta}' + \varepsilon \tilde{\eta}^0) = Y_i(t_i, \tilde{\eta}') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial Y_i}{\partial s_j}(t_i, 0) \tilde{\eta}_j^0.
$$

\n(5.12)

Again, by Taylor's formula and noticing that $\varepsilon \mathfrak{m}_{\widetilde{A}} = 0$, $\varepsilon \mathfrak{m}_{\widetilde{A'}} = 0$ in \widetilde{A} , $h' =$ id mod $\mathfrak{m}_{\tilde{A}'}$ and $(U_i, V_i) = (x_i(t_i), y_i(t_i)) \text{ mod } \mathfrak{m}_{\tilde{A}}$ we see that

$$
U_i(h'_i + \varepsilon h_i^0) = U_i(h'_i) + \varepsilon \dot{U}_i(h'_i)h_i^0
$$

= $U'_i(h'_i) + \varepsilon (\dot{x}_i h_i^0 + u_i),$

$$
V_i(h'_i + \varepsilon h_i^0) = V'_i(h'_i) + \varepsilon (\dot{y}_i h_i^0 + v_i),
$$
 (5.13)

where U_i , V_i were defined in the previous page. Now, $H' = id \text{ mod } \mathfrak{m}_{\tilde{A}'},$ so

$$
\frac{\partial H_1'}{\partial x} = 1 \text{ mod } \mathfrak{m}_{\widetilde{A}'}, \qquad \frac{\partial H_1'}{\partial y}, \frac{\partial H_1'}{\partial p} \in \mathfrak{m}_{\widetilde{A}'} \widetilde{A}' \{x, y, p\}.
$$

In particular,

$$
\varepsilon \frac{\partial H_1'}{\partial y} = \varepsilon \frac{\partial H_1'}{\partial p} = 0.
$$

By this and arguing as in (5.12) and (5.13) we see that

$$
(H'_1 + \varepsilon \alpha) (U'_i(h'_i) + \varepsilon (\dot{x}_i h^0_i + u_i), V'_i(h'_i) + \varepsilon (\dot{y}_i h^0_i + v_i),
$$

\n
$$
W'_i(h'_i) + \varepsilon (\dot{p}_i h^0_i + w_i))
$$

\n
$$
= H'_1(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i))
$$

\n
$$
+ \varepsilon (\alpha (U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + 1(\dot{x}_i h^0_i + u_i))
$$

\n
$$
= H'_1(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \varepsilon (\alpha (x_i, y_i, p_i) + \dot{x}_i h^0_i + u_i), (H'_2 + \varepsilon \beta)
$$

\n
$$
\cdot (U'_i(h'_i) + \varepsilon (\dot{x}_i h^0_i + u_i), V'_i(h'_i) + \varepsilon (\dot{y}_i h^0_i + v_i), W'_i(h'_i) + \varepsilon (\dot{p}_i h^0_i + w_i))
$$

\n
$$
= H'_2(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \varepsilon (\beta (x_i, y_i, p_i) + \dot{y}_i h^0_i + v_i).
$$

Substituting this in (5.11) and using (5.10) and (5.12) we see that we have to find $\widetilde{\eta}^0 = (\widetilde{\eta}_1^0, \ldots, \widetilde{\eta}_{\ell}^0) \in \mathbb{C}^{\ell}$ and h_i^0 such that

$$
(u_i(t_i), v_i(t_i)) = \sum_{j=1}^{\ell} \tilde{\eta}_j^0 \left(\frac{\partial X_i}{\partial s_j}(t_i, 0), \frac{\partial Y_i}{\partial s_j}(t_i, 0) \right) - h_i^0(t_i)(\dot{x}_i(t_i), \dot{y}_i(t_i)) - \left(\alpha(x_i(t_i), y_i(t_i), p_i(t_i)), \beta(x_i(t_i), y_i(t_i), p_i(t_i)) \right).
$$
(5.14)

Note that, because of Remark [3.7](#page-8-1) (i),

$$
\big(\alpha(x_i(t_i),y_i(t_i),p_i(t_i)),\beta(x_i(t_i),y_i(t_i),p_i(t_i))\big)\in\widehat{I}
$$

for each *i*. Also note that $\widetilde{\Psi} \in \widehat{\mathcal{D}} \in \widehat{\mathcal{F}}_{\psi}^{\text{em}}$
Then, if the vectors $t_{\psi}^{\text{em}}(\tilde{t})$ means that $u_i \in t_i^{m_i} \mathbb{C} \{t_i\}, v_i \in t_i^{2m_i} \mathbb{C} \{t_i\}.$ Then, if the vectors

$$
\left(\frac{\partial X_1}{\partial s_j}(t_1,0),\ldots,\frac{\partial X_r}{\partial s_j}(t_r,0)\right)\frac{\partial}{\partial x} + \left(\frac{\partial Y_1}{\partial s_j}(t_1,0),\ldots,\frac{\partial Y_r}{\partial s_j}(t_r,0)\right)\frac{\partial}{\partial y}
$$

$$
= (a_1^j(t_1),\ldots,a_r^j(t_r))\frac{\partial}{\partial x} + (b_1^j(t_1),\ldots,b_r^j(t_r))\frac{\partial}{\partial y}, \qquad j=1,\ldots,\ell
$$

form a basis of [generate] \widehat{M}_{φ} , we can solve [\(5.14\)](#page-19-1) with unique $\widetilde{\eta}_1^0, \ldots, \widetilde{\eta}_\ell^0$ [respectively, solve] for all $i = 1, ..., r$. This implies that the conormal of Φ is a formally semiuniversal [respectively, versal] equimultiple deformation of ψ over \mathbb{C}^{ℓ} . \blacksquare

6. Versal deformations

Let $f \in \mathbb{C} \{x_1,\ldots,x_n\}$. We will denote by $\int f dx_i$ the solution of the Cauchy problem

$$
\frac{\partial g}{\partial x_i} = f, \qquad g \in (x_i).
$$

Let ψ be a Legendrian curve with parametrization given by

$$
t_i \mapsto (x_i(t_i), y_i(t_i), p_i(t_i)), \qquad i = 1, \dots, r. \tag{6.1}
$$

We will say that the *fake plane projection* of (6.1) is the plane curve σ with parametrization given by

$$
t_i \mapsto (x_i(t_i), p_i(t_i)), \qquad i = 1, ..., r.
$$
 (6.2)

We will denote σ by ψ^{π_f} .

Given a plane curve σ with parametrization [\(6.2\)](#page-19-3), we will say that the *fake conormal* of σ is the Legendrian curve ψ with parametrization [\(6.1\)](#page-19-2), where

$$
y_i(t_i) = \int p_i(t_i) \dot{x}_i(t_i) dt_i.
$$

We will denote ψ by \mathcal{C} on f o. Applying the construction above to each fibre of a deformation we obtain functors

$$
\pi_f : \widehat{\mathcal{D}}ef_{\psi} \to \widehat{\mathcal{D}}ef_{\sigma}, \qquad \mathcal{C}on_f : \widehat{\mathcal{D}}ef_{\sigma} \to \widehat{\mathcal{D}}ef_{\psi}.
$$

Notice that

$$
\mathcal{C}on_f(\Psi^{\pi_f}) = \Psi, \qquad (\mathcal{C}on_f(\Sigma))^{\pi_f} = \Sigma \tag{6.3}
$$

for each $\Psi \in \widehat{\mathcal{D}} \in \widehat{\mathcal{D}} \in \mathcal{D} \in \mathcal{D} \in \mathcal{F}_{\sigma}$.

Let ψ be the parametrization of a Legendrian curve given by [\(6.1\)](#page-19-2). Let σ be the fake plane projection of ψ . Set $\dot{\sigma} := \dot{x} \frac{\partial}{\partial x} + \dot{p} \frac{\partial}{\partial p}$. Let I^f be the linear subspace of

$$
\mathfrak{m}_{\overline{C}}\frac{\partial}{\partial x}\oplus \mathfrak{m}_{\overline{C}}\frac{\partial}{\partial p}=\left(\bigoplus_{i=1}^r t_i\mathbb{C}\{t_i\}\frac{\partial}{\partial x}\right)\oplus \left(\bigoplus_{i=1}^r t_i\mathbb{C}\{t_i\}\frac{\partial}{\partial p}\right)
$$

generated by

$$
\alpha_0 \frac{\partial}{\partial x} - \Big(\frac{\partial \alpha_0}{\partial x} + \frac{\partial \alpha_0}{\partial y} \mathbf{p} \Big) \mathbf{p} \frac{\partial}{\partial p}, \qquad \Big(\frac{\partial \beta_0}{\partial x} + \frac{\partial \beta_0}{\partial y} \mathbf{p} \Big) \frac{\partial}{\partial p},
$$

and

$$
\alpha_k \mathbf{p}^k \frac{\partial}{\partial x} - \frac{1}{k+1} \Big(\frac{\partial \alpha_k}{\partial x} \mathbf{p}^{k+1} + \frac{\partial \alpha_k}{\partial y} \mathbf{p}^{k+2} \Big) \frac{\partial}{\partial p}, \qquad k \ge 1,
$$

where $\alpha_k \in (x, y), \beta_0 \in (x^2, y)$ for each $k \ge 0$. Set

$$
M_{\sigma}^{f} = \frac{\mathfrak{m}_{\overline{\mathbb{C}}}\frac{\partial}{\partial x} \oplus \mathfrak{m}_{\overline{\mathbb{C}}}\frac{\partial}{\partial p}}{\mathfrak{m}_{\overline{\mathbb{C}}}\dot{\sigma} + I^{f}}.
$$

Theorem 6.1. Assuming the notations above, $\widehat{\mathcal{Q}ef}_{\psi}(T_{\varepsilon}) \cong M_{\sigma}^{f}$.

Proof. Let $\Psi \in \widehat{\mathcal{D}ef}_{\psi}(T_{\varepsilon})$ be given by

$$
\Psi_i(t_i,\varepsilon)=(X_i,Y_i,P_i)=(x_i+\varepsilon a_i,y_i+\varepsilon b_i,p_i+\varepsilon c_i),
$$

where x_i , y_i , p_i define the parametrization ψ_i , as well as a_i , b_i , $c_i \in \mathbb{C}{t_i}$ t_i and $Y_i = \int P_i \partial_{t_i} X_i dt_i, i = 1, \ldots, r$. Hence

$$
b_i = \int (\dot{x}_i c_i + \dot{a}_i p_i) dt_i, \qquad i = 1, \dots, r.
$$

By [\(6.3\)](#page-20-0), Ψ is trivial if and only if there an isomorphism $\xi : \overline{\mathbb{C}} \times T_{\varepsilon} \to \overline{\mathbb{C}} \times T_{\varepsilon}$ given by

$$
t_i \rightarrow \tilde{t}_i = t_i + \varepsilon h_i, \qquad h_i \in \mathbb{C} \{t_i\} t_i, \qquad i = 1, \ldots, r,
$$

 \blacksquare

 \blacksquare

п

and a relative contact transformation $\chi : \mathbb{C}^3 \times T_{\varepsilon} \to \mathbb{C}^3 \times T_{\varepsilon}$ given by

$$
(x, y, p, \varepsilon) \mapsto (x + \varepsilon \alpha, y + \varepsilon \beta, p + \varepsilon \gamma, \varepsilon)
$$

such that

$$
X_i = x_i(\tilde{t}_i) + \varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
$$

\n
$$
P_i = p_i(\tilde{t}_i) + \varepsilon \gamma(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
$$

 $i = 1, \ldots, r$. Following the argument of the proof of Theorem [5.1,](#page-13-2) Ψ^{π_f} is trivial if and only if

$$
a_i(t_i) = \dot{x}_i(t_i)h_i(t_i) + \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),
$$

\n
$$
c_i(t_i) = \dot{p}_i(t_i)h_i(t_i) + \gamma(x_i(t_i), y_i(t_i), p_i(t_i)),
$$

 $i = 1, \ldots, r$. The result follows from Remark [3.7](#page-8-1) (ii).

Lemma 6.2. Let ψ be the parametrization of a Legendrian curve. Let Φ be a semi*universal deformation in* $\mathcal{D}ef_\sigma$ *of the fake plane projection* σ *of* ψ *. Then* \mathcal{C} *on* $_f \Phi$ *is a versal deformation of* ψ *in* $\widehat{\mathbf{Def}}_{\psi}$ *.*

Proof. It follows from the argument of Lemma [5.3.](#page-15-4)

Theorem 6.3. Let $\mathbf{a}^j, \mathbf{c}^j \in \mathfrak{m}_{\overline{C}}$ such that

$$
\mathbf{a}^j \frac{\partial}{\partial x} + \mathbf{c}^j \frac{\partial}{\partial p} = \begin{bmatrix} a_1^j \\ \vdots \\ a_r^j \end{bmatrix} \frac{\partial}{\partial x} + \begin{bmatrix} c_1^j \\ \vdots \\ c_r^j \end{bmatrix} \frac{\partial}{\partial p},\tag{6.4}
$$

 $1 \leq j \leq \ell$, represents a basis [a system of generators] of M_{σ}^{f} . Let $\Phi \in \mathcal{D}ef_{\sigma}$ be given *by*

$$
X_i(t_i, \mathbf{s}) = x_i(t_i) + \sum_{j=1}^{\ell} a_i^j(t_i) s_j, \qquad P_i(t_i, \mathbf{s}) = p_i(t_i) + \sum_{j=1}^{\ell} c_i^j(t_i) s_j, \qquad (6.5)
$$

 $i = 1, \ldots, r$. Then \mathcal{C} on $f \Phi$ *is a semiuniversal [versal] deformation of* ψ *in* $\widehat{\mathbf{Def}}_{\psi}$.

Proof. It follows from the argument of Theorem [5.4](#page-15-0) and Remark [3.7](#page-8-1) (ii).

Remark 6.4. The category of [equimultiple] deformations of parametrizations of Legendrian curves is unobstructed. In particular, the base space of any versal deformation is smooth.

7. Examples

 \overline{a}

Example 7.1. Let $\varphi(t) = (t^3, t^{10}), \psi(t) = (t^3, t^{10}, \frac{10}{3}t^7), \sigma(t) = (t^3, \frac{10}{3}t^7)$. The deformations given by

$$
X(t, \mathbf{s}) = t^3,
$$

\n
$$
Y(t, \mathbf{s}) = s_1 t^4 + s_2 t^5 + s_3 t^7 + s_4 t^8 + t^{10} + s_5 t^{11} + s_6 t^{14}
$$
\n
$$
X(t, \mathbf{s}) = s_1 t + s_2 t^2 + t^3,
$$
\n(7.2)

$$
Y(t, \mathbf{s}) = s_3t + s_4t^2 + s_5t^4 + s_6t^5 + s_7t^7 + s_8t^8 + t^{10} + s_9t^{11} + s_{10}t^{14}
$$
 (7.2)

are respectively

- an equimultiple semiuniversal deformation, see (7.1) ;
- a semiuniversal deformation, see (7.2) ,

of φ . The conormal of the deformation given by

$$
X(t, \mathbf{s}) = t^3
$$
, $Y(t, \mathbf{s}) = s_1 t^7 + s_2 t^8 + t^{10} + s_3 t^{11}$

is an equimultiple semiuniversal deformation of ψ . The fake conormal of the deformation given by

$$
X(t, \mathbf{s}) = s_1 t + s_2 t^2 + t^3, \qquad P(t, \mathbf{s}) = s_3 t + s_4 t^2 + s_5 t^4 + s_6 t^5 + \frac{10}{3} t^7 + s_7 t^8
$$

is a semiuniversal deformation of the fake conormal of σ . The conormal of the deformation given by

$$
X(t, s) = s_1 t + s_2 t^2 + t^3,
$$

\n
$$
Y(t, s) = \alpha_2 t^2 + \alpha_3 t^3 + \alpha_4 t^4 + \alpha_5 t^5 + \alpha_6 t^6
$$

\n
$$
+ \alpha_7 t^7 + \alpha_8 t^8 + \alpha_9 t^9 + \alpha_{10} t^{10} + \alpha_{11} t^{11}
$$

with

$$
\alpha_2 = \frac{s_1 s_3}{2}, \qquad \alpha_3 = \frac{s_1 s_4 + 2 s_2 s_3}{3}, \qquad \alpha_4 = \frac{3 s_3 + 2 s_2 s_4}{4},
$$

\n
$$
\alpha_5 = \frac{3 s_4 + s_1 s_5}{5}, \qquad \alpha_6 = \frac{2 s_2 s_5 + s_1 s_6}{6}, \qquad \alpha_7 = \frac{3 s_5 + 2 s_2 s_6}{7},
$$

\n
$$
\alpha_8 = \frac{10 s_1 + 9 s_6}{24}, \qquad \alpha_9 = \frac{3 s_1 s_7 + 20 s_2}{27}, \qquad \alpha_{10} = 1 + \frac{s_2 s_7}{5},
$$

\n
$$
\alpha_{11} = \frac{3 s_7}{11},
$$

is a semiuniversal deformation of ψ .

Example 7.2. Let $Z = \{(x, y) \in \mathbb{C}^2 : (y^2 - x^5)(y^2 - x^7) = 0\}$. Consider the parametrization φ of Z given by

$$
x_1(t_1) = t_1^2
$$
, $y_1(t_1) = t_1^5$, $x_2(t_2) = t_2^2$, $y_2(t_2) = t_2^7$.

Let σ be the fake projection of the conormal of φ given by

$$
x_1(t_1) = t_1^2
$$
, $p_1(t_1) = \frac{5}{2}t_1^3$, $x_2(t_2) = t_2^2$, $p_2(t_2) = \frac{7}{2}t_2^5$.

The deformations given by

$$
X_1(t_1, \mathbf{s}) = t_1^2, \t Y_1(t_1, \mathbf{s}) = s_1 t_1^3 + t_1^5,
$$

\n
$$
X_2(t_2, \mathbf{s}) = t_2^2, \t Y_2(t_2, \mathbf{s}) = s_2 t_2^2 + s_3 t_2^3 + s_4 t_2^4 + s_5 t_2^5 \t (7.3)
$$

\n
$$
+ s_6 t_2^6 + t_2^7 + s_7 t_2^8 + s_8 t_2^{10} + s_9 t_2^{12};
$$

\n
$$
X_1(t_1, \mathbf{s}) = s_1 t_1 + t_1^2, \t Y_1(t_1, \mathbf{s}) = s_3 t_1 + s_4 t_1^3 + t_1^5,
$$

\n
$$
X_2(t_2, \mathbf{s}) = s_2 t_2 + t_2^2, \t Y_2(t_2, \mathbf{s}) = s_5 t_2 + s_6 t_2^2 + s_7 t_2^3 + s_8 t_2^4
$$

\n
$$
+ s_9 t_2^5 + s_{10} t_2^6 + t_2^7 + s_{11} t_2^8
$$

\n
$$
+ s_{12} t_2^{10} + s_{13} t_2^{12};
$$

\n(7.4)

are respectively

- an equimultiple semiuniversal deformation, see [\(7.3\)](#page-23-0);
- a semiuniversal deformation, see (7.4) ,

of φ . The conormal of the deformation given by

$$
X_1(t_1, \mathbf{s}) = t_1^2, \qquad Y_1(t_1, \mathbf{s}) = t_1^5,
$$

\n
$$
X_2(t_2, \mathbf{s}) = t_2^2, \qquad Y_2(t_2, \mathbf{s}) = s_1 t_2^4 + s_2 t_2^5 + s_3 t_2^6 + t_2^7 + s_4 t_2^8;
$$

is an equimultiple semiuniversal deformation of the conormal of φ . The fake conormal of the deformation given by

$$
X_1(t_1, \mathbf{s}) = s_1t_1 + t_1^2, \qquad P_1(t_1, \mathbf{s}) = s_3t_1 + \frac{5}{2}t_1^3,
$$

\n
$$
X_2(t_2, \mathbf{s}) = s_2t_2 + t_2^2, \qquad P_2(t_2, \mathbf{s}) = s_4t_2 + s_5t_2^2 + s_6t_2^3 + s_7t_2^4 + \frac{7}{2}t_2^5 + s_8t_2^6;
$$

is a semiuniversal deformation of the fake conormal of σ . The conormal of the deformation given by

$$
X_1(t_1, \mathbf{s}) = s_1t_1 + t_1^2,
$$

\n
$$
X_2(t_2, \mathbf{s}) = s_2t_2 + t_2^2,
$$

\n
$$
Y_1(t_1, \mathbf{s}) = \alpha_2t_1^2 + \alpha_3t_1^3 + \alpha_4t_1^4 + t_1^5,
$$

\n
$$
Y_2(t_2, \mathbf{s}) = \beta_2t_2^2 + \beta_3t_2^3 + \beta_4t_2^4 + \beta_5t_2^5
$$

\n
$$
+ \beta_6t_2^6 + \beta_7t_2^7 + \beta_8t_2^8;
$$

with

$$
\alpha_2 = \frac{s_1 s_3}{2}, \qquad \alpha_3 = \frac{2s_3}{3}, \qquad \alpha_4 = \frac{5s_1}{8},
$$

\n
$$
\beta_2 = \frac{s_2 s_4}{2}, \qquad \beta_3 = \frac{2s_4 + s_2 s_5}{3}, \qquad \beta_4 = \frac{2s_5 + s_2 s_6}{4},
$$

\n
$$
\beta_5 = \frac{2s_6 + s_2 s_7}{5}, \qquad \beta_6 = \frac{4s_7 + 7s_2}{12}, \qquad \beta_7 = 1 + \frac{s_2 s_8}{7},
$$

\n
$$
\beta_8 = \frac{2s_8}{8},
$$

is a semiuniversal deformation of the conormal of φ .

During the preparation of this paper all non trivial calculations were made with the help of the Computer Algebra System [\[3\]](#page-24-8).

References

- [1] A. Araújo and O. Neto, Moduli of germs of Legendrian curves. *Ann. Fac. Sci. Toulouse Math. (6)* 18 (2009), no. 4, 797–809 Zbl [1187.14004](https://zbmath.org/?q=an:1187.14004&format=complete) MR [2590388](https://mathscinet.ams.org/mathscinet-getitem?mr=2590388)
- [2] J. Cabral and O. Neto, Microlocal versal deformations of the plane curves $y^k = x^n$. *C. R. Math. Acad. Sci. Paris* 347 (2009), no. 23–24, 1409–1414 Zbl [1256.32012](https://zbmath.org/?q=an:1256.32012&format=complete) MR [2588791](https://mathscinet.ams.org/mathscinet-getitem?mr=2588791)
- [3] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, SINGULAR 4-3-0 — A com-puter algebra system for polynomial computations. https:[//www.singular.uni-kl.de](https://www.singular.uni-kl.de) (2022)
- [4] H. Flenner, Ein Kriterium für die Offenheit der Versalität. *Math. Z.* 178 (1981), no. 4, 449–473 Zbl [0453.14002](https://zbmath.org/?q=an:0453.14002&format=complete) MR [638811](https://mathscinet.ams.org/mathscinet-getitem?mr=638811)
- [5] G.-M. Greuel, C. Lossen, and E. Shustin, *Introduction to singularities and deformations*. Springer Monogr. Math., Springer, Berlin, 2007 Zbl [1125.32013](https://zbmath.org/?q=an:1125.32013&format=complete) MR [2290112](https://mathscinet.ams.org/mathscinet-getitem?mr=2290112)
- [6] M. Kashiwara, *Systems of microdifferential equations*. Prog. Math. 34, Birkhäuser Boston, Inc., Boston, MA, 1983 Zbl [0521.58057](https://zbmath.org/?q=an:0521.58057&format=complete) MR [725502](https://mathscinet.ams.org/mathscinet-getitem?mr=725502)
- [7] M. Kashiwara and T. Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities. *Publ. Res. Inst. Math. Sci.* 17 (1981), no. 3, 813–979 Zbl [0505.58033](https://zbmath.org/?q=an:0505.58033&format=complete) MR [650216](https://mathscinet.ams.org/mathscinet-getitem?mr=650216)
- [8] M. Kashiwara and P. Schapira, *Sheaves on manifolds*. Grundlehren Math. Wiss. 292, Springer, Berlin, 1994 Zbl [0709.18001](https://zbmath.org/?q=an:0709.18001&format=complete) MR [1299726](https://mathscinet.ams.org/mathscinet-getitem?mr=1299726)
- [9] A. R. Martins and O. Neto, On the group of germs of contact transformations. *Port. Math.* 72 (2015), no. 4, 393–406 Zbl [1333.53118](https://zbmath.org/?q=an:1333.53118&format=complete) MR [3450733](https://mathscinet.ams.org/mathscinet-getitem?mr=3450733)
- [10] D. Nadler, Non-characteristic expansions of Legendrian singularities. 2016, arXiv[:1507.01513v2](https://arxiv.org/abs/1507.01513v2)

Received 13 July 2022; revised 29 August 2022.

Marco Silva Mendes

Departamento de Matematica, ISEL, Rua Conselheiro Emidio Navarro 1, 1959-007 Lisboa, Portugal; marcosilvamendes@gmail.com

Orlando Neto

CMAF and Departamento de Matemática, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; orlando60@gmail.com