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Deformations of Legendrian curves

Marco Silva Mendes and Orlando Neto

Abstract. We construct versal and equimultiple versal deformations of the parametrization of
a Legendrian curve.

1. Introduction

Legendrian varieties are analytic subsets of the projective cotangent bundle of a
smooth manifold or, more generally, of a contact manifold. They are projectiviza-
tions of conic Lagrangian varieties. These are specifically important in D-modules
theory and microlocal analysis (see [6–8]). Its deformation theory is still an almost
virgin territory (see [2, 10]).

In Sections 2, 3 and 4, we introduce the languages of contact geometry and defor-
mation theory. In Sections 5 and 6, we construct the semiuniversal and equimultiple
semiuniversal deformations of the parametrization of a germ of a Legendrian curve,
extending to Legendrian curves previous results on deformations of germs of plane
curves (see [5]). We show in the proof of Theorem 5.4 that the category of Legendrian
curves verifies Schlessinger’s condition for formal versality. We will follow the defin-
itions and notations of [5].

The results will be useful to the study of equisingular deformations of Legendrian
curves and its moduli spaces in forthcoming articles.

2. Contact geometry

Let .X;OX / be a complex manifold of dimension 3. A differential form ! of degree 1
is said to be a contact form if ! ^ d! never vanishes. Let ! be a contact form. By
Darboux’s theorem for contact forms there is locally a system of coordinates .x; y;p/
such that ! D dy � pdx. If ! is a contact form and f is a holomorphic function that
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never vanishes, f! is also a contact form. We say that a locally free subsheaf L of
�1X is a contact structure on X if L is locally generated by a contact form. If L is a
contact structure on X the pair .X;L/ is said to be a contact manifold. Let .X1;L1/

and .X2;L2/ be contact manifolds. Let � W X1 ! X2 be a holomorphic map. We
say that � is a contact transformation if ��! is a local generator of L1 for a local
generator ! of L2.

Let � D �dx C �dy denote the canonical 1-form of T �C2 D C2 �C2. Let

� W P�C2
D C2

� P1 ! C2

be the projective cotangent bundle of C2, given by �.x; yI � W �/ D .x; y/. Let U
[V ] be the open subset of P�C2 defined by � ¤ 0 [� ¤ 0]. Then �=� [�=�] defines
a contact form dy � pdx [dx � qdy] on U [V ], where p D ��=� [q D ��=�].
Moreover, dy � pdx and dx � qdy define a structure of contact manifold on P�C2.

Further, if ˆ.x; y/ D .a.x; y/; b.x; y// with a; b 2 C¹x; yº is an automorphism
of .C2; .0; 0//, we associate to ˆ the germ of contact transformation

� W .P�C2; .0; 0I 0 W 1//!
�
P�C2; .0; 0I �@xb.0; 0/ W @xa.0; 0//

�
defined by

�.x; yI � W �/ D
�
a.x; y/; b.x; y/I @yb� � @xb� W �@ya� C @xa�

�
: (2.1)

If Dˆ.0;0/ leaves invariant ¹y D 0º, then @xb.0; 0/ D 0, @xa.0; 0/ ¤ 0 as well as
�.0; 0I 0 W 1/ D .0; 0I 0 W 1/. Moreover,

�.x; y; p/ D
�
a.x; y/; b.x; y/; .@ybp C @xb/=.@yap C @xa/

�
:

Let .X;L/ be a contact manifold. A curve L in X is said to be Legendrian if
{�! D 0 for each section ! of L, where { W L ,! X .

Let Z be the germ at .0; 0/ of an irreducible plane curve parametrized by

'.t/ D .x.t/; y.t//: (2.2)

We define the conormal of Z as the curve parametrized by

 .t/ D .x.t/; y.t/I �y0.t/ W x0.t//: (2.3)

The conormal of Z is the germ of a Legendrian curve of P�C2. We will denote the
conormal of Z by P�ZC2 and the parametrization (2.3) by Con'.

Assume that the tangent cone C.Z/ is defined by the equation ax C by D 0,
with .a; b/ ¤ .0; 0/. Then P�ZC2 is a germ of a Legendrian curve at .0; 0I a W b/. Let
f 2 C¹tº. We say the f has order k and write ordf D k or ordt f D k if f=tk is a
unit of C¹tº.
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Remark 2.1. Let Z be the plane curve parametrized by (2.2). Let L D P�ZC2. Then

(i) C.Z/D ¹y D 0º if and only if ordy > ordx. If C.Z/D ¹y D 0º, L admits
the parametrization

 .t/ D .x.t/; y.t/; y0.t/=x0.t//

on the chart .x; y; p/.

(ii) C.Z/ D ¹y D 0º and C.L/ D ¹x D y D 0º if and only if ordx < ordy <
2 ord x;

(iii) C.Z/D ¹y D 0º and ¹x D y D 0ºª C.L/� ¹y D 0º if and only if ordy �
2 ord x;

(iv) C.L/ D ¹y D p D 0º if and only if ordy > 2 ord x;

(v) multL�multZ. Moreover, multLDmultZ if and only if ordy � 2ordx.

If L is the germ of a Legendrian curve at .0; 0I a W b/, �.L/ is a germ of a plane
curve of .C2; .0; 0//. Notice that all branches of �.L/ have the same tangent cone.

If Z is the germ of a plane curve with irreducible tangent cone, the union L of the
conormal of the branches of Z is a germ of a Legendrian curve. We say that L is the
conormal of Z.

If C.Z/ has several components, the union of the conormals of the branches of Z
is a union of several germs of Legendrian curves.

If L is a germ of Legendrian curve, L is the conormal of �.L/.
We consider the symplectic form dp ^ dx in the vector space C2, with coordin-

ates x; p. We associate to each symplectic linear automorphism

.p; x/ 7! .˛p C ˇx; p C ıx/

of C2 the contact transformation

.x; y; p/ 7!
�
p C ıx; y C

1

2
˛p2 C ˇxp C

1

2
ˇıx2; ˛p C ˇx

�
: (2.4)

We say that (2.4) is a paraboloidal contact transformation.
In the case ˛ D ı D 0 and  D �ˇ D 1, we get the so called Legendre transfor-

mation
‰.x; y; p/ D .p; y � px;�x/:

We say that a germ of a Legendrian curve L of .P�C2; .0; 0I a W b// is in generic
position if C.L/ 6� ��1.0; 0/.

Remark 2.2. Let L be the germ of Legendrian curve on a contact manifold .X;L/
at a point o. By Darboux’s theorem for contact forms there is a germ of a contact
transformation � W .X; o/ ! .U; .0; 0; 0//, where U D ¹� ¤ 0º is the open subset
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of P�C2 considered above. Hence C.�.�.L/// D ¹y D 0º. Applying a convenient
paraboloidal transformation to �.L/ we can assume that C.�.L//DD�.o/.C.L// 6�
¹xD y D 0º. Hence �.L/ is in generic position. IfC.L/ is irreducible, we can assume
C.�.L// D ¹y D p D 0º.

Following the above remark, from now on we will always assume that every
Legendrian curve germ is embedded in .C3

.x;y;p/
; !/, where ! D dy � pdx.

Example 2.3. The plane curve Z D ¹y2 � x3 D 0º admits a parametrization '.t/ D
.t2; t3/. The conormal L of Z admits the parametrization  .t/ D .t2; t3; 3

2
t /. Hence

C.L/ D ��1.0; 0/ and L is not in generic position. If � is the Legendre transforma-
tion, C.�.L//D ¹y D p D 0º and �.L/ is in generic position. Moreover, �.�.L// is
a smooth curve.

Example 2.4. The plane curve Z D ¹.y2 � x3/.y2 � x5/ D 0º admits a parametriz-
ation given by

'1.t1/ D .t1
2; t1

3/; '2.t2/ D .t2
2; t2

5/:

The conormal L of Z admits the parametrization given by

 1.t1/ D
�
t1
2; t1

3;
3

2
t1

�
;  2.t2/ D

�
t2
2; t2

5;
5

2
t2
3
�
:

Hence C.L1/ D ��1.0; 0/ and L is not in generic position. If � is the paraboloidal
contact transformation

� W .x; y; p/ 7! .x C p; y C
1

2
p2; p/;

then �.L/ has branches with parametrization given by

�. 1/.t1/ D
�
t1
2
C
3

2
t1; t1

3
C
9

8
t1
2;
3

2
t1

�
;

�. 2/.t2/ D
�
t2
2
C
5

2
t2
3; t2

5
C
25

8
t2
6;
5

2
t2
3
�
:

Then
C.�.L1// D ¹y D p � x D 0º; C.�.L2// D ¹y D p D 0º

and L is in generic position.

3. Relative contact geometry

Set x D .x1; : : : ; xn/ and z D .z1; : : : ; zm/. Let I be an ideal of the ring C¹zº. Let zI
be the ideal of C¹x; zº generated by I .
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Lemma 3.1. (a) Let f 2 C¹x; zº, f D
P
˛ a˛x˛ with a˛ 2 C¹zº. Then f 2 zI

if and only if a˛ 2 I for each ˛.

(b) If f 2 zI , then @xi
f 2 zI for 1 � i � n.

(c) Let a1; : : : ; an�1 2 C¹x; zº. Let b;ˇ0 2 zI . Assume that @xn
ˇ0 D 0. If ˇ is the

solution of the Cauchy problem

@xn
ˇ �

n�1X
iD1

ai@xi
ˇ D b; ˇ � ˇ0 2 C¹x; zºxn; (3.1)

then ˇ 2 zI .

Proof. There are g1; : : : ; g` 2 C¹zº such that I D .g1; : : : ; g`/. If a˛ 2 I for each ˛,
there are hi;˛ 2 C¹zº such that a˛ D

P`
iD1 hi;˛gi . Hence

f D
X̀
iD1

�X
˛

hi;˛x˛
�
gi 2 zI :

If f 2 zI , there areHi 2C¹x; zº such that f D
P`
iD1Higi . There are bi;˛ 2C¹zº

such that Hi D
P
˛ bi;˛x˛ . Therefore, a˛ D

P`
iD1 bi;˛gi 2 I .

We can perform a change of variables that rectifies the vector field

@xn
�

n�1X
iD1

ai@xi
;

leaving invariant the hypersurface ¹xn D 0º and reducing the Cauchy problem (3.1)
to the Cauchy problem

@xn
ˇ D b; ˇ � ˇ0 2 C¹x; zºxn:

Hence, statements .b/ and .c/ follow from .a/.

Let J be an ideal of C¹zº contained in I . Let X;S and T be analytic spaces with
local rings C¹xº, C¹zº=I and C¹zº=J . Hence, X � S and X � T have local rings
O WD C¹x, zº= zI and zO WD C¹x; zº= zJ . Let a1; : : : ; an�1; b 2 O and g 2 O=xnO. Let
ai ; b 2 zO and g 2 zO=xn zO be representatives of ai; b and g. Consider the Cauchy
problems

@xn
f C

n�1X
iD1

ai@xi
f D b; f C xn zO D g (3.2)

and

@xn
fC

n�1X
iD1

ai@xi
f D b; fC xnO D g: (3.3)
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Theorem 3.2. The following statements hold.

(a) There is one and only one solution of the Cauchy problem (3.3).

(b) If f is a solution of (3.2), f D f C zI is a solution of (3.3).

(c) If f is a solution of (3.3) there is a representative f of f that is a solution
of (3.2).

Proof. By Lemma 3.1, @xi
zI D zI . Hence (b) holds.

Assume J D .0/. The existence and uniqueness of the solution of (3.2) is a special
case of the classical Cauchy–Kowalevski Theorem. There is one and only one formal
solution of (3.2). Its convergence follows from the majorant method.

The existence of a solution of (3.3) follows from (b).
Let f1; f2 be two solutions of (3.3). Let fj be a representative of fj for j D 1; 2.

Then

@xn
.f2 � f1/C

n�1X
iD1

ai@xi
.f2 � f1/ 2 zI

and
f2 � f1 C xn zO 2 zI C xn zO:

By Lemma 3.1, f2 � f1 2 zI . Therefore f1 D f2. This ends the proof of statement (a).
Statement (c) follows from statements (a) and (b).

Set �1
X jS
D
Ln
iD1 Odxi . We say that the elements of �1

X jS
are germs of relative

differential forms on X � S . The map d W O ! �1
X jS

given by df D
Pn
iD1 @xi

fdxi

is said to be the relative differential of f .
Assume that dimX D 3 and let L be a contact structure onX . Let � WX � S !X

be the first projection. Let ! be a generator of L. We will denote by LS the sub O-
module of �1

X jS
generated by ��!. We say that LS is a relative contact structure of

X � S . The pair .X � S;LS / is called a relative contact manifold. We say that an
isomorphism of analytic spaces

� W X � S ! X � S (3.4)

is a relative contact transformation if �.0; s/ D .0; s/, ��! 2 LS for each ! 2 LS

and the following diagram commutes:

X_�

��

idX // X_�

��

X � S

��

�
// X � S

��

S
idS // S:

(3.5)
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The demand of the commutativity of diagram (3.5) is a very restrictive condi-
tion but these are the only relative contact transformations we will need. We can and
will assume that the local ring of X equals C¹x; y; pº and that L is generated by
dy � pdx.

Set O D C¹x; y; p; zº= zI and zO D C¹x; y; p; zº= zJ . Let mX be the maximal ideal
of C¹x; y;pº. Let m [ zm] be the maximal ideal of C¹zº=I [C¹zº=J ]. Let n [zn] be the
ideal of O [ zO] generated by mXm [mX zm].

Remark 3.3. If (3.4) is a relative contact transformation, there are ˛; ˇ;  2 n such
that @xˇ 2 n and

�.x; y; p; z/ D .x C ˛; y C ˇ; p C ; z/: (3.6)

Theorem 3.4. (a) Let � W X � S ! X � S be the relative contact transforma-
tion (3.6). There is ˇ0 2 n such that @pˇ0 D 0, @xˇ0 2 n and ˇ is the solution
of the Cauchy problem�
1C

@˛

@x
Cp

@˛

@y

�
@ˇ

@p
�p

@˛

@p

@ˇ

@y
�
@˛

@p

@ˇ

@x
Dp

@˛

@p
; ˇ�ˇ0 2pO (3.7)

and

 D

�
1C

@˛

@x
C p

@˛

@y

��1�
@ˇ

@x
C p

�
@ˇ

@y
�
@˛

@x
� p

@˛

@y

��
: (3.8)

(b) Given ˛; ˇ0 2 n such that @pˇ0 D 0 and @xˇ0 2 n, there is a unique contact
transformation � verifying the conditions of statement (a). We will denote �
by �˛;ˇ0

.

(c) Assume S and T are the analytic spaces defined right after Lemma 3.1. Given
a relative contact transformation z� W X � T ! X � T there is one and only
one contact transformation � W X � S ! X � S such that the diagram

X � S_�

��

�
// X � S_�

��

X � T
z�
// X � T

(3.9)

commutes.

(d) Given ˛; ˇ0 2 n and z̨; ž0 2 zn such that @pˇ0 D 0, @p ž0 D 0, @xˇ0 2 n,
@x ž0 2 zn and z̨; ž0 are representatives of ˛;ˇ0, set �D�˛;ˇ0

and z� D �
z̨; ž0

.
Then diagram (3.9) commutes.

Proof. Statements (a) and (b) are a relative version of [1, Theorem 3.2] (see also [9]).
In [1] we assume S D ¹0º. The proof works as long S is smooth. The proof in the
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singular case depends on the singular variant of the Cauchy–Kowalevski Theorem
introduced in Theorem 3.2. Statement (c) follows from statement (b) of Theorem 3.2.
Statement (d) follows from statement (c) of Theorem 3.2.

Remark 3.5. (1) The inclusion S ,! T is said to be a small extension if the surjective
map OT � OS has one-dimensional kernel. If the kernel is generated by ", we have
that, as complex vector spaces, OT D OS ˚ "C. Every extension of Artinian local
rings factors through small extensions.

Theorem 3.6. Let S ,! T be a small extension such that OS Š C¹zº and

OT Š C¹z; "º=."2; "z1; : : : ; "zm/ D C¹zº ˚C":

Assume � W X � S ! X � S is a relative contact transformation given at the ring
level by

.x; y; p/ 7! .H1;H2;H3/;

˛;ˇ0 2mX , such that @pˇ0D 0 and ˇ0 2 .x2;y/. Then, there are uniquely determined
ˇ;  2 mX such that ˇ � ˇ0 2 pOX and z� W X � T ! X � T , given by

z�.x; y; p; z; "/ D .H1 C "˛;H2 C "ˇ;H3 C "; z; "/;

is a relative contact transformation extending � (see diagram (3.9)). Moreover, the
Cauchy problem (3.7) for z� takes the simplified form

@ˇ

@p
D p

@˛

@p
; ˇ � ˇ0 2 C¹x; y; pºp (3.10)

and

 D
@ˇ

@x
C p

�@ˇ
@y
�
@˛

@x

�
� p2

@˛

@y
: (3.11)

Proof. We have that z� is a relative contact transformation if and only if there is
f WD f 0 C "f 00 2 OT ¹x; y; pº with f … .x; y; p/OT ¹x; y; pº, f 0 2 OS¹x; y; pº,
f 00 2 C¹x; y; pº D OX such that

d.H2 C "ˇ/ � .H3 C "/d.H1 C "˛/ D f .dy � pdx/: (3.12)

Since � is a relative contact transformation we can suppose that

dH2 �H3dH1 D f
0.dy � pdx/:

Using the fact that "mOT
D 0 we see that (3.12) is equivalent to

@ˇ

@p
D p

@˛

@p
;  D

@ˇ

@x
C p

�@ˇ
@y
�
@˛

@x

�
� p2

@˛

@y
; f 00 D

@ˇ

@y
� p

@˛

@y
:

As ˇ � ˇ0 2 .p/C¹x; y; pº we have that ˇ, and consequently  , are completely
determined by ˛ and ˇ0.



Deformations of Legendrian curves 325

Remark 3.7. Set ˛ D
P
k ˛kp

k , ˇ D
P
k ˇkp

k ,  D
P
k kp

k , where ˛k; ˇk; k 2
C¹x; yº for each k � 0 and ˇ0 2 .x2; y/. Under the assumptions of Theorem 3.6,

(i) ˇk D
k�1
k
˛k�1; for k � 1 .

(ii) Moreover,

0 D
@ˇ0

@x
; 1 D

@ˇ0

@y
�
@˛0

@x
;

k D �
1

k

@˛k�1

@x
�

1

k � 1

@˛k�2

@y
; k � 2:

Since
@

@y
0 D

@

@x

�@˛0
@x
C 1

�
;

ˇ0 is the solution of the Cauchy problem

@ˇ0

@x
D 0;

@ˇ0

@y
D
@˛0

@x
C 1; ˇ0 2 .x

2; y/:

4. Categories of deformations

A category C is said to be a groupoid if all morphisms of C are isomorphisms.
Let p W F! C be a functor. Let S be an object of C. We will denote by F.S/ the

subcategory of F given by the following conditions:

• ‰ is an object of F.S/ if p.‰/ D S .

• � is a morphism of F.S/ if p.�/ D idS .

Let � [‰] be a morphism [an object] of F. Let f , [S ] be a morphism [an object]
of C. We say that � [‰] is a morphism [an object] of F over f [S ] if p.�/ D f

[p.‰/ D S ].
A morphism �0 W ‰0! ‰ of F over f W S 0! S is said to be cartesian if for each

morphism �00 W ‰00 ! ‰ of F over f there is exactly one morphism � W ‰00 ! ‰0

over idS 0 such that �0 ı � D �00. If the morphism �0 W ‰0! ‰ over f is cartesian, ‰0

is well defined up to a unique isomorphism. We will denote ‰0 by f �‰ or ‰ �S S 0.
We say that F is a fibered category over C if

(1) For each morphism f W S 0 ! S in C and each object ‰ of F over S there is
a morphism �0 W ‰0 ! ‰ over f that is cartesian.

(2) The composition of cartesian morphisms is cartesian.

A fibered groupoid is a fibered category such that F.S/ is a groupoid for each S 2 C.

Remark 4.1. If p W F! C satisfies (1) and F.S/ is a groupoid for each object S
of C, then F is a fibered groupoid over C.
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Let An be the category of analytic complex space germs. Let 0 denote the complex
vector space of dimension 0. Let p W F! An be a fibered category.

Definition 4.2. Let T be an analytic complex space germ. Let  [‰] be an object of
F.0/ [F.T /]. We say that ‰ is a versal deformation of  if given

• a closed embedding f W T 00 ,! T 0,

• a morphism of complex analytic space germs g W T 00 ! T ,

• an object ‰0 of F.T 0/ such that f �‰0 Š g�‰.

There is a morphism of complex analytic space germs h W T 0 ! T such that

h ı f D g and h�‰ Š ‰0:

If ‰ is versal and for each ‰0 the tangent map T .h/ W TT 0 ! TT is determined by ‰0,
then ‰ is called a semiuniversal deformation of  .

Let T be a germ of a complex analytic space. Let A be the local ring of T and let
m be the maximal ideal of A. Let Tn be the complex analytic space with local ring
A=mn for each positive integer n. The canonical morphisms

A! A=mn and A=mn
! A=mnC1

induce morphisms ˛n W Tn ! T and ˇn W TnC1 ! Tn.
A morphism f W T 00! T 0 induces morphisms fn W T 00n ! T 0n such that the diagram

T 00
f

// T 0

T 00n
?�

˛00
n

OO

fn // T 0n
?�

˛0
n

OO

T 00nC1
?�

ˇ 00
n

OO

fnC1
// T 0nC1
?�

ˇ 0
n

OO

commutes.

Definition 4.3. We will follow the terminology of Definition 4.2. Let gnD g ı ˛00n. We
say that ‰ is a formally versal deformation of  if there are morphisms hn W T 0n! T

such that

hn ı fn D gn; hn ı ˇ
0
n D hnC1 and h�n‰ Š ˛

0
n
�
‰0:

If ‰ is formally versal and for each ‰0 the tangent maps T .hn/ W TT 0
n
! TT are

determined by ˛0n
�
‰0, then ‰ is called a formally semiuniversal deformation of  .
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Theorem 4.4 ([4, Theorem 5.2]). Let F! C be a fibered groupoid. Let  2 F.0/.
If there is a versal deformation of  , every formally versal [semiuniversal] deforma-
tion of  is versal [semiuniversal].

LetZ be a curve of Cn with irreducible componentsZ1; : : : ;Zr . Set xCD
Fr
iD1
xCi

where each xCi is a copy of C. Let 'i be a parametrization ofZi , 1� i � r . Let ' W xC!
Cn be the map such that 'j xCi

D 'i , 1 � i � r . We say that ' is the parametrization
of Z. All the results of this section should be read locally at 0 2 xCi .

Let T be an analytic space. A morphism of analytic spaces ˆ W xC � T ! Cn � T

is called a deformation of ' over T if the diagram

xC_�

��

'
// Cn
_�

��
xC � T

��

ˆ // Cn � T

��

T
idT // T

commutes. The analytic space T is called the base space of the deformation.
We will denote by ˆi the composition

xCi � T ,! xC � T
ˆ
�! Cn

� T ! Cn; 1 � i � r:

The maps ˆi , 1 � i � r , determine ˆ.
Let ˆ be a deformation of ' over T . Let f W T 0 ! T be a morphism of analytic

spaces. We will denote by f �ˆ the deformation of ' over T 0 given by

.f �ˆ/i D ˆi ı .id xCi
� f /:

We say that f �ˆ is the pullback of ˆ by f .
Letˆ0 W xC � T !Cn � T be another deformation of ' over T . A morphism from

ˆ0 into ˆ is a pair .�; �/ where � W Cn � T ! Cn � T and � W xC � T ! xC � T are
isomorphisms of analytic spaces such that the diagram

T xC � Too ˆ // Cn � T // T

xC
?�

OO

_�

��

'
// Cn � ¹0º

?�

OO

_�

��

T

idT

OO

xC � Too

�

??

ˆ0
// Cn � T

�

__

// T

idT

OO

commutes.
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Let ˆ0 be a deformation of ' over S and f W S ! T a morphism of analytic
spaces. A morphism of ˆ0 into ˆ over f is a morphism from ˆ0 into f �ˆ. There
is a functor p that associates T to a deformation ‰ over T and f to a morphism of
deformations over f .

Given s 2 T let Zs be the curve parametrized by the composition

xC � ¹sº ,! xC � T
ˆ
�! Cn

� T ! Cn:

We say that Zs is the fibre of the deformation ˆ at the point s.
Assumeˆi .ti ; s/D .X1;i .ti ; s/; : : : ;Xn;i .ti ; s//, 1 � i � r . AssumeZi has multi-

plicitymi . We say thatˆi is equimultiple ifXj;i 2 .tmi / for each 1� i � r; 1� j � n.
We say that ˆ is equimultiple if each ˆi is equimultiple.

Assume Z is a plane curve. Set

ˆi .ti ; s/ D
�
Xi .ti ; s/; Yi .ti ; s/

�
; 1 � i � r: (4.1)

We will denote by Def' [Def em
' ] the category of deformations [equimultiple deform-

ations] of '. We say that ˆ is an object of
��!
Def' [

��!��!
Def'] if ˆ is equimultiple and

Yi 2 .tiXi / [Yi 2 .X2i /], 1 � i � r .
If T is reduced, ˆ 2 Def em

' [
��!
Def' ;

��!��!
Def'] if and only if all fibres of ˆ are equi-

multiple [have tangent cone ¹y D 0º, have tangent cone ¹y D 0º and are in generic
position].

Consider in C3 the contact structure given by the differential form !Ddy � pdx.
Assume Z is a Legendrian curve parametrized by  W xC ! C3. Let ‰ be a deforma-
tion of  given by

‰i .ti ; s/ D
�
Xi .ti ; s/; Yi .ti ; s/; Pi .ti ; s/

�
; 1 � i � r: (4.2)

We say that ‰ is a Legendrian deformation of  if ‰�i .�
�!/ D 0 for 1 � i � r .

We say that .�; �/ is an isomorphism of Legendrian deformations if � is a relative
contact transformation. We will denote by bDef [bDef em

 ] the category of Legendrian
[equimultiple Legendrian] deformations of  . All deformations are assumed to have
trivial section.

Assume that  D Con' parametrizes a germ of a Legendrian curve L, in generic
position. If (4.1) defines an object of

��!
Def' , setting

Pi .ti ; s/ WD @tiYi .ti ; s/=@tiXi .ti ; s/; 1 � i � r;

the deformation ‰ given by (4.2) is a Legendrian deformation of  . We say that ‰
is the conormal of ˆ and denote ‰ by Conˆ. If ‰ 2 bDef is given by (4.2), the
deformation ˆ of ' given by (4.1) is said to be the plane projection of ‰. We will
denote ˆ by ‰� .
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We define in this way the functors

Con W
��!
Def' ! bDef ; � W bDef !

��!
Def' :

Notice that the conormal of the plane projection of a Legendrian deformation always
exists and we have that Con.‰�/D‰ for each‰ 2 bDef and .Conˆ/� Dˆ where
ˆ 2
��!
Def' .

Example 4.5. Set '.t/ D .t; 0/,  D Con ' and X.t; s/ D t , Y.t; s/ D st . Then we
get P.t; s/ D s and although X; Y define an object of Def em

' , its conormal ‰ is not
an element of bDef , because ‰ is a deformation with section s 7! .0; 0; s; s/.

Example 4.6. Set '.t/ D .t2; t5/, X.t; s/ D t2, Y.t; s/ D t5 C st3. Then we get
2P.t; s/ D 5t3 C 3st . Although X; Y defines an object of

��!
Def' , its conormal is not

equimultiple.

Remark 4.7. Under the assumptions above,

Con.
��!��!
Def'/ � bDef em

 and .bDef em
 /

�
�
��!��!
Def' :

Remark 4.8. If C is one of the categories bDef , bDef em
 , then p WC!An is a fibered

groupoid.

5. Equimultiple versal deformations

For Sophus Lie a contact transformation was a transformation that takes curves into
curves, instead of points into points. We can recover the initial point of view. Given a
plane curve Z at the origin, with tangent cone ¹y D 0º, and a contact transformation
� from a neighbourhood of .0Idy/ into itself, � acts onZ in the following way: � �Z
is the plane projection of the image by � of the conormal of Z. We can define in a
similar way the action of a relative contact transformation on a deformation of a plane
curve Z, obtaining another deformation of Z.

We say that ˆ 2
��!��!
Def'.T / is trivial (relative to the action of the group of relative

contact transformations over T ) if there is � such that � �ˆ WD � ı � ı Conˆ is the
constant deformation of ' over T , given by

.ti ; s/ 7! 'i .ti /; i D 1; : : : ; r:

Let Z be the germ of a plane curve parametrized by ' W xC ! C2. In the following,
we will identify each ideal of OZ with its image by '� W OZ ! OxC . Hence,

OZ D C

´264x1:::
xr

375 ;
264y1:::
yr

375µ � rM
iD1

C¹tiº D OxC:
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Set Px D Œ Px1; : : : ; Pxr �t , where Pxi is the derivative of xi with respect to ti , 1 � i � r .
Let

P' WD Px
@

@x
C Py

@

@y

be an element of the free OxC-module

OxC
@

@x
˚OxC

@

@y
: (5.1)

Notice that (5.1) has a structure of OZ-module induced by '�.
Let mi be the multiplicity of Zi , 1 � i � r . Consider the OxC-module� rM

iD1

t
mi

i C¹tiº
@

@x

�
˚

� rM
iD1

t
2mi

i C¹tiº
@

@y

�
: (5.2)

Let mxC P' be the sub OxC-module of (5.2) generated by

.a1; : : : ; ar/

�
Px
@

@x
C Py

@

@y

�
;

where ai 2 tiC¹tiº, 1 � i � r . For i D 1; : : : ; r set pi D Pyi= Pxi . For each k � 0 set

pk D
�
pk1 ; : : : ; p

k
r

�t
:

Let yI be the sub OZ-module of (5.2) generated by

pk
@

@x
C

k

k C 1
pkC1

@

@y
; k � 1:

Set

�M' D

�Lr
iD1 t

mi

i C¹tiº
@
@x

�
˚

�Lr
iD1 t

2mi

i C¹tiº
@
@y

�
mxC P' C .x; y/

@
@x
˚ .x2; y/ @

@y
C yI

:

Given a category C we will denote by C the set of isomorphism classes of ele-
ments of C.

Theorem 5.1. Let  be the parametrization of a germ of a Legendrian curve L of a
contact manifold X . Let � W X ! C3 be a contact transformation such that �.L/ is
in generic position. Let ' be the plane projection of � ı  . Then there is a canonical
isomorphism

bDef em
 .T"/

�
�! �M' :

Proof. Let ‰ 2 bDef em
 .T"/. Then, ‰ is the conormal of its projection ˆ 2

��!��!
Def'.T"/

(see Remark 4.7). Moreover, ‰ is given by

‰i .ti ; "/ D .xi C "ai ; yi C "bi ; pi C "ci /;
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where ai ; bi ; ci 2 C¹tiº, ordai � mi , ordbi � 2mi , i D 1; : : : ; r . The deformation ‰
is trivial if and only ifˆ is trivial for the action of the relative contact transformations.
Moreover, ˆ is trivial if and only if there are

�i .ti / D Qti D ti C "hi ;

�.x; y; p; "/ D .x C "˛; y C "ˇ; p C "; "/;

such that � is a relative contact transformation, where ˛; ˇ;  2 .x; y; p/C¹x; y; pº,
�i is an isomorphism, where hi 2 tiC¹tiº, 1 � i � r , and

xi .ti /C "ai .ti / D xi .Qti /C "˛.xi .Qti /; yi .Qti /; pi .Qti //;

yi .ti /C "bi .ti / D yi .Qti /C "ˇ.xi .Qti /; yi .Qti /; pi .Qti //;

for i D 1; : : : ; r . By Taylor’s formula xi .Qti /D xi .ti /C " Pxi .ti /hi .ti /, yi .Qti /D yi .ti /C
" Pyi .ti /hi .ti / and

"˛.xi .Qti /; yi .Qti /; pi .Qti // D "˛.xi .ti /; yi .ti /; pi .ti //;

"ˇ.xi .Qti /; yi .Qti /; pi .Qti // D "ˇ.xi .ti /; yi .ti /; pi .ti //;

for i D 1; : : : ; r . Hence ˆ is trivialized by � if and only if

ai .ti / D Pxi .ti /hi .ti /C ˛.xi .ti /; yi .ti /; pi .ti //; (5.3)

bi .ti / D Pyi .ti /hi .ti /C ˇ.xi .ti /; yi .ti /; pi .ti //; (5.4)

for i D 1; : : : ; r . By Remark 3.7 (i), (5.3) and (5.4) are equivalent to the condition

a
@

@x
C b

@

@y
2 mxC P' C .x; y/

@

@x
˚ .x2; y/

@

@y
C yI :

Set

M' D

�Lr
iD1 t

mi

i C¹tiº
@
@x

�
˚

�Lr
iD1 t

mi

i C¹tiº
@
@y

�
mxC P' C .x; y/

@
@x
˚ .x; y/ @

@y

;

�!�!
M ' D

�Lr
iD1 t

mi

i C¹tiº
@
@x

�
˚

�Lr
iD1 t

2mi

i C¹tiº
@
@y

�
mxC P' C .x; y/

@
@x
˚ .x2; y/ @

@y

:

By [5, Proposition 2.27],
Def em

' .T"/ ŠM' :

A similar argument shows that
��!��!
Def'.T"/ Š

�!�!
M ' :

We have linear maps
M'

{
 -
�!�!
M '� �M' : (5.5)
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Theorem 5.2 ([5, II, Proposition 2.27 (3)]). Set k D dimM' . Let

aj ;bj 2
rM
iD1

t
mi

i C¹tiº; 1 � j � k:

If

aj
@

@x
C bj

@

@y
D

264a
j
1
:::

a
j
r

375 @

@x
C

264b
j
1
:::

b
j
r

375 @

@y
; 1 � j � k; (5.6)

represents a basis of M' , the deformation ˆ W xC �Ck ! C2 �Ck given by

Xi .ti ; s/ D xi .ti /C
kX

jD1

a
j
i .ti /sj ; Yi .ti ; s/ D yi .ti /C

kX
jD1

b
j
i .ti /sj ; (5.7)

i D 1; : : : ; r , is a semiuniversal deformation of ' in Def em
' .

Lemma 5.3. Set
�!�!
k D dim

�!�!
M ' . Let aj 2

Lr
iD1 t

mi

i C¹tiº, bj 2
Lr
iD1 t

2mi

i C¹tiº,

1 � j �
�!�!
k . If (5.6) represents a basis of

�!�!
M ' , the deformation

�!�!
ˆ given by (5.7),

1 � i � r , is a semiuniversal deformation of ' in
��!��!
Def' . Moreover, Con

�!�!
ˆ is a versal

deformation of  D Con' in bDef em
 .

Proof. We only show the completeness of
�!�!
ˆ and Con

�!�!
ˆ . Since the linear inclu-

sion map { referred in (5.5) is injective, the deformation
�!�!
ˆ is the restriction to

�!�!
M '

of the deformation ˆ introduced in Theorem 5.2. Let ˆ0 2
��!
Def'.T /. Since ˆ0 2

Def em
' .T /, there is a morphism of analytic spaces f W T !M' such thatˆ0 Š f �ˆ.

Since ˆ0 2
��!
Def'.T /, f .T / �

�!�!
M ' . Hence f �

�!�!
ˆ D f �ˆ.

If ‰ 2 bDef em
 .T /, then ‰� 2

��!
Def'.T /. Hence there is f W T !

�!�!
M ' such that

‰� Š f �
�!�!
ˆ . Therefore, ‰ D Con‰� Š Conf �

�!�!
ˆ D f � Con

�!�!
ˆ .

Theorem 5.4. Let aj 2
Lr
iD1 t

mi

i C¹tiº, bj 2
Lr
iD1 t

2mi

i C¹tiº, 1 � j � `. Assume
that (5.6) represents a basis [a system of generators] of �M' . Letˆ be the deformation
given by (5.7), 1 � i � r . Then Conˆ is a semiuniversal [versal] deformation of
 D Con' in bDef em

 .

Proof. By Theorem 4.4 and Lemma 5.3 it is enough to show that Conˆ is formally
semiuniversal [versal].

Let { W T 0 ,! T be a small extension. Let ‰ 2 bDef em
 .T /. Set ‰0 D {�‰. Let

�0 W T 0 ! C` be a morphism of complex analytic spaces. Assume that .�0; � 0/ define
an isomorphism

�0� Conˆ Š ‰0:
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We need to find � W T ! C` and �; � such that �0 D � ı { and �; � define an isomor-
phism

�� Conˆ Š ‰

that extends .�0; � 0/. Let A [A0] be the local ring of T [T 0]. Let ı be the generator of
Ker.A� A0/. We can assume A0 Š C¹zº=I , where z D .z1; : : : ; zm/. Set

zA0 D C¹zº and zA D C¹z; "º=."2; "z1; : : : ; "zm/:

Let mA be the maximal ideal of A. Since mAı D 0 and ı 2 mA, there is a morphism
of local analytic algebras from zA onto A that takes " into ı such that the diagram

zA

��

// zA0

��

A // A0

(5.8)

commutes. Assume Qt [Qt 0] has local ring zA [ zA0]. We also denote by { the morphism
Qt 0 ,! Qt . We denote by � the morphisms T ,! Qt and T 0 ,! Qt 0. Let z‰ 2 bDef em

 .Qt / be a
lifting of ‰.

We fix a linear map � W A0 ,! zA0 such that ��� D idA0 . Set z�0 D ��.˛/;�.ˇ0/,
where �0 D �˛;ˇ0

. Define z�0 by z�0�si D �.�0�si /, i D 1; : : : ; `. Let z� 0 be the lifting of
� 0 determined by � . Then

z‰0 WD z�0�1 ı z�0� Conˆ ı z� 0�1

is a lifting of ‰0 and
z�0 ı z‰0 ı z� 0 D z�0� Conˆ: (5.9)

By Theorem 3.4 it is enough to find liftings z�; z�; z� of z�0; z� 0; z�0 such that

z� � z‰� ı z� D z��ˆ

in order to prove the theorem.
Consider the commutative diagram of full arrows

xC � Qt 0

z‰0

��

� � // xC � Qt

z‰
��

// xC �C`

Conˆ
��

C3 � Qt 0

pr

��

� � // C3 � Qt

pr

��

// C3 �C`

��

Qt 0
� � //

z�0

::
Qt

z�
// C`:
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If Conˆ is given by

Xi .ti ; s/; Yi .ti ; s/; Pi .ti ; s/ 2 C¹s; tiº;

then z�0� Conˆ is given by

Xi .ti ; z�
0.z//; Yi .ti ; z�0.z//; Pi .ti ; z�0.z// 2 zA0¹tiº D C¹z; tiº

for i D 1; : : : ; r . Suppose that z‰0 is given by

U 0i .ti ; z/; V
0
i .ti ; z/; W

0
i .ti ; z/ 2 C¹z; tiº:

Then, z‰ must be given by

Ui D U
0
i C "ui ; Vi D V

0
i C "vi ; Wi D W

0
i C "wi 2

zA¹tiº D C¹z; tiº ˚ "C¹tiº

with ui ; vi ; wi 2 C¹tiº and i D 1; : : : ; r . By definition of deformation we have that,
for each i ,

.Ui ; Vi ; Wi / D .xi .ti /; yi .ti /; pi .ti // mod m zA:

Suppose z�0 W Qt 0!C` is given by .z�01; : : : ; z�
0
`
/, with z�0i 2C¹zº. Then z�must be given by

z�D z�0C "z�0 for some z�0 D .z�01; : : : ; z�
0
`
/ 2C`. Suppose that Q�0 W C3 � Qt 0 ! C3 � zT 0

is given at the ring level by

.x; y; p/ 7! .H 01;H
0
2;H

0
3/;

such thatH 0 D id mod m zA0 withH 0i 2 .x; y; p/A
0¹x; y; pº. Let z� 0 W xC � Qt 0! xC � Qt 0

be an automorphism given at the ring level by

ti 7! h0i ;

such that h0 D id mod m zA0 with h0i 2 .ti /C¹z; tiº.
Then, it follows from (5.9) that

Xi .ti ; z�
0/ D H 01.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //;

Yi .ti ; z�
0/ D H 02.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //;

Pi .ti ; z�
0/ D H 03.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //:

(5.10)

Now, z�0 must be extended to z� such that the first two previous equations extend as
well. That is, we must have

Xi .ti ; z�/ D .H
0
1 C "˛/.Ui .h

0
i C "h

0
i /; Vi .h

0
i C "h

0
i /;Wi .h

0
i C "h

0
i //; (5.11)

Yi .ti ; z�/ D .H
0
2 C "ˇ/.Ui .h

0
i C "h

0
i /; Vi .h

0
i C "h

0
i /;Wi .h

0
i C "h

0
i //;

with ˛; ˇ 2 .x; y; p/C¹x; y; pº, and h0i 2 .ti /C¹tiº such that

.x; y; p/ 7! .H 01 C "˛;H
0
2 C "ˇ;H

0
3 C "/
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gives a relative contact transformation over Qt for some  2 .x; y; p/C¹x; y; pº. The
existence of this extended relative contact transformation is guaranteed by Theo-
rem 3.6. Moreover, again by Theorem 3.6, this extension depends only on the choices
of ˛ and ˇ0. So, we need only to find ˛, ˇ0, z�0 and h0i such that (5.11) holds. Using
Taylor’s formula and "2 D 0 we see that

Xi .ti ; z�
0
C "z�0/ D Xi .ti ; z�

0/C "
X̀
jD1

@Xi

@sj
.ti ; z�

0/z�0j

."m zA D 0/ D Xi .ti ; z�
0/C "

X̀
jD1

@Xi

@sj
.ti ; 0/z�

0
j ;

Yi .ti ; z�
0
C "z�0/ D Yi .ti ; z�

0/C "
X̀
jD1

@Yi

@sj
.ti ; 0/z�

0
j :

(5.12)

Again, by Taylor’s formula and noticing that "m zA D 0, "m zA0 D 0 in zA, h0 D id mod
m zA0 and .Ui ; Vi / D .xi .ti /; yi .ti // mod m zA we see that

Ui .h
0
i C "h

0
i / D Ui .h

0
i /C "

PUi .h
0
i /h

0
i

D U 0i .h
0
i /C ". Pxih

0
i C ui /;

Vi .h
0
i C "h

0
i / D V

0
i .h
0
i /C ". Pyih

0
i C vi /;

(5.13)

where Ui ; Vi were defined in the previous page. Now, H 0 D id mod m zA0 , so

@H 01
@x
D 1 mod m zA0 ;

@H 01
@y

;
@H 01
@p
2 m zA0

zA0¹x; y; pº:

In particular,

"
@H 01
@y
D "

@H 01
@p
D 0:

By this and arguing as in (5.12) and (5.13) we see that

.H 01 C "˛/
�
U 0i .h

0
i /C ". Pxih

0
i C ui /; V

0
i .h
0
i /C ". Pyih

0
i C vi /;

W 0i .h
0
i /C ". Ppih

0
i C wi /

�
D H 01.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //

C "
�
˛.U 0i .h

0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //C 1. Pxih

0
i C ui /

�
D H 01.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //C ".˛.xi ; yi ; pi /C Pxih

0
i C ui /; .H

0
2 C "ˇ/

�
�
U 0i .h

0
i /C ". Pxih

0
i C ui /; V

0
i .h
0
i /C ". Pyih

0
i C vi /;W

0
i .h
0
i /C ". Ppih

0
i C wi /

�
D H 02.U

0
i .h
0
i /; V

0
i .h
0
i /;W

0
i .h
0
i //C ".ˇ.xi ; yi ; pi /C Pyih

0
i C vi /:



M. S. Mendes and O. Neto 336

Substituting this in (5.11) and using (5.10) and (5.12) we see that we have to find
z�0 D .z�01; : : : ; z�

0
`
/ 2 C` and h0i such that

.ui .ti /; vi .ti // D
X̀
jD1

z�0j

�
@Xi

@sj
.ti ; 0/;

@Yi

@sj
.ti ; 0/

�
� h0i .ti /. Pxi .ti /; Pyi .ti //

�
�
˛.xi .ti /; yi .ti /; pi .ti //; ˇ.xi .ti /; yi .ti /; pi .ti //

�
: (5.14)

Note that, because of Remark 3.7 (i),�
˛.xi .ti /; yi .ti /; pi .ti //; ˇ.xi .ti /; yi .ti /; pi .ti //

�
2 yI

for each i . Also note that z‰ 2 bDef em
 .Qt / means that ui 2 t

mi

i C¹tiº; vi 2 t
2mi

i C¹tiº.
Then, if the vectors�

@X1

@sj
.t1; 0/; : : : ;

@Xr

@sj
.tr ; 0/

�
@

@x
C

�
@Y1

@sj
.t1; 0/; : : : ;

@Yr

@sj
.tr ; 0/

�
@

@y

D .a
j
1 .t1/; : : : ; a

j
r .tr//

@

@x
C .b

j
1 .t1/; : : : ; b

j
r .tr//

@

@y
; j D 1; : : : ; `

form a basis of [generate] �M' , we can solve (5.14) with unique z�01; : : : ; z�
0
`

[respect-
ively, solve] for all i D 1; : : : ; r . This implies that the conormal of ˆ is a formally
semiuniversal [respectively, versal] equimultiple deformation of  over C`.

6. Versal deformations

Let f 2C¹x1; : : : ; xnº. We will denote by
R
fdxi the solution of the Cauchy problem

@g

@xi
D f; g 2 .xi /:

Let  be a Legendrian curve with parametrization given by

ti 7! .xi .ti /; yi .ti /; pi .ti //; i D 1; : : : ; r: (6.1)

We will say that the fake plane projection of (6.1) is the plane curve � with paramet-
rization given by

ti 7! .xi .ti /; pi .ti //; i D 1; : : : ; r: (6.2)

We will denote � by  �f .
Given a plane curve � with parametrization (6.2), we will say that the fake conor-

mal of � is the Legendrian curve  with parametrization (6.1), where

yi .ti / D

Z
pi .ti / Pxi .ti /dti :
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We will denote  by Conf � . Applying the construction above to each fibre of a
deformation we obtain functors

�f W bDef ! Def� ; Conf W Def� ! bDef :

Notice that
Conf .‰�f / D ‰; .Conf .†//�f D † (6.3)

for each ‰ 2 bDef and each † 2 Def� .
Let  be the parametrization of a Legendrian curve given by (6.1). Let � be the

fake plane projection of  . Set P� WD Px @
@x
C Pp @

@p
. Let If be the linear subspace of

mxC
@

@x
˚mxC

@

@p
D

� rM
iD1

tiC¹tiº
@

@x

�
˚

� rM
iD1

tiC¹tiº
@

@p

�
generated by

˛0
@

@x
�

�@˛0
@x
C
@˛0

@y
p
�

p
@

@p
;

�@ˇ0
@x
C
@ˇ0

@y
p
� @
@p
;

and

˛kpk
@

@x
�

1

k C 1

�@˛k
@x

pkC1 C
@˛k

@y
pkC2

� @
@p
; k � 1;

where ˛k 2 .x; y/, ˇ0 2 .x2; y/ for each k � 0. Set

M f
� D

mxC
@
@x
˚mxC

@
@p

mxC P� C I
f

:

Theorem 6.1. Assuming the notations above, bDef .T"/ ŠM
f
� .

Proof. Let ‰ 2 bDef .T"/ be given by

‰i .ti ; "/ D .Xi ; Yi ; Pi / D .xi C "ai ; yi C "bi ; pi C "ci /;

where xi ; yi ; pi define the parametrization  i , as well as ai ; bi ; ci 2 C¹tiºti and
Yi D

R
Pi@tiXidti , i D 1; : : : ; r . Hence

bi D

Z
. Pxici C Paipi /dti ; i D 1; : : : ; r:

By (6.3), ‰ is trivial if and only if there an isomorphism � W xC � T" ! xC � T" given
by

ti ! Qti D ti C "hi ; hi 2 C¹tiºti ; i D 1; : : : ; r;
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and a relative contact transformation � W C3 � T" ! C3 � T" given by

.x; y; p; "/ 7! .x C "˛; y C "ˇ; p C "; "/

such that

Xi D xi .Qti /C "˛.xi .Qti /; yi .Qti /; pi .Qti //;

Pi D pi .Qti /C ".xi .Qti /; yi .Qti /; pi .Qti //;

i D 1; : : : ; r . Following the argument of the proof of Theorem 5.1, ‰�f is trivial if
and only if

ai .ti / D Pxi .ti /hi .ti /C ˛.xi .ti /; yi .ti /; pi .ti //;

ci .ti / D Ppi .ti /hi .ti /C .xi .ti /; yi .ti /; pi .ti //;

i D 1; : : : ; r . The result follows from Remark 3.7 (ii).

Lemma 6.2. Let  be the parametrization of a Legendrian curve. Let ˆ be a semi-
universal deformation in Def� of the fake plane projection � of  . Then Conf ˆ is a
versal deformation of  in bDef .

Proof. It follows from the argument of Lemma 5.3.

Theorem 6.3. Let aj ; cj 2 mxC such that

aj
@

@x
C cj

@

@p
D

264a
j
1
:::

a
j
r

375 @

@x
C

264c
j
1
:::

c
j
r

375 @

@p
; (6.4)

1� j � `, represents a basis [a system of generators] ofM f
� . Letˆ 2Def� be given

by

Xi .ti ; s/ D xi .ti /C
X̀
jD1

a
j
i .ti /sj ; Pi .ti ; s/ D pi .ti /C

X̀
jD1

c
j
i .ti /sj ; (6.5)

i D 1; : : : ; r . Then Conf ˆ is a semiuniversal [versal] deformation of  in bDef .

Proof. It follows from the argument of Theorem 5.4 and Remark 3.7 (ii).

Remark 6.4. The category of [equimultiple] deformations of parametrizations of
Legendrian curves is unobstructed. In particular, the base space of any versal deform-
ation is smooth.
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7. Examples

Example 7.1. Let '.t/ D .t3; t10/,  .t/ D .t3; t10; 10
3
t7/, �.t/ D .t3; 10

3
t7/. The

deformations given by

X.t; s/ D t3;
Y.t; s/ D s1t4 C s2t5 C s3t7 C s4t8 C t10 C s5t11 C s6t14

(7.1)

X.t; s/ D s1t C s2t2 C t3;
Y.t; s/ D s3t C s4t2 C s5t4 C s6t5 C s7t7 C s8t8 C t10 C s9t11 C s10t14

(7.2)

are respectively

• an equimultiple semiuniversal deformation, see (7.1);

• a semiuniversal deformation, see (7.2),

of '. The conormal of the deformation given by

X.t; s/ D t3; Y.t; s/ D s1t7 C s2t8 C t10 C s3t11

is an equimultiple semiuniversal deformation of  . The fake conormal of the deform-
ation given by

X.t; s/ D s1t C s2t2 C t3; P.t; s/ D s3t C s4t2 C s5t4 C s6t5 C
10

3
t7 C s7t

8

is a semiuniversal deformation of the fake conormal of � . The conormal of the defor-
mation given by

X.t; s/ D s1t C s2t2 C t3;
Y.t; s/ D ˛2t2 C ˛3t3 C ˛4t4 C ˛5t5 C ˛6t6

C ˛7t
7
C ˛8t

8
C ˛9t

9
C ˛10t

10
C ˛11t

11

with

˛2 D
s1s3

2
; ˛3 D

s1s4 C 2s2s3

3
; ˛4 D

3s3 C 2s2s4

4
;

˛5 D
3s4 C s1s5

5
; ˛6 D

2s2s5 C s1s6

6
; ˛7 D

3s5 C 2s2s6

7
;

˛8 D
10s1 C 9s6

24
; ˛9 D

3s1s7 C 20s2

27
; ˛10 D 1C

s2s7

5
;

˛11 D
3s7

11
;

is a semiuniversal deformation of  .
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Example 7.2. Let Z D ¹.x; y/ 2 C2 W .y2 � x5/.y2 � x7/ D 0º. Consider the para-
metrization ' of Z given by

x1.t1/ D t
2
1 ; y1.t1/ D t

5
1 ; x2.t2/ D t

2
2 ; y2.t2/ D t

7
2 :

Let � be the fake projection of the conormal of ' given by

x1.t1/ D t
2
1 ; p1.t1/ D

5

2
t31 ; x2.t2/ D t

2
2 ; p2.t2/ D

7

2
t52 :

The deformations given by

X1.t1; s/ D t21 ; Y1.t1; s/ D s1t31 C t
5
1 ;

X2.t2; s/ D t22 ; Y2.t2; s/ D s2t22 C s3t
3
2 C s4t

4
2 C s5t

5
2

C s6t
6
2 C t

7
2 C s7t

8
2 C s8t

10
2 C s9t

12
2 I

(7.3)

X1.t1; s/ D s1t1 C t21 ; Y1.t1; s/ D s3t1 C s4t31 C t
5
1 ;

X2.t2; s/ D s2t2 C t22 ; Y2.t2; s/ D s5t2 C s6t22 C s7t
3
2 C s8t

4
2

C s9t
5
2 C s10t

6
2 C t

7
2 C s11t

8
2

C s12t
10
2 C s13t

12
2 I

(7.4)

are respectively

• an equimultiple semiuniversal deformation, see (7.3);

• a semiuniversal deformation, see (7.4),

of '. The conormal of the deformation given by

X1.t1; s/ D t21 ; Y1.t1; s/ D t51 ;
X2.t2; s/ D t22 ; Y2.t2; s/ D s1t42 C s2t

5
2 C s3t

6
2 C t

7
2 C s4t

8
2 I

is an equimultiple semiuniversal deformation of the conormal of '. The fake conormal
of the deformation given by

X1.t1; s/ D s1t1 C t21 ; P1.t1; s/ D s3t1 C
5

2
t31 ;

X2.t2; s/ D s2t2 C t22 ; P2.t2; s/ D s4t2 C s5t22 C s6t
3
2 C s7t

4
2 C

7

2
t52 C s8t

6
2 I

is a semiuniversal deformation of the fake conormal of � . The conormal of the defor-
mation given by

X1.t1; s/ D s1t1 C t21 ; Y1.t1; s/ D ˛2t21 C ˛3t
3
1 C ˛4t

4
1 C t

5
1 ;

X2.t2; s/ D s2t2 C t22 ; Y2.t2; s/ D ˇ2t22 C ˇ3t
3
2 C ˇ4t

4
2 C ˇ5t

5
2

C ˇ6t
6
2 C ˇ7t

7
2 C ˇ8t

8
2 I
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with

˛2 D
s1s3

2
; ˛3 D

2s3

3
; ˛4 D

5s1

8
;

ˇ2 D
s2s4

2
; ˇ3 D

2s4 C s2s5

3
; ˇ4 D

2s5 C s2s6

4
;

ˇ5 D
2s6 C s2s7

5
; ˇ6 D

4s7 C 7s2

12
; ˇ7 D 1C

s2s8

7
;

ˇ8 D
2s8

8
;

is a semiuniversal deformation of the conormal of '.

During the preparation of this paper all non trivial calculations were made with
the help of the Computer Algebra System [3].
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