
Port. Math. 80 (2023), 1–25
DOI 10.4171/PM/2096

© 2023 Sociedade Portuguesa de Matemática
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Failure of the local chain rule for the fractional variation

Giovanni E. Comi and Giorgio Stefani

Abstract. We prove that the local version of the chain rule cannot hold for the fractional vari-
ation defined in our previous article (2019). In the case n D 1, we prove a stronger result,
exhibiting a function f 2 BV ˛.R/ such that jf j … BV ˛.R/. The failure of the local chain rule
is a consequence of some surprising rigidity properties for non-negative functions with bounded
fractional variation which, in turn, are derived from a fractional Hardy inequality localized
to half-spaces. Our approach exploits the distributional techniques developed in our previous
works (2019–2022). As a byproduct, we refine the fractional Hardy inequality obtained in works
of Shieh and Spector (2018) and Spector (J. Funct. Anal. 279 (2020), article no. 108559) and
we prove a fractional version of the closely related Meyers–Ziemer trace inequality.

1. Introduction

1.1. The fractional variation

Let ˛ 2 .0; 1/. The fractional ˛-gradient of a function f 2 Lipc.R
n/ is defined as

r
˛f .x/ D �n;˛

Z
Rn

.y � x/.f .y/ � f .x//

jy � xjnC˛C1
dy; x 2 Rn; (1.1)

where

�n;˛ D 2
˛��

n
2
�
�
nC˛C1
2

�
�
�
1�˛
2

�
is a renormalizing constant controlling the behavior of r˛ as ˛ ! 1�. A simple
computation (see [7, Proposition 2.2] for instance) shows that one can equivalently
write r˛f D rI1�˛f whenever f 2 C1c .R

n/ (and even for less regular functions,
see [7, Lemma 3.28(i)] for a more precise statement), where

Isf .x/ D 2
�s��

n
2
�
�
n�s
2

�
�
�
s
2

� Z
Rn

f .y/

jx � yjn�s
dy; x 2 Rn;

is the Riesz potential of order s 2 .0; n/.
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The literature around the operatorr˛ has been quickly growing in the recent years
in various research directions. On the one side, we refer the reader to [15,22–25,27,28]
for well-posedness results concerning solutions of PDEs and minimizers of function-
als involving this fractional operator, and to [3, 4, 13] for the study of polyconvexity
and quasiconvexity in connection with the present fractional setting. On the other
side, the properties of r˛ led to the discovery of new (optimal) embedding inequali-
ties [26,30,31] and the development of a distributional and asymptotic analysis in this
fractional framework [5–9,29]. For a general panoramic on the fractional framework,
the reader may consult the survey [32] and the monograph [19].

At least for sufficiently smooth functions, the operator r˛ obeys the following
natural fractional integration-by-parts formulaZ

Rn
f div˛' dx D �

Z
Rn
' � r˛f dx; (1.2)

where

div˛'.x/ D �n;˛

Z
Rn

.y � x/ � .'.y/ � '.x//

jy � xjnC˛C1
dy; x 2 Rn;

is the fractional ˛-divergence of the vector field ' 2 Lipc.R
nIRn/.

Equality (1.2) is the fundamental basis of the distributional theory in the present
fractional setting developed in the previous papers [5–9]. In more precise terms, by
imitating the classical definition of BV functions, for a given exponent p 2 Œ1;C1�,
we define the (total) fractional variation of a function f 2 Lp.Rn/ as

jD˛f j.Rn/ D sup
²Z

Rn
f div˛' dx W ' 2 C1c .R

n
IRn/; k'kL1.RnIRn/ � 1

³
:

(1.3)
The above definition naturally gives rise to the linear space of Lp functions with
bounded fractional ˛-variation

BV ˛;p.Rn/ D ¹f 2 Lp.Rn/ W jD˛f j.Rn/ < C1º

that can be endowed with the norm

kf kBV ˛;p.Rn/ D kf kLp.Rn/ C jD
˛f j.Rn/; f 2 BV ˛;p.Rn/:

The resulting normed space is Banach and, moreover, one easily checks that f 2
Lp.Rn/ belongs toBV ˛;p.Rn/ if and only if there exists a finite vector-valued Radon
measure D˛f 2M.RnIRn/, the fractional ˛-variation measure of f , such thatZ

Rn
f div˛' dx D �

Z
Rn
' � dD˛f

for all ' 2 Lipc.R
nIRn/, see [6, Theorem 3].
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In a very similar way, one can define the distributional fractional Sobolev space

S˛;p.Rn/ D ¹f 2 Lp.Rn/ W r˛f 2 Lp.RnIRn/º

where r˛f stands for the distributional fractional ˛-gradient, see [7, Definition 3.9].
As proved in [5, Corollary 1] and in [13, Theorem 2.7], S˛;p.Rn/D L˛;p.Rn/ when-
ever p 2 .1;C1/, whereL˛;p.Rn/ stands for the Bessel potential space. We refer the
reader to [5, Section 2.1] and to the references therein for an agile account on Bessel
potential spaces, and to the discussion in [7, Section 3.9] for the relations between
L˛;p.Rn/ and the Gagliardo–Sobolev–Slobodeckij fractional space W ˛;p.Rn/.

The study of the space BV ˛.Rn/ D BV ˛;1.Rn/ in the geometric regime p D 1
was initiated in [7], also in connection with the naturally associated notion of frac-
tional Caccioppoli perimeter (see [7, Definition 4.1]), and then further investigated in
the subsequent works [5,8]. The fractional variation of anLp function for an arbitrary
exponent p 2 Œ1;C1� has been explored in [6, 8, 9].

Throughout this paper, with a slight abuse of notation (that, however, can be rigor-
ously justified thanks to the analysis done in the previous works [5–9]), in the integer
case ˛ D 1 we let

BV 1;p.Rn/ D ¹f 2 Lp.Rn/ W Df 2M.RnIRn/º

be the space of Lp functions, p 2 Œ1;C1�, with bounded variation.

1.2. Hardy inequality and chain rule

Due to the central role played by the classical Hardy inequality in the theory of integer
as well as of fractional Sobolev spaces, see [18] for an account, in [28], Shieh and
Spector investigated the validity of the natural analogue of the Hardy inequality in
the present fractional setting. In [28, Theorem 1.2], they proved the validity of the
following inequality:

cn;˛

Z
Rn

jf .x/j

jxj˛
dx �

Z
Rn

ˇ̌
r
˛
jf j
ˇ̌
dx (1.4)

for all measurable functions f such that r˛jf j D rI1�˛jf j 2 L1.RnIRn/, where
cn;˛ > 0 is a constant depending on ˛ 2 .0; 1/ and n � 2 only. Actually, the validity
of (1.4) for n D 1 is not explicitly shown in [28], but one can still recover it via an ad
hoc modification of their argument.

Motivated by (1.4), the authors in [28] asked if it is possible to remove the modulus
in the right-hand side of (1.4), that is, more generally, if the following chain rule for
the fractional gradient Z

Rn

ˇ̌
r
˛
jf j
ˇ̌
dx � cn;˛

Z
Rn
jr
˛f j dx (1.5)
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holds whenever f is measurable with rI1�˛f 2 L1.RnIRn/, where cn;˛ > 0 is a
constant depending on ˛ and n only, see [28, Open Problem 1.4].

Later, Spector proved the validity of the fractional Hardy inequality

cn;˛

Z
Rn

jf .x/j

jxj˛
dx �

Z
Rn
jr
˛f j dx (1.6)

for n�2, whenever f 2Lp.Rn/with p2Œ1; n
1�˛

/ and r˛f DrI1�˛f 2L1.RnIRn/,
see [31, Theorem 1.4]. The approach used in [31] completely bypasses the validity
of (1.5) and instead relies on an optimal embedding in Lorentz spaces for the Riesz
potential, see [31, Theorem 1.1].

The relation between the Hardy inequality in (1.4), as well as the one in (1.6), with
the one valid in the usual fractional Sobolev space W ˛;1.Rn/ easily follows from the
elementary inequality

kr
˛f kL1.RnIRn/ � �n;˛Œf �W ˛;1.Rn/

naturally available for all functions f 2 W ˛;1.Rn/, see [7, Section 1.1]. Similar
considerations can be done for the Hardy inequalities in the integrability regime
p 2 .1;C1/, see the introductions of [27, 28].

Up to our knowledge, the validity of a chain rule for the fractional gradient r˛

like (1.5) is still an open problem. Somehow complementing the validity of (1.6) for
n � 2, in the present work we disprove the validity of (1.5) in the case n D 1. More
precisely, we prove the following result.

Theorem 1.1 (Failure of the chain rule for n D 1). Let ˛ 2 .0; 1/. The function

f˛.x/ D �1;�˛
�
jxj˛�1 sgn x � jx � 1j˛�1 sgn .x � 1/

�
; x 2 R n ¹0; 1º;

is such that f˛ 2 BV ˛.R/ but jf˛j … BV ˛.R/.

The proof of Theorem 1.1 works by contradiction. Precisely, if D˛jf˛j 2M.R/,
then a generalized version of inequality (1.4) for n D 1 would hold (see Theorem 1.2
below). Thus we would get f˛ 2 L1.RI jxj�˛L1/, which is clearly false. Actually,
inequality (1.4) cannot be directly applied to the function f˛ in Theorem 1.1, since
D˛f˛ D ı0 � ı1 … L

1.R/, see [7, Theorem 3.26]. However, one can exploit the reg-
ularization properties of BV ˛;p functions [6, Theorem 4] to suitably extend (1.4), as
well as (1.6), to this more general framework.

Theorem 1.2 (Hardy inequality in BV ˛;p.Rn/ for p 2 Œ1; n
1�˛

/). Let ˛ 2 .0; 1/ and
p 2 Œ1; n

1�˛
/. If f 2 BV ˛;p.Rn/, with f � 0 if n D 1, then

cn;˛

Z
Rn

jf .x/j

jx � x0j˛
dx � jD˛f j.Rn/
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for all x0 2Rn, where cn;˛ > 0 is a constant depending on n and ˛ only. In particular,
if n D 1, the optimal constant is c1;˛ D

2�1;˛
˛

.

1.3. Local chain rule

We do not know if a counterexample to the chain rule (1.5) like the one in Theorem 1.1
can be provided also for n � 2.

The current lack of a counterexample to (1.5) may suggest that a stronger version
of the chain rule could be valid for the fractional variation for n � 2, in analogy with
the chain rule available for BV functions. More precisely, for a given ˆ 2 Lip.R/
such that ˆ.0/ D 0, one may wonder if the local chain rule

jD˛ˆ.f /j � C.ˆ/jD˛f j in M.Rn/ (1.7)

holds for all f 2 BV ˛;p.Rn/ with n � 2, where C.ˆ/ > 0 is a constant depending
on the chosen function ˆ only. In the present work, we disprove the validity of (1.7)
for all n � 2 and, actually, we prove the following stronger result.

Theorem 1.3 (Failure of the local chain rule). Let ˛ 2 .0; 1/ and p 2 Œ1; n
n�˛

/. Let
ˆ 2 Lip.R/ be such that ˆ.0/ D 0 and ˆ � 0. If ˆ.f / 2 BV ˛;p.Rn/ with

supp jD˛ˆ.f /j � supp jD˛f j

for all f 2 BV ˛;p.Rn/, then ˆ � 0.

In particular, if we consider ˆ.t/ D jt j for t 2 R, an immediate consequence
of Theorem 1.3 is that, for all ˛ 2 .0; 1/ and p 2 Œ1; n

n�˛
/, there exists a function

f 2 BV ˛;p.Rn/ such that supp jD˛jf jj is not contained in supp jD˛f j.
The validity of Theorem 1.3 is a simple consequence again of the analysis made

in [7] and of a new surprising rigidity property of non-negative BV ˛;p functions with
p 2 Œ1; n

n�˛
/, see Theorem 1.4 below. Here and in the rest of the paper, given � 2 Sn�1

and x0 2 Rn, we let

HC� .x0/ D ¹y 2 Rn W .y � x0/ � � > 0º

and

H�.x0/ D ¹y 2 Rn W .y � x0/ � � D 0º:

In the case x0 D 0, we simply write HC� D H
C
� .0/ and H� D H�.0/. Moreover, for

˛ 2 .0; 1/ and p 2 Œ1;C1�, we let

BV
˛;p
C .Rn/ D ¹f 2 BV ˛;p.Rn/ W f � 0º:
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Theorem 1.4 (Rigidity property in BV ˛;pC .Rn/ for p 2 Œ1; n
n�˛

/). Let ˛ 2 .0; 1/,
p 2 Œ1; n

n�˛
/ and f 2 BV ˛;pC .Rn/. If either

supp jD˛f j is bounded; (1.8)

or
jD˛f j

�
HC� .x0/

�
D 0 for some x0 2 Rn, � 2 Sn�1; (1.9)

or

f 2 L1.Rn/ and D˛f .HC� .x0// D 0 for some x0 2 Rn, � 2 Sn�1; (1.10)

then f � 0.

The rigidity property given by Theorem 1.4 strongly underlines the difference
between the non-local operator r˛ and its local integer counterpart r. Indeed, it is
easily seen that BV 1;p functions do not possess such a rigidity property for any given
p 2 Œ1;C1�, due to the locality of the classical variation measure (for instance, one
may consider the characteristic function of the unit ball).

In addition, we recall that, despite of the non-local nature of the fractional gra-
dient, there exist functions f 2 BV ˛;p.Rn/, for p 2 Œ1; n

n�˛
/, such that jD˛f j is a

finite Radon measure with compact support, see the function defined in Theorem 1.1
for n D 1, and [7, Lemma 3.28] as well as [6, Proposition 4] for the general case.
Hence, Theorem 1.4 immediately tells us that such functions cannot have constant
sign. Conversely, as observed in [13, Section 2.2] in the case n D 1, given any non-
zero function f 2 C1c .R

n/ with f � 0 and suppf � .�L;L/n for some L > 0, for
each j 2 ¹1; : : : ; nº we have

r
˛
j f .x/ D ej � r˛f .x/ ¤ 0 at each x 2 Rn with jxj j � L;

where ej is the j -th vector of the standard coordinate basis of Rn.
We end this section by stating a simple consequence of Theorem 1.2. To this

purpose, we define

LSCb.Rn/ D ¹f W Rn ! R W f lower semicontinuous and boundedº:

Corollary 1.5. Let ˛ 2 .0; 1/ and p 2 Œ1; n
1�˛

/. The operator

In�˛ W BV
˛;p
C .Rn/! LSCb.Rn/

is continuous. In addition, if n� 2, then In�˛ WBV ˛;p.Rn/!L1.Rn/ is continuous.



Failure of the local chain rule for the fractional variation 7

1.4. Integration-by-parts formulas

The rigidity property of non-negative BV ˛;p functions stated in Theorem 1.4 is, in
turn, a consequence of a fractional Gauss–Green formula on half-spaces, see Theo-
rem 1.6 below, which can be regarded as a ‘vectorial’ Hardy-type equality for the
fractional variation. Here and in the rest of the paper, for ˛ 2 .0;1/ and p;q 2 Œ1;C1�,
we let

B˛p;q.R
n/ D

®
u 2 Lp.Rn/ W Œu�B˛p;q.Rn/ < C1

¯
be the space of Besov functions on Rn, see [14, Chapter 17] for its precise definition
and main properties, where

Œu�B˛p;q.Rn/ D

8<:
� R

Rn
ku.�Ch/�uk

q

Lp.Rn/

jhjnCq˛
dh
� 1
q if q 2 Œ1;C1/;

suph2Rnn¹0º
ku.�Ch/�ukLp.Rn/

jhj˛
if q D C1:

Theorem 1.6 (Fractional Gauss–Green formula on half-spaces). Let ˛ 2 .0; 1/, p 2
Œ1; n

n�˛
/ and q 2 .n

˛
;C1� be such that 1

p
C

1
q
D 1. If f 2 BV ˛;p.Rn/ \ L1.Rn/,

then

�1;˛

˛
lim

R!C1

Z
Rn
�R.x/

f .x/�

j.x � x0/ � �j˛
dx D ��.0/D˛f .HC� .x0// (1.11)

whenever � 2Sn�1 and x0 2Rn, where �R.x/D �. xR / for x 2Rn andR>0, for some
fixed � 2 B˛q;1.R

n/ with compact support. In particular, if either supp f is bounded
or f has constant sign, then

�1;˛

˛

Z
Rn

f .x/�

j.x � x0/ � �j˛
dx D �D˛f .HC� .x0//: (1.12)

We let the reader note that the requirement that � 2 B˛q;1.R
n/ naturally comes

from the general integration-by-parts formula obtained in [9, Theorem 1.1], see (2.1)
below for a more detailed account.

Actually, Theorem 1.6 is a particular case of the following result, which can be
seen as an extension of the integration-by-parts formula (1.2) in the spirit of the
fractional Gauss–Green formulas established in [9, Section 3.3]. Here and in the fol-
lowing, we let

f ?.x/ D

´
limr!0C

ª
Br .x/

f .y/ dy if the limit exists;

0 otherwise;
(1.13)

be the precise representative of f 2 L1loc.R
n/.
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Theorem 1.7 (Limit integration-by-parts formula). Let ˛ 2 .0;1/ and let p 2 Œ1; n
n�˛

/

and q 2 .n
˛
;C1� be such that 1

p
C

1
q
D 1. If f 2 BV ˛;p.Rn/ \ L1.Rn/ and g 2

W
˛;1

loc .R
n/ \ L1.Rn/ with r˛g 2 L1loc.R

nIRn/, then

lim
R!C1

Z
Rn
�Rf r

˛g dx D ��.0/

Z
Rn
g? dD˛f;

where �R is as in Theorem 1.6 and the limit in (1.13) defining g?.x/ exists for jD˛f j-
a.e. x 2 Rn.

In order to apply Theorem 1.7 to get Theorem 1.6, one then just needs to explicitly
compute the fractional gradient of the characteristic function of a half-space.

Proposition 1.8 (r˛ of a half-space). Let ˛ 2 .0; 1/, � 2 Sn�1 and x0 2Rn. We have

r
˛�
H
C
� .x0/

.x/ D
�1;˛

˛

�

j.x � x0/ � �j˛
(1.14)

for x 2 Rn nH�.x0/.

It is worth noticing that Theorem 1.6 immediately implies the following version of
the fractional Hardy inequality for non-negative BV ˛;p functions in the regime p 2
Œ1; n

n�˛
/, where the right-hand side does not involve the knowledge of the fractional

variation on the whole space, but just on a specific half-space.

Corollary 1.9 (Fractional Hardy inequality in BV ˛;pC .Rn/ for p 2 Œ1; n
n�˛

/). Let ˛ 2
.0; 1/ and p 2 Œ1; n

n�˛
/. If f 2 BV ˛;pC .Rn/, then

�1;˛

˛

Z
Rn

f .x/

j.x � x0/ � �j˛
dx � jD˛f j

�
HC� .x0/

�
(1.15)

for all x0 2 Rn and � 2 Sn�1.

As the reader may notice, Theorem 1.6 allows to prove Theorem 1.4 under the
assumption (1.10). To deal with the assumption (1.8), one needs to perform a further
integration with respect to the direction � 2 Sn�1 and obtains the following fractional
weighted inequality of Hardy-type. Again, we underline that the fractional variation
appearing in the right-hand side is not computed on the whole space, but just on the
complement of a particular ball.

Corollary 1.10 (Weighted fractional Hardy-type inequality). Let ˛ 2 .0; 1/ and p 2
Œ1; n

n�˛
/. If f 2 BV ˛;pC .Rn/, thenZ

Rn
f .x/wn;˛.jx � x0j; r/ dx � jD

˛f j
�
Rn n Br.x0/

�
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for all x0 2 Rn and r > 0, where

wn;˛.t; r/ D

8<: .n�1/!n�1
n!n

�1;˛
˛

R 1
�1

.1�s2/
n�3
2

jst�rj˛
ds for n � 2;

�1;˛
2˛

�
1

jt�rj˛
C

1
jtCrj˛

�
for n D 1:

In the particular geometric case f D �E for some measurable set E � Rn, the
above results read as follows (recall that, by [7, Corollary 5.4], if �E 2 BV ˛.Rn/,
then we have jD˛�E j � Hn�˛). Here and in the following, F˛E denotes the frac-
tional reduced boundary in the sense of De Giorgi, see [7, Definition 4.7].

Corollary 1.11 (Geometric case). Let ˛ 2 .0; 1/. If �E 2 BV ˛.Rn/, then

�1;˛

˛

Z
E

�

j.x � x0/ � �j˛
dx D �D˛�E .H

C
� .x0//;Z

E

jr
˛�
H
C
� .x0/

j dx � jD˛�E j.H
C
� .x0//;Z

E

wn;˛.jx � x0j; r/ dx � jD
˛�E j

�
Rn n Br.x0/

�
;

for x0 2 Rn, � 2 Sn�1 and r > 0, where wn;˛ is as in Corollary 1.10. Moreover, if
either supp jD˛�E j is bounded orD˛�E .H

C
� .x0//D 0 for some x0 2Rn, � 2 Sn�1,

then jEj D 0. In particular, if jEj > 0, then F˛E must be unbounded and must inter-
sect all half-spaces.

1.5. Fractional Meyers–Ziemer trace inequalities

As discussed in [32], the Hardy inequality in (1.6) can be also seen as a particular
consequence of known interpolation inequalities in Lorentz spaces. Precisely, one
recognizes that

1

j � j˛
2 L

n
˛ ;1.Rn/;

so that (1.6) follows by combining the Hölder inequalityZ
Rn

jf .x/j

jxj˛
dx � kf k

L
n
n�˛ ;1.Rn/




 1

j � j˛





L
n
˛ ;1.Rn/

with the bound
kf k

L
n
n�˛ ;1.Rn/

� cn;˛jD
˛f j.Rn/;

valid for n � 2, which, in turn, is a consequence of [31, Theorem 1.1].
In the classical integer case, an even more general approach is possible. Indeed, if

f 2 BV.Rn/ and � 2MCloc.R
n/ is a non-negative locally finite measure, thenZ

Rn
jf ?j d� � cnk�kn�1jDf j.R

n/; (1.16)
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for a dimensional constant cn > 0, where f ? is as in (1.13) and

k�ks D sup
x2Rn; r>0

�.Br.x//

rs

whenever s 2 Œ0; n�. The inequality in (1.16) can be found in [17, Theorem 4.7] and is
nowadays called the Meyers–Ziemer trace inequality. We also refer the reader to the
recent work [21] for an interesting historical panoramic around the inequality (1.16).
In particular, the authors of [21] note that V. G. Maz0ya proved such an inequality
in [16], a few years before the aforementioned [17].

Inequality (1.16) plays a central role in the classical BV framework, since it can
be considered as the mother inequality of several embedding inequalities, like the
Hardy inequality Z

Rn

jf .x/j

jxj
dx � cnjDf j.R

n/; (1.17)

the Gagliardo–Nirenberg–Sobolev inequality

kf k
L

n
n�1 .Rn/

� cnjDf j.R
n/; (1.18)

and its refinement, the Alvino inequality

kf k
L

n
n�1

;1
.Rn/
� cnjDf j.R

n/: (1.19)

For a more detailed discussion, we refer the reader to [30, Section 1] and [32, Sec-
tion 6]. Indeed, as soon as g 2 Ln;1.Rn/, one immediately recognizes that the mea-
sure

�.A/ D

Z
A

g.x/ dx; A � Rn;

satisfies
kj�jkn�1 � cnkgkLn;1.Rn/

for some dimensional constant cn > 0 (for instance, see [32, Section 6]), so that one
can recover the above inequalities (1.17), (1.18) and (1.19) from (1.16) via known
interpolation inequalities in Lorentz spaces.

Motivated by the analogy betweenBV andBV ˛ functions, one would be tempted
to say that, at least for n � 2, an inequality of the formZ

Rn
jf j d� � cn;˛k�kn�˛

Z
Rn
jr
˛f j dx; (1.20)

that is, equivalently, Z
Rn
jI˛f j d� � cn;˛k�kn�˛

Z
Rn
jRf j dx; (1.21)
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may hold for all sufficiently regular functions f , see [32, Question 7.1], where

Rf .x/ D ��
nC1
2 �

�nC 1
2

�
lim
"!0C

Z
¹jyj>"º

yf .x C y/

jyjnC1
dy; x 2 Rn;

is the (vector-valued) Riesz transform of f . Unfortunately, in [30, Theorem 1.3],
Spector ruled out the validity of (1.20), as well as of (1.21), whenever ˛ 2 .0; 1/.

Nonetheless, recalling that r˛f D rI1�˛f , one may apply the Meyers–Ziemer
trace inequality (1.16) to the function I1�˛f to getZ

Rn
j.I1�˛f /

?
j d� � cnk�kn�1

Z
Rn
jr
˛f j dx: (1.22)

Interestingly, inequality (1.22) turns out to behave as the mother inequality for the
Meyers–Ziemer trace inequality (1.16) as well as for the fractional Hardy inequal-
ity (1.4). Indeed, on the one side, taking the limit as ˛ ! 1� in (1.22), then one gets
inequality (1.16) back. On the other side, if one takes f � 0 and �D 1

j � j
Ln, then one

easily recognizes thatZ
Rn
I1�˛f

dx

jxj
D cn

Z
Rn
I1�˛f In�1 dx D cn

Z
Rn
In�˛f dx D cn;˛

Z
Rn

f .x/

jxj˛
dx;

recovering (1.4).
Having the above observations in mind, our last main result is the following rig-

orous statement of the inequality (1.22).

Theorem 1.12 (Fractional Meyers–Ziemer trace inequality). Let ˛ 2 .0; 1/ and p 2
Œ1; n

1�˛
/. There exists a dimensional constant cn > 0 such thatZ

Rn
j.I1�˛f /

?
j d� � cnk�kn�1jD

˛f j.Rn/ (1.23)

for all f 2 BV ˛;p.Rn/ and all � 2MCloc.R
n/.

As formally observed above, besides providing an alternative route for the proof
of Theorem 1.2, Theorem 1.12 leads to the following consequences. Here and in the
rest of the paper, we let

H1.Rn/ D
®
f 2 L1.Rn/ W Rf 2 L1.RnIRn/

¯
be the (real) Hardy space, see [12, 33] for a detailed exposition.
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Corollary 1.13 (Meyers–Ziemer trace inequalities). There exists a dimensional con-
stant cn > 0 with the following properties:

(i) If f 2 BV 1;p.Rn/ for some p 2 Œ1;C1/, with p � n
n�1

if n � 2, and
� 2MCloc.R

n/, thenZ
Rn
jf ?j d� � cnk�kn�1jDf j.R

n/: (1.24)

(ii) If f 2 H1.Rn/ and � 2MCloc.R
n/, thenZ

Rn
j.I1f /

?
j d� � cnk�kn�1kRf kL1.RnIRn/: (1.25)

We notice that Corollary 1.13 (ii) positively answers [32, Question 7.1] in the
(solely possible) case ˛ D 1 and, as well-known, it implies the following stronger
version of the Stein–Weiss inequality:

kI1f k
L

n
n�1 .Rn/

� cnkRf kL1.RnIRn/ (1.26)

for all f 2H1.Rn/, see [32, Section 1] for a more detailed discussion. Consequently,
once again choosing the measure �D 1

j � j
Ln, inequality (1.25) implies the Hardy-type

inequality Z
Rn

jI1f .x/j

jxj
dx � cnkRf kL1.RnIRn/ (1.27)

whenever f 2H1.Rn/. Inequality (1.27), in turn, can be also inferred from the Hardy
inequality (1.17), thanks to the continuity of the map I1WH1.Rn/! BV 1;

n
n�1 .Rn/

provided by (1.26) (see [5, Proposition 3.4 (i)] for the fractional case ˛ 2 .0; 1/).

1.6. Organization of the paper

The paper is organized as follows. Section 2 is dedicated to the proof of Theorem 1.7.
In Section 3, we apply it first to prove Theorem 1.6 and then, in turn, its consequences
Corollary 1.10, Theorem 1.4, Theorem 1.1. Finally, in Section 4, we prove Theo-
rem 1.12 and its consequences in Corollary 1.13.

2. Proof of Theorem 1.7

In the proof Theorem 1.7, we take advantage of the following non-local Leibniz rule
for BV ˛;p functions, see [9, Theorem 1.1 and Corollary 2.7]. For p 2 Œ1; n

n�˛
/ and
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q 2 .n
˛
;C1� such that 1

p
C

1
q
D 1, if f 2 BV ˛;p.Rn/ and g 2 B˛q;1.R

n/, then fg 2
BV ˛;r.Rn/ for all r 2 Œ1; p�, with r˛NL.f; g/ 2 L

1.RnIRn/ and

D˛.fg/ D g?D˛f C f r˛gLn Cr˛NL.f; g/L
n in M.RnIRn/: (2.1)

Here and in the rest of the paper, we let

r
˛
NL.f; g/.x/ D �n;˛

Z
Rn

.y � x/.f .y/ � f .x//.g.y/ � g.x//

jy � xjnC˛C1
dy;

for a.e. x 2 Rn, be the non-local fractional ˛-gradient of the couple .f; g/.

Proof of Theorem 1.7. LetR>0 be fixed. Since �R 2B˛q;1.R
n/with q 2 .n

˛
;C1�, by

the Sobolev Embedding Theorem (see [1, Theorem 7.34(c)] and [14, Theorem 17.52]
for instance) we know that �R 2 Cb.Rn/. Now let .%"/">0 be a family of standard
mollifiers (see [7, Section 3.3] for example) and let g" D %" � g for all " > 0. We note
that g" 2 Lipb.R

n/ and r˛g" D %" � r˛g for all " > 0, so that

lim
"!0C

Z
Rn
�Rf r

˛g" dx D lim
"!0C

Z
Rn
%" � .f �R/r

˛g dx D

Z
Rn
�Rf r

˛g dx

by the Dominated Convergence Theorem, since

j%" � .f �R/j � kf kL1.Rn/k�RkL1.Rn/�AR

for all " > 0 sufficiently small, where AR � Rn is a bounded set such that AR �
supp �R. Now let " > 0 be fixed. By (2.1), we have that f �R 2 BV ˛.Rn/, with

D˛.f �R/ D �RD
˛f C f r˛�RL

n
Cr

˛
NL.f; �R/L

n in M.RnIRn/:

Consequently, by [8, Proposition 2.7], we can computeZ
Rn
�Rf r

˛g" dx D �

Z
Rn
g" dD

˛.f �R/

D �

Z
Rn
�Rg" dD

˛f �

Z
Rn
fg"r

˛�R dx

�

Z
Rn
g"r

˛
NL.f; �R/ dx:

On the one side, we can estimateˇ̌̌ Z
Rn
fg"r

˛�R dx
ˇ̌̌
� kg"kL1.Rn/

Z
Rn
jf jjr˛�Rj dx

� kgkL1.Rn/kf kLp.Rn/kr
˛�RkLq.RnIRn/

� �n;˛R
n
q�˛kf kLp.Rn/kgkL1.Rn/Œ��B˛

q;1
.Rn/;
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thanks to [9, Corollary 2.3]. On the other side, in a similar way, we can boundˇ̌̌ Z
Rn
f r˛NL.g"; �R/ dx

ˇ̌̌
�

Z
Rn
jf jjr˛NL.g"; �R/j dx

� kf kLp.Rn/kr
˛
NL.g"; �R/kLq.RnIRn/

� 2�n;˛kf kLp.Rn/kg"kL1.Rn/Œ�R�B˛
q;1
.Rn/

� 2�n;˛ R
n
q�˛kf kLp.Rn/kgkL1.Rn/Œ��B˛

q;1
.Rn/

thanks to [9, Corollary 2.7]. Therefore, thanks to these estimate (which are uniform
in "), we get the limit

lim
R!C1

sup
">0

ˇ̌̌ Z
Rn
fg"r

˛�R dx
ˇ̌̌
C

ˇ̌̌ Z
Rn
f r˛NL.g"; �R/ dx

ˇ̌̌
D 0:

Now we need to show that

lim
"!0C

Z
Rn
�Rg" dD

˛f D

Z
Rn
�Rg

? dD˛f: (2.2)

Indeed, since f 2 BV ˛;1.Rn/, by [6, Theorem 1] we have that jD˛f j � Hn�˛ .
Moreover, being g 2 W ˛;1

loc .R
n/, by [20, Proposition 3.1] we can infer that

lim
"!0C

g".x/ D lim
"!0C

%" � g.x/

D lim
r!0C

«
Br .x/

g.y/ dy D g?.x/ for Hn�˛-a.e. x 2 Rn;

so that (2.2) immediately follows by the Dominated Convergence Theorem (with
respect to the finite measure jD˛f j). Finally, since

lim
R!C1

�R.x/ D lim
R!C1

�
� x
R

�
D �.0/

for all x 2 Rn, by the Dominated Convergence Theorem (with respect to the finite
measure jg?jjD˛f j) we conclude that

lim
R!C1

Z
Rn
�Rg

? dD˛f D �.0/

Z
Rn
g? dD˛f

and the proof is complete.

3. Hardy inequalities and failure of the chain rule

3.1. Integration by parts on half-spaces

We begin with the proof of the formula for the fractional gradient of the characteristic
function of a half-space.
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Proof of Proposition 1.8. By the translation invariance of the fractional gradient (re-
call [29, Theorem 2.2]), we have

r
˛�
H
C
� .x0/

.x/ D r˛�
H
C
�
.x � x0/

for all x 2 Rn and so we can assume x0 D 0 without loss of generality. Since �
H
C
�
2

BVloc.Rn/ \ L1.Rn/ and clearly

jD�
H
C
�
j.@BR/ D Hn�1.H� \ @BR/ D 0

for all R > 0, by [8, Proposition 3.5] we get r˛�
H
C
�
2 L1loc.R

nIRn/ andZ
Rn
' � r˛�

H
C
�
dx D lim

R!C1

Z
Rn
' � I1�˛.�BRD�HC�

/ dx

D lim
R!C1

� �

Z
Rn
'I1�˛.�BRH

n�1 H�/ dx (3.1)

for all ' 2 Lipc.R
nIRn/. By the Monotone Convergence Theorem, we get

lim
R!C1

I1�˛.�BRH
n�1 H�/.x/ D I1�˛.H

n�1 H�/.x/

for Ln-a.e. x 2 Rn. We now claim that

I1�˛.H
n�1 H�/.x/ D

�1;˛

˛

1

jx � �j˛
for all x … H� ; (3.2)

which defines a function in L1loc.R
n/. The case n D 1 is easy. For n � 2, we argue as

follows. Let R 2 SO.n/ be such that R� D e1, so that

.Rx/1 D .Rx/ � e1 D x � tRe1 D x � �:

By simple changes of variables, we getZ
H�

dHn�1.y/

jy � xjnC˛�1
D

Z
He1

dHn�1.y/

jy �RxjnC˛�1

D

Z
Rn�1

dy2 � � � dyn�
.Rx/21 C

Pn
jD2.yj � .Rx/j /

2
�nC˛�1

2

D

Z
Rn�1

1

j.Rx/1j˛
dy2 � � � dyn�

1C j.y2; : : : ; yn/j2
�nC˛�1

2

D
.n � 1/!n�1

jx � �j˛

Z C1
0

%n�2

.1C %2/
nC˛�1
2

d%

whenever x … H� . By known properties of the Gamma function, it is not difficult to
recognize that
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0

%n�2

.1C %2/
nC˛�1
2

d% D
�
�
˛
2

�
�
�
n�1
2

�
2�
�
nC˛�1
2

� ;
so that

I1�˛.H
n�1 H�/.x/ D

�n;˛

.nC ˛ � 1/

�
�
˛
2

�
�
�
n�1
2

�
2�
�
nC˛�1
2

� .n � 1/!n�1
jx � �j˛

D
�1;˛

˛

1

jx � �j˛

whenever x … H� , proving (3.2). Therefore, we can apply the Dominated Conver-
gence Theorem in (3.1) to obtainZ

Rn
' � r˛�

H
C
�
dx D � �

Z
Rn
'I1�˛.H

n�1 H�/ dx D
�1;˛

˛
� �

Z
Rn

'.x/

jx � �j˛
dx

and the conclusion immediately follows.

Having Proposition 1.8 at disposal, we can easily deduce the limit Gauss–Green
formula on half-spaces.

Proof of Theorem 1.6. The validity of (1.11) is an immediate consequence of The-
orem 1.7, since �

H
C
� .x0/

2 BVloc.Rn/ \ L1.Rn/ with r˛�
H
C
� .x0/

2 L1loc.R
nIRn/

thanks to Proposition 1.8. For the proof of (1.12), we can simply choose � 2 C1c .R
n/

such that 0 � � � 1 and �.x/ D 1 for x 2 B1, so that, arguing component-wise,

lim
R!C1

Z
Rn
�R.x/

f .x/�

j.x � x0/ � �j˛
dx D

Z
Rn

f .x/�

j.x � x0/ � �j˛
dx

either trivially if supp f is bounded, or by the Monotone Convergence Theorem if f
has constant sign. Thus, the proof is complete.

3.2. Fractional Hardy inequalities

We can now deal with the proofs of the fractional Hardy inequalities in Corollary 1.9,
Corollary 1.10 and Theorem 1.2.

Proof of Corollary 1.9. Let .%"/">0 be a family of standard mollifiers and set f" D
%" � f for all " > 0. Clearly, f" 2 BV

˛;p
C .Rn/ \ L1.Rn/, so that (1.12) implies

�1;˛

˛

Z
Rn

f".x/

j.x � x0/ � �j˛
dx � jD˛f"j

�
HC� .x0/

�
for all x0 2 Rn and � 2 Sn�1. On the left-hand side, we employ Fatou’s Lemma to
obtain

lim inf
"!0C

�1;˛

˛

Z
Rn

f".x/

j.x � x0/ � �j˛
dx �

�1;˛

˛

Z
Rn

f .x/

j.x � x0/ � �j˛
dx:
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As for the right-hand side, thanks to [2, Theorem 2.2 (b)] we notice that

lim sup
"!0C

jD˛f"j
�
HC� .x0/

�
� lim sup

"!0C
jD˛f j

�
HC� .x0/C B"

�
� jD˛f j

�
HC� .x0/

�
and this proves (1.15).

Proof of Corollary 1.10. At first, let us also assume that f 2BV ˛;pC .Rn/\L1.Rn/.
Let r > 0 be fixed. Choosing x0 C r� in place of x0 in (1.12) and taking the integral
average on Sn�1, we get

�1;˛

˛

«
Sn�1

Z
Rn

f .x/

j.x � x0/ � � � r j˛
dx dHn�1.�/

D �

«
Sn�1

� �D˛f .HC� .x0 C r�// dH
n�1.�/

� jD˛f j
�
Rn n Br.x0/

�
:

By Tonelli’s Theorem, we can compute«
Sn�1

Z
Rn

f .x/

j.x � x0/ � � � r j˛
dx dHn�1.�/

D

Z
Rn
f .x/

«
Sn�1

dHn�1.�/

j.x � x0/ � � � r j˛
dx

D

Z
Rn
f .x/wn;˛.jx � x0j; r/ dx;

where in the last inequality we exploited the formula proved in [11, Section D.3] for
n � 2 (the case n D 1 being trivial).

Now let f 2 BV ˛;pC .Rn/ be possibly unbounded. Let .%"/">0 be a family of stan-
dard mollifiers and set f"D %" � f for all "> 0. Clearly, f" 2BV

˛;p
C .Rn/\L1.Rn/,

so that Z
Rn
f".x/wn;˛.jx � x0j; r/ dx � jD

˛f"j
�
Rn n Br.x0/

�
for all " > 0. On the one side, we have

lim inf
"!0C

Z
Rn
f".x/wn;˛.jx � x0j; r/ dx �

Z
Rn
f .x/wn;˛.jx � x0j; r/ dx

by Fatou’s Lemma. On the other side, thanks to [6, Theorem 4] as well as [2, Theo-
rem 2.2(b)], we can estimate

jD˛f"j
�
Rn n Br.x0/

�
� .%" � jD

˛f j/
�
Rn n Br.x0/

�
� jD˛f j

�
Rn n Br�".x0/

�
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for all " 2 .0; r/. Consequently, we getZ
Rn
f .x/wn;˛.jx � x0j; r/ dx � lim

"!0C
jD˛f j

�
Rn n Br�".x0/

�
D jD˛f j

�
Rn n Br.x0/

�
by monotonicity and the proof is complete.

Proof of Theorem 1.2. At first, let n � 2 and f 2 BV ˛;p.Rn/ with p 2 Œ1; n
1�˛

/. Up
to a translation, we can assume x0 D 0. Let .%"/">0 be a family of standard mollifiers
and let f" D %" � f for all " > 0. By [6, Theorem 4], we know that f" 2 BV ˛;p.Rn/
and r˛f" D %" �D˛f for all " > 0. Moreover, thanks to [7, Lemma 3.28 (i)] and
[6, Proposition 4 (i)], we have r˛f" D rI1�˛f" 2 L1.RnIRn/. Therefore, the con-
clusion follows by applying (1.6) to f" and then passing to the limit as "! 0C via
Fatou’s Lemma and [6, Theorem 4]. Let now nD 1, f 2BV ˛;pC .R/with p 2 Œ1; 1

1�˛
/,

and f" D %" � f for all " > 0. Clearly, f" � 0, so that we may employ Corollary 1.9
to get

�1;˛

˛

Z
R

f".x/

jx � x0j˛
dx D

�1;˛

˛

Z
R

f".x/

j.x � x0/ � �j˛
dx � jD˛f"j.H

C
� .x0// (3.3)

for all x0 2 R and � 2 ¹˙1º, since f" 2 BV ˛;1.R/, and so jD˛f"j � H1�˛ by
[6, Theorem 1]. Hence, if we substitute � with �� in (3.3) and then add the two
inequalities, we get

2�1;˛

˛

Z
R

f".x/

jx � x0j˛
dx � jD˛f"j.R/ � jD

˛f j.R/:

Thus, we can pass to the limit as "! 0C exploiting again Fatou’s Lemma. In order
to prove the optimality of the constant c1;˛ D

2�1;˛
˛

, we choose f D �.x0�1;x0C1/, so
that Z

R

�.x0�1;x0C1/.x/

jx � x0j˛
dx D

2

1 � ˛
:

Since
jD˛�.x0�1;x0C1/j.R/ D

4�1;˛

˛.1 � ˛/
;

thanks to [7, Example 4.11], we get the optimality of c1;˛ and the proof is complete.

Remark 3.1. Let ˛ 2 .0; 1/ and p 2 Œ1; n
n�˛

/. Arguing as in the second part of the
proof of Theorem 1.2, it is possible to show that

2�1;˛

˛

Z
Rn

f .x/

jx � x0j˛
dx � jD˛f j.Rn/
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for all f 2 BV ˛;pC .Rn/. Combining this with [28, Theorem 1.2], we deduce that

cn;˛

Z
Rn

f .x/

jx � x0j˛
dx � jD˛f j.Rn/ for all f 2 BV ˛;pC .Rn/;

where
cn;˛ D max

°2�1;˛
˛

; 
n;˛

±
and


n;˛ D
2˛�

�
˛
2

�
�
�
nC1
2

�
�1�

˛
2 �
�
n�˛
2

� :
However, for n � 3, one can see that 
n;˛ >

2�1;˛
˛

for all ˛ 2 .0; 1/. To the best of
our knowledge, it is not known whether cn;˛ is the optimal constant for some n � 2
and ˛ 2 .0; 1/.

3.3. Failure of the fractional chain rule

We begin with the proof of the rigidity property contained in Theorem 1.4.

Proof of Theorem 1.4. If supp jD˛f j is bounded, then jD˛f j.Rn nBr/D 0 for some
r > 0. Hence, by Corollary 1.10, we must have f D 0 Ln-a.e. in Rn, being wn;˛ > 0.
If, instead, jD˛f j.HC� .x0// D 0 or f 2 L1.Rn/ and D˛f .HC� .x0// D 0 for some
x0 2 Rn and � 2 Sn�1, then we similarly conclude by (1.12) in Theorem 1.6 and
Corollary 1.9.

We can now end this section by showing the failure of the fractional chain rule.
Here and in the following, we let

.��/
ˇ
2 f .x/ D �n;ˇ

Z
Rn

f .x C y/ � f .x/

jyjnCˇ
dy; for a.e. x 2 Rn;

be the fractional Laplacian of order ˇ 2 .0; 1/ of the function f 2 W ˇ;1.Rn/, where

�n;ˇ D 2
ˇ��

n
2
�
�
nCˇ
2

�
�
�
�
ˇ
2

� :
Note that .��/

ˇ
2 WW ˇ;1.Rn/ ! L1.Rn/ is continuous (see [7, Section 3.10] for a

more detailed discussion). In particular, this operator is well posed on BV functions.
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Proof of Theorem 1.3. Let Q1 D .�1; 1/n. We consider the function

f D .��/
1�˛
2 �Q1 ;

that is,

f .x/ D �n;1�˛

�
� �Q1.x/

Z
RnnQ1

1

jy � xjnC1�˛
dy

C �RnnQ1.x/

Z
Q1

1

jy � xjnC1�˛
dy

�
; (3.4)

for x 2 Rn n @Q1. Thanks to [7, Lemma 3.28 (ii)], we know that f 2 BV ˛.Rn/
with D˛f D D�Q1 . By [6, Theorem 6], we also have that f 2 BV ˛;p.Rn/ for all
p 2 Œ1; n

n�˛
/. Now letˆ 2 Lipb.R/ be such thatˆ.0/D 0 andˆ � 0 and assume that

ˆ.f / 2 BV ˛.Rn/ with

supp jD˛ˆ.f /j � supp jD˛f j D supp jD�Q1 j D @Q1:

Note that, again by [6, Theorem 6], ˆ.f / 2 BV ˛;pC .Rn/ for all p 2 Œ1; n
n�˛

/. Conse-
quently, supp jD˛ˆ.f /j is compact, so that ˆ.f / � 0 thanks to Theorem 1.4. Since
�n;1�˛ < 0, we observe that f .x/! 0� as jxj ! C1 and, moreover,

lim inf
t!1C

Z
Q1

1

jy � te1jnC1�˛
dy �

Z
Q1

dy

jy � e1jnC˛�1

� sup
"2.0;1/

Z
.�1;1�"/�.�";"/n�1

dy

jy � e1jnC˛�1

� cn;˛ sup
"2.0;1/

Z
.�1;1�"/�.�";"/n�1

dy

jy1 � 1jnC˛�1

D cn;˛ sup
"2.0;1/

"n�1."˛�n � 2˛�n/ D C1;

thanks to Fatou’s Lemma. As a consequence, f .Rn/� .�1; 0/ and thusˆ.t/D 0 for
all t 2 .�1; 0/. Replacing f with �f , we also get thatˆ.t/D 0 for all t 2 .0;C1/,
proving that ˆ � 0 and the proof is complete.

Proof of Theorem 1.1. By [7, Theorem 3.26], we know that f˛ 2 BV ˛.R/. We claim
that jf˛j … BV ˛.R/. By contradiction, if jf˛j 2 BV ˛.R/, then Theorem 1.2 implies
that

c˛

Z
R

jf˛.x/j

jxj˛
dx � jD˛

jf˛jj.R/ < C1: (3.5)

However, for x 2 .0; 1/, we have

jf˛.x/j

jxj˛
D j�1;�˛j

� 1
x
C
.1 � x/˛�1

x˛

�
;

contradicting (3.5) and the proof is complete.
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4. Fractional Meyers–Ziemer trace inequality

We begin by noticing that, somehow formulating in a more rigorous way the ideas
sketched in the introduction, one can prove Theorem 1.12 by directly applying the
standard Meyers–Ziemer trace inequality (1.16) to the function uD I1�˛f whenever
f 2 BV ˛;p.Rn/ with p 2 .1; n

1�˛
/, since

I1�˛WBV
˛;p.Rn/! BV 1;

n
n�1 .Rn/

with Du D D˛f in M.RnIRn/, thanks to [6, Proposition 4 (i)]. In the case p D 1,
we only have

I1�˛WBV
˛.Rn/! BV 1;q.Rn/

for all q 2 . n
n�1C˛

; n
n�1

/withDuDD˛f in M.RnIRn/, in virtue of [7, Remark 3.29]
and [6, Theorem 6], but this is still enough in order to directly exploit (1.16).

Below, we instead outline a direct argument showing that the very same line
of reasoning used in [17] (see [32, Section 7] for a more detailed explanation) to
prove (1.16) works as well for proving Theorem 1.12.

Proof of Theorem 1.12. Let f 2 BV ˛;p.Rn/ for some p 2 Œ1; n
1�˛

/. Let .%"/">0 be
a family of standard mollifiers and let f" D %" � f for all " > 0. By [6, Theorem 4],
we know that f" 2 BV ˛;p.Rn/ with r˛f" D %" �D˛f for all " > 0. Now let u" D
I1�˛f" for all " > 0. By what we have just observed above, it is not difficult to see
that u" 2 BV 1;q.Rn/ \ C1.Rn/ for some q 2 . n

n�1C˛
; n
n�1

� with

jru"j D jr
˛f"j � %" � jD

˛f j in L1.Rn/:

Therefore, we can estimateZ
Rn
jru"j dx D

Z
Rn
jr
˛f"j dx � jD

˛f j.Rn/ < C1

and, moreover, the set
E"t D ¹x 2 Rn W ju".x/j > tº

is open with finite perimeter for a.e. t > 0. Since

jE"t \ Br.x/j

jBr.x/j
�

min¹jE"t j; jBr.x/jº
jBr.x/j

and

jE"t j D j¹x 2 Rn W jI1�˛f".x/j > tºj � cn;˛;p
�
kf kLp.Rn/

t

� np
n�.1�˛/p

< C1
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by the Hardy–Littlewood–Sobolev inequality (see [12, Theorem 1.2.3] for instance),
for each given x 2 E"t the function

r 7!
jE"t \ Br.x/j

jBr.x/j

is continuous, equals 1 for small r > 0 (since E"t is open) and tends to zero as
r ! C1. Thus, reasoning exactly as in [30, Section 6], via a routine Vitali cover-
ing argument we can estimate

�.E"t / � cnk�kn�1jD�E"t j.R
n/

for a.e. t > 0, where cn>0 is a dimensional constant. Therefore, by the coarea formula
and the chain rule for functions with bounded variation, we can estimateZ

Rn
ju"j d� D

Z
R
�.E"t / dt

� cnk�kn�1

Z
R
jD�E"t j.R

n/ dt

D cnk�kn�1

Z
Rn
jru"j dx

� cnk�kn�1 jD
˛f j.Rn/

for all "> 0. Now, assuming k�kn�1<C1without loss of generality, it is standard to
see that ��Hn�1, see [20] and the references therein for a more detailed discussion.
Therefore, since

lim
"!0C

u".x/ D lim
"!0C

%" � u.x/ D u
?.x/ for Hn�1-a.e. x 2 Rn

(see [10, Section 5.9] for instance), by the Fatou’s Lemma we conclude thatZ
Rn
j.I1�˛f /

?
j d� � lim inf

"!0C

Z
Rn
ju"j d� � cnk�kn�1jD

˛f j.Rn/

and the proof is complete.

We now conclude our paper with the proof of Corollary 1.13.

Proof of Corollary 1.13. The validity of (i) for any f 2 C1c .R
n/ follows directly

from Theorem 1.12 combined with the asymptotic analysis obtained in [8]. For a gen-
eral f 2 BV 1;

n
n�1 .Rn/, one just needs to perform a routine approximation argument

thanks to [6, Proposition 1]. The validity of (ii) follows in a similar way, this time
relying on the asymptotic analysis carried out in [5].
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