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Filtrations of moduli spaces of tropical weighted stable curves

Stefano Serpente

Abstract. We consider tropical versions of Hassett’s moduli spaces of weighted stable curves
M

trop
g;A

, SM trop
g;A

and �g;A associated to a weight datum A D .a1; : : : ; an/ 2 .Q \ .0; 1�/n,
their associated graph complexesG.g;A/, and study the topology of these spaces as A changes.
We show that for fixed g and n, there are particular filtrations of these topological spaces and
their graph complexes which may be used to compute the reduced rational homology of �g;A

and the top weight cohomology of the moduli space Mg;A of smooth .g;A/-stable algebraic
curves.

1. Introduction

Let g � 0 and n� 1 be two integers, and AD .a1; : : : ; an/ 2Dg;n WD .Q\ .0; 1�/n a
weight datum such that 2g � 2C

Pn
iD1 ai > 1. In order to give different compactifi-

cations to the moduli stack of smooth curves Mg;n, Hassett in [13] defined generalized
stability conditions on algebraic curves introducing weight data attached to marked
points. The definition of weighted stable curve gave rise to the moduli stacks SMg;A,
which generalize the standard moduli stack of stable curves SMg;n. In [19], Ulirsch
exploited the dualism between the moduli theory of algebraic curves and the one of
tropical curves defining generalized stability conditions on graphs, and out of these,
constructed the moduli spaces of tropical weighted stable curves M trop

g;A
, generalizing

the construction of the moduli spaces of tropical curves with marked points M trop
g;n

from [5] (see Section 2).
Following [13], the space of admissible weight data Dg;n may be decomposed

into connected components separated by a set of hyperplanes, which are called walls.
The set of these hyperplanes is called chamber decomposition, and the connected
components of the decomposition are called chambers. We call K the set of chambers.
We treat the wall crossing theory for these stability conditions in Section 3. Each wall
can be defined by a linear inequality and subdivides the space of weights into two
chambers, according to the two corresponding inequalities, see Examples 3.1 and 3.2.
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We consider the fine chamber decomposition, defined in [13],

Wf D

²X
j2S

aj D 1 W ¹S � ¹1; : : : ; nºº; 2 � jS j � n � 2ıg;0

³
;

where ıi;j is the Kronecker Delta. As showed by Ulirsch in [19], different weight
data in the same chamber give rise to the same moduli space, and the fine chamber
decomposition is the coarsest one with this property.

Given two weight data A and B, we write A � B if ai � bi component-wise. It
is easy to show that if A � B there is an inclusion as a closed subset

M
trop
g;A
�M

trop
g;B

: (1)

For a given weight datum A, we denote by ChA its chamber. We define a par-
tial order relation in the set K which extends the previous one on weight data as
follows. Let Ch1; Ch2 2 K, we say that Ch1 � Ch2 if they are equal or there are
S1; : : : ; St � ¹1; : : : ; nº such that for every A 2 Ch1,

P
i2Sj

ai < 1 and for every
B 2 Ch2,

P
i2Sj

ai > 1, for every j from 1 to t , while for any S 0 ¤ Sj for every
j from 1 to t , the two chambers belong to the same half-space of Dg;n induced by
the wall

P
i2S 0 ai D 1. It is easy to see that if we pick A 2 Ch1 and B 2 Ch2 with

Ch1 � Ch2, the inclusion (1) still holds.
Given a weight datum AD .a1; : : : ; an/ and a permutation � 2 Sn, let �.A/ be the

weight datum obtained by permuting the weights of A according to � , i.e. �.A/ D
.a�.1/; : : : ; a�.n//. Then M trop

g;A
is homeomorphic to M trop

g;�.A/
: the homeomorphism,

called relabeling homeomorphism, consists of sending a tropical curve into the curve
with the same underlying graph and the same length function, but with the legs marked
according to the permutation (see e.g. Example 3.4).

We can consider the action of Sn induced on K given by �.ChA/ D Ch�.A/ as
well. We call the orbits of this action chambers up to symmetry, and we denote the
set of chambers up to symmetry by ŒK�. Denote by ŒCh� the orbit of Ch 2 K, which
we call the chamber up to symmetry of Ch. We say that ŒCh1� � ŒCh2� if there are
two chambers ChA1

2 ŒCh1� and ChA2
2 ŒCh2� such that ChA1

� ChA2
, for some

A1 and A2. In that case, each time we pick

A 2 ChA1
2 ŒChA1

� � ŒChA2
� 3 ChA2

3 B;

there is a permutation � 2 Sn giving a topological embedding

M
trop
g;A

,!M
trop
g;B

obtained by combining the relabeling homeomorphism M
trop
g;A
ŠM

trop
g;�.A/

with the
inclusion (1),M trop

g;�.A/
�M

trop
g;B

. In particular, there is only a moduli space of tropical
curves up to homeomorphism for each chamber up to symmetry.

All these properties work if we replace M trop
g;A

with SM trop
g;A

and �g;A, respectively
the moduli space of extended A-weighted stable curves of genus g and the moduli
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space of A-weighted stable curves of genus g and volume 1 (see Section 2.3 for their
definitions).

We illustrate the situation with an example. Suppose we have g� 1 and n D 3, and
we have the weight data A1 D .

12
27
; 14
27
; 1 � "/ and A2 D .

14
27
� "; 12

27
; 14
27
/, for some

0 < "< 1
27

. Clearly they are not comparable with respect to the partial order on weight
data, and we can verify that they belong to different chambers, i.e. ChA1

¤ ChA2
. It

is also possible to verify that ŒChA1
� ¤ ŒChA2

�. This implies that their moduli spaces
M

trop
g;A1

and M trop
g;A2

are different, and none of them is the subspace of the other. But if
we reorder the weights of the second weight by the permutation � D .1 3 2/ 2 S3

the datum we obtain is �.A2/ D .
12
27
; 14
27
; 14
27
� "/, and by the relabeling homeomor-

phism we know that
M

trop
g;A2

�M
trop
g;�.A2/

:

Moreover, �.A2/ and A1 are comparable, in particular �.A2/ � A1, so we have
the inclusion as a subspace

M
trop
g;�.A2/

�M
trop
g;A1

:

Composing the relabeling homeomorphism with this inclusion gives an embedding as
a subspace

M
trop
g;A2

,!M
trop
g;A1

:

In the case g � 1 and n D 3, there are five chambers up to symmetry, so choosing
representative weight data up to relabeling homeomorphisms we get the filtration

M
trop
g;. 1

3 ;
1
3 ;

1
3�"/
�M

trop
g;. 4

9�";
4
9�";

4
9�"/
�M

trop
g;. 12

27 ;
14
27 ;

14
27�"/

�M
trop
g;. 12

27 ;
14
27 ;1�"/

�M
trop
g;3

where we take "’s in order to take weight data in the interior of the chamber decom-
position (see Example 4.8 for further details).

Following the previous discussion, in Section 4, we prove the following theorem.
Let g � 0, n � 1 and A 2 Dg;n, C �M trop

g;A
be a closed subset. We say it is a sub-

moduli space if it is homeomorphic to M trop
g;B

for some B, and points of C are in
bijection with .g;B/-stable tropical curves.

Theorem A. Let g � 0, n � 1 be two integers. Fix a weight datum A 2 Dg;n. There
are filtrations of M trop

g;A
given by embeddings as sub-moduli spaces induced by the

partial order on the set of chambers up to symmetry. Namely, given a sequence

ŒChA1
� � ŒChA2

� � � � � � ŒChAp
� � � � � � ŒChAN�1

� � ŒChA�;

the filtration is

M
trop
g;A1

,!M
trop
g;A2

,! � � � ,!M
trop
g;Ap

,! � � � ,!M
trop
g;AN�1

,!M
trop
g;A

:

The same result holds if we replaceM trop
g;A

with the moduli space of extended weighted
tropical .g;A/-stable curves SM trop

g;A
or the moduli space of .g;A/-stable tropical

curves of volume 1, �g;A.
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In Section 4, we define the graph complexes G.g;A/. These objects generalize the
graph complexes G.g;n/ defined in [9, Section 2.4]. We deduce a Filtration Theorem
analogous to Theorem A for these complexes (see Section 4 for further details). This
gives them the structure of filtered chain complexes.

In order to study further these graph complexes and their homology, in Section 5
we extend the theory developed in [10] and [9] for �g;n to �g;A, treating it as a
symmetric�-complex for every A, and then we generalize [9, Theorem 1.4] showing
that there is a natural surjection of chain complexes C�.�g;A/! G.g;A/ decreasing
degrees by 2g � 1 inducing isomorphisms on homology

zHkC2g�1.�g;AIQ/! Hk.G
.g;A//

for all k’s. Analogously to what happened for �g;n, there is a natural isomorphism

GrW6g�6C2nH
4g�6C2n�k.Mg;AIQ/! Hk.G

.g;A//;

between the rational top weight cohomology of Mg;A and the rational homology of
the complex G.g;A/.

There is a spectral sequence associated to a filtered chain complex which can
be used to compute the homology of the complex. In particular, the structure of the
bounded filtered chain complex given to each G.g;A/, combined with the shifting
degree isomorphism of the top weight cohomology of Mg;A with the homology of
the complex gives us the following theorem, proved at the end of Section 5.

Theorem B. Fix g � 1, n � 2. Assume we have a sequence of chambers up to sym-
metry ŒChA1

� � � � � � ŒChAp
� � � � � � ŒChAN

�, and letG.g;A1/ ,! � � � ,! G.g;Ap/ ,!

� � � ,! G.g;AN / be the induced filtration on graph complexes. Then

GrW6g�6C2nH
4g�6C2n�k.Mg;AN

IQ/ Š
NM
pD1

E1p;k�p;

where the terms E1
p;k�p

are the ones to which the spectral sequence induced by the
above filtration converges.

In Example 5.10, we use this theorem to compute the Top Weight Cohomology of
M1;3, confirming results obtained in [9].

1.1. Motivation and related works

This work builds up on previous work and ideas from many authors in the area.
Firstly, the moduli space of weighted tropical curves was constructed by Ulirsch in
[19, Propositions 6.1 and 6.2], where the author shows the constancy of the tropical
moduli spaces inside the chambers. In the same work, the moduli spaces of weighted
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tropical curves are identified with the skeletons of moduli spaces of curves, general-
izing [1] in the case of moduli spaces of curves with standard stability. The inclusion
property coming from the component-wise relation on weight data was known in
other works related to tropical moduli spaces such as [7]. The relabeling symmetry
in the algebraic set was a well-known fact since Hassett published his work [13], and
again the permutation action was studied in [7] on �0;w for certain particular cases,
in [15] to study Aut.�g;n/, and in [8] for computing the Sn-equivariant cohomology
of Mg;n. In [21], there are computations for the Sn-equivariant rational homology of
the tropical moduli spaces�2;n for n� 8. In [12], authors give an explicit formula for
the intersection products of weighted tropical  -classes onM trop

0;A
, in arbitrary dimen-

sions. Section 5 develops on tools and language introduced in [10] and [9], which we
adapt to study �g;A.

Furthermore, there are many works on the topology of moduli spaces of tropical
curves and their identifications with other objects from which we benefit:

• Allcock, Corey and Payne showed that �g;n is simply connected for .g; n/ ¤
.0; 4/, .0; 5/, see [2]. This result is generalized for g � 1 and for all A in [16] by
Kannan, Li, Yun and the author.

• In [10] and [9] Chan, Galatius and Payne give results on the top weight cohomol-
ogy of �g;n. In [16], similar results are given for �g;A.

• When AD 1.n/, Vogtmann showed that�0;n is homotopic to a wedge of .n� 2/Š
spheres of dimension n � 4, see [20].

• When A is heavy/light, i.e. it hasm components equal to " < 1=m and n�m com-
ponents equal to 1, Cavalieri, Hampe, Markwig, and Ranganathan in [6] derived
from their results that �0;w is homotopic to a wedge of .n � 2/Š.n � 1/m spheres
of dimension nCm � 4.

• When w has at least two weight-1 entries, Cerbu, Marcus, Peilen, Ranganathan
and Salmon in [7] showed that �0;w is homotopic to a wedge of spheres of
possibly varying dimensions, and gave infinite families of w where �0;w is dis-
connected, and examples where �1.�0;w/ D Z=2Z.

• In [11], they study the automorphism group of �g;A, which corresponds to the
subgroup of the group of relabeling morphisms preserving �g;A.

2. Background

2.1. Graphs

We start by introducing all the notation and the conventions we will use during the
rest of the paper.
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Definition 2.1. A decorated graph with n legs G is the data of:

(1) a finite non-empty set V.G/ called the set of vertices;

(2) a finite set of half-edges H.G/;

(3) an involution � WH.G/!H.G/ with n fixed elements, called legs, whose set
is denoted by L.G/;

(4) an endpoint map � W H.G/! V.G/;

(5) a vertex weight function on the vertices w W V.G/! Z�0.

A non-ordered pair e D ¹h; h0º of distinct elements in H.G/ interchanged by
the involution is an edge of the graph, and the set of edges is denoted by E.G/. If
�.h/ D v we say that h is adjacent to v, and that v is the endpoint of h. The same
definition works for edges. The valence of a vertex v is val.v/ WD j��1.v/j, i.e., the
number of half-edges adjacent to v. An edge whose endpoints coincide is called a
loop. Two different edges with the same endpoints are said to be parallel. Two legs
are called disjoint if their endpoints are distinct.

In the literature, decorated graphs are known also as weighted graphs, and the
vertex weight function is known also as weight function. Here we change the termi-
nology in order to avoid confusion with another notion of weight we will introduce
later.

Definition 2.2. The genus of a decorated graph is

g.G/ D b1.G/C
X

v2V.G/

w.v/

with b1.G/ WD jE.G/j � jV.G/j C c, where c is the number of connected components
of the graph.

From now on, we will consider only connected graphs, so c D 1 every time, and
we will omit the adjective connected.

Definition 2.3. A morphism between graphs G and G0 is a map

˛ W V.G/ [H.G/! V.G0/ [H.G0/

such that ˛.L.G// � L.G0/ and the following diagrams commute:

V.G/ [H.G/ V.G0/ [H.G0/ V .G/ [H.G/ V.G0/ [H.G0/

V .G/ [H.G/ V.G0/ [H.G0/; V .G/ [H.G/ V.G0/ [H.G0/:

˛

.idV 0�/ .idV 00�
0/

˛

.idV 0 �/ .idV 00 �
0/

˛ ˛

In particular, we have that ˛.V.G// � V.G0/.
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A morphism ˛ W G ! G0 is said to be an isomorphism if it induces by restriction
three bijections ˛V W V.G/! V.G0/, ˛E W E.G/! E.G0/ and ˛L W L.G/! L.G0/.
An automorphism of a graph G is an isomorphism of G with itself: in this case end-
points of the legs are preserved.

If the image of an edge e is v0 2 V.G0/, also its endpoints are mapped into v0

and we say that e is contracted by ˛ and that ˛ is a contraction. Let T � E.G/, the
graph G=T denotes the graph obtained by contracting the edges e 2 T . A weighted
contraction is .G=T;w=T / whereG=T is a contraction and w=T is the vertex weight
function defined by setting, for every v 2 V.G=T /,

w=T .v/ D b1.˛
�1.v//C

X
u2˛�1.v/

w.u/: (2)

It is clear from equation (2) that the genus of a decorated graph remains constant after
contraction.

Let G be a decorated graph, and let L.G/ be the set of its legs. A marking is
the assignment of a number from 1 to n to each leg, and a graph with a marking is
called marked graph. To denote it, we write L.G/ D ¹x1; : : : ; xnº. A morphism of
marked graphs � W G! G0 is a morphism of graphs which preserves the marking, i.e.
�.xi / D x

0
i for every i from 1 to n.

We recall the notion of input datum given in [13].

Definition 2.4. Let n � 1. A weight datum is an n-tuple A D .a1; : : : ; an/ 2

..0; 1�\Q/n. Given g � 0 an integer, an input datum is a pair .g;A/ with A being a
weight datum such that 2g � 2C a1 C � � � C an > 0. The integer n is also called the
length of the weight datum.

The domain of all admissible weight data for genus g and length n is

Dg;n WD ¹.a1; : : : ; an/ 2 ..0; 1� \Q/n such that a1 C � � � C an > 2 � 2gº:

Note that for a fixed n this space is Dg;n D ..0; 1� \Q/n for every g � 1. We call
Dg;n the space of stability conditions. We write SDg;n for the space including also real
coefficients, i.e.

SDg;n D .0; 1�
n;

as we need it for technical purposes. Let G be a weighted marked graph, and let
L.G/D ¹x1; : : : ; xnº be the set of its legs. For every v 2 V.G/, we denote with L.v/
the set of legs adjacent to v, and with jvjE the number of half-edges that are not legs
adjacent to v, i.e.

jvjE D val.v/ � jL.v/j:

For a given weight datum A, we set also

jvjA D
X

xi2L.v/

ai :
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Definition 2.5 ([19, Definition 2.1]). Let .g;A/ be an input datum, AD .a1; : : : ; an/,
and G a weighted marked graph with n legs. We say that G is stable of type .g;A/
(or that it is .g;A/-stable) if it is of genus g and if for every vertex v 2 V.G/

2w.v/ � 2C jvjE C jvjA > 0:

When A D .1; : : : ; 1/ WD 1.n/, we recover the usual notion of stability for marked
graphs, as the sum jvjE C jvjA becomes equal to val.v/.

Remark 2.6. A weighted contraction of a stable graph of type .g;A/ is still a .g;A/-
stable graph.

2.2. Tropical curves

Definition 2.7. An n-marked tropical curve of genus g is a pair � WD .G; l/ where G
is a weighted marked graph of genus g with n legs and l is a function

l W E.G/ [ L.G/! R>0 [ ¹1º

such that l.x/D1 if and only if x is a leg or an edge adjacent to a vertex of valence 1
and weight 0.

Let w be the vertex weight function of G; if w.v/ D 0 for every v 2 V.G/, we
write w D x0 and we say that the tropical curve is pure. A tropical curve is called
regular if it is pure and if G is a 3-regular graph, i.e. all of its vertices have valence 3.
The volume of a tropical curve is defined as the sum of its edge lengths.

We usually refer toG as the underlying graph of the tropical curve, and we denote
it with G.�/ when it is necessary. Legs are called marked points of the tropical curve.
We also write V.�/, E.�/ and so on to indicate vertices, edges and other character-
istics of the tropical curve, meaning the ones of the underlying graph. We also forget
to recall the adjective n-marked when it is clear by the context.

Definition 2.8. A tropical curve is .g;A/-stable if its underlying graph is .g;A/-
stable.

Furthermore, we say that two tropical curves � and � 0 with n marked points
L.�/D ¹x1; : : : ; xnº and L.� 0/ D ¹x01; : : : ; x

0
nº are isomorphic if there exists an iso-

morphism of weighted marked graphs ˛ between the underlying graphs G.�/ and
G.� 0/ such that l.e/ D l 0.˛.e//. We denote by Aut.�/ the group of automorphisms
of a tropical curve � . Note that Aut.�/ � Aut.G.�//.

Definition 2.9. An n-marked extended tropical curve of genus g is a pair � WD .G; l/
where G is a weighted marked graph of genus g and l is a function

l W E.G/ [ L.G/! R>0 [ ¹1º

such that l.x/ D1 for every leg.
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Notice that the only difference with the not-extended tropical curves is that we
possibly have infinite length edges. All the other notions, as e.g. the notion of tropical
equivalence, remain unaltered. Extended tropical curves are needed to compactify the
moduli space of tropical curves.

2.3. Moduli Spaces

For every A 2 Dg;n, there are moduli spaces of tropical curves M trop
g;A

and extended
tropical curves SM trop

g;A
which carry respectively the structure of a generalized cone

complex and of a generalized extended cone complex, both in the sense of [1]. Their
construction is due to Ulirsch in [19], generalizing previous constructions of moduli
spaces of tropical curves of [4] and [5]. Moreover, it is possible to define the locus
�g;A of .g;A/-stable tropical curves of genus g with volume 1.

Consider the category Gg;A of isomorphism classes of .g;A/-stable marked deco-
rated graphs with morphisms generated by isomorphisms and contractions. We define
a natural contravariant functor

† W Gg;A ! RPCC

on the category RPCC of rational polyhedral cone complexes (see [19] for further
details) as follows: to each isomorphism class of a .g;A/-stable marked decorated
graph G we associate the rational polyhedral cone �G D RjE.G/j�0 . A weighted edge
contraction � WG!G0 induces the natural embedding i� W �G0! �G of a face of �G .
An automorphism of G induces an automorphism of �G if it is trivial, otherwise it
induces a self-gluing. Similarly, there is also a natural functor † from Gg;A into the
category of extended rational polyhedral cone complexes that is given by sending G
into x�G D SR

jE.G/j
�0 , where SR�0 is R�0 [ ¹1º. The moduli space M trop

g;A
of .g;A/-

stable tropical curves is defined to be the colimit

M
trop
g;A
WD lim

!
�G

taken over (Gg;A/op. The moduli space SM trop
g;A

of .g;A/-stable extended tropical curves
is defined analogously using the compactified cones x�G’s. The moduli space �g;A is
obviously a subspace of M trop

g;A
, but it can be defined in the same way we did for the

other spaces. Let

�G WD
°
` W E.G/! R�0 W

X
e2E.G/

`.e/ D 1
±
� RE.G/�0 :

Then we have
�g;A WD lim

!
�G ;

where the limit is taken again over (Gg;A/op.
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2.4. Graph Complexes

Let .g;A/ be an input datum. The chain complex G.g;A/ is a complex of rational
vector spaces generated by elements ŒG; !� where G is an n-marked pure .g;A/-
stable graph and ! is a total order on the set of the edges of G. Generators are subject
to the relation

ŒG; !� D sgn.�/ŒG0; !0�

if there is an isomorphism of n-marked graphs G Š G0 under which the orders ! and
!0 are related by the permutation � 2 SjE.G/j. This forces ŒG; !� D 0 when G admits
an automorphism that induces an odd permutation on the edges. The homological
degree of G is jE.G/j � 2g.

So G.g;A/ D
L
G
.g;A/
j , where

G
.g;A/
j D ¹Rational vector space spanned by elements ŒG; !�

where G has j C 2g edges.º

The differential on ŒG; !� ¤ 0 is defined as

@ŒG; !� D
jE.G/jX
iD0

.�1/i ŒG=ei ; !jE.G/n¹ei º
�;

where G=ei indicates the contraction and !jE.G/n¹ei º
is the induced order. If ei is a

loop, we interpret the corresponding term in the formula of the differential as zero.

Remark 2.10. This generalizes the notions and the theory developed in [10] and [9].
In fact, when A D 1.n/, we recover the definition of G.g;n/ we have in [9].

3. Wall crossing for weight data

In this section, we study the stability conditions on their own to show properties which
reflect some phenomena of tropical curves depending only on the markings and the
stability type.

A chamber decomposition of Dg;n consists of a finite setW of hyperplanes, called
walls of the decomposition. The chambers of the decomposition are the connected
components of

Dg;n �

[
w2W

w:

We will consider the fine chamber decomposition defined in [13] as

Wf D

²X
j2S

aj D 1 W S � ¹1; : : : ; nº; 2 � jS j � n � 2ıg;0

³
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where ıi;j is the Kronecker delta, and we will denote the set of the chambers with K
(note thatWf and K both depend on g and n, but we avoid to recall this to lighten the
notation).

Each wall in Wf divides Dg;n in two connected components defined by inequali-
ties

ai1 C � � � C aim > 1 and ai1 C � � � C aim < 1:

So each chamber Ch is defined by a set of inequalities: each inequality is associated
to a wall, and indicates in which of the two components determined by that wall the
elements of Ch lie.

Example 3.1. Let g � 1 and n D 2. We have

Dg;2 D
®
.a1; a2/ 2 ..0; 1� [Q/2 W 0 < ai � 1

¯
� .0; 1�2:

Since n D 2, we have only a possible S , i.e. only a wall given by a1 C a2 D 1, and
we get only two chambers as showed in Figure 1. When g D 0, we have the condition
a1C a2 > 2, which is impossible since the ai are smaller or equal than 1, so there are
not admissible input data. This reflects the fact that there are no stable rational curves
(either tropical or algebraic) with only two marked points.

1

1

w D ¹a1 C a2 D 1º

a1 C a2 < 1

a1 C a2 > 1

Figure 1. The space Dg;2 for g � 1.
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Example 3.2. Let g � 1 and n D 3. Here Dg;3 � .0; 1�
3. We have

Wf D
®
¹a1 C a2 D 1º; ¹a1 C a3 D 1º; ¹a2 C a3 D 1º; ¹a1 C a2 C a3 D 1º

¯
;

which are all planes in R3. The chambers of the fine decomposition are defined by the
following sets of inequalities:

Ch1 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 > 1;

a1 C a3 > 1;

a2 C a3 > 1;

a1 C a2 C a3 > 1; (which is implied by the three above)

Ch2 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 < 1;

a1 C a3 > 1;

a2 C a3 > 1;

a1 C a2 C a3 > 1I

Ch3 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 > 1;

a1 C a3 < 1;

a2 C a3 > 1;

a1 C a2 C a3 > 1I

Ch4 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 > 1;

a1 C a3 > 1;

a2 C a3 < 1;

a1 C a2 C a3 > 1I

Ch5 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 < 1;

a1 C a3 < 1;

a2 C a3 > 1;

a1 C a2 C a3 > 1I

Ch6 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 < 1;

a1 C a3 > 1;

a2 C a3 < 1;

a1 C a2 C a3 > 1I

Ch7 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 > 1;

a1 C a3 < 1;

a2 C a3 < 1;

a1 C a2 C a3 > 1I

Ch8 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 < 1;

a1 C a3 < 1;

a2 C a3 < 1;

a1 C a2 C a3 > 1I

Ch9 WD

8̂̂̂̂
<̂
ˆ̂̂:
a1 C a2 C a3 < 1; (which implies the three below)

a1 C a2 < 1;

a1 C a3 < 1;

a2 C a3 < 1:

When g D 0, we have

D0;3 D
®
.a1; a2; a3/ 2 R3 W 0 < ai � 1; a1 C a2 C a3 > 2

¯
;

and Wf becomes the empty set, since the condition 2 � jS j � 1 is impossible. So
there is only a non-empty chamber without walls.



Filtrations of moduli spaces of tropical weighted stable curves 39

From Example 3.2, we can notice that there are inequalities which are not indepen-
dent. Namely, if

P
j2S aj < 1 then it has to be that

P
j2S 0 aj < 1 for every S 0 � S .

At the same time if there is S 0 � S such that
P
j2S 0 aj > 1, then

P
j2S aj > 1. More-

over, whenever we have two sets S and T such that S \ T D¿ and both
P
j2S aj > 1

and
P
j2T aj > 1, then clearly

P
j2S[T aj > 2, so if there is a T 0 � S [ T such thatP

j2T 0 aj < 1, then
P
j2.S[T /�T 0 aj > 1.

Example 3.3. Suppose we have n D 4 and the defining inequalities a1 C a3 > 1,
a2 C a4 > 1, and a1 C a2 < 1. Then a1 C a2 C a3 C a4 > 2, and so it must be that
a3 C a4 > 1, i.e. this inequality is forced by the others, otherwise we obtain an empty
chamber.

Chambers up to symmetry

Let us now consider the action of Sn on Dg;n given by permuting the entries of weight
data,

Sn �Dg;n Dg;n;

.�; .a1; : : : ; an// .a�.1/; : : : ; a�.n//:

Example 3.4. Consider g D 1, nD 3, let AD ."; 2
3
; 2
3
/ 2D1;3, for some " > 0. Then

the graph G in Figure 2 is .1;A/-stable.
Let now � D .1 2 3/ 2 S3, then �.A/ D .2

3
; "; 2

3
/, and one can observe thatG

is not anymore stable with respect to the new weight datum. But changing the label of
the legs ofG according to the same permutation � gives the new graphG0 in Figure 3,
which is .1; �.A//-stable.

1

3

2
G

Figure 2. A .1; ."; 2
3
; 2

3
//-stable graph.

2

1

3
G0

Figure 3. A .1; .2
3
; "; 2

3
//-stable graph.



S. Serpente 40

The action of Sn on Dg;n descends on an action on K, since a chamber is sent into
another chamber by permutation of the coordinates. Under this action, two chambers
are in the same orbit if there is a permutation in Sn which sends all the inequalities
defining the first chamber in the inequalities defining the second one by permuting the
indices of the variables. We call the orbits of this action chambers up to symmetry. In
particular, note that for a given � 2 Sn, �.ChA/ D Ch�.A/.

We denote by ŒCh� the chamber up to symmetry of the chamber Ch, and we denote
the set of all the chambers up to symmetry by ŒK�.

Example 3.5. Let g � 1, n D 3. There are five orbits, namely

ŒK� D ¹Ch1º; ¹Ch2;Ch3;Ch4º; ¹Ch5;Ch6;Ch7º; ¹Ch8º; ¹Ch9º:

To see how to get an orbit, let us compute for example ¹Ch2; Ch3; Ch4º. By the
inequalities of Example 3.2, we can see that �.Ch2/DCh3 for � D .2 3/; .1 3 2/

and �.Ch2/DCh4 for � D .1 3/; .1 2 3/, while id and .1 2/ fix it. Analogously,
we can see that �.Ch3/ D Ch4 for � D .1 2/; .1 3 2/. To find a permutation � 0

such that � 0.Ch3/ D Ch2 one can just pick the inverse of a permutation of one of the
� ’s, and analogously for � 0 and � 0.

Definition 3.6. Let A D .a1; : : : ; an/ and B D .b1; : : : ; bn/ 2 Dg;n be two weight
data such that ai � bi for every i from 1 to n. Then we write A � B.

Remark 3.7. This relation is defined to reflect the following property. Let .g;A D
.a1; : : : ; an// and .g;B D .b1; : : : ; bn// be two input data such that A � B. Then
a .g;A/-stable graph is always .g;B/-stable, because for every vertex v 2 V.G/ we
have

0 < 2w.v/ � 2C jvjE C jvjA � 2w.v/ � 2C jvjE C jvjB :

In particular, for any weight data A, a graph that is .g;A/-stable is always stable in
the standard sense, since A � 1.n/ for every weight datum A.

We now focus on some technical results concerning weight data and chambers.
We say that two chambers are adjacent if there is only a wall dividing them: in terms
of inequalities, this means that there is only a subset S � ¹1; : : : ; nº such that weight
data in the first chamber satisfy

P
i2S ai < 1, and weight data in the second chamber

satisfy the opposite inequality
P
i2S ai > 1, while for every other S 0¤ S the defining

inequality it gives has the same direction for the two chambers or, in other words, they
lie in the same half space induced by S 0 on Dg;n. We denote by Ch1jCh2 the portion of
the wall wS WD ¹

P
i2S ai D 1º �

SDg;n dividing these two chambers, i.e. the subset
of wS which verifies all the common defining inequalities of the two chambers.

Lemma 3.8. Let Ch1 and Ch2 be two adjacent chambers. The set Ch1jCh2 is not
empty.
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Proof. Let S be the subset of ¹1; : : : ; nº indexing the variables appearing in the defin-
ing inequalities which differ between Ch1 and Ch2. Suppose that weight data in Ch1
verify

P
i2S ai < 1 and weight data in Ch2 verify

P
i2S ai > 1. Let X D .x1; : : : ; xn/

in Ch1 and Y D .y1; : : : ; yn/ in Ch2. Consider the segment between X and Y: each
point of the segment can be described by

Pt D .1 � t /X C tY

for t 2 Œ0; 1�.
Now, consider the function f W Œ0; 1� ! R sending t into .1 � t /

P
i2S xi C

t
P
i2S yi � 1: we have f .0/ D

P
i2S xi � 1 < 0 since X is in Ch1, while f .1/ DP

i2S yi � 1 > 0 since Y D .y1; : : : ; yn/ is in Ch2. Then there must be a t0 2 Œ0; 1�
such that f .0/ D 0, and this implies that Pt0 belongs to the wall wS .

Now, let T ¤ S be a subset of ¹1; : : : ; nº, and suppose
P
i2T ai > 1 for each point

in Ch1 and Ch2. Then

.1 � t /
X
i2T

xi C t
X
i2T

yi > .1 � t /C t D 1;

for every t from 0 to 1.
Analogously, if we pick T 0 ¤ S such that

P
i2T 0 ai < 1 for each point in Ch1 and

Ch2, then
.1 � t /

X
i2T

xi C t
X
i2T

yi < .1 � t /C t D 1;

again for every t from 0 to 1.
So in particular,Pt0 verifies all the common defining inequalities of the two cham-

bers and belongs to the wall wS , hence it lies in Ch1jCh2.

Proposition 3.9. Let Ch1 and Ch2 be two adjacent chambers with S � ¹1; : : : ; nº
such that data in Ch1 satisfy

P
i2S ai < 1, while data in Ch2 satisfy

P
i2S ai > 1,

and for every other T ¤ S the corresponding inequalities agree for both chambers.
Then there are A 2 Ch1 and B 2 Ch2 such that A � B.

Proof. By the previous lemma the set Ch1jCh2 is non-empty, so we can choose
X WD .x1; : : : ; xn/ 2 Ch1jCh2. Let " being a number which is strictly less than
.minT¤S j

P
i2S 0 xi � 1j/. Then we can pick A D .x1; : : : ; xi � "; : : : ; xn/ and B D

.x1; : : : ; xi C "; : : : ; xn/ for some i 2 S .
Assume both have all rational components, then these two weight data verify all

the common defining inequalities of Ch1 and Ch2. Indeed, if we choose a subset
T ¤ S of ¹1; : : : ; nº such that

P
i2T xi < 1, thenX

i2T

ai D
X
i2S

xi � " < 1 and
X
i2T

bi D
X
i2T

xi C " < 1

since
P
i2T xi < 1 � " by how we pick ".
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Analogously, if we choose T ¤ S such that
P
i2T xi > 1, thenX

i2T

bi D
X
i2T

xi C " > 1 and
X
i2S

ai D
X
i2T

xi � " > 1

since
P
i2T xi > 1C ", so A and B verify all the common defining inequalities of

Ch1 and Ch2. Moreover,
P
i2S ai < 1 and

P
i2S bi > 1, so it follows that A 2 Ch1,

B 2 Ch2, and A � B by construction.
If A D .x1; : : : ; xi � "; : : : ; xn/ has irrational components, we can find a weight

datum A0 in Ch1 approximating down each the irrational components xi with a ratio-
nal number x0i such that xi � x0i < ". The same can be done with B approximating
up, so that we have B 0 2 Ch2 and by construction A0 � B 0.

Definition 3.10. Let Ch1;Ch2 2 K. We say that Ch1 � Ch2 if they are equal or there
are S1; : : : ; St � ¹1; : : : ; nº such that for every A 2 Ch1 we have

P
i2Sj

ai < 1 and
for every B 2 Ch2 we have

P
i2Sj

bi > 1 for every j from 1 to t , and given any
S 0 ¤ Sj for every j from 1 to t , the two chambers are in the same half-space induced
by the wall ¹

P
i2S 0 ai D 1º on Dg;n, i.e. all the other defining inequalities agree.

Proposition 3.11. The relation defined in Definition 3.10 is a partial order on K.

Proof. The relation is reflexive by definition. It is also clearly transitive: let Ch1 �
Ch2 and Ch2 � Ch3, and let S1; : : : ; St be the subsets of ¹1; : : : ; nº on which the
defining inequalities of Ch1 and Ch3 disagree. Fix a j from 1 to t . If the inequalities
corresponding to Sj agree for Ch1 and Ch2, then it has to be that

P
i2Sj

ai < 1 for
both, since it has to disagree with the inequality corresponding to Sj of Ch3 and
Ch2 � Ch3 by hypothesis. If the inequalities corresponding to Sj disagree for Ch1
and Ch2, then it has to be that

P
i2Sj

ai < 1 for Ch1 and
P
i2Sj

ai > 1 for Ch2, since
we have Ch1 � Ch2. But then it has to be that

P
i2Sj

ai > 1 also for Ch3, otherwise
it cannot be that Ch2 � Ch3, and so we have Ch1 � Ch3.

For antisymmetry, let Ch1 � Ch2 and Ch2 � Ch1, and suppose they are different.
By the first relation we get that there are S1; : : : ; Sq such that their inequalities agree
for S 0 ¤ Sj , for j D 1; : : : ; q and for them

P
i2Sj

ai < 1 in Ch1 and
P
i2Sj

ai > 1

in Ch2. On the other hand, the second equation gives that there are T1; : : : ; Tr such
that their inequalities agree for S 0 ¤ Tj , and for them

P
i2Tj

ai < 1 in Ch2 andP
i2Tj

ai > 1 in Ch1. But this is impossible, since such Tj ’s cannot exist by the first
relation, so they must be the same chamber.

The partial order we just defined on K naturally induces an order on ŒK�.

Definition 3.12. Let ŒCh1�; ŒCh2� 2 ŒK�, ŒCh1� � ŒCh2� if there are two chambers
Ch1 2 ŒCh1� and Ch2 2 ŒCh2� such that Ch1 � Ch2.

Then by Proposition 3.11 we have the following.
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Corollary 3.13. The relation defined in Definition 3.12 is a partial order on the
set ŒK�.

Both the number of chambers and the number of chambers up to symmetry are
finite, as showed in [3]. For every g, there is a unique maximal chamber, namely the
one given by the weight datum 1.n/. It is easy to see that it is the only element in the
orbit of the action of Sn, and consequently ŒCh1.n/ � is also the maximum with respect
to the partial order on chambers up to symmetry. When g � 1, there is also a minimal
chamber (up to symmetry) which contains all the admissible weight data A � 1

n

.n/
.

Also in this case, the orbit of the minimal chamber is made only by itself.
From now on when g � 1, we denote by E a generic weight datum in the minimal

chamber, which is denoted by ChE .

An algorithm to compare weight data

Given two arbitrary weight data AD .a1; : : : ; an/ and B D .b1; : : : ; bn/ in Dg;n, it is
possible to describe an algorithm which compares their chambers up to symmetry with
respect to the order we put on them, and also says whenever they are not comparable.
The procedure is the following:

(1) For a given input n, consider the group of permutations

Sn D ¹�1 D id; : : : ; �k; : : : ; �nŠº:

Consider also the inputs A and B, and denote by Ak D .a1;k; : : : ; an;k/ the
datum �k.A/.

(2) For each set S � ¹1; : : : ; nº such that 2 � jS j � n � 2ıg;0, we compute the
sums

P
i2S bi .

The index k will count the iterations of the algorithm. So to start the iteration here we
set k D 1 and A1 D A.

(3) For each set S � ¹1; : : : ; nº such that 2 � jS j � n � 2ıg;0, we compute the
sums

P
i2S ai;k .

Then we can have the following outputs:

(3.1) If the condition
P
i2S ai;k�1 holds if and only if the condition

P
i2S bi �1

holds (and of course
P
i2S ai;k>1 if and only if

P
i2S bi>1), then ŒChA�D

ŒChB �.

(3.2) If there are S1; : : : ; Sd such that
P
i2Sj

ai;k � 1 and
P
i2Sj

bi > 1, while
for every other S ¤ Sj for every j D 1; : : : ; d we have

P
i2S ai;k � 1 if

and only if
P
i2S bi � 1, then ŒChA� � ŒChB �. If the same happens but with

the roles of Ak and B are reversed then ŒChB � � ŒChA�.
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(3.3) If there are S;T such that
P
i2S ai;k�1 and

P
i2T bi>1while

P
i2T ai;k>

1 and
P
i2T bi � 1, we let the index k grow by one.

If k � nŠ we restart from the point 3/ of the algorithm.
When k D nŠC 1, we can conclude that ŒChA� and ŒChB � are not compara-
ble in the partial order.

When n grows, this algorithm is not really efficient as it needs an extremely large
number of operations: in the worst case, if g � 1we have to compute .2n � n/.nŠC 1/
sums and make .2n � n/nŠ comparisons of results, while if g D 0 the number of sums
is .2n � 2n � 1/.nŠC 1/, with .2n � 2n � 1/nŠ comparisons.

Notice that in the case of comparable chambers up to symmetry a smarter choice
of the permutation can reduce the number of the operations, but they will never fall
below the number of operations of the best case, which is when we need a single it-
eration. In this case, the number of sums is 2.2n � n/ if g � 1 and 2.2n � 2n � 1/ if
gD0, while the number of comparisons is .2n � n/ if g�1 and .2n � 2n� 1/ if gD0.

4. Proof of the first main theorem

In this section, we give the proof of Theorem A, restated here.

Theorem A. Let g � 0, n � 1 be two integers, and A 2 Dg;n a weight datum. There
are filtrations ofM trop

g;A
given by embeddings induced by the partial order on the set of

chambers up to symmetry. Namely, an ordered sequence

ŒChA1
� � ŒChA2

� � � � � � ŒChAp
� � � � � � ŒChAN�1

� � ŒChA�

induces a filtration is

M
trop
g;A1

,!M
trop
g;A2

,! � � � ,!M
trop
g;Ap

,! � � � ,!M
trop
g;AN�1

,!M
trop
g;A

:

The same result holds if we replaceM trop
g;A

with the moduli space of extended weighted
tropical .g;A/-stable curves SM trop

g;A
or the moduli space of .g;A/-stable tropical

curves with volume 1 �g;A.

The strategy of the proof is to show that there are filtrations of the graph categories
Gg;A induced by the partial order on the chambers up to symmetry. Then the direct
limit description of the moduli spaces of tropical curves will give us the result.

4.1. Wall-crossing properties for graphs

Let Gg;A be the graph category introduced in [19], where objects are .g;A/ weighted
marked graphs with the morphisms described in Section 2. We start by showing that
weight data lying in the same chamber define equal categories of graphs.
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Lemma 4.1. Consider the map

‰ W Dg;n n

[
w2Wf

w ! ¹Gg;A W A is a weight datumº

sending a weight datum A in the graph category Gg;A. Then

(1) the map ‰ is constant on each chamber of the fine chamber decomposition;

(2) the fine chamber decomposition is the coarsest one with the above property,
i.e., if A and B are in two different chambers of the fine chamber decomposi-
tion, their image under the above map is different.

Proof. We follow the lines of [19, Proposition 6.2], since the proof relies only on
graphs. The map is clearly constant on the fine chambers of Dg;n. It suffices to show
that Gg;A changes whenever we cross a wall. Let S � ¹1; : : : ; nº with 2 � jS j � n be
the subset indexing the equation of the wall w D ¹

P
i2S ai D 1º.

Suppose first that g� 1. Let S �¹1; : : : ;nºwith 2� jS j � n be the subset indexing
the equation of the wall w D ¹

P
i2S ai D 1º, and consider the graph containing one

edge between two vertices, one of weight 0 and one of weight g, with all the legs with
index in S being incident to the one with weight 0 (see Figure 4). Then the graph is
stable of type .g;A/ if

P
i2S ai is greater than 1, otherwise it is not, i.e. changing the

half-space of Dg;n we are also changing the category Gg;A, since the graphs are not
the same. In the case g D 0, let S � ¹1; : : : ; nº with 2 � jS j � n � 2 be the subset
indexing the equation of the wall w D ¹

P
i2S ai D 1º, and consider the graph with

two vertices of weight 0 connected by an edge and legs incident to the first vertex
having indices in S , while the others are incident to the second vertex (Figure 5).
Suppose that

P
i2S ai � 1, then the condition

Pn
iD1 ai > 2 implies

P
i…S ai > 1.

So when crossing the wall
P
i2S ai D 1 without changing the ai such that i … S we

obtain that the described graph is stable of type .0;A/ if
P
i2S ai > 1, and it is not

otherwise, and again we conclude that changing the half-space of Dg;n the category
Gg;A is also different.

u v legs indexed by S

g loops
other legs

Figure 4. A genus g graph with all the legs indexed by S on a vertex.
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u v legs indexed by S

other legs

Figure 5. A genus 0 graph with all the legs indexed by S on a vertex.

In the following lemma we will consider the case of weight data lying on walls.

Lemma 4.2. Let d � 1 be an integer and S1; : : : ; Sd � ¹1; : : : ; nº. Let Ch be a
chamber such that

P
i2Sj

ai < 1 for every j from 1 to d . Let R be a weight datum
such that

P
i2Sj

ri D 1, for every j from 1 to d , while for every S ¤ Sj the weight
datum R belongs to the half-space induced by S containing Ch. Then Gg;A is equal
to Gg;R, for every A 2 Ch.

Proof. By definition, for all S and for every A 2 Ch we have
P
i2S ai < 1 if and

only if
P
i2S ri � 1. Indeed, since A belongs to a chamber,

P
i2S ai ¤ 1 for any

S � ¹1; : : : ; nº. Moreover, we can find A 2 Ch with the property that A�R. Indeed,
let � D

Sd
jD1 Si and let " WD .minS 0¤S j

P
i2S 0 xi � 1j/=2j� j. We can consider AD

.xr1; : : : ; xrn/ where

xri WD

´
ri if i … � ;

ri � " if i 2 � :

By construction, if
P
i2Sj

ri D 1, then
P
i2Sj
xri < 1 for every j D 1; : : : ; d . More-

over, if
P
i2S ri < 1 then

P
i2S xri < 1 and if

P
i2S ri > 1 then

P
i2S xri > 1.

By construction A � R, so the category Gg;A is a full subcategory of Gg;R by
Remark 3.7. As in Proposition 3.9 we can assume A to have all rational components,
so that A 2 Ch.

Now, by contradiction suppose there isG 2Ob.Gg;R/ nOb.Gg;A/. If this happens,
there is v 2 V.G/ such that

2w.v/ � 2C jvjE C jvjA < 0 < 2w.v/ � 2C jvjE C jvjR:

This implies that there is an S such that jvjAD
P
i2S ai<1while jvjRD

P
i2S ri>1,

indeed 2w.v/� 2C jvjE C jvjA<0 implies 2w.v/� 2C jvjE <�jvjA, sow.v/D 0
and jvjE � 1, since they are all integers. But this is a contradiction to our hypothesis
on Ch and R, so the result follows.

Proposition 4.3. Let Ch1;Ch2 2 K be two chambers, A 2 Ch1, B 2 Ch2 two weight
data. Then, if Ch1 � Ch2, the category Gg;A is a full subcategory of Gg;B .
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Proof. Suppose Ch1 and Ch2 are different, otherwise the result is trivial by Lem-
ma 4.1. Since Ch1 � Ch2, there are S1; : : : ; Sd � ¹1; : : : ; nº such that

P
i2S ai < 1

for .a1; : : : ; an/ 2 Ch1 and
P
i2S bi > 1 for .b1; : : : ; bn/ 2 Ch2, for j D 1; : : : ; d ,

while for S ¤ Sj the defining inequalities of Ch1 and Ch2 have the same direction.
Suppose first d D 1. Since Gg;A’s are constant on each chamber, by Proposi-

tion 3.9 we can find A0 2Ch1, B 0 2Ch2 such that A0 �B 0 and we have Gg;AD Gg;A0

and Gg;B D Gg;B0 . The inclusion follows from Remark 3.7.
Let d � 2, and suppose by induction that for every d 0 < d , given two cham-

bers Ch01 and Ch02 whose inequalities agree for all but d 0 sets of indices S 01; : : : ; S
0
d 0

,
and for every A 2 Ch1 we have

P
i2S 0

j
ai < 1 while for every B 2 Ch2 we haveP

i2S 0
j
ai > 1, then we can find a weight datum in A0 2 Ch01 and B 0 2 Ch02 such that

A0 � B 0.
First, suppose there is a chamber Ch3 whose defining inequalities agree with the

one of Ch1 except for S1; : : : ; Sc , for a number c < d . Then by induction there is
A 2 Ch1, P ;Q 2 Ch3 and B 2 Ch2 such that A � P and Q � B. Then we can
induce inclusions

Gg;A ,! Gg;P D Gg;Q ,! Gg;B ;

so by composition we get the desired inclusion.
Suppose now there is no chamber Ch3, i.e. for every weight datum Q not belong-

ing to walls such that
P
i2Sj

qi > 1 for some i D 1; : : : ; d , then
P
i2Sk

qi > 1 for
every k D 1; : : : ; d and the same holds picking the symbol< instead of the symbol>.

Let X 2 Ch1, Y 2 Ch2 and consider the segment which goes from X and Y. Then
every point on the segment Pt D .1� t /X C tY for t 2 Œ0; 1� verifies all the common
inequalities, and there is at least a t 0 2 Œ0; 1� such that Pt 0 D .p1; : : : ; pn/ belongs to
a wall wSk

, for some k D 1; : : : ; d . Let " D min¹T jPi2T pi¤1º j1 �
P
i2T pi j and let

ı < ". Define B D .b1; : : : ; bn/ D .p1 C
ı
n
; : : : ; pn C

ı
n
/. It follows by construction

that B verifies all the inequalities verified by Pt , and since
P
i2Sk

bi > 1 and it
cannot be on a wall it belongs to Ch2. Analogously we can define AD .a1; : : : ; an/D

.p1 �
ı
n
; : : : ; pn �

ı
n
/. Since

P
i2Sk

ai < 1 while all other equalities agree with the
one of Pt 0 then it belongs to Ch1, and A � B by construction, so we conclude by
observing that we can suppose them to have all rational components as in the proof of
Proposition 3.9.

Remark 4.4. The proof of this proposition also shows that for any two chambers
Ch1 � Ch2 we can find a weight datum in A 2 Ch1 and B 2 Ch2 such that A � B.

By Example 3.4 we can easily deduce that each time we have two weight data
A and a permutation � 2 Sn, the two categories Gg;A and Gg;�.A/ are isomorphic,
since it is enough to send each graph to the one obtained relabeling its legs according
to � , without changing morphisms (they are equal if the chosen permutation acts
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trivially on the chamber). So, up to isomorphism, there is only a category Gg;A for
each chamber up to symmetry, which is the one containing the chamber to which A

belongs. Therefore, the latter proposition can be rephrased including this symmetry
property, giving the following:

Proposition 4.5. Let ŒCh1� and ŒCh2� be two chambers up to symmetry, and let
A 2 Ch1 2 ŒCh1�, B 2 Ch2 2 ŒCh2�. There is an inclusion as a full subcategory
Gg;A ,! Gg;B each time ŒCh1� � ŒCh2�. It is an isomorphism if the two chambers
up to symmetry are the same.

Since the stability conditions on tropical curves are defined on their underly-
ing graphs, everything we showed so far can be easily generalized for M trop

g;A
, SM trop

g;A

and �g;A. We can resume everything in the following proposition.

Proposition 4.6. Let g; n � 1 be two integers and A and B two weight data in Dg;n.

(1) If A � B, then M trop
g;A
�M

trop
g;B

.

(2) If A and B are in the same chamber, then M trop
g;A

is equal to M trop
g;B

.

(3) If A and B are obtained one from the other through a permutation of coordi-
nates, thenM trop

g;A
is homeomorphic toM trop

g;B
through a relabeling homeomor-

phism.

(4) If A and B are in chambers which belong to the same orbit, then M trop
g;A

is
homeomorphic to M trop

g;B
through a relabeling homeomorphism.

The same results hold if we replace the M trop
g;A

’s with the SM trop
g;A

’s or the �g;A’s.

Remark 4.7. A priori, given A and B in different chambers, we cannot say if two
moduli spaces M trop

g;A
and M trop

g;B
are not homeomorphic as topological spaces. The

point of using the relabeling homeomorphism is that they preserve the moduli space
structure.

Proof of Theorem A. We can now conclude the proof of Theorem A. Consider an
ordered sequence of chambers up to symmetry

ŒChA1
� � ŒChA2

� � � � � � ŒChAp
� � � � � � ŒChAN�1

� � ŒChA�:

At each step of the filtration ŒChAp
� � ŒChApC1

� we can find two weight data A � B

and two chambers Ch1 � Ch2 such that A 2 Ch1 2 ŒChAp
� and B 2 Ch2 2 ŒChApC1

�.
Then M trop

g;Ap
�M

trop
g;A
�M

trop
g;B
�M

trop
g;ApC1

, where by � we indicate homeomor-
phisms of the above proposition, (3), and the inclusion is the one of (1). This induces
the desired inclusion map M trop

g;Ap
,!M

trop
g;ApC1

. The result of the theorem then fol-
lows repeating this reasoning for each step of the sequence.
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Example 4.8. Consider the case g � 1, n D 3. We saw the chamber decomposition
in Example 3.2, and the chamber decomposition up to symmetry in Example 3.5. We
choose a weight datum for each chamber, and for symmetric chambers we choose
data obtained after a permutation:

• .1; 1; 1/ 2 Ch1;

• .12
27
; 14
27
; 1 � "/ 2 Ch2;

• .14
27
; 1 � "; 12

27
/ 2 Ch3;

• .1 � "; 12
27
; 14
27
/ 2 Ch4I

• .12
27
; 14
27
; 14
27
� "/ 2 Ch5,

• .14
27
� "; 12

27
; 14
27
/ 2 Ch6I

• .14
27
; 14
27
� "; 12

27
/ 2 Ch7;

• .4
9
� "; 4

9
� "; 4

9
� "/ 2 Ch8;

• .1
3
; 1
3
; 1
3
� "/ 2 Ch9,

for 0 < " < 1
27

. We pick these " perturbations in order to have our weight data in the
interior of chambers. Since moduli spaces are constant on each chamber, for every
weight datum A 2 Dg;3, the moduli space M trop

g;A
is the same as the space obtained

picking one of the nine data above (the one which lies in the same chamber of A). So
by the partial order on the set of the chambers, we get the following diagram:

M
trop
g;3 DM

trop
g;.1;1;1/

M
trop
g;. 12

27 ;
14
27 ;1�"/

M
trop
g;. 14

27 ;1�";
12
27 /

M
trop
g;.1�"; 12

27 ;
14
27 /

M
trop
g;. 12

27 ;
14
27 ;

14
27�"/

M
trop
g;. 14

27 ;
14
27�";

12
27 /

M
trop
g;. 14

27�";
12
27 ;

14
27 /

M
trop
g;. 4

9�";
4
9�";

4
9�"/

M
trop
g;. 1

3 ;
1
3 ;

1
3�"/

� �

� �

In the diagram, we indicated the relabeling homeomorphism of Proposition 4.6
with�.

For example, the following filtration

M
trop
g;. 1

3 ;
1
3 ;

1
3�"/
�M

trop
g;. 4

9�";
4
9�";

4
9�"/
�M

trop
g;. 14

27�";
12
27 ;

14
27 /
�M

trop
g;.1�"; 12

27 ;
14
27 /
�M

trop
g;3

of the space M trop
g;3 can be obtained by picking the right column of the diagram.
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Clearly, the same diagram and the same filtrations also work for SM trop
g;A

and �g;A.
Notice that in this case the partial order induced on the chambers up to symmetry
becomes total, since we can say for each couple of chambers up to symmetry which
of them is greater or equal than the other. This is not true in general, as showed in the
following example.

Example 4.9. Let g � 0, n D 8. Consider the chamber Ch1 defined by the following
set of inequalities:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

a1 C a2 > 1;

a1 C a3 > 1;

a1 C a4 > 1;

a1 C a5 > 1;

a1 C a6 > 1;

a1 C a7 > 1;

ai C aj < 1 for any other couple of indices;P
i2S ai > 1 for any S such that jS j � 3:

This is not empty, for example the datum

A1 D

�1
2
C 2";

1

2
� ";

1

2
� ";

1

2
� ";

1

2
� ";

1

2
� ";

1

2
� "; 2"

�
belongs to Ch1 for a sufficiently small ". Consider now the chamber Ch2 defined by8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

a1 C a2 > 1;

a1 C a3 > 1;

a1 C a4 > 1;

a2 C a3 > 1;

a2 C a4 > 1;

a3 C a4 > 1;

ai C aj < 1 for any other couple of indices;P
i2S ai > 1 only if jS j � 3 and jS \ ¹1; 2; 3; 4ºj � 2:

This also is not empty since

A2 D

�1
2
C ";

1

2
C ";

1

2
C ";

1

2
C "; "; "; "; "

�
belongs to Ch2 for a sufficiently small ". We can see that Ch1 and Ch2 are not com-
parable with respect to the partial order on K by looking at their defining inequalities.
Indeed, by definition, given Cha and Chb in K we say that Cha � Chb if they are
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equal or, informally, all of their defining inequalities which have different direction
are such that

P
i2S ai < 1 for every A 2 Cha and

P
i2S bi > 1 for every B 2 Chb .

But here we have that in Ch1, a1 C a5 > 1 while a1 C a5 < 1 in Ch2. Meanwhile,
a2 C a4 < 1 in Ch1, but a2 C a4 > 1 in Ch2 so the above condition is not satisfied.

Moreover, these two chambers are in different orbits of the action of S8 on K
since the inequalities with two variables and right direction defining Ch1 all con-
tains the variable a1, while in Ch2 there is no variable repeated in all the inequalities
with two variables and right direction. So there is no permutation � in S8 such that
�.Ch1/ D Ch2, and this implies that ŒCh1� and ŒCh2� are not comparable in ŒK�.

At the level of moduli spaces of tropical curves, it means that we can find points
in M trop

g;A1
with combinatorial types which are not in M trop

g;A2
and vice versa as showed

in Figure 6.

4.2. Wall crossing on graph complexes

Consider now the graph complexes G.g;A/ introduced in Section 2.4. These com-
plexes are defined upon the same stability conditions that we have been considering
so far on graphs, so we can establish a theorem analogous to Theorem A which holds
for G.g;A/.

Proposition 4.10. Let g;n� 1 be two integers, and A and B two weight data in Dg;n.

(1) If A � B, then G.g;A/ � G.g;B/.

(2) If A and B are in the same chamber, then G.g;A/ D G.g;B/.

(3) If A and B are obtained one from the other through a permutation of coordi-
nates, then G.g;A/ is isomorphic to G.g;B/.

(4) If A and B are in chambers Ch1 and Ch2 such that ŒCh1�D ŒCh2� 2 ŒK�, then
G.g;A/ is isomorphic to G.g;B/.

1 2

3

4 5

6

78

g 1

2

3

4

5 6 7 8

g

Figure 6. The graph on the left is a combinatorial type of points in M trop
g;A1

but not in M trop
g;A2

,
while the graph on the right is a combinatorial type of points in M trop

g;A2
but not in M trop

g;A1
.
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Proof. A generator of G.g;A/ is a .g;A/-stable graph with an edge ordering under
the relation ŒG; !� D sgn.�/ŒG0; !0� if there is an isomorphism of n-marked graphs
GŠG0 under which the orders ! and !0 are related by the permutation � 2 SjE.G/j. If
A � B, every .g;A/-stable graph is also .g;B/-stable, so to show (1) we just send a
generator into itself. For (2), if A and B are in the same chamber, then Gg;ADGg;B so
the result follows. Proof of (3) follows by the same reasoning by sending a generator
of G.g;A/ into the generator of G.g;B/ obtained relabeling the legs according to the
permutation which sends A to B. This also shows (4) as by hypothesis we can assume
A and B are obtained one from the other after a permutation of coordinates.

Theorem 4.11. Let g � 0, n � 1 be two integers. Fix a weight datum A 2 Dg;n.
There are filtrations of G.g;A/ induced by the partial order on the set of chambers up
to symmetry given by inclusions of complexes. Namely an ordered sequence

ŒChA1
� � ŒChA2

� � � � � � ŒChAp
� � � � � � ŒChAN�1

� � ŒChA�;

induces a filtration of chain complexes

G.g;A1/ ,! G.g;A2/ ,! � � � ,! G.g;Ap/ ,! � � � ,! G.g;AN�1/ ,! G.g;A/

with G.g;Ap�1/ ,! G.g;Ap/ being an injective map of chain complexes for every
p D 2; : : : ; N .

Proof. At each step of the filtration ŒChAp
� � ŒChApC1

� we can find two weight data
A � B and two chambers Ch1 � Ch2 such that A 2 Ch1 2 ŒChAp

� and B 2 Ch2 2
ŒChApC1

�. Then by Proposition 4.10,G.g;Ap /ŠG.g;A/ �G.g;B/ ŠG.g;ApC1/ anal-
ogously to what we did to prove Theorem A.

4.3. Examples of filtrations

In this section, we construct some sequences of weight data, chambers and chambers
up to symmetry which define interesting filtrations of moduli spaces.

The five term filtration

Recall that for any g; n � 1 there are two special chambers up to symmetry: the
maximal chamber ŒCh1.n/ �, which is greater than any other chamber up to symmetry,
and the minimal chamber ŒCh".n/ � WD ŒChE �, for " < 1

n
, which is smaller than any other

chamber up to symmetry. Moreover, both these orbits are made by a single chamber.
Let F D . 1

n
C "; 1

n
; : : : ; 1

n
/. This datum belongs to the chamber ChF described

by the inequalities
P
i2S ai < 1 for every S ¤ ¹1; : : : ; nº and

Pn
iD1 ai > 1 . It is

clearly invariant by the action of Sn and so its orbit ŒChF � is made only by itself. In
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particular, �.F / 2 ChF for every � 2 Sn. Moreover, by the inequalities defining ChF

it is clear that Ch".n/ � ChF � Ch for any chamber Ch ¤ Ch".n/ .
Suppose we have two chambers up to symmetry ŒCh1� and ŒCh2� such that ŒCh1��

ŒCh2�, then it is always possible to construct a five term sequence

ŒChE � � ŒChF � � ŒCh1� � ŒCh2� � ŒCh1.n/ �

inducing a filtration of moduli spaces

M
trop
g;E

,!M
trop
g;F

,!M
trop
g;A

,!M
trop
g;B

,!M trop
g;n ;

where A 2 Ch1 and B 2 Ch2.

Remark 4.12. In general, given a sequence ŒChA1
� � � � � � ŒChAp

� which does not
contain already ŒChE �, ŒChF � and ŒCh1.n/ �, it is always possible to extend it by two
terms ŒChE � � ŒChF � on the left and by ŒCh1.n/ � on the right (if they are not already
in the sequence).

The heavy/light filtration

Let g � 1, n � 2, and " < 1
n

. We denote by .1.m/; ".n�m// the weight datum made by
a sequence of m components of weight 1, called the heavy components, and n � m
components of weight ".n�m/, called light components, form which goes from 0 to n.
Such data are called heavy/light. Notice that if m D 0 we get E , while if m D n we
get 1.n/.

By construction, we have

.1.m/; ".n�m// � .1.mC1/; ".n�m�1//

for any m D 0; : : : ; n� 1, and passing to their chambers it is easy to see that we have

ChE � Ch.1.1/;".n�1// � � � � � Ch.1.m/;".n�m// � � � � � Ch.1.n�1/;".1// � 1
.n/:

It is easy to check that all of these inequalities are strict except the last one, since
Ch.1.n�1/;".1// D Ch1.n/ .

So there is an induced filtration of spaces

M
trop
g;E

,!M
trop
g;.1.1/;".n�1//

,! � � � ,!M
trop
g;.1.m/;".n�m//

,! � � � ,!M trop
g;n :

Of course the same holds also if we consider the chambers up to symmetry. In
that case, given a weight datum of the heavy/light form .1.m/; ".n�m//, each chamber
in ŒCh.1.m/;".n�m//� contains a heavy/light datum obtained by a permutation of the
original one.



S. Serpente 54

Remark 4.13. The heavy/light filtration also works for g D 0, but in this case we
must start by the case m D 2. These particular input data were used in [6] and [17]
to study the topology and the Chow Ring of the moduli spaces of rational tropical
curves.

The floor filtration

Fix g � 0 and l 2 ¹2; : : : ; nº. Suppose we have a chamber defined by the following
set of inequalities:

P
i2S ai > 1 if and only if jS j � l . The weight datum

Hl WD

�1
l
C "l ; : : : ;

1

l
C "l

�
belongs to that chamber for "l sufficiently small, and its chamber ChHl

is invariant
with respect to the action of Sn. We call ŒChHl

� the l-th floor of the chamber decom-
position.

Notice that if l D 2, ChH2
D Ch1.n/ , while if l D n, ChHn

D ChF . Moreover, by
construction

ChHl
� ChHl�1

(and clearly the same holds if we pick them up to symmetry) so there is an induced
filtration

M
trop
g;F

,! � � � ,!M
trop
g;Hl

,!M
trop
g;Hl�1

� � � ,!M trop
g;n ;

eventually extendable on the left withM trop
g;E

. Notice that being stable for a curve in the
l-th floor means that each valence one vertex needs at least l markings to be stable.

5. Spectral sequences of graph complexes

We start this section putting in relation the reduced rational homology of �g;A with
the top weight cohomology of Mg;A. We start giving a brief account on the theory of
symmetric �-complexes introduced in [9] and [10].

Symmetric �-complexes

Let I denote the category whose objects are the sets Œp� WD ¹0; : : : ;pº for nonnegative
integers p, together with Œ�1� WD ¿, and whose morphisms are injections of sets. A
symmetric �-complex is a functor from I op to Sets.

For any weight datum A, we can consider our�g;A’s as symmetric�-complexes
as follows. Let X D �g;A W I op ! Sets be a functor, with

Xp D ¹equivalence classes of pairs .G; �/º;

withG 2 Ob.Gg;A/ and � WE.G/! Œp� a bijection, where we consider � D � 0 if they
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are in the same orbit under the action of Aut.G/. For every i W Œp0�! Œp� defineX.i/ W
Xp!Xp0 as follows: given an element ofXp represented by .G; � WE.G/! Œp�/we
contract the edges of G whose labels are not in i.Œp0�/ � Œp�, and then we relabel the
remaining edges with labels Œp0� as prescribed by i . The result is a Œp0� edge labeled
graph G0, and we set it to be X.i/.G/.

To a symmetric �-complex X , we can associate its group of cellular p-chains

Cp.X/ D .Q
sign
˝QXp/SpC1

where QXp is the vector space with basis Xp on which SpC1 acts by permuting the
basis vectors, and Qsign denotes the action of SpC1 on Q via the sign. By [10, Propo-
sition 3.8] we know that the homology of C�.�g;A/ is identified with zH�.�g;AIQ/.

Moreover, whenever X � Y is a subcomplex in the sense of [9, Definition 3.5],
for every p � �1 we can define Cp.Y;X/ by the exact sequence

0! Cp.X/! Cp.Y /! Cp.Y;X/! 0:

For every weight data A 2 Ch1 and B 2 Ch2 such that ŒCh1� � ŒCh2�, since there
is an inclusion as symmetric �-subcomplex �g;A � �g;B , we can consider the rel-
ative chain complex C�.�g;B ; �g;A/ whose homology is identified with the relative
rational homology by [9, Proposition 3.6],

Hi .C�.�g;B ; �g;A// Š Hi .�g;B ; �g;AIQ/:

First, we can prove the following theorem.

Theorem 5.1. Let g � 1 and A 2 Dg;n a weight datum. There is a natural injection
of chain complexes

G.g;A/ ! C�.�g;A;Q/

decreasing degrees by 2g � 1, inducing isomorphisms on homology

zHkC2g�1.�g;AIQ/! Hk.G
.g;A//

for all k’s.

Proof. We prove this theorem following the lines of [9, Theorem 1.4]. Consider the
cellular chain complex C�.�g;A;Q/. It is generated in degree p by ŒG; !� where
G 2 Gg;A is a graph and ! WE.G/! Œp�D 0; 1; : : : ; p is a bijection, with the relations
ŒG; !� D sgn.�/ŒG0; !0� if there is an isomorphism G ! G0 of graphs inducing the
permutation � of the set Œp�. We claim that the complex C�.�g;A;Q/ splits into
the direct sum of two subcomplexes A.g;A/ ˚ B.g;A/, A.g;A/ being spanned by the
generators where G has no loops and whose vertices have weight zero, and B.g;A/

is spanned by the generators such that G has at least one loop or one nonzero vertex
weight. These are in fact subcomplexes: for B.g;A/ it is clear, while for A.g;A/, we
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need just to observe that if G has no loops and all vertices have weight zero, and
ŒG; !� ¤ 0, then G has no parallel edges. Therefore, every contraction G=e also has
no loops and also has all vertices of weight zero.

Now we note thatA.g;A/ is isomorphic toG.g;A/ up to shifting degrees by 2g � 1,
and B.g;A/ is the cellular chain complex associated to the subcomplex of tropical
curves with underlying graphs having at least a loop and/or a vertex with positive
weight �lw

g;A
, which is contractible whenever it is non-empty by [16, Theorem 3.2].

Therefore,B.g;A/ is an acyclic complex by [10, Proposition 3.8], so the result follows.

So the graph complexes G.g;A/ compute the reduced rational homology of the
�g;A. This theorem generalizes [9, Theorem 1.4], and gives the following corollary.

Corollary 5.2. There is a natural isomorphism

GrW6g�6C2nH
4g�6C2n�k.Mg;AIQ/! Hk.G

.g;A//:

Proof. Using the language of [10] and [9], the proof follows by Theorem 5.1 and
[10, Theorem 5.8] just observing that the dual boundary complex �.Mg;A �

SMg;A/

is �g;A. Indeed, by [19, Theorem 1.1], we have D WD SMg;A nMg;A to be a divi-
sor with normal crossing (stack theoretically), so by [10, Corollary 5.6], �.D/ is the
symmetric�-complex associated to the smooth generalized cone complex S. SMg;A/.
The rest of the proof is analogous to the one of [10, Corollary 5.6] and [9, Theo-
rem 6.1].

Filtered chain complexes

We want to put on the graph complexes the structure of filtered chain complexes and
extract from them a spectral sequence in order to show our last theorem. We recall
briefly some definitions and facts about these objects.

Definition 5.3. A filtered module is an R-module A with an increasing sequence
of sub-modules FpA � FpC1A indexed by p 2 Z such that

S
p2Z FpA D A andT

p2Z FpA D ¹0º. We call ¹FpAºp2Z a filtration of A.

We say that the filtration ¹FpAºp2Z is bounded if FpAD ¹0º for sufficiently small
p and FpA D A for sufficiently large p.

Definition 5.4. Let A be a filtered module. The associated graded module is defined,
in degree p, as GpA D FpA=Fp�1A.

Notice that there is a short exact sequence

0! Fp�1A! FpA! GpA! 0:
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Definition 5.5. A filtered chain complex is a chain complex .C�; @/ together with a
filtration ¹FpCiºp2Z on each Ci such that the differential preserves the filtration, i.e.
@.FpCi / � FpCi�1.

We have a well-defined induced differential @ W GpCi ! GpCi�1, and so we can
define an associated graded chain complex GpC�. Moreover, there is an induced fil-
tration on the homology of C� given by

FpHi .C�/ D ¹˛ 2 Hi .C�/ W ˛ D Œx�; 9x 2 FpCiº:

Again, this has associated graded pieces GpHi .C�/ defined as before.

Definition 5.6. A spectral sequence consists of the following:

• an R-module Erp;q defined for each p; q 2 Z and each integer r � r0, where r0 is
some nonnegative integer;

• differentials @r W Erp;q ! Erp�r;qCr�1 such that @2r D 0 and ErC1 is the homology
of .Er ; @r/, i.e.

ErC1p;q D
Ker.@r W Erp;q ! E1p�r;qCr�1/

Im.@r W E1pCr;q�rC1 ! E1p;q/
:

A spectral sequence converges if for every p; q, if r is sufficiently large, then
@r vanishes on Epr;q and ErpCr;q�rC1. In this case, for each p; q, the module Erp;q is
independent of r for r sufficiently large, and we denote this by E1p;q . For a given r ,
the collection of R-modules ¹Erp;qº, together with the differentials @r between them,
is called the r-th page of the spectral sequence. Each page is the homology of the
previous page.

Given a filtered complex, we have an associated spectral sequence obtained from
the short exact sequences extracted from the filtrations. Namely, letE0p;q WDGpCpCq .
Then there is a well-defined @ WE0p;q!E0p;q�1. We denoteE1p;q DHpCq.GpC�/. and
define @1 W E1p;q ! E1p�1;q as follows. A homology class ˛ 2 E1p;q can be represented
by a chain x 2 FpCpCq such that @x 2 Fp�1CpCq�1. We set @1.˛/D Œ@x�. It follows
easily from @21 D 0 that @1 is well defined and @21 D 0. We now consider the homology

E2p;q D
Ker.@1 W E1p;q ! E1p�1;q/

Im.@1 W E1pC1;q ! E1p;q/
:

We can iterate this process for every nonnegative integer r , so we can define an r-th
order approximation to GpHpCq.C�/ by

Erp;q D
¹x 2 FpCpCq W @x 2 Fp�rCpCq�1º

Fp�1CpCq C @.FpCr�1CpCqC1/
:
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Here the notation indicates the quotient of the numerator by its intersection with
the denominator.

Fix g; n � 1 and a sequence ŒChA1
� � � � � � ŒChAN

�. It gives a filtration of chain
complexes

G.g;A1/ ,! � � � ,! G.g;Ap/ ,! � � � ,! G.g;AN /:

If we set by convention G.g;Ap/ D ¹0º for every p � 0 and we let it stabilize at
the last term for every p � N , we can extend the above filtration for every p 2 Z,
with the trivial differential outside the bounds 0 and N . Then the induced filtration on
each G.g;AN /

i makes G.g;AN / a filtered chain complex.
This structure on G.g;AN / induces a spectral sequence as already seen, and we

have

E0p;q D GpG
.g;AN /
pCq D FpG

.g;AN /
pCq =Fp�1G

.g;AN /
pCq

D G
.g;Ap/

pCq =G
.g;Ap�1/

pCq WD G
.g;Ap ;Ap�1/

pCq ;

with G.g;Ap ;Ap�1/

pCq being the complex of Ap but not Ap�1 stable graphs, and

E1p;q D HpCq.GpG
.g;AN // D HpCq.G

.g;Ap/

pCq =G
.g;Ap�1/

pCq / D HpCq.G
.g;Ap ;Ap�1/

pCq /:

So we are ready to show the last main theorem, restated here.

Theorem B. Fix g � 1, n � 2. Assume we have a sequence of chambers up to sym-
metry ŒChA1

� � � � � � ŒChAp
� � � � � � ŒChAN

�, and letG.g;A1/ ,! � � � ,! G.g;Ap/ ,!

� � � ,! G.g;AN / be the induced filtration on graph complexes. Then

GrW6g�6C2nH
4g�6C2n�k.Mg;AN

IQ/ Š
NM
pD1

E1p;k�p;

where the terms E1
p;k�p

are the ones to which the spectral sequence induced by the
above filtration converges.

Proof. We consider the homology ring H�.G.g;AN // D
L
k2Z Hk.G

.g;AN //. By
construction of the graph complexes, H�.G.g;AN // is supported only in degrees
1 � 2g � k � g C n � 3 so the sum is finite, and since any of the Hk.G.g;AN //’s
is finite dimensional this is true also forH�.G.g;AN //. Moreover, eachHk.G.g;AN //

comes with a filtration induced by the one on G.g;AN /,

FpHk.G
.g;AN // D

®
˛ 2 Hk.G

.g;AN // W ˛ D Œx�; x 2 G
.g;Ap/

k

¯
;

so also H�.G.g;AN // is filtered by

FpH�.G
.g;AN // D

gCn�3M
kD1�2g

FpHk.G
.g;AN //:



Filtrations of moduli spaces of tropical weighted stable curves 59

This gives toH�.G.g;AN // the structure of a finite dimensional filtered graded vector
space.

By [18, Section 1], such an object can be decomposed, in each degree, as the direct
sum

Hk.G
.g;AN // D

M
pCqDk

FpHpCq.G
.g;AN //

Fp�1HpCq.G.g;AN //
D

M
pCqDk

GpHpCq.G
.g;AN //:

Moreover, since the filtration is bounded, we can rewrite this sum taking only the
significant indices

Hk.G
.g;AN // D

NM
pD1

FpHpCq.G
.g;AN //

Fp�1HpCq.G.g;AN //
D

NM
pD1

GpHpCq.G
.g;AN //;

where q D k � p.
Consider now the associated spectral sequence: by construction we have

GpHpCq.G
.g;AN // D E1p;q

since the spectral sequence converges to it, so

Hk.G
.g;AN // D

NM
pD1

E1p;k�p:

To conclude it is enough to apply Corollary 5.2, so that

GrW6g�6C2nH
4g�6C2n�k.Mg;AN

IQ/ Š Hk.G
.g;AN // D

NM
pD1

E1p;k�p:

We add some remarks about the proof:

Remark 5.7. The proof additionally shows that the same decomposition holds for
zHk�1.�g;AN

IQ/, just by applying Theorem 5.1 instead of the corollary.

Remark 5.8. Since the filtration is bounded, by [14, Lemma 3.1.d] the approxi-
mations of the spectral sequence stabilize after a certain r , i.e. E1p;q D Erp;q for r
sufficiently large. By the description

Erp;q D
¹x 2 FpCpCq W @x 2 Fp�rCpCq�1º

Fp�1CpCq C @.FpCr�1CpCqC1/

we can see that for our filtrations these terms stabilize when r � max¹p;N � p C 1º
since for these r’s Fp�rCpCq�1 D ¹0º and FpCr�1CpCqC1 D G

.g;AN /
pCq . So E1p;q D

E
max¹p;N�pC1º
p;q .
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Remark 5.9. The top weight cohomology GrW6g�6C2nH
4g�6C2n�k.Mg;AN

/ does
not depend on the chosen filtration: a priori different filtrations give different spectral
sequences and different convergence termsE1

p;k�p
. Nevertheless, the two direct sums

will be isomorphic.
In general, some of the terms E1

p;k�p
in the direct sum may be zero.

Example 5.10. We put ourselves in the case g D 1, n D 3. We fix the sequence of
weight data of Example 4.8,�1
3
;
1

3
;
1

3
� "
�
�

�4
9
� ";

4

9
� ";

4

9
� "
�
�

�14
27
� ";

12

27
;
14

27

�
�

�
1� ";

12

27
;
14

27

�
� 1.n/;

for a sufficiently small ". We set also A1D .
1
3
; 1
3
; 1
3
� "/, A2 D .

4
9
� "; 4

9
� "; 4

9
� "/,

A3 D .
14
27
� "; 12

27
; 14
27
/, A4 D .1 � ";

12
27
; 14
27
/ and A5 D 1

.n/ for simplicity. The cor-
responding sequence of chambers up to symmetry is then

ŒCh. 1
3 ;

1
3 ;

1
3�"/

� � ŒCh. 4
9�";

4
9�";

4
9�"/

� � ŒCh. 14
27�";

12
27 ;

14
27 /
� � ŒCh.1�"; 12

27 ;
14
27 /
� � ŒCh1.n/ �:

By Theorem B, we can compute the homology of �1;1.n/ D �1;3, which cor-
responds to the top weight cohomology of M1;3, computing first the terms of the
spectral sequence of G.1;3/ and then using the shifting degree isomorphism. Since we
know thatG.1;3/ has homology only in degrees�1, 0, and 1, we have to compute only
three direct sums, each with five terms. All the terms Er

p;k�p
stabilize for r � 5.

• Case k D �1. Here we have to compute
L5
pD1 E

5
p;�1�p . For each p from 1 to

5, the term E5p;�1�p is equal to the quotient G.1;Ap/

�1 =.G
.1;Ap�1/

�1 C @G
.1;Ap�1/

0 /.
Now for every p D 1; : : : ; 5, G.1;Ap/

�1 is generated by the loop graph L with a
single vertex and its only orientation depicted in Figure 7, so the quotient is zero
whenever p � 2. When p D 1, @G.1;Ap�5C1/

0 D G
.1;A5/
�1 D G

.1;A1/
�1 by what we

saw, so the quotient is again zero. Hence

GrW6 H
5.M1;3IQ/ Š

5M
pD1

E5p;�1�p D ¹0º:

1

3

2

L

Figure 7. This graph has only the loop-flipping automorphism, and only a possible order on its
set of edges. The resulting generator ŒL; !� has degree �1.
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• Case k D 0: In this case, the terms are E5p;�p , for p D 1; : : : ; 5. On the numerator
of the quotient which defines E5p;�1�p we have Ker.@ W G.1;Ap/

0 ! G
.1;Ap/

�1 / for
each p by construction. For p D 1 this is zero sinceG.1;A1/

0 is already zero. When
p D 2, G.1;A2/

0 is generated by ŒG; !i �, where G is the graph of Figure 8.
All the !i are related by permutations of the indices, so there is only a generator
class. The map @ sends the generators ŒG; !i � into ŒL; !�, so it is an isomorphism
and the kernel Ker.@ W G.1;A2/

0 ! G
.1;A2/
�1 / is trivial. When p D 3; 4; 5, the kernel

Ker.@ W G.1;Ap/

0 ! G
.1;Ap/

�1 / coincides with Im.@ W G.1;Ap/

0 ! G
.1;Ap/

�1 /, due to
the generators coming from the graphs G1, G2 and G3 of Figure 9. But Im.@ W
G
.1;Ap/

0 ! G
.1;Ap/

�1 / is exactly what we have in the denominator of the quotient
defining E5p;�p , so it is zero. Hence all the terms of the direct sum are zero, so

GrW6 H
4.M1;3IQ/ D ¹0º:

• Case k D 1: Here we have to compute
L5
pD1 E

5
p;1�p . By construction, we see

that
E5p;1�p D Ker

�
@ W G

.1;Ap/

1 ! G
.1;Ap/

0

�
=G

.1;Ap�1/

1 :

Now, for every Ap the Kernel at the numerator has a single generator coming from
the graph H of Figure 10, but since H is .1;Ap/-stable for any p the generators

1

3

2
G

Figure 8. The graph G has no automorphisms, and since it has only two edges there are only
two possible orderings. It gives two generators ŒG; !i � in degree 0, for i D 1; 2, related by their
sign.

1

2

3

G1

2

1

3

G2

3

1

2

G3

Figure 9. The graphs with this combinatorial type have only an automorphism which flips
the loop. This does not produce any odd permutation on the set of edges, so these classes are
nonzero. Again, there are six possible orderings on the edges, so we obtain generators ŒGj ;!j;i �

in degree 1, for i D 1; : : : ; 6 and j D 1; 2; 3.
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1

2 3H

Figure 10. The graph H has no automorphisms, and there are six different possible orderings
of its edges. This leads to six different generators ŒH; !1;i � in degree 1, for i D 1; : : : ; 6, all
related by the permutations of the ordering.

coming from it belong to G.1;Ap�1/

1 for any p D 2; : : : ; 5, giving E5p;1�p D 0.
When p D 1, G.1;A0/

1 D ¹0º by the convention we adopted at the beginning, so

GrW6 H
3.M1;3IQ/ D

5M
pD1

E5p;1�p D E
5
1;0

D Ker
�
@ W G

.1;A1/
1 ! G

.1;A1/
0

�
Š Q:

The computations made in this example give what was expected from [9, Corol-
lary 1.3], which says that the top weight cohomology of M1;n is supported in degree
n with rank .n � 1/Š=2 for n � 3, which equals 1 when n D 3.

Remark 5.11. We can use the theorem to estimate the dimension of the cohomology
of Mg;n. Suppose we have n; g � 1, and a fixed sequence ŒChA1

� � � � � � ŒChAp
� �

� � � � ŒChAN
�. Let E1

p;k�p
be one of the pieces of the direct sum coming from the

filtration, then

dimH 4g�6C2n�k.Mg;nIQ/ � dimGrW6g�6C2nH
4g�6C2n�k.Mg;nIQ/

� dimE1p;k�p;

so if we are able to estimate the dimension of one of the pieces we can give nonvan-
ishing results for the cohomology of Mg;n.

Example 5.12. Let g D 2, n D 3 and consider the sequence coming from the floor
filtration of Example 4.3, extended on the left by the minimal chamber,

Ch".3/ � ChH3
� Ch1.3/ :

By Theorem B we know that GrW12H
8�k.M2;3IQ/ Š

LN
pD1E

1
p;k�p

. For k D 2 the
last term of the sum is E33;�1, which has dimension at least 1. To see this, consider the
graphs in Figure 11, thenH1 �H2CH3 �G1CG2 �G3 belongs toG.2;3/2 and one
can see its differential is zero. However, its quotient by G.2;H3/

2 is nonzero, namely it
is �G1 CG2 �G3, so it defines a nontrivial element of E33;�5.
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e1

2 3

e3e2
e4e5 e6

1

G1

e1

1 3

e3e2
e4e5 e6

2

G2

e1

1 2

e3e2
e4e5 e6

3

G3

e1

e4
e2 e3

e5 e6

1

2 3

H1

e1

e4
e2 e3

e5 e6

2

1 3

H2

e1

e4
e2 e3

e5 e6

3

1 2

H3

Figure 11. These are generators of G.2;3/

2
. The letters ei represent the chosen order on the set

of edges.

Then we conclude that

dimH 6.M2;3IQ/ � dimGrW12H
6.M2;3IQ/ � dimE33;�1 � 1;

i.e. H 6.M2;3IQ/ does not vanish.

Relative Homology

There is a relation between the spectral sequence associated to a filtration and the
relative homology with respect to the inclusion of �g;A � �g;B . As we already saw,
whenever X � Y is a subcomplex, for every p � �1 one can consider the exact
sequence

0! Cp.X/! Cp.Y /! Cp.Y;X/! 0;

with C�.Y;X/ computing the relative homology.
In particular, whenever we have an inclusion �g;A ,! �g;B , the relative chain

complex C�.�g;B ; �g;A/ has its homology coinciding with relative rational homo-
logy

Hi .C�.�g;B ; �g;A// Š Hi .�g;B ; �g;AIQ/;

as it has a natural isomorphism with C�.�g;B/=C�.�g;A/.
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Now as we saw in the proof of Theorem 5.1 we have a decompositionC�.�g;A/D
A.g;A/ ˚ B.g;A/, so we can decompose also C�.�g;B/=C�.�g;A/ into

A.g;B/=C�.�g;A/˚ B
.g;B/=C�.�g;A/:

The term B.g;B/=C�.�g;A/ is acyclic, since also B.g;B/ is. Now, consider the
shifting degree injection j W G.g;A/ ! C�.�g;A;Q/ of Theorem 5.1: it is clear by
the definition of A.g;B/ that A.g;B/=C�.�g;A/ is isomorphic to A.g;B/=j.G.g;A//
and this is isomorphic toG.g;B/=G.g;A/ WD G.g;B;A/, with the isomorphism shifting
degrees by 2g� 1. The complexG.g;B;A/ can be seen as the one generated by .g;B/-
stable but not .g;A/-stable graphs, with the same conventions on the degree and the
same boundary map.

Through the latter isomorphism, we can conclude that there is an isomorphism

Hk�2gC1.G
.g;B;A// Š Hk.�g;B ; �g;AIQ/:

Example 5.13. Consider the floor filtration of Example 4.3. A graph is .g;Hl/-stable
if and only if its leaves have at least l markings, and its vertices of valence 2 have at
least one. In particular, when l D 2 we get the usual notion of stability. Then the com-
plexG.g;Hl ;HlCi / is generated by stable graphs (in the standard sense) with a number
of markings on each leaf between l and l � i � 1, and by the previous computations
we have Hk�2gC1.G.g;Hl ;HlCi // Š Hk.�g;Hl

; �g;HlCi
IQ/.

In particular, if i D 1, G.g;Hl ;HlC1/ is generated by stable graphs with exactly l
markings on each leaf.

When l D 2, we have H2 2 Ch1.n/ so

Hk�2gC1.G
.g;H2;H3// Š Hk.�g;n; �g;H3

IQ/:

As an example of computation, if g D 1 and for every n we have

H0.�1;n; �1;H3
IQ/ D 0; H1.�1;n; �1;H3

IQ/ D 0:

Now for a given filtration, at each step we have E1p;q D HpCq.G
.g;Ap ;Ap�1//, so

we conclude that the first page of the spectral sequence computes the relative homol-
ogy at each step of the filtration.
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