On orbifold Gromov–Witten classes

Hsian-Hua Tseng

Abstract. We discuss some questions about Gromov–Witten classes of target stacks.

0. Introduction

Let X be a smooth proper Deligne–Mumford stack over $\mathbb C$. The stack

$$
\mathcal{K}_{g,n}(\mathcal{X},d),
$$

which parametrizes degree d stable maps from genus g orbifold curves (orbifold curves are also called *twisted curves*; orbifold nodes are always assumed to be *balanced*.) with n possibly orbifold markings (the marked gerbes are *not* trivialized), is constructed in [\[4\]](#page-7-0) (see also [\[19\]](#page-7-1)). It is Deligne–Mumford and proper over \mathbb{C} .

There are several natural maps defined for $\mathcal{K}_{g,n}(\mathcal{X}, d)$:

(1) Restricting stable maps to marked points yields the *evaluation maps*

$$
ev: \mathcal{K}_{g,n}(\mathcal{X},d) \to \overline{I}\mathcal{X},
$$

where $\bar{I}X$ is the *rigidified* inertia stack of X. See [\[3,](#page-7-2) Section 3] for a detailed discussion on inertia stacks and [\[3,](#page-7-2) Section 4.4] for the construction of evaluation maps.

(2) Forgetting stable maps to $\mathcal X$ but only retaining the domain curves yields the forgetful map

$$
\pi: \mathcal{K}_{g,n}(\mathcal{X},d) \to \mathfrak{M}_{g,n}^{\mathrm{tw}},
$$

where $\mathfrak{M}_{g,n}^{\text{tw}}$ is the stack of *n*-pointed genus g orbifold curves, see [\[19,](#page-7-1) Theorem 1.9]. Assuming $2g - 2 + n > 0$, then passing to coarse curves and stabilizing the domains yield another forgetful map

$$
p: \mathcal{K}_{g,n}(\mathcal{X},d) \to \overline{\mathcal{M}}_{g,n},
$$

²⁰²⁰ Mathematics Subject Classification. 14N35.

Keywords. Gromov–Witten theory, tautological classes.

where $\overline{\mathcal{M}}_{g,n}$ is the stack of *n*-pointed genus g stable curves. There is an obvious commutative diagram

A perfect obstruction theory for $\mathcal{K}_{g,n}(\mathcal{X}, d)$ relative to π is introduced in [\[3\]](#page-7-2), yielding a virtual fundamental class in Chow groups 1, 1, 1,

$$
[\mathcal{K}_{g,n}(\mathcal{X},d)]^{\text{vir}} \in \text{CH}_{*}(\mathcal{K}_{g,n}(\mathcal{X},d)),
$$

which may also be viewed as a homology class via the cycle map

$$
CH_*(\mathcal{K}_{g,n}(\mathcal{X},d)) \to H_*(\mathcal{K}_{g,n}(\mathcal{X},d)).
$$

There are natural classes defined on $\mathcal{K}_{g,n}(\mathcal{X}, d)$:

(1) Pulling back via evaluation maps yields

$$
\operatorname{ev}_i^*(\gamma)
$$

where γ is a Chow/cohomology class of $\bar{I}X$.

(2) The *descendant classes*

$$
\psi_i := c_1(L_i)
$$

are the first Chern classes (taken in Chow or cohomology groups) of line bundles $L_i \rightarrow \mathcal{K}_{g,n}(\mathcal{X}, d)$ formed by cotangent lines at the *i*-th marked points of the *coarse domain curves*.

Gromov–Witten theory of the stack X is the study of classes of the form

$$
\prod_{i=1}^{n} \psi_i^{k_i} \text{ev}_i^*(\gamma_i) \cap [\mathcal{K}_{g,n}(\mathcal{X}, d)]^{\text{vir}},\tag{0.1}
$$

where $\gamma_1, \ldots, \gamma_n$ are Chow/cohomology classes of $\overline{I}X$ and $k_1, \ldots, k_n \in \mathbb{Z}_{\geq 0}$. Pushing (0.1) to a point yields Gromov–Witten *invariants* of \mathcal{X} , which have been studied extensively in the past 20 years. The purpose of this note is to discuss some questions arising from pushing forward (0.1) to other natural settings.

¹Chow and (co)homology groups are taken with \mathbb{Q} -coefficients.

1. Tautological cohomology classes

In [\(0.1\)](#page-1-1), take $\gamma_1, \ldots, \gamma_n \in H^*(\bar{I}X)$ to be cohomology classes. Pushing forward (0.1) via p yields what is usually called *Gromov–Witten classes*

$$
p_*\bigg(\prod_{i=1}^n \psi_i^{k_i} \mathrm{ev}_i^*(\gamma_i) \cap [\mathcal{K}_{g,n}(\mathcal{X},d)]^{\mathrm{vir}}\bigg) \in H^*(\overline{\mathcal{M}}_{g,n}).\tag{1.1}
$$

Without descendants, the classes (1.1) yield a system of multi-linear maps

$$
H^*(\bar{I}X)^{\otimes n} \to H^*(\overline{\mathcal{M}}_{g,n}),
$$

$$
\gamma_1 \otimes \cdots \otimes \gamma_n \mapsto p_*\bigg(\prod_{i=1}^n \text{ev}_i^*(\gamma_i) \cap [\mathcal{K}_{g,n}(\mathcal{X},d)]^{\text{vir}}\bigg).
$$
 (1.2)

Properties of virtual fundamental classes imply that [\(1.2\)](#page-2-1) is a *cohomological field theory*, a notion introduced in [\[16\]](#page-7-3). Discussions on further developments of cohomological field theories can be found in [\[20\]](#page-7-4).

An important aspect of the study of $H^*(\overline{\mathcal{M}}_{g,n})$ is the (cohomological) *tautological ring*

$$
RH^*(\overline{\mathcal{M}}_{g,n}) \subset H^*(\overline{\mathcal{M}}_{g,n}),
$$

which can be defined as the smallest system of unital subrings of $H^*(\overline{\mathcal{M}}_{g,n})$ which is stable under push-forward and pull-back by the following maps:

- (1) $\overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}$ forgetting one of the markings;
- (2) $\overline{M}_{g_1,n+1} \times \overline{M}_{g_2,n_2+1} \to \overline{M}_{g_1+g_2,n_1+n_2}$ gluing two curves at a point;
- (3) $\overline{M}_{g-1,n+2} \rightarrow \overline{M}_{g,n}$ gluing together two points on a curve.

More details can be found in e.g. [\[11\]](#page-7-5).

Elements of $RH^*(\overline{\mathcal{M}}_{g,n})$ are called *tautological classes*. The following question, raised for smooth projective varieties [\[11\]](#page-7-5), should obviously be asked for stacks:

Question 1. Let X be a smooth proper Deligne–Mumford stack over \mathbb{C} . For $\gamma_1, \ldots,$ $\gamma_n \in H^*(\overline{I} \mathcal{X})$ and $k_1, \ldots, k_n \in \mathbb{Z}_{\geq 0}$, are the Gromov–Witten classes [\(1.1\)](#page-2-0) *tautological?*

Remark 1.1. While tautological rings inside the Chow ring $CH^*(\overline{\mathcal{M}}_{g,n})$ can be defined, the Chow version of Question [1](#page-2-2) is not expected to be true even for varieties. Hence we do not discuss the Chow version here.

Question [1](#page-2-2) is known to be true for a number of classes of varieties. A summary of known results can be found in [\[6,](#page-7-6) Section 0.7]. Here, we provide two classes of Deligne–Mumford stacks for which Question [1](#page-2-2) is true.

Theorem 1.1. *Question* [1](#page-2-2) *is true for smooth semi-projective* toric *Deligne–Mumford stacks* X*.*

Just like the case of toric varieties, Theorem [1.1](#page-3-0) follows from virtual localization [\[12\]](#page-7-7). Virtual localization formula for Gromov–Witten theory of toric Deligne– Mumford stacks is written very explicitly in [\[18\]](#page-7-8).

The virtual localization formula reduces Theorem [1.1](#page-3-0) to studying the *Hurwitz– Hodge classes*. To address this, we first review the construction of Hurwitz–Hodge classes arising in the present setting. Let G be a finite abelian group. Let V be a finite dimensional \mathbb{C} -vector space that admits a G-action. Let T be an algebraic torus with an action on V (so that the G and T actions on V commute). The vector space V defines a T-equivariant vector bundle $V \to BG$. Let $\mathcal{K}_{g,n}(BG)$ be the moduli stack of stable maps to $BG = [pt/G]$. Consider the universal stable map,

$$
\begin{array}{ccc}\n\mathcal{C} & f & B G \\
g & & \\
\mathcal{K}_{g,n}(BG).\n\end{array}
$$

The K-theory class

$$
Rq_*f^*\mathcal{V}\in K_*(\mathcal{K}_{g,n}(BG))
$$

is well defined. Furthermore, Hurwitz–Hodge classes are T -equivariant inverse Euler classes $e_T^{-1}(Rq_* f^* V)$ of this kind of K-theory objects.

Now, $e_T^{-1}(Rq_* f^* V)$ can be expressed in terms of Chern characters of $Rq_* f^* V$. The (more general) Riemann–Roch calculation^{[2](#page-3-1)} of $[21]$ implies that these Chern characters can be expressed in terms of ψ classes and boundary classes of $\mathcal{K}_{g,n}(BG)$. Hence, after pushing forward to $\overline{\mathcal{M}}_{g,n}$, Hurwitz–Hodge classes $e_T^{-1}(Rq_*f^*\mathcal{V})$ are tautological. This proves Theorem [1.1.](#page-3-0)

- **Remark 1.2.** (1) The above argument is valid for Deligne–Mumford stacks \mathcal{X} admitting torus actions with isolated fixed points and 1-dimensional orbits.
	- (2) The above argument is valid in Chow groups, thus answering the Chow ver-sion of Question [1](#page-2-2) in the affirmative for toric \mathcal{X} .
	- (3) Virtual localization was applied to study Gromov–Witten theory of *toric bundles* $E \rightarrow B$ in [\[9\]](#page-7-10). It is clear from the localization analysis in [9] and from the Riemann–Roch calculations in [\[10\]](#page-7-11) and [\[8\]](#page-7-12) that Gromov–Witten classes

²Strictly speaking, the Riemann–Roch calculation in $[21]$ is done for a different moduli stack $\overline{\mathcal{M}}_{S,n}(BG)$ parametrizing stable maps *with sections to marked gerbes*. The answer can be easily adjusted to the present setting.

of the toric bundle E are tautological if Gromov–Witten classes of the base B are tautological. This gives another evidence for Question [1.](#page-2-2)

The second class of examples we consider is orbifold curves. It is known that a smooth orbifold curve $\mathfrak C$ is obtained from its underlying coarse curve C (which is itself a smooth curve) by applying a finite number of *root constructions*. We refer to [\[3,](#page-7-2) Theorem 4.2.1] for more details of this description.

Theorem 1.2. *Question* [1](#page-2-2) *is true for smooth projective orbifold curves* C*.*

Question [1](#page-2-2) is proven to be true for nonsingular curves in [\[13\]](#page-7-13). Our proof of Theorem [1.2](#page-4-0) builds on that result, as follows.

We begin with some notations. Let $p_1, \ldots, p_m \in \mathcal{C}$ be the orbifold points of \mathcal{C} , and $\bar{p}_1, \ldots, \bar{p}_m \in C$ their images in the coarse curve. Note that $\bar{p}_1, \ldots, \bar{p}_m$ are smooth points on C. Let $r_1, \ldots, r_m \in \mathbb{N}$ be orders of stabilizers of the orbifold points p_1, \ldots, p_m , respectively. Deformation to the normal cone construction can be applied to $p_1, \ldots, p_m \in \mathcal{C}$ to give a degeneration of $\mathcal C$ to the following nodal curve:

$$
C \bigcup \bigcup_{i=1}^{m} \mathbb{P}^1_{1,r_i},\tag{1.3}
$$

where $\overline{p_i} \in C$ is identified with the smooth point $0 \in \mathbb{P}^1_{1,r_i}$. More precisely, this degeneration is obtained by degenerating the coarse curve C to C $\bigcup \bigcup_{i=1}^{m} \mathbb{P}^1$ (where \overline{p}_i is identified with $0 \in \mathbb{P}^1$), then applying the r_i -th root construction to the divisor in the total space formed as \overline{p}_i moves.

Associated to the pairs $(C, \overline{p}_1, \ldots, \overline{p}_m)$ and $\{(\mathbb{P}^1_{1,r_i}, 0)\}_{i=1}^m$ are their *relative* Gromov–Witten classes. Relative Gromov–Witten classes of a pair $(\mathcal{X}, \mathcal{D})$ of a smooth proper Deligne–Mumford stack X and a smooth divisor $\mathcal{D} \subset \mathcal{X}$ are defined in a manner similar to (1.1) by working with moduli stacks of stable relative maps to $(\mathcal{X}, \mathcal{D})$. Details of these moduli stacks can be found in [\[2\]](#page-6-0).

The degeneration formula, proven in [\[2\]](#page-6-0), applies to this setting and expresses Gromov–Witten classes [\(1.1\)](#page-2-0) of $\mathfrak C$ in terms of relative Gromov–Witten classes of $(C, \overline{p}_1, \ldots, \overline{p}_m)$ and $\{(\mathbb{P}^1_{1,r_i}, 0)\}_{i=1}^m$. By [\[13,](#page-7-13) Theorem 1], relative Gromov–Witten classes of $(C, \overline{p}_1, \ldots, \overline{p}_m)$ are tautological. The pair $(\mathbb{P}^1_{1,r_i}, 0)$ is toric, and the relative virtual localization formula may be applied. The argument described in the proof of Theorem [1.1](#page-3-0) applies here to show that some terms in the relative virtual localization formula are tautological. The only terms not covered by this argument are the *double ramification cycles*, which are tautological by [\[11\]](#page-7-5) or [\[14\]](#page-7-14). Therefore, relative Gromov–Witten classes of $(\mathbb{P}^1_{1,r_i}, 0)$ are tautological. This proves Theorem [1.2.](#page-4-0)

Remark 1.3. The above argument can be extended a little bit to show the following: for a smooth projective variety X and a smooth divisor $D \subset X$, Gromov–Witten classes of the stack $X_{D,r}$ of r-th roots of X along D are tautological if relative Gromov–Witten classes of (X, D) and absolute Gromov–Witten classes of D are tautological. This proof encounters double ramification cycles with target D , which are tautological by the formula in [\[15\]](#page-7-15), provided that Gromov–Witten classes of D are tautological.

Remark 1.4. It would be interesting to consider Question [1](#page-2-2) in other examples. For instance, it follows from the product formula [\[5\]](#page-7-16) that Gromov–Witten classes of a product stack $\mathcal{X} \times \mathcal{Y}$ are tautological if Gromov–Witten classes of \mathcal{X} and \mathcal{Y} are tautological. With efforts, one can hope that the approach in [\[6\]](#page-7-6) can be extended to complete intersections in weighted projective stacks.

2. Global finite group quotients

An important aspect of the Gromov–Witten theory of stacks $\mathcal X$ is the presence of orbifold structures in the domains of stable maps to X. The morphism $p : \mathcal{K}_{g,n}(X, d) \to$ $\overline{\mathcal{M}}_{g,n}$ forgets these orbifold structures. Therefore it is interesting to consider Gromov– Witten classes of X in suitable settings where these orbifold structures are not forgotten.

Here, we discuss an attempt to retain these orbifold structures for target stacks of the form

$$
\mathcal{X}=[M/G],
$$

where M is a smooth (quasi)projective variety over $\mathbb C$ and G is a *finite* group. The constant map $M \to pt$ is clearly G-equivariant, and yields a representable morphism

$$
\mathcal{X} = [M/G] \to BG = [\text{pt}/G].
$$

Composing stable maps to X with this morphism and stabilizing yield a morphism of moduli stacks

$$
p_G: \mathcal{K}_{g,n}(\mathcal{X},d) \to \mathcal{K}_{g,n}(BG),
$$

which is proper. Pushing forward (0.1) via p_G yields the following classes

$$
(p_G)_*\bigg(\prod_{i=1}^n \psi_i^{k_i} \text{ev}_i^*(\gamma_i) \cap [\mathcal{K}_{g,n}(\mathcal{X},d)]^{\text{vir}}\bigg) \in H^*(\mathcal{K}_{g,n}(BG)).\tag{2.1}
$$

Further pushing forward [\(2.1\)](#page-5-0) via the natural map $\mathcal{K}_{g,n}(BG) \to \overline{\mathcal{M}}_{g,n}$ recovers [\(1.1\)](#page-2-0).

An interesting subring of $H^*(\mathcal{K}_{g,n}(BG))$ is the (cohomological) \mathcal{H} -tautological *ring*[3](#page-5-1) , see [\[17\]](#page-7-17),

$$
R_{\mathcal{H}}(\mathcal{K}_{g,n}(BG)) \subset H^*(\mathcal{K}_{g,n}(BG)).
$$

³It is originally defined in the Chow theory.

Question 2. Are [\(2.1\)](#page-5-0) contained in the H-tautological ring of $\mathcal{K}_{g,n}(BG)$?

When M is toric, and the G-action commutes with the torus action on M , the stack $\mathcal{X} = [M/G]$ admits a torus action and the above approach to Theorem [1.1](#page-3-0) applies to show that Question [2](#page-6-1) is true in this case. However, in this case (2.1) are contained in some smaller subset of $R_{\mathcal{H}}(\mathcal{K}_{g,n}(BG))$. Indeed, the virtual localization formula and Riemann–Roch calculations show that [\(2.1\)](#page-5-0) are obtained from pushforwards of combinations of ψ classes via the following natural morphisms:

- (1) the morphism that forgets a non-stacky marking, as discussed in [\[3,](#page-7-2) Proposition 8.1.1];
- (2) the boundary gluing morphisms, as discussed in [\[3,](#page-7-2) Proposition 5.2.1].

It should be possible to define a subring of $H^*(\mathcal{K}_{g,n}(BG))$ using the definition of $RH^*(\overline{\mathcal{M}}_{g,n})$, recalled in Section [1,](#page-2-3) with these maps. If defined, this subring is smaller than the H -tautological ring. Still, (2.1) lie in such a subring.

Whether the formulation of Question [2](#page-6-1) really requires the H -tautological rings remains unclear.

For more general X , it is not clear how to construct variants of Gromov–Witten classes of X that retain orbifold structures on the domains. The natural place for keeping the domain orbifold curves is the stack $\mathfrak{M}^{\text{tw}}_{g,n}$ of orbifold curves. However, the morphism π : $\mathcal{K}_{g,n}(\mathcal{X},d) \to \mathfrak{M}_{g,n}^{tw}$ is not necessarily proper and cannot be used to produce interesting classes on $\mathfrak{M}^{\text{tw}}_{g,n}$, although the tautological Chow ring $R^*(\mathfrak{M}^{\text{tw}}_{g,n})$ can be defined^{[4](#page-6-2)}.

Acknowledgments. This article is dedicated to the loving memory of Ching-Shan Chou. We thank R. Pandharipande, J. Schmitt, and the referee for helpful comments.

Funding. The author is supported in part by Simons Foundation Collaboration Grant.

References

- [1] D. Abramovich, A. Corti, and A. Vistoli, Twisted bundles and admissible covers. *Comm. Algebra* 31 (2003), no. 8, 3547–3618 Zbl [1077.14034](https://zbmath.org/?q=an:1077.14034&format=complete) MR [2007376](https://mathscinet.ams.org/mathscinet-getitem?mr=2007376)
- [2] D. Abramovich and B. Fantechi, Orbifold techniques in degeneration formulas. *Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5)* 16 (2016), no. 2, 519–579 Zbl [1375.14182](https://zbmath.org/?q=an:1375.14182&format=complete) MR [3559610](https://mathscinet.ams.org/mathscinet-getitem?mr=3559610)

⁴With known results in $[1]$ and $[19]$, it is not hard to see that the approach in $[7]$ can be adopted to define $R^*(\mathfrak{M}_{g,n}^{\text{tw}})$, see [\[22\]](#page-7-19).

- [3] D. Abramovich, T. Graber, and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks. *Amer. J. Math.* 130 (2008), no. 5, 1337–1398 Zbl [1193.14070](https://zbmath.org/?q=an:1193.14070&format=complete) MR [2450211](https://mathscinet.ams.org/mathscinet-getitem?mr=2450211)
- [4] D. Abramovich and A. Vistoli, Compactifying the space of stable maps. *J. Amer. Math. Soc.* 15 (2002), no. 1, 27–75 Zbl [0991.14007](https://zbmath.org/?q=an:0991.14007&format=complete) MR [1862797](https://mathscinet.ams.org/mathscinet-getitem?mr=1862797)
- [5] E. Andreini, Y. Jiang, and H.-H. Tseng, Gromov-Witten theory of product stacks. *Comm. Anal. Geom.* 24 (2016), no. 2, 223–277 Zbl [1356.14047](https://zbmath.org/?q=an:1356.14047&format=complete) MR [3514559](https://mathscinet.ams.org/mathscinet-getitem?mr=3514559)
- [6] H. Arguz, P. Bousseau, R. Pandharipande, and D. Zvonkine, Gromov–Witten theory of complete intersections. 2021, arXiv[:2109.13323](https://arxiv.org/abs/2109.13323)
- [7] Y. Bae and J. Schmitt, Chow rings of stacks of prestable curves I. *Forum Math. Sigma* 10 (2022), Paper No. e28 Zbl [07537757](https://zbmath.org/?q=an:07537757&format=complete) MR [4430955](https://mathscinet.ams.org/mathscinet-getitem?mr=4430955)
- [8] T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre. *Ann. Math. (2)* 165 (2007), no. 1, 15–53 Zbl [1189.14063](https://zbmath.org/?q=an:1189.14063&format=complete) MR [2276766](https://mathscinet.ams.org/mathscinet-getitem?mr=2276766)
- [9] T. Coates, A. Givental, and H.-H. Tseng, Virasoro constraints for toric bundles. 2015, arXiv[:1508.06282](https://arxiv.org/abs/1508.06282)
- [10] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory. *Invent. Math.* 139 (2000), no. 1, 173–199 Zbl [0960.14031](https://zbmath.org/?q=an:0960.14031&format=complete) MR [1728879](https://mathscinet.ams.org/mathscinet-getitem?mr=1728879)
- [11] C. Faber and R. Pandharipande, Relative maps and tautological classes. *J. Eur. Math. Soc. (JEMS)* 7 (2005), no. 1, 13–49 Zbl [1084.14054](https://zbmath.org/?q=an:1084.14054&format=complete) MR [2120989](https://mathscinet.ams.org/mathscinet-getitem?mr=2120989)
- [12] T. Graber and R. Pandharipande, Localization of virtual classes. *Invent. Math.* 135 (1999), no. 2, 487–518 Zbl [0953.14035](https://zbmath.org/?q=an:0953.14035&format=complete) MR [1666787](https://mathscinet.ams.org/mathscinet-getitem?mr=1666787)
- [13] F. Janda, Gromov-Witten theory of target curves and the tautological ring. *Michigan Math. J.* 66 (2017), no. 4, 683–698 Zbl [1388.14150](https://zbmath.org/?q=an:1388.14150&format=complete) MR [3720320](https://mathscinet.ams.org/mathscinet-getitem?mr=3720320)
- [14] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on the moduli spaces of curves. *Publ. Math. Inst. Hautes Études Sci.* 125 (2017), 221–266 Zbl [1370.14029](https://zbmath.org/?q=an:1370.14029&format=complete) MR [3668650](https://mathscinet.ams.org/mathscinet-getitem?mr=3668650)
- [15] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles with target varieties. *J. Topol.* 13 (2020), no. 4, 1725–1766 Zbl [1467.14131](https://zbmath.org/?q=an:1467.14131&format=complete) MR [4186143](https://mathscinet.ams.org/mathscinet-getitem?mr=4186143)
- [16] M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry. *Comm. Math. Phys.* 164 (1994), no. 3, 525–562 Zbl [0853.14020](https://zbmath.org/?q=an:0853.14020&format=complete) MR [1291244](https://mathscinet.ams.org/mathscinet-getitem?mr=1291244)
- [17] C. Lian, The H-tautological ring. *Selecta Math. (N.S.)* 27 (2021), no. 5, Paper No. 96 Zbl [1480.14021](https://zbmath.org/?q=an:1480.14021&format=complete) MR [4320845](https://mathscinet.ams.org/mathscinet-getitem?mr=4320845)
- [18] C.-C. M. Liu, Localization in Gromov-Witten theory and orbifold Gromov-Witten theory. In *Handbook of moduli. Vol. II*, pp. 353–425, Adv. Lect. Math. (ALM) 25, Int. Press, Somerville, MA, 2013 Zbl [1322.14010](https://zbmath.org/?q=an:1322.14010&format=complete) MR [3184181](https://mathscinet.ams.org/mathscinet-getitem?mr=3184181)
- [19] M. C. Olsson, (Log) twisted curves. *Compos. Math.* 143 (2007), no. 2, 476–494 Zbl [1138.14017](https://zbmath.org/?q=an:1138.14017&format=complete) MR [2309994](https://mathscinet.ams.org/mathscinet-getitem?mr=2309994)
- [20] R. Pandharipande, Cohomological field theory calculations. In *Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures*, pp. 869–898, World Sci. Publ., Hackensack, NJ, 2018 Zbl [1441.14185](https://zbmath.org/?q=an:1441.14185&format=complete) MR [3966747](https://mathscinet.ams.org/mathscinet-getitem?mr=3966747)
- [21] H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre. *Geom. Topol.* 14 (2010), no. 1, 1–81 Zbl [1178.14058](https://zbmath.org/?q=an:1178.14058&format=complete) MR [2578300](https://mathscinet.ams.org/mathscinet-getitem?mr=2578300)
- [22] H.-H. Tseng, On the tautological rings of stacks of twisted curves. 2022, arXiv[:2205.05529](https://arxiv.org/abs/2205.05529)

Received 24 August 2022; revised 25 October 2022.

Hsian-Hua Tseng

Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA; hhtseng@math.ohio-state.edu