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On orbifold Gromov-Witten classes

Hsian-Hua Tseng

Abstract. We discuss some questions about Gromov—Witten classes of target stacks.

0. Introduction

Let X be a smooth proper Deligne—Mumford stack over C. The stack
ch,n (‘X’ d)’

which parametrizes degree d stable maps from genus g orbifold curves (orbifold
curves are also called twisted curves; orbifold nodes are always assumed to be bal-
anced.) with n possibly orbifold markings (the marked gerbes are not trivialized), is
constructed in [4] (see also [19]). It is Deligne-Mumford and proper over C.

There are several natural maps defined for K , (X, d):

(1) Restricting stable maps to marked points yields the evaluation maps
ev: Kgn(X,d) — I1X,

where 1 X is the rigidified inertia stack of X. See [3, Section 3] for a detailed
discussion on inertia stacks and [3, Section 4.4] for the construction of evalu-
ation maps.

(2) Forgetting stable maps to X but only retaining the domain curves yields the
forgetful map

7 Kgn(X,d)— Emg:n,

where mgfn is the stack of n-pointed genus g orbifold curves, see [19, The-
orem 1.9]. Assuming 2g — 2 + n > 0, then passing to coarse curves and
stabilizing the domains yield another forgetful map

p:Ken(X,d)— ﬂg,n,
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where M ¢.n 18 the stack of n-pointed genus g stable curves. There is an obvi-
ous commutative diagram

ng,n(x, d)

A perfect obstruction theory for K, ,(X, d) relative to 7 is introduced in [3],
yielding a virtual fundamental class in Chow groups',

[Kg.n(X,d)]" € CHu(Kg (X, d)),
which may also be viewed as a homology class via the cycle map
CHu(Kgn(X.d)) = Hu(Kgn(X,d)).

There are natural classes defined on K, (X, d):

(1) Pulling back via evaluation maps yields
ev; (¥)

where y is a Chow/cohomology class of 7X.
(2) The descendant classes

Vi = c1(L;)

are the first Chern classes (taken in Chow or cohomology groups) of line bun-
dles L; — Kg (X, d) formed by cotangent lines at the i-th marked points
of the coarse domain curves.

Gromov—Witten theory of the stack X is the study of classes of the form

[T evi ) N [Kgm(X. )], ©.1)

i=1

where y1, ..., ¥, are Chow/cohomology classes of IX and ky, ..., k, € Z>. Push-
ing (0.1) to a point yields Gromov—Witten invariants of X, which have been studied
extensively in the past 20 years. The purpose of this note is to discuss some questions
arising from pushing forward (0.1) to other natural settings.

!Chow and (co)homology groups are taken with Q-coefficients.
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1. Tautological cohomology classes

In (0.1), take y1, ..., y, € H*(I X) to be cohomology classes. Pushing forward (0.1)
via p yields what is usually called Gromov—Witten classes

o TTWE et 00 0 K1) € 7 (i) (L)

i=1
Without descendants, the classes (1.1) yield a system of multi-linear maps

H*(IX)®" — H*(Mg ).

n ) (1.2)
VI® QY > p*(l_[ev;k()/i) N [Jfg,n(X,d)]m).

i=1

Properties of virtual fundamental classes imply that (1.2) is a cohomological field
theory, a notion introduced in [16]. Discussions on further developments of cohomo-
logical field theories can be found in [20].

An important aspect of the study of H*(My ,) is the (cohomological) tautologi-
cal ring

RH*(Mgn) C H*(Mgpn),

which can be defined as the smallest system of unital subrings of H* (M ¢,n) Which is
stable under push-forward and pull-back by the following maps:

(1) ﬂg,nﬂ — ﬂg,n forgetting one of the markings;

2 Mgl,n+l X Mg2,n2+l - c/‘7(i§1-|—.5’2,r11-|—n2 gluing two curves at a point;

(3) Mg—1 12 — Mg, gluing together two points on a curve.
More details can be found in e.g. [11].

Elements of RH* (M ¢.n) are called fautological classes. The following question,
raised for smooth projective varieties [11], should obviously be asked for stacks:

Question 1. Let X be a smooth proper Deligne—Mumford stack over C. For y1, ...,
Vn € H*(I_X) andky, ..., k, € Zxq, are the Gromov—Witten classes (1.1) tautolog-
ical?

Remark 1.1. While tautological rings inside the Chow ring CH* (ﬂ ¢,n) can be de-
fined, the Chow version of Question | is not expected to be true even for varieties.
Hence we do not discuss the Chow version here.

Question 1 is known to be true for a number of classes of varieties. A summary
of known results can be found in [6, Section 0.7]. Here, we provide two classes of
Deligne-Mumford stacks for which Question 1 is true.
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Theorem 1.1. Question 1 is true for smooth semi-projective toric Deligne—Mumford
stacks X.

Just like the case of toric varieties, Theorem 1.1 follows from virtual localiza-
tion [12]. Virtual localization formula for Gromov—Witten theory of toric Deligne—
Mumford stacks is written very explicitly in [18].

The virtual localization formula reduces Theorem 1.1 to studying the Hurwitz—
Hodge classes. To address this, we first review the construction of Hurwitz—Hodge
classes arising in the present setting. Let G be a finite abelian group. Let V' be a finite
dimensional C-vector space that admits a G-action. Let T be an algebraic torus with
an action on V (so that the G and T actions on V' commute). The vector space V
defines a T-equivariant vector bundle V — BG. Let K, ,(BG) be the moduli stack
of stable maps to BG = [pt/G]. Consider the universal stable map,

e—7 G

|

Ken(BG).

The K-theory class
Rqs f*V € Ki(Kgn(BG))

is well defined. Furthermore, Hurwitz—Hodge classes are T -equivariant inverse Euler
classes e, L(Rgx f*7V) of this kind of K-theory objects.

Now, e7! (Rg« f*V) can be expressed in terms of Chern characters of Rgx f*V.
The (more general) Riemann—Roch calculation” of [21] implies that these Chern char-
acters can be expressed in terms of ¥ classes and boundary classes of Kg ,(BG).
Hence, after pushing forward to M, ¢,n» Hurwitz—Hodge classes e}l(Rq* f*V) are
tautological. This proves Theorem 1.1.

Remark 1.2. (1) The above argument is valid for Deligne-Mumford stacks X
admitting torus actions with isolated fixed points and 1-dimensional orbits.

(2) The above argument is valid in Chow groups, thus answering the Chow ver-
sion of Question 1 in the affirmative for toric X.
(3) Virtual localization was applied to study Gromov—Witten theory of toric bun-

dles E — B in [9]. It is clear from the localization analysis in [9] and from
the Riemann—Roch calculations in [10] and [8] that Gromov—Witten classes

2Strictly speaking, the Riemann—Roch calculation in [21] is done for a different moduli
stack Mg ,, (BG) parametrizing stable maps with sections to marked gerbes. The answer can
be easily adjusted to the present setting.
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of the toric bundle E are tautological if Gromov—Witten classes of the base B
are tautological. This gives another evidence for Question 1.

The second class of examples we consider is orbifold curves. It is known that a
smooth orbifold curve € is obtained from its underlying coarse curve C (which is
itself a smooth curve) by applying a finite number of root constructions. We refer to
[3, Theorem 4.2.1] for more details of this description.

Theorem 1.2. Question 1 is true for smooth projective orbifold curves €.

Question 1 is proven to be true for nonsingular curves in [13]. Our proof of The-
orem 1.2 builds on that result, as follows.

We begin with some notations. Let pi,..., p, € € be the orbifold points of €,
and piy, ..., pm € C their images in the coarse curve. Note that py, ..., p, are
smooth points on C. Let rq, ..., r, € N be orders of stabilizers of the orbifold points
P1,-- -, Pm, respectively. Deformation to the normal cone construction can be applied
to p1,..., pm € € to give a degeneration of € to the following nodal curve:

c Jur,py,.. (1.3)

where p; € C is identified with the smooth point 0 € ]P)ll,ri . More precisely, this degen-
eration is obtained by degenerating the coarse curve C to C | J Ul’-”zl]P>1 (where p; is
identified with 0 € P1), then applying the r;-th root construction to the divisor in the
total space formed as p; moves.

Associated to the pairs (C, p1, ..., pm) and {(]P’lljr’_ ,0)}/L, are their relative Gro-
mov—Witten classes. Relative Gromov—Witten classes of a pair (X, D) of a smooth
proper Deligne-Mumford stack X and a smooth divisor & C X are defined in a
manner similar to (1.1) by working with moduli stacks of stable relative maps to
(X, D). Details of these moduli stacks can be found in [2].

The degeneration formula, proven in [2], applies to this setting and expresses
Gromov—Witten classes (1.1) of € in terms of relative Gromov—Witten classes of

(C, p1,..., pm) and {(IPIIJ[,O)}:-’;I. By [13, Theorem 1], relative Gromov—Witten

1
Lri®

tive virtual localization formula may be applied. The argument described in the proof

classes of (C, p1, ..., pm) are tautological. The pair (P, , 0) is toric, and the rela-
of Theorem 1.1 applies here to show that some terms in the relative virtual localiza-
tion formula are tautological. The only terms not covered by this argument are the

double ramification cycles, which are tautological by [11] or [14]. Therefore, relative

1

Gromov—Witten classes of (]P’l,ri ,

0) are tautological. This proves Theorem 1.2.

Remark 1.3. The above argument can be extended a little bit to show the following:
for a smooth projective variety X and a smooth divisor D C X, Gromov—Witten
classes of the stack Xp , of r-th roots of X along D are tautological if relative
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Gromov-Witten classes of (X, D) and absolute Gromov—Witten classes of D are
tautological. This proof encounters double ramification cycles with target D, which
are tautological by the formula in [15], provided that Gromov—Witten classes of D
are tautological.

Remark 1.4. It would be interesting to consider Question | in other examples. For
instance, it follows from the product formula [5] that Gromov—Witten classes of a
product stack X x ¥ are tautological if Gromov—Witten classes of X and ¥ are
tautological. With efforts, one can hope that the approach in [6] can be extended to
complete intersections in weighted projective stacks.

2. Global finite group quotients

An important aspect of the Gromov—Witten theory of stacks X is the presence of orbi-
fold structures in the domains of stable maps to X. The morphism p : Kg (X, d) —
M 2.n forgets these orbifold structures. Therefore it is interesting to consider Gromov—
Witten classes of X in suitable settings where these orbifold structures are not forgot-
ten.

Here, we discuss an attempt to retain these orbifold structures for target stacks of
the form

X =[M/G],
where M is a smooth (quasi)projective variety over C and G is a finite group. The
constant map M — pt s clearly G-equivariant, and yields a representable morphism

X = [M/G] — BG = [pt/G].

Composing stable maps to X with this morphism and stabilizing yield a morphism of
moduli stacks

PG : J{g,n(xv d) — ch,n(BG),

which is proper. Pushing forward (0.1) via pg yields the following classes

(o). ([T evt 00 0 KX, ) € HP (K n(BGY. 21)

i=1

Further pushing forward (2.1) via the natural map Kg ,(BG) — Mg,n recovers (1.1).
An interesting subring of H* (K, ,(BG)) is the (cohomological) #-tautological
ring3, see [17],
Ryt(Kgn(BG)) C H*(Kgn(BG)).

31t is originally defined in the Chow theory.
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Question 2. Are (2.1) contained in the ¥ -tautological ring of K¢ ,(BG)?

When M is toric, and the G-action commutes with the torus action on M, the
stack X = [M/G] admits a torus action and the above approach to Theorem 1.1
applies to show that Question 2 is true in this case. However, in this case (2.1) are
contained in some smaller subset of R (Kg ,(BG)). Indeed, the virtual localization
formula and Riemann—Roch calculations show that (2.1) are obtained from push-
forwards of combinations of i classes via the following natural morphisms:

(1) the morphism that forgets a non-stacky marking, as discussed in [3, Proposi-
tion 8.1.1];

(2) the boundary gluing morphisms, as discussed in [3, Proposition 5.2.1].

It should be possible to define a subring of H*(Kg ,(BG)) using the definition of
RH* (ﬂ ¢,n), recalled in Section 1, with these maps. If defined, this subring is smaller
than the J¢-tautological ring. Still, (2.1) lie in such a subring.

Whether the formulation of Question 2 really requires the J¢-tautological rings
remains unclear.

For more general X, it is not clear how to construct variants of Gromov—Witten
classes of X that retain orbifold structures on the domains. The natural place for
keeping the domain orbifold curves is the stack Em?fn of orbifold curves. However,
the morphism 7 : K » (X, d) — DNy, is not necessarily proper and cannot be used to
produce interesting classes on INY, , although the tautological Chow ring R* (smgfn

g.n’
can be defined”.
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