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Hardwiring truth in functional interpretations

Bruno Dinis and Jaime Gaspar

Abstract. We present four different approaches to prove the soundness theorem for variants
with t-truth of functional interpretations. To showcase our different methods we focus on the
intuitionistic nonstandard bounded functional interpretation of the nonstandard extensional
Heyting arithmetic in all finite types because a version with t-truth for this interpretation has not
been given before. Also, because it is a more involved interpretation than others since it includes
both nonstandard principles and majorisability. This leads us to believe that if the approaches
work for this more complicated functional interpretation, then they should also work for simpler
functional interpretations (and realisabilities).

1. Introduction

Functional interpretations are maps of formulas from the language of one theory into
the language of another theory, in such a way that provability is preserved. These
interpretations typically replace logical relations by functional relations, for example
they may transform a formula 8x 9y '.x; y/, where y logically depends on x, into
the formula 9f 8x '.x; f .x//, where y D f .x/ is a function(al) of x.

Functional interpretations have many uses, such as

(1) relative consistency results (“a first theory is consistent if a second theory is
also consistent”);

(2) conservation results (“if a first theory proves a formula of a certain form, then
a second theory also proves that formula”);

(3) extraction of computational content from proofs (“if a formula of a certain
form, e.g. 8x 9y '.x; y/, is provable in a certain theory, then we can extract
from the proof a computable function(al) giving y as a function of x”).

The first functional interpretation was introduced by Gödel in his seminal Dialec-
tica article [11, page 285]; it translates formulas of the language of Heyting arithmetic
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with functionals HA! (the intuitionistic counterpart of Peano arithmetic with function-
als (or finite types) PA!) into itself; it has the feature of extracting witnesses (a witness
for 9x '.x/would be an x such that '.x/ holds). A classical variant was introduced by
Shoenfield in his classical textbook on mathematical logic [20, page 219]; it translates
formulas of the language of PA! into formulas of the language of HA! .

A variant of the Dialectica interpretation which deals with the contraction axiom
' _ ' ! ' using a sequence of potential witnesses with the guarantee that one is
indeed a witness, was introduced by Diller and Nahm [2, pages 54–55]; as the Dia-
lectica, it translates formulas of the language of HA! into itself.

Later, the monotone functional interpretation was introduced by Kohlenbach [15,
page 231]; again, it translates formulas of the language of HA! into itself and works
by changing the Dialectica interpretation so that in the very last step one changes from
extracting witnesses to upper bounds on witnesses (an upper bound for x in 9x '.x/
would be a y such that 9x ��y '.y/ holds); this has the advantage of interpreting
more axioms, sometimes uniformising terms (that is, eliminating their dependence on
certain variables) and producing simpler terms [9, Paragraph 8.1].

Afterwards, the bounded functional interpretation was introduced by Ferreira and
Oliva [7, Definition 4]; it translates formulas of the language of Heyting arithmetic
HA!

E
extended with some majorisability E into itself; it also has the feature of not

extracting witnesses but upper bounds on witnesses, but in all steps instead of only
the very last step. A classical variant was soon after introduced by Ferreira in [5,
page 123]; it translates formulas of the language of PA!

E
into formulas of the language

of HA!
E

.
Subsequently, the nonstandard Herbrandised functional interpretation was intro-

duced by Van den Berg, Briseid and Safarik [22, Definition 5.1]; it translates formulas
of the language of Heyting arithmetic E-HA!�

st extended with standardness predicates st
and finite sequences of types into itself; it extracts potential witnesses for existential
quantifications ranging over standard elements while ignoring quantifications ranging
over all (including nonstandard) elements. A classical variant was introduced in the
same article [22, Definition 7.1]; it translates formulas of the language of E-PA!�

st into
itself.

Finally, the intuitionistic nonstandard bounded functional interpretation was intro-
duced by Dinis and Gaspar [3, Definition 19]; it translates formulas of the language
of Heyting arithmetic E-HA!st without sequences of types into itself. It has the feature
of giving upper bounds for existential quantifications ranging over standard elements
while ignoring quantifications ranging over all elements. A classical variant had been
previously introduced by Ferreira and Gaspar [5, Definition 1]; it translates formulas
of the language of E-PA!st into formulas of the language of E-HA!st .
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A functional interpretation I gives information about an interpreted formula ˆI.
But sometimes we want information about the uninterpreted ˆ itself. Without chan-
ging I, there are (at least) two ways of doing this:

(1) if ˆ belongs to a special class of formulas � such that ˆI ! ˆ, then the
information can be transferred from ˆI to ˆ;

(2) if we strengthen the theory in which we are working to the so-called charac-
terisation theory T], then we have ˆI $ ˆ.

These two situations already work in many applications of I, for example in proof
mining. However, in some investigations, it happens that ˆ is not in � and we want
to keep the theory weaker than T]. In these cases the solution is different: we change I
to a related interpretation It, in a process called “hardwiring truth”, so that ˆIt ! ˆ

holds for all ˆ and in a weaker theory. Historically, this idea first appeared, for real-
isability, by Kleene [14] (with a realisability rq such that ˆrq ! ˆ holds for more
formulas than the ones in � , but not for all) and then completed by Grayson [12]
(with a realisability rt such that ˆrt ! ˆ holds for all formulas). More details on
functional interpretations and their applications can be found in [16] and the more
recent [1].

In this article, we explore proof methods of the soundness theorem of functional
interpretations with t-truth: the usual proof method of an induction on the length of
proofs and three alternative proof methods to choose from. They are presented as
a case-study together with a conviction of generalisation: we illustrate the methods
applied to the intuitionistic nonstandard bounded functional interpretation; but it is
our conviction that they are easily adapted to other interpretations.

Finally, we would like to point out that, empirically, we see no obstacle to apply
the methods presented here to realisability, for example the modified realisability [17,
Paragraph 3.5] and the bounded modified realisability [6, Definition 4]. A more ra-
tional argument could be that realisabilities can be presented as relations between
potential witnesses and challenges, and so recast as functional interpretations [18,
Section 3.1], [19, Section 2].

2. Framework

We adopt the same framework that we used before [3, Section 2]. Nevertheless, we
give here a quick overview for the sake of completeness.

Let E-PA! and E-HA! be (respectively) Peano and Heyting arithmetics in all finite
types with full extensionality and with primitive equality only at type 0.
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Definition 1. The Howard–Bezem strong majorisability ��� is defined recursively by

(1) s ��0 t W� s �0 t ;

(2) s ���!� t W� 8v 8u �
�
� v .su �

�
� tv ^ tu �

�
� tv/.

We say that x� is monotone if and only if x ��� x.

We recall some properties of the Howard–Bezem strong majorisability.

Proposition 2. We have

(1) E-HA! ` x ��� y ! y ��� y;

(2) E-HA! ` x ��� y ^ y �
�
� z ! x ��� z.

Theorem 3 (Howard’s majorisability theorem [13]). Let t� be a closed term of
E-HA! . Then, there is a closed term Qt� of E-HA! such that E-HA! ` t ��� Qt .

We recall the variant E-HA!st of E-HA! .

Definition 4. The nonstandard Heyting arithmetic in all finite types with full exten-
sionality E-HA!st is obtained from E-HA! by enriching the language and the axioms of
E-HA! in the following way:

(1) adding standard predicates st� .t� / for each type � ;

(2) adding the axioms:

(a) x D� y ^ st� .x/! st� .y/;

(b) st� .y/ ^ x ��� y ! st� .x/;

(c) st� .t/ for each closed term t ;

(d) st�!� .x/ ^ st� .y/! st� .xy/;

for all types � and � ;

(3) adding the external induction rule

ˆ.0/ 8x0 .st0.x/! .ˆ.x/! ˆ.x C 1///

8x0 .st0.x/! ˆ.x//
:

The logical axioms (but not the arithmetical axioms) are extended to the formulas in
the language of E-HA!st .

3. Hardwiring t-truth

We hardwire t-truth [12], [21, Exercise 9.7.11 in chapter 9] in the intuitionistic non-
standard bounded functional interpretation B [3, Definition 19] obtaining the intu-
itionistic nonstandard bounded functional interpretation with t-truth Bt. We follow
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Oliva and Gaspar’s [10, page 592], [9, Paragraph 3.1] method to hardwire t-truth:
to add copies of the formulas under interpretations to the clauses of implication and
universal quantification of the interpretation ˆI � : : : ˆI; to be more clear, if ˆI is
defined as in the left column below, then ˆIt should be defined as in the right column
in the following:

.ˆ! ‰/I W� � � � ; .ˆ! ‰/It W� � � � ^ .ˆ! ‰/;

.8x ˆ/I W� � � � ; .8x ˆ/It W� � � �„ƒ‚…
.�/

^ 8x ˆ„ƒ‚…
.�/

:

It turns out that in some cases the copy (‡) is redundant because it is implied by (†)
and so can be removed: it is the case of modified realisability [10, page 592] and of
our Bt.

Definition 5. The intuitionistic nonstandard bounded functional interpretation with
t-truth Bt assigns to each formula ˆ of the language of E-HA!st the formula

ˆBt
W� z9

sta z8stb ˆBt.aI b/

of the language of E-HA!st according to the following clauses (where ˆBt.aI b/ is the
part inside square brackets, and r0, s0 and t� are terms). For atomic formulas, we
define

.r D0 s/
Bt
W� Œr D0 s�;

st.t/Bt
W� z9

sta Œt ��a�:

For the remaining formulas, ifˆBt�z9sta z8stbˆBt.aIb/ and‰Bt�z9stc z8std ‰Bt.cId/,
then we define

.ˆ ^‰/Bt
W� z9

sta; c z8stb; d ŒˆBt.aI b/ ^‰Bt.cI d/�;

.ˆ _‰/Bt
W� z9

sta; c z8ste; f Œz8b �� e ˆBt.aI b/ _ z8d �
�f ‰Bt.cI d/�;

.ˆ! ‰/Bt
W� z9

stC ; e z8sta; d Œ.z8b �� ead ˆBt.aI b/! ‰Bt.CaI d// ^ .ˆ! ‰/�;

.8x ˆ/Bt
W� z9

sta z8stb Œ8x ˆBt.aI b/�;

.9x ˆ/Bt
W� z9

sta z8stc Œ9x z8b �� c ˆBt.aI b/�:

In the following proposition we prove that Bt really has truth, that is (recalling the
explanation of truth in the introduction) ˆIt ! ˆ.

Proposition 6 (t-truth property). For all formulas ˆ of the language of E-HA!st , we
have E-HA!st ` ˆBt.aI b/! ˆ.
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Proof. The proof is by an easy induction on the length of ˆ. Let us see only the case
of the universal quantifier. We assume the induction hypothesis ˆBt.aI b/! ˆ. Then

.8x ˆ/Bt.aI b/ � (Definition 5)

8x ˆBt.aI b/! (IH)

8x ˆ:

The following is a technical lemma often used in relation with bounded functional
interpretations [7, inspired on Lemma 6]. Informally, the lemma says that if we have
ˆBt.aI b/, and we think of a as being bounds on witnesses, then obviously we can
increase the bounds to some Qa (with a �� Qa), that is we have ˆBt. QaI b/.

Lemma 7 (Monotonicity of Bt). For all formulas ˆ of the language of E-HA!st , we
have

E-HA!st ` a �
�
Qa ^ b �� b ^ˆBt.aI b/! ˆBt. QaI b/:

Proof. The proof is by induction on the length of ˆ. Let us see only the case of
implication. We assume

C �� zC ; e �� Qe; a ��a; d ��d;

so Ca �� zCa and ead �� Qead . Then

.ˆ! ‰/Bt.C ; eI a; d/ � (Definition 5)

.z8b �� ead ˆBt.aI b/! ‰Bt.CaI d// ^ .ˆ! ‰/! (IH, Ca �� zCa)

.z8b �� ead ˆBt.aI b/! ‰Bt. zCaI d// ^ .ˆ! ‰/! (ead �� Qead )

.z8b �� Qead ˆBt.aI b/! ‰Bt. zCaI d// ^ .ˆ! ‰/ � (Definition 5)

.ˆ! ‰/Bt. zC ; QeI a; d/:

The interpretation Bt is sound in the usual sense, that is it maps theorems of the
interpreted theory E-HA!st to theorems of the interpreting theory E-HA!st .

Theorem 8 (Soundness theorem of Bt). For all formulasˆ of the language of E-HA!st ,
if E-HA!st ` ˆ, then there are closed (and therefore standard) and monotone terms t
such that E-HA!st `

z8stb ˆBt.t I b/.
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4. Proof 1: The “standard” proof

First, let us make some remarks and establish some conventions.

(1) The proof is by induction on the length of derivations, so below we give the
Bt-interpretations of (some of the) axioms and rules of E-HA!st and the terms
witnessing the existential quantifications of the Bt-interpretations.

(2) If it is easy to check that the terms are closed, monotone and witness the exist-
ential quantifications, then we just present the terms without further explana-
tion.

(3) Given an axiom ˆ with Bt-interpretation z9sta z8stb ˆBt.aI b/, we denote by ta
the terms witnessing z9sta.

(4) Given a rule ˆ ‰
�

with Bt-interpretation

z9sta z8stb ˆBt.aI b/ z9
stc z8std ‰Bt.cI d/

z9ste z8stf �Bt.eIf /
;

we denote by ra and sc the terms that by induction hypothesis exist witness-
ing respectively z9sta and z9stc, and by te the terms that we have to present
witnessing z9ste.

(5) We write, for example, tabc D b instead of ta � �b; c : b.

Proof. ˆ! ˆ ^ˆ

.ˆ! ˆ ^ˆ/Bt
� z9

stC ;E; g z8sta; d ; f
�
.z8b ��gadf ˆBt.aI b/!

ˆBt.CaI d/ ^ˆBt.EaIf // ^ .ˆ! ˆ ^ˆ/
�
;

tCa WD a; tEa WD a; tgadf WD max.d ; f /:

The term max� is a closed and monotone term such that

E-HA!st `
z8a�; b� .a ��� max

�
.a; b/ ^ b ��� max

�
.a; b//;

which exists [8, Definition 133 and Lemma 149].

ˆ! ˆ _‰

.ˆ! ˆ _‰/Bt
� z9

stC ;E; i z8sta; g; h
�
.z8b �� iaghˆBt.aI b/!

z8d ��g ˆBt.CaI d/ _ z8f �
�h‰Bt.EaIf // ^ .ˆ! ˆ _‰/

�
;

tCa WD a; tEa WD O; t iagh WD g:

The term O0� is the term �x� : 00. Analogously for ? ! ˆ.
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ˆ _‰ ! ‰ _ˆ

.ˆ _‰ ! ‰ _ˆ/Bt
� z9

stE;G;m; n z8sta; c; k; l��
z8i ; j ��mackl; nackl .z8b �� i ˆBt.aI b/ _ z8d �

� j ‰Bt.cI d//!

z8f ��k ‰Bt.EacIf / _ z8h �
� l ˆBt.GacI h/

�
^ .ˆ _‰ ! ‰ _ˆ/

�
;

tEac WD c; tGac WD a; tmackl WD l ; tnackl WD k:

Analogously for ˆ _ˆ! ˆ, ˆ ^‰ ! ˆ and ˆ ^‰ ! ‰ ^ˆ.

ˆŒs=x�! 9x ˆ

.ˆŒs=x�! 9x ˆ/Bt
� z9

stC ; f z8sta; e
�
.z8b ��f ae ˆŒs=x�Bt.aI b/!

9x z8d �� e ˆBt.CaI d// ^ .ˆŒs=x�! 9x ˆ/
�
;

tCa WD a; tf ae WD e:

Here we use ˆBt.aI b/Œx=w� � ˆŒx=w�Bt.aI b/, where the variables a; b; x; w are
all distinct, which is easily proved by induction on the length of ˆ. Analogously for
8x ˆ! ˆŒs=x�.

ˆ! ‰; ‰ ! � = ˆ! �

.ˆ! ‰/Bt
� z9

stC ; g z8sta; d
�
.z8b ��gad ˆBt.aI b/!

‰Bt.CaI d// ^ .ˆ! ‰/
�
;

.‰ ! �/Bt
� z9

stE; g z8stc; f
�
.z8d ��gcf ‰Bt.cI d/!

�Bt.EcIf // ^ .‰ ! �/
�
;

.ˆ! �/Bt
� z9

stE; g z8sta; f
�
.z8b ��gaf ˆBt.aI b/!

�Bt.EaIf // ^ .ˆ! �/
�
;

tEa WD sE .rCa/; tgaf WD rga.sg.rCa/f /:

Dropping ˆ! ‰, ‰! � and ˆ! � to simplify, by induction hypothesis we have
(4.1) and (4.2) and we want to prove (4.3),

z8
sta; d .z8b �� rgad ˆBt.aI b/! ‰Bt.rCaI d//; (4.1)

z8
stc; f .z8d �� sgcf ‰Bt.cI d/! �Bt.sEcIf //; (4.2)

z8
sta; f

�
z8b �� rga.sg.rCa/f /ˆBt.aI b/! �Bt.sE .rCa/If /

�
: (4.3)
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From (4.1) we get (4.4), from (4.2) we get (4.5), and from the last line of (4.4) and
(4.5) we get (4.3),

z8
sta; f z8d �� sg.rCa/f .z8b �

� rgad ˆBt.aI b/! ‰Bt.rCaI d//„ ƒ‚ …
z8d �� sg.rCa/f z8b �

� rgad ˆBt.aI b/! z8d �
� sg.rCa/f ‰Bt.rCaI d/„ ƒ‚ …

z8b �� rga.sg.rCa/f /ˆBt.aI b/! z8d �
� sg.rCa/f ‰Bt.rCaI d/

; (4.4)

z8
sta; f

�
z8d �� sg.rCa/f ‰Bt.rCaI d/! �Bt.sE .rCa/If /

�
: (4.5)

Recovering ˆ! ‰, ‰! � and ˆ! �, since ˆ! ‰ and ‰! � are provable by
induction hypothesis, so it is ˆ! � by the rule under interpretation. Analogously
for ˆ; ˆ! ‰ = ‰ and ˆ! ‰ = ˆ _�! ‰ _�.

ˆ ^‰ ! � = ˆ! .‰ ! �/

.ˆ ^‰ ! �/Bt
� z9

stE; g; h z8sta; c; f�
.z8b; d ��gacf ; hacf .ˆBt.aI b/ ^‰Bt.cI d//!

�Bt.EacIf // ^ .ˆ ^‰ ! �/
�
;

.ˆ! .‰ ! �//Bt
� z9

stE;H ;G z8sta; c; f
�
z8b ��Gacf ˆBt.aI b/!�

.z8d ��Hacf ‰Bt.cI d/! �Bt.EacIf // ^ .‰ ! �// ^ .ˆ! .‰ ! �/
��
;

tEac WD sEac; tHacf WD shacf ; tGagcf WD sgacf :

To prove ‰! � in .ˆ! .‰! �//Bt, we use Proposition 6 saying ˆBt.aIb/! ˆ,
andˆ^‰!� in .ˆ^‰!�/Bt. Analogously forˆ! .‰!�/ = ˆ^‰!�.

ˆ! ‰ = 9x ˆ! ‰

.ˆ! ‰/Bt
� z9

stC ; g z8sta; d
�
.z8b ��gad ˆBt.aI b/!

‰Bt.CaI d// ^ .ˆ! ‰/
�
;

.9x ˆ! ‰/Bt
� z9

stC ; f z8sta; d
�
.z8e ��f ad 9x z8b �� e ˆBt.aI b/!

‰Bt.CaI d/ ^ .9x ˆ! ‰//
�
;

tCa WD sga; tf ad WD sgad:

To prove 9xˆ!‰ in .9xˆ!‰/Bt, we use that by induction hypothesis we proved
ˆ! ‰. Analogously for ˆ! ‰ = ˆ! 8x ‰.

8x; y; z .x D� y ! zx D0 zy/ This axiom is an internal formula, so it is equiva-
lent (provably in E-HA!st ) to its Bt-interpretation, thus is provable, and does not require
witnessing terms. Analogously for the axioms for the combinators, recursors, equality,
successor and the rule of (internal) induction.
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st.t�/

st.t�/Bt
� z9

sta .t ��a/;

ta W� t
m:

Since t� is a closed term, then there exists a closed and monotone term .tm/� such
that E-HA!st ` t �

�
� t

m by Howard’s theorem [13, Theorem 3.1].

x D� y ^ st.x/! st.y/

.x D� y ^ st.x/! st.y//Bt
$ z9

stB z8sta
�
.x D� y ^ x �

�a! y ��Ba/ ^

.x D� y ^ st.x/! st.y//
�
;

tBa W� a:

Analogously for st.y/ ^ x ��� y ! st.x/.

ˆŒ0=w�; st.x/ ^ˆŒx=w�! ˆŒSx=w� = st.x/! ˆŒx=w�

ˆŒ0=w�Bt
� z9

sta z8stb ˆBt.aI b/Œ0=w�;

.st.x/ ^ˆŒx=w�! ˆŒSx=w�/Bt
� z9

stD;f z8stc; a; e��
z8b ��f cae .x �� c ^ˆBt.aI b/Œx=w�/!

ˆBt.DcaI e/ŒSx=w�
�
^ .st.x/ ^ˆŒx=w�! ˆŒSx=w�/

�
;

.st.x/! ˆŒx=w�/Bt
� z9

stA z8stc; b
�
.x �� c ! ˆBt.AcI b/Œx=w�/ ^

.st.x/! ˆŒx=w�/
�
;

tA0 WD ra; tA.Sc/ WD max.sDc.tAc/; tAc/:

Dropping st.x/^ˆŒx=w�!ˆŒSx=w� and st.x/!ˆŒx=w� to simplify, by induction
hypothesis we have (4.6) and (4.7) and we want to prove (4.8),

z8
stb ˆBt.raI b/Œ0=w�; (4.6)

z8
stc; a; e

�
z8b �� sf cae .x �

� c ^ˆBt.aI b/Œx=w�/! ˆBt.sDcaI e/ŒSx=w�
�
;

(4.7)

z8
stc; b .x �� c ! ˆBt.tAcI b/Œx=w�/: (4.8)

(1) We prove (†) 8stc 8x .x �� c ! tAx �
� tAc/ by induction on c.

(2) We prove (‡) st.x/! z8stbˆBt.tAxIb/Œx=w� by induction on x: the base case
is equivalent to (4.6); for the induction step, we assume (‡) and st.x/, we take
c D x and a D tAx in (4.7) getting essentially its premise

z8
ste z8b �� sf x.tAx/e ˆBt.tAxI b/Œx=w�
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and therefore essentially its conclusion

z8
ste ˆBt.sDx.tAx/I e/ŒSx=w�;

from which by Lemma 7 we get

z8
stb ˆBt.tA.Sx/I b/ŒSx=w�:

(3) We prove (4.8) using Lemma 7, (†) and (‡).

Recovering st.x/ ^ ˆŒx=w� ! ˆŒSx=w� and st.x/ ! ˆŒx=w�, since ˆŒ0=w� and
st.x/ ^ ˆŒx=w�! ˆŒSx=w� are provable by induction hypothesis, so it is st.x/!
ˆŒx=w� by the rule under interpretation.

5. Proof 2: A detour through q-truth

We hardwire q-truth [14] in the intuitionistic nonstandard bounded functional inter-
pretation B obtaining the intuitionistic nonstandard bounded functional interpretation
with q-truth Bq. We follow Stephen C. Kleene’s method to hardwire q-truth: to add
copies of the formulas under interpretations to the clauses of disjunction, implication
and existential quantification of the interpretation ˆI � : : : ˆI; to be more clear, if
ˆI is defined as in the left column below, then ˆIq should be defined like in the right
column below,

.ˆ _‰/I W� � � � _ � � � ; .ˆ _‰/Iq W� .� � � ^ˆ/ _ .� � � ^‰/;

.ˆ! ‰/I W� � � � ! � � � ; .ˆ! ‰/Iq W� � � � ^ˆ! � � � ;

.9x ˆ/I W� 9x � � � ; .9x ˆ/Iq W� 9x .� � � ^ˆ/:

Definition 9. The intuitionistic nonstandard bounded functional interpretation with
q-truth Bq assigns to each formula ˆ of the language of E-HA!st the formula

ˆBq
W� z9

sta z8stb ˆBq.aI b/

of the language of E-HA!st according to the following clauses (where ˆBq.aI b/ is the
part inside square brackets, and r0, s0 and t� are terms). For atomic formulas, we
define

.r D0 s/
Bq
W� Œr D0 s�;

st.t/Bq
W� z9

sta Œt ��a�:
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For the remaining formulas, if

ˆBq
� z9

sta z8stb ˆBq.aI b/ and ‰Bq
� z9

stc z8std ‰Bq.cI d/;

then we define

.ˆ ^‰/Bq
W� z9

sta; c z8stb; d ŒˆBq.aI b/ ^‰Bq.cI d/�;

.ˆ _‰/Bq
W� z9

sta; c z8ste; f Œ.z8b �� e ˆBq.aI b/ ^ˆ/_

.z8d ��f ‰Bq.cI d/ ^‰/�;

.ˆ! ‰/Bq
W� z9

stC ; e z8sta; d Œz8b �� ead ˆBq.aI b/ ^ˆ! ‰Bq.CaI d/�;

.8x ˆ/Bq
W� z9

sta z8stb Œ8x ˆBq.aI b/�;

.9x ˆ/Bq
W� z9

sta z8stc Œ9x .z8b �� c ˆBq.aI b/ ^‰/�:

In the following proposition we prove that Bq really has truth, but only for dis-
junctions and existential quantifications.

Proposition 10 (q-truth property). For all formulas ˆ of the language of E-HA!st of
the form ˆ � ‰ _� or ˆ � 9x ‰, we have E-HA!st ` ˆBq.aI b/! ˆ.

Proof. Let us see only the case of disjunction: we have

.‰ _�/Bq.a; cI e; f / � .z8b �
� e ‰Bq.aI b/ ^‰/„ ƒ‚ …

!‰

_ .z8d ��f �Bq.cI d/ ^�/„ ƒ‚ …
!�

;

so .‰ _�/Bq.a; cI e; f /! ‰ _�.

The following is an analogous of Lemma 7 for the Bq interpretation.

Lemma 11 (Monotonicity of Bq). For all formulas ˆ of the language of E-HA!st , we
have

E-HA!st ` a �
�
Qa ^ b �� b ^ˆBq.aI b/! ˆBq. QaI b/:

The next result, inspired by a similar result in [10, Proposition 7.6], not only
relates q-truth and t-truth but even “explains” why q-truth is weaker than t-truth: we
need to strengthen ˆBq by “adding” ˆ in order to get ˆBt.

Proposition 12 (Factorisation Bq ^ id D Bt). For all formulas ˆ of the language
of E-HA!st , being ˆBq � z9sta z8stb ˆBq.aI b/ the Bq-interpretation of ˆ, then the Bt-
interpretation of ˆ will be of the form ˆBt � z9sta z8stb ˆBt.aI b/ (for the same vari-
ables a; b as in ˆBq) and we have

E-HA!st `
z8

sta; b .ˆBq.aI b/ ^ˆ$ ˆBt.aI b//:
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Proof. The proof is by induction on the length of ˆ. We will implicitly assume that
the variables a;b are monotone and standard, so that (†) t ��a! st.t/ and (‡) z8a ��

b ˆ ^‰ $ z8a �� b .ˆ ^‰/ with a not free in ‰.

s D0 t

.s D0 t /Bq.I/ ^ s D0 t � (Definition 9)

s D0 t ^ s D0 t $ (logic)

s D0 t � (Definition 5)

.s D0 t /Bt.I/:

st.t/

st.t/Bq.aI/ ^ st.t/ � (Definition 9)

t ��a ^ st.t/$ (†)

t ��a � (Definition 5)

st.t/Bt.aI/:

ˆ _‰

.ˆ _‰/Bq.a; cI e; f / ^ .ˆ _‰/ � (Definition 9)�
.z8b �� e ˆBq.aI b/ ^ˆ/ _ .z8d �

�f ‰Bq.cI d/ ^‰/
�
^

.ˆ _‰/$ (logic)

.z8b �� e ˆBq.aI b/ ^ˆ/ _ .z8d �
�f ‰Bq.cI d/ ^‰/$ (‡)

z8b �� e .ˆBq.aI b/ ^ˆ/ _ z8d �
�f .‰Bq.cI d/ ^‰/$ (IH)

z8b �� e ˆBt.aI b/ _ z8d �
�f ‰Bt.cI d/ � (Definition 5)

.ˆ _‰/Bt.a; cI e; f /:

Analogously for ‰ ^ˆ, 8x ˆ and 9x ‰.

ˆ! ‰

.ˆ! ‰/Bq.C ; eI a; d/ ^ .ˆ! ‰/ � (Definition 9)

.z8b �� ead ˆBq.aI b/ ^ˆ! ‰Bq.CaI d// ^ .ˆ! ‰/$ (logic)

.z8b �� ead ˆBq.aI b/ ^ˆ! ‰Bq.CaI d/ ^‰/ ^ .ˆ! ‰/$ (‡)�
z8b �� ead .ˆBq.aI b/ ^ˆ/! ‰Bq.CaI d/ ^‰

�
^ .ˆ! ‰/$ (IH)

.z8b �� ead ˆBt.aI b/! ‰Bt.CaI d// ^ .ˆ! ‰/ � (Proposition 6)

.ˆ! ‰/Bt.C ; eI a; d/:
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As a curious side remark, observe that from the factorisation Bq ^ id D Bt the
terms witnessing ˆBq and ˆBt are the same (and it can be proved that they are also
the terms witnessing ˆB).

The interpretation Bq is sound in the usual sense, that it maps theorems of the
interpreted theory E-HA!st into theorems of the interpreting theory E-HA!st .

Theorem 13 (soundness theorem of Bq). For all formulas ˆ of the language of
E-HA!st , if E-HA!st ` ˆ, then there are closed (and therefore standard) and monotone
terms t such that E-HA!st `

z8stb ˆBq.t I b/.

Finally, we give our second proof of the soundness theorem of Bt (Theorem 8).
The proof can be summarised by the following diagram:

ˆ ˆBq.t I b/ ˆBq.t I b/ ^ˆ ˆBt.t I b/:

ˆ

Bq Bq^idDBt

Proof. The proof is similar to Jaime Gaspar and Paulo Oliva’s proof [10, Theo-
rem 7.7], using the soundness theorem of Bq (Theorem 13) and the factorisation
Bq ^ id D Bt (Proposition 12): for all formulas ˆ in the language of E-HA!st , being
ˆBq � z9sta z8stb ˆBq.aI b/ the Bq-interpretation of ˆ and ˆBt � z9sta z8stb ˆBt.aI b/

the Bt-interpretation ofˆ (by the factorisation Bq^ idD Bt), if E-HA!st `ˆ then there
exist closed and monotone terms t such that E-HA!st `

z8stbˆBq.t Ib/ (by the soundness
theorem of Bq), so E-HA!st `

z8stbˆBq.t Ib/^ˆ, where E-HA!st `
z8stb .ˆBq.t Ib/^ˆ$

ˆBt.t I b/) (by the factorisation Bq ^ id D Bt), thus the same terms t are such that
E-HA!st `

z8stb ˆBt.t I b/.

6. Proof 3: The copies-only method

To explain the “copies-only method”, we consider the case of the axiomˆ! ˆ_‰.
Let us see how we check that B interprets this axiom.

(1) First, we give the B-interpretation of the axiom,

.ˆ! ˆ _‰/B � z9stC ;E; i z8sta; g; h .z8b �� iaghˆB.aI b/!

z8d ��g ˆB.CaI d/ _ z8f �
�h‰B.EaIf //;

and then the terms supposedly witnessing the interpreted formula,

tCa WD a; tEa WD O; t iagh WD g:



Hardwiring truth in functional interpretations 95

(2) Secondly, we replace the terms by their definitions in the interpreted formula,
getting

z8
sta; g; h .z8b ��g ˆB.aI b/! z8d �

�g ˆB.aI d/ _ z8f �
�h‰B.OIf //;

and we verify that the result is provable, which essentially consists in noticing
that the first underlined subformula implies the second underlined subformula
because they are the same modulo an irrelevant renaming of the variables b
to d .

Now let us see how Bq interprets the axiom ˆ! ˆ _‰.

(1) First, we give the Bq-interpretation of the axiom,

.ˆ! ˆ _‰/Bq
� z9

stC ;E; i z8sta; g; h
�
z8b �� iaghˆBq.aI b/ ^ˆ!

.z8d ��g ˆBq.CaI d/ ^ˆ/ _ .z8f �
�h‰Bq.EaIf / ^‰/

�
;

and then the terms supposedly witnessing the interpreted formula (the same
as for B),

tCa WD a; tEa WD O; t iagh WD g:

(2) Secondly, we replace the terms by their definitions in the interpreted formula,
getting

z8
sta; g; h

�
z8b ��g ˆBq.aI b/ ^ˆ!

.z8d ��g ˆBq.aI d/ ^ˆ/ _ .z8f �
�h‰Bq.OIf / ^‰/

�
;

and we verify that the result is provable, which essentially consists in noticing
that

(†) the first underlined subformula implies the second underlined subfor-
mula because they are the same modulo an irrelevant renaming of the
variables b to d ;

(‡) the first double-underlined ˆ implies the second double-underlined ˆ.

The previous points reveal that the verification that the terms interpret the axiom splits
into two disjoint tasks (†) and (‡), which we reformulate now:

(†) essentially, to verify, ignoring the ellipsis, that the terms work, that is that they
are such that

� � �
�
z8b ��g ˆBq.aI b/ ^ � � � !

.z8d ��g ˆBq.aI d/ ^ � � � / _ .z8f �
�h‰Bq.OIf / ^ � � � /

�
I
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(‡) to verify, ignoring the ellipsis, that the copies work, that is that they do not
spoil provability

� � � .� � � ^ˆ! .� � � ^ˆ/ _ .� � � ^‰//:

Analogous considerations work for t-truth. At this point we should conclude what we
learned as a statement of the “copies-only method”.

In proving the soundness theorem of a functional interpretation with truth Iq
or It, it is superfluous to do the task (†) since it is just a repetition of the same
task for the functional interpretation without truth I, so it suffices to do only
the task (‡).

We should point out, however, that the “copies-only method” does not always
work. One situation in where it does not work is when the proof of the soundness
theorem of I depends on some crucial property of the formulas ˆI.aI b/ that does not
hold for the formulas ˆIq.aI b/ or ˆIt.aI b/. This problem does not occur with Bq
(nor Bt) but occurs, for example, if we try to hardwire q-truth (or t-truth) in Gödel’s
functional interpretation D [11, page 285] obtaining Dq, which we explain now. To
illustrate the problem, let us prove that D interprets the axiom ˆ! ˆ ^ ˆ. Its D-
interpretation is

9C ;E;B 8a; d ; f .ˆD.aIBadf /! ˆD.CaI d/ ^ˆD.EaIf //

and the terms witnessing the interpretation are

tCa D a; tEa D a; tBadf D

´
f if ˆD.aI d/;

d if :ˆD.aI d/:

The terms tB can be defined by cases because of the crucial property that the for-
mula ˆD.aI d/ is quantifier-free. But, and here is the problem, the formula ˆDq.aI d/

is no longer quantifier-free (because of the possible non-quantifier-free copies added
to it), so we cannot apply the “copies-only method”, as we wanted to illustrate. Other
properties, which look more innocent but could also be a source of problems, include

(1) ˆŒt=x�Dq.aI b/ andˆDq.aI b/Œt=x� should be syntactically equal (which plays
a crucial role in interpreting the axioms8xˆ!ˆŒt=x� andˆŒt=x�!9xˆ);

(2) the free variables of ˆDq.aI b/ should be exactly the free variables of ˆ and
the variables a; b (which plays a crucial role in interpreting the rulesˆ!‰ =

ˆ! 8x ‰ and ˆ! ‰ = 9x ˆ! ‰);

(3) for all quantifier-free formulas ', we should have 'Dq.aI b/ $ ' and the
tuples a and b should be empty (which plays a crucial role in interpreting
axioms and rules restricted to quantifier-free formulas).



Hardwiring truth in functional interpretations 97

After presenting the “copies-only method”, we finally go to the actual proof of
Theorem 8 using this method.

Proof. First, we notice that there is no need to check the copies for axioms and rules
whose premises and conclusions are both unnested implications, as in ˆ! ‰ versus
ˆ ! .‰ ! �/, because their Bt-interpretations, which are very roughly .ˆBt !

‰Bt/ ^ .ˆ! ‰/, are provable since ˆ! ‰ is an axiom or the proved premise or
conclusion of a rule. In the present setting, there are only two axioms or rules with
nested implications, namely

ˆ ^‰ ! �

ˆ! .‰ ! �/
;

ˆ! .‰ ! �/

ˆ ^‰ ! �
:

So we only have to check the theorem for these two rules, which was already done in
the “standard” proof in Section 4.

7. Proof 4: The translations t and o

The strategy for this final proof is to

(1) define an extension E-HA!cst of E-HA!st where there are copies ˆc of every for-
mula ˆ of the language of E-HA!st ;

(2) a translation t from E-HA!st to E-HA!cst that puts copies in strategical places,
namely after implications and universal quantifications;

(3) a translation Bc from E-HA!cst to itself which is essentially the same as B except
that a clause is added to deal with the translation of copies by leaving them
unchanged;

(4) a translation o from E-HA!cst to E-HA!st that replaces the copies ˆc with the ori-
ginal formulas ˆ.

The idea is summarised in the following diagram (compare with Proposition 24):

E-HA!st E-HA!cst E-HA!cst E-HA!st :
t

Bt

Bc o

Theorem 8 is then essentially an immediate consequence of the soundness of the
translations t, Bc and o and of the factorisation BtD o ı Bc ı t (Proposition 24). This
recasts a previous idea [9, Section 13.4].
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Definition 14. The theory E-HA!cst is obtained by adding to E-HA!st the following.

(1) A fresh formula ˆc, called the copy of ˆ, for each formula ˆ of the language
of E-HA!st , which we declare to be internal if and only if ˆ is internal, and
atomic if and only if ˆ is atomic.

(2) The axioms and rules of E-HA!st extended to the language of E-HA!cst . For exam-
ple, for an internal formula 'c, the internal rule of induction now holds.

(3) The axioms .ˆ1/c!� � �! .ˆn/c for each theoremˆ1!� � �!ˆn of E-HA!st .
Note that the implication associates to the right so, for example,ˆ1! ˆ2!

ˆ3 means ˆ1 ! .ˆ2 ! ˆ3/. Note also that n can be equal to 1, so if ˆ is a
theorem of E-HA! , then ˆc is an axiom of E-HA!cst .

(4) The axiom ' ! 'c, for each internal formula ' of the language of E-HA!st .

(5) The free variables FV.�/ are extended to the language of E-HA!cst by FV.ˆc/ WD

FV.ˆ/.

(6) We say that a term t is free for a variable x in ˆc if and only if t is free for x
in ˆ.

(7) Substitution Œ�=�� is extended to the language of E-HA!cst byˆcŒt=x� W�ˆŒt=x�c.

We have to define the translations t, o and the functional interpretation Bc, and to
prove their soundness theorems. Let us start with t.

Definition 15. The translation t assigns to each formula ˆ of the language of E-HA!st

the formula ˆt of the language of E-HA!cst according to the following clauses:

.s D0 t /
t
W� .s D0 t /;

st.t/t W� st.t/;

.ˆ ^‰/t W� .ˆt
^‰t/;

.ˆ _‰/t W� .ˆt
_‰t/;

.ˆ! ‰/t W� .ˆt
! ‰t/ ^ .ˆ! ‰/c;

.9x ˆ/t W� 9x ˆt;

.8x ˆ/t W� 8x ˆt
^ .8x ˆ/c:

It should be clear from the previous definition that, for all formulas ˆ of the lan-
guage of E-HA!st , we have FV.ˆt/ D FV.ˆ/. Moreover, for all terms t , variables x
and formulas ˆ, t is free for x in ˆt if and only if t is free for x in ˆ, and we have
ˆŒt=x�t D ˆtŒt=x�.

The translation t has a sort of “truth property” since the translated formulas ˆt

imply the copies ˆc of the original formulas, instead of implying the original formu-
las ˆ (as in a proper truth property).
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Proposition 16 (“Truth property”). For all formulas ˆ of the language of E-HA!st , we
have E-HA!cst ` ˆ

t ! ˆc.

Proof. The proof is by induction on the length of ˆ. We present only the case of
conjunction. By induction hypothesis, we assume (IH1)ˆt!ˆc and (IH2)‰t!‰c.
The formulaˆ! .‰! .ˆ^‰// is a theorem of E-HA!st , soˆc! .‰c! .ˆ^‰/c/

is an axiom of E-HA!cst . Hence ˆc ^ ‰c ! .ˆ ^ ‰/c. Using this together with (IH1)
and (IH2), we derive

.ˆ ^‰/t �

ˆt
^‰t

!

ˆc ^‰c !

.ˆ ^‰/c:

The remaining cases are either immediate or similar.

Theorem 17 (Soundness theorem of t). For all formulasˆ of the language of E-HA!st ,
if E-HA!st ` ˆ, then E-HA!cst ` ˆ

t.

Proof. The proof is by induction on the length of derivations.

ˆ ^‰ ! ‰ ^ˆ We have

.ˆ ^‰ ! ‰ ^ˆ/t � .ˆt
^‰t

! ‰t
^ˆt/ ^ .ˆ ^‰ ! ‰ ^ˆ/c:

The formulaˆ^‰!‰ ^ˆ is a theorem, so .ˆ^‰!‰ ^ˆ/c is an axiom and the
result follows. Analogously forˆ_ˆ!ˆ,ˆ!ˆ_‰,ˆ!ˆ^ˆ,ˆ^‰!ˆ,
ˆ _‰ ! ‰ _ˆ and ? ! ˆ.

8x ˆ! ˆŒt=x� We have

.8x ˆ! ˆŒt=x�/t � .8x ˆt
^ .8x ˆ/c ! ˆŒt=x�t/ ^ .8x ˆ! ˆŒt=x�/c:

Here we use the fact that ˆtŒt=x� � ˆŒt=x�t and that t is free for x in ˆ if and only
if t is free for x in ˆt. Analogously for ˆŒt=x�! 9x ˆ.

ˆ ^‰ ! � = ˆ! .‰ ! �/ We have

.ˆ ^‰ ! �/t � .ˆt
^‰t

! �t/ ^ .ˆ ^‰ ! �/c;

.ˆ! .‰ ! �//t � .ˆt
! .‰t

! �t/ ^ .‰ ! �/c/ ^ .ˆ! .‰ ! �//c:

The formulaˆt ^‰t!�t is a theorem (because it follows from the t-translation of
the premise of the rule), so (1)ˆt! .‰t!�t/ is a theorem. By Proposition 16, we
have (2)ˆt!ˆc. The formulaˆ! .‰!�/ is a theorem, so (3)ˆc ! .‰ ! �/c
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and (4) .ˆ ! .‰ ! �//c are axioms. From (1), (2), (3) and (4), we get the t-
translation of the conclusion of the rule. Analogously for ˆ ˆ!‰

‰
, ˆ!‰ ‰!�

ˆ!�
,

ˆ!.‰!�/
ˆ^‰!�

, ˆ!‰
ˆ_�!‰_�

, ˆ!‰
ˆ!8x‰

and ˆ!‰
9xˆ!‰

.

External induction The translation of the rule is

ˆtŒ0=w� .st.x/ ^ˆtŒx=w�! ˆtŒSx=w�/ ^ .st.x/ ^ˆŒx=w�! ˆŒSx=w�/c
.st.x/! ˆtŒx=w�/ ^ .st.x/! ˆŒx=w�/c

:

Although the formula ˆt may contain copies, it is an instance of the rule in E-HA!cst
because in E-HA!cst the rule was extended to the language of E-HA!cst .

The remaining cases are trivial in the sense that either the axiom is an internal for-
mula or the translation of the axiom is essentially an instance of the same axiom-
scheme.

Now we present the translation o and prove its soundness theorem.

Definition 18. The translation o assigns to each formula ˆ of the language of E-HA!cst
the formula ˆo of the language of E-HA!st according to the following clauses:

.ˆc/
o
W� ˆ;

.s D0 t /
o
W� .s D0 t /;

st.t/o W� st.t/;

.ˆ ^‰/o W� ˆo
^‰o;

.ˆ _‰/o W� ˆo
_‰o;

.ˆ! ‰/o W� ˆo
! ‰o;

.8x ˆ/o W� 8x ˆo;

.9x ˆ/o W� 9x ˆo:

Theorem 19 (Soundness theorem of o). For all formulasˆ of the language of E-HA!cst ,
if E-HA!cst ` ˆ then E-HA!st ` ˆ

o.

Proof. The assertion is proved by a simple induction on the length of the derivation.
Observe that for the nonstandardness axioms the result is trivial since for those axioms
we have ˆ � ˆo.

Proposition 20. For all formulas ˆ of the language of E-HA!st , we have

E-HA!st ` .ˆ
t/o $ ˆ:

Proof. The proof is by induction on the length of ˆ.
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st.t/ We have

.st.t/t/o � (Definition 15)

st.t/o � (Definition 18)

st.t/:

ˆ! ˆ We have

..ˆ! ‰/t/o � (Definition 15)

..ˆt
! ‰t/ ^ .ˆ! ‰/c/

o
� (Definition 18)

..ˆt/o ! .‰t/o/ ^ .ˆ! ‰/$ (IH)

.ˆ! ‰/ ^ .ˆ! ‰/$ (logic)

ˆ! ‰:

8x ˆ We have

..8x ˆ/t/o � (Definition 15)

..8x ˆt/ ^ .8x ˆ/c/
o
� (Definition 18)

8x .ˆt/o ^ 8x ˆ$ (IH)

8x ˆ ^ 8x ˆ$ (logic)

8x ˆ:

The other cases are analogous.

Now we present the functional interpretation Bc and prove its soundness theorem.

Definition 21. The intuitionistic nonstandard bounded functional interpretation Bc
extended to copies ˆc interprets formulas in the language of E-HA!cst into formulas of
the language of E-HA!cst in the same way that the interpretation B interprets formulas
of the language of E-HA!st into formulas of the language of E-HA!st , except that for
formulas of the form ˆc we define

.ˆc/
Bc
� .ˆc/Bc W� ˆc:

Proposition 22. For all formulas ˆ of the language of E-HA!cst , we have that if
E-HA!cst ` ˆ, then there are closed (and therefore standard) and monotone terms t
such that E-HA!cst `

z8stb ˆBc.t I b/.

Proof. The proof is the soundness theorem of B plus the interpretation of the new
axioms .ˆ1/c! � � � ! .ˆn/c by Bc, which is the theoremˆ1! � � � !ˆn of E-HA!st .
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Lemma 23. For all formulas ˆ of the language of E-HA!st , we have ˆo � ˆ.

Proof. The proof is a simple induction on the length of the formula ˆ in which each
case follows immediately from Definition 18 and the induction hypothesis.

Proposition 24. For all formulas ˆ of the language of E-HA!st , we have

(1) E-HA!st ` ..ˆ
t/Bc.aI b//

o � ˆBt.aI b/;

(2) E-HA!st ` ..ˆ
t/Bc/o � ˆBt.

So, Bt is sound because t, Bc and o are sound.

Proof. We focus on the proof of the first item because the second item is an immediate
consequence. The proof is by induction on the length of the formula ˆ. The cases are
all similar so we just present the case of implication.�

..ˆ! ‰/t/Bc.C ;BI a; d/
�o
� (Definition 15)�

..ˆt
! ‰t/ ^ .ˆ! ‰/c/Bc.C ;BI a; d/

�o
� (Definition 21)

..ˆt
! ‰t/Bc.C ;BI a; d/ ^ ..ˆ! ‰/c/Bc.I //

o
� (Definition 21)

.z8b ��Bad .ˆt/Bc.aI b/! .‰t/Bc.CaI d// ^ ..ˆ! ‰/c/
o
� (Definition 18,

Lemma 23)

.z8b ��Bad .ˆt/Bc.aI b//
o
! .‰t/Bc.CaI d//

o
^ .ˆ! ‰/ � (IH)

.z8b ��Bad ˆBt.aI b/! ‰Bt.CaI d// ^ .ˆ! ‰/ � (Definition 5)

.ˆ! ‰/Bt.C ;BI a; d/ ^ .ˆ! ‰/ � (Proposition 6)

.ˆ! ‰/Bt.C ;BI a; d/:

8. Conclusion and future work

We introduced variants with t-truth and q-truth for the intuitionistic nonstandard
bounded functional interpretation of the nonstandard extensional Heyting arithmetic.
We presented four different approaches to prove its soundness theorem, the “stand-
ard” way, one using a detour through q-truth, one relying on the copies-only method
and finally a method relying on the translations t and o. For the reasons mentioned in
the introduction we are convinced that these methods may be adapted without diffi-
culty to prove the soundness of variants with truth for other functional interpretations.
Let us briefly comment on why each of the new methods may have advantages.

(1) The method explored in Section 5 is useful because it is easier to hardwire
q-truth than t-truth.
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(2) The copies-only method developed in Section 6 has the obvious advantage of
avoiding a lot of bureaucracy, allowing one to focus only on the copies instead
of the whole interpreted formula.

(3) The method presented in Section 7 can be seen as a theoretical clarification of
the fact that one can deal with interpretations with truth as blocs of independ-
ent processes. In this way, one can see this method as a sort of formalisation
of the copies-only method.

Finally, let us say a few words concerning future work. It is well known that a
characterisation theorem for interpretations with truth is a sort of “unobtainable goal”.
In spite of that we can maybe nevertheless separate certain principles. So we would
like to pay attention to the characteristic principles of the version without truth and
see if they are interpretable in the version with truth, as these give some idea of how
powerful a theory is.

Recently, in [4] a parametrised interpretation for Heyting arithmetic was intro-
duced. It is claimed that this parametrised interpretation should, in principle, be able
to also deal with interpretations with truth. We believe that this is worth exploring as
it might shed some extra light concerning the relation with linear logic, in analogy
with what is done in [10].
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