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Existence and boundary asymptotic behavior of strictly
convex solutions for singular Monge–Ampère problems

with gradient terms

Xuemei Zhang and Shuangshuang Bai

Abstract. In this paper, we study the existence as well as the boundary asymptotic behavior of
strictly convex solutions for singular Monge–Ampère problems with gradient terms. The stan-
dard tools are Karamata regular variation theory and the sub-super-solution method. In order to
apply these methods, we need to know the properties of the weight function b and the nonlinear
term f . We find new structure conditions on b and f to overcome the difficulties due to the
singularity of b and the gradient terms.

1. Introduction

Let � be a strictly convex, bounded smooth domain in Rn with n � 2. We consider
the following singular Monge–Ampère problems:´

det.D2u/ D b.x/f .�u/C jDujq in �;

u D 0 on @�;
(1.1)

and ´
det.D2u/ D b.x/f .�u/.1C jDujq/ in �;

u D 0 on @�;
(1.2)

where det.D2u/ is a Monge–Ampère operator, 0 < q < n, b 2 C1.�/ is a positive
weight function in �, and f 2 C1.0;C1/ is positive and nonincreasing.

The Monge–Ampère equation is a class of fully nonlinear partial differential equa-
tion, which arises from fluid mechanics, geometric problems and other scientific
fields. In the past years, there is an extensive research devoted to the study of Monge–
Ampère equations by different methods, see [5, 7, 9, 11, 14, 19, 21, 29, 31, 33, 37, 38,
40–44] and the references therein.
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Moreover, we notice that a type of singular elliptic boundary value problem has
received much attention, for example, see previous studies [8,13,23,24,26,39] and the
references cited therein. In [30], the existence question for Monge–Ampère problem´

det.D2u/ D u�.nC2/ in �;

u D 0 on @�;
(1.3)

was studied by Loewner and Nirenberg when n D 2. Cheng and Yau [6] considered
problem (1.3) in the case of n � 2 and also obtained existence results.

Using the sub-super-solution method, Lazer and McKenna [27] proved that the
Monge–Ampère problem´

det.D2u/ D b.x/u� in �;

u D 0 on @�;
(1.4)

admits a unique solution u 2 C 2.�/ \ C.x�/, where  > 1 and b 2 C1.x�/ is posi-
tive. Besides, they proved that there exist two negative constants c1 and c2 such that
u satisfies

c1d
ˇ .x/ � u � c2d

ˇ .x/ in �;

where ˇ D nC1
nC

and d.x/ D dist.x; @�/.
In [32], Mohammed considered a more general Monge–Ampère problem´

det.D2u/ D b.x/f .�u/ in �;

u D 0 on @�;
(1.5)

and proved the existence of a solution when b satisfies

b.x/ � Cd.x/ı�n�1 (1.6)

for some positive constants C and 0 < ı < n � 1. Note that (1.6) allows b.x/ to be
singular near @�.

Recently, Sun and Feng [14] (where k-Hessian equation was studied, it reduces
to the Monge–Ampère equation when k D n), Li and Ma [28] applied the Karamata
regular variation theory and the sub-super-solution method to analyze the boundary
asymptotic behavior of convex solutions of (1.5). They covered a more general weight
function b by using the following condition:

(b) there exist constants C2 > C1 > 0 such that

C1�
nC1.d.x// � b.x/ � C2�

nC1.d.x// near @�; (1.7)

for some �.t/ 2 C 1.0; a/ satisfying

lim
t!0C

�‚.t/
�.t/

�0
D D� 2 Œ0;C1/;

where ‚.t/ D
R t
0
�.s/ds.
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Remark 1.1. It is clear that �.t/ D t˛ satisfies

lim
t!0C

�‚.t/
�.t/

�0
D

1

1C ˛
:

When det.D2u/ is replaced by�u or the p-Laplacian�pu in (1.1) and (1.2), similar
questions involving the gradient terms jDuj have been extensively studied. For exam-
ple, Brezis and Turner [4] studied the existence of positive solutions for the following
problem: ´

Lu D g.x; u;Du/; x 2 �;

u D 0; x 2 @�;

where L is a linear elliptic operator. Ghergu and Rădulescu [18] established several
results related to existence, nonexistence or bifurcation of positive solutions for the
boundary value problem´

��uCK.x/g.u/ D �f .x; u/ � jDuja; x 2 �;

u D 0; x 2 @�;

where K 2 C 0; .x�/, 0 <  < 1, 0 < a � 2. Dupaigne, Ghergu and Rădulescu [10]
considered ´

��u˙ p.d.x//g.u/ D �f .x; u/C �jDuja; x 2 �;

u D 0; x 2 @�;

where p.d.x// is a positive weight with possible singular behavior on the boundary
of �. For general p-Laplacian problems with gradient terms, please see [1, 2, 16,
17, 34, 36]. Generally, the variational method cannot be directly applied because the
gradient terms usually destroy the variational structure. The existing methods mainly
involve the topological degree and sub-super-solution argument.

In [12], Feng, Sun, and Zhang studied the existence and boundary behavior for
Monge–Ampère equations with nonlinear gradient terms of the form´

det.D2u/ D b.x/f .�u/C g.jDuj/ in �;

u D 0 on @�;
(1.8)

and ´
det.D2u/ D b.x/f .�u/.1C g.jDuj// in �;

u D 0 on @�;
(1.9)

where b 2 C1.x�/ is positive in � and satisfies (b) with D� 2 Œ0; 1�, f is positive,
decreasing on .0;C1/, lims!0C f .s/ D 1, and there exist positive d and c1 such
that f .u/ < c1

ud
, g 2 C1.0;1/ is positive and nondecreasing on .0;1/, and there
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exist a constant cg and 0 � q < n such that g.x/ � cgxq: They obtained interesting
results on the existence and boundary asymptotic behavior of strictly convex solu-
tions.

In this paper, we focus on the case g.jDuj/D jDujq (0� q < n) in (1.8) and (1.9)
but allow much more general behaviors of b.x/ and f . We will construct some new
functions with special structure to overcome the difficulties due to singularity of b and
the gradient terms. Even in the case b 2 C1.x�/ we get a structure condition better
than that in [12]. In fact, in this paper we will use a new technique to study problem
(1.1) and (1.2), which is completely different from that used in [12]. Especially, the
condition on b is weaker than (b), see Remark 1.2 for detail.

We will apply the sub-super-solution method and Karamata regular variation the-
ory to show the existence and boundary asymptotic behavior of solutions for problems
(1.1) and (1.2).

Firstly, we suppose that f satisfies

(f) f W .0;1/! .0;1/ is of class C1 and nonincreasing.

For the study of the existence and the boundary asymptotic behavior of solutions,
let us introduce a function ˆ defined by

ˆ.t/ D

Z t

0

Œ.nC 1 � �/F.s/��
1

nC1��ds; t 2 Œ0; a�; (1.10)

where

� D

´
0; corresponding to problem (1.1);

q; corresponding to problem (1.2);
(1.11)

F.t/ D

Z a

t

f .s/ds; (1.12)

and a is a positive constant. Since ˆ0 > 0, the inverse function exists. Let � be the
inverse of ˆ.

Next we discuss the conditions on b. To achieve this goal, we first introduce a few
notations.

Let

P.�/ D

Z 1

�

p.t/dt;

where p 2C 1.0;1/ is a positive function satisfying p0.t/<0 and limt!0C p.t/D1.
Such a function p is said to be of class Pfinite ifZ

0C
ŒP.�/�

1
n��d� <1; (1.13)

where � is defined in (1.11).
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We suppose that b satisfies

(b1) b 2 C1.x�/ is positive in x�, or

(b2) b 2 C1.�/ is positive in �, singular near @�, and there exists a function p
of class Pfinite such that

k2p.d.x// � b.x/ � k1p.d.x//

near @�, where k1 > k2 > 0.

Remark 1.2. Condition (b2) here is weaker than [28, 32] (where q D 0), where p.t/
was required to satisfy Z

0C
Œp.�/�

1
nC1d� <1: (1.14)

For example, letting p.t/D t�n�1.� ln t /�ˇ , 0 < t < t0 < 1, ˇ 2 .n; nC 1�, then
p satisfies Z

0C
ŒP.�/�

1
nd� <1;

but Z
0C
Œp.�/�

1
nC1d� D1:

The existence results are as follows.

Theorem 1.1. Let (f) and (b1) hold. Then problem (1.1) (or (1.2)) admits a strictly
convex solution.

Theorem 1.2. Let (f) and (b2) hold. Then problem (1.1) (or (1.2)) admits a strictly
convex solution.

The next theorem provides an asymptotic behavior of strictly convex solutions
close to the boundary. To state the theorem, we need to introduce two constants I0
and J0.

Let

I.s/ D
ˆ00.s/ˆ.s/

.ˆ0.s//2
: (1.15)

Suppose that lims!0C I.s/ exists and is denoted by I0. Set

!.t/ D

Z t

0

Œ.n � �/P.s/�
1

n��ds; (1.16)

and

J.s/ D �
!.s/!00.s/

.!0.s//2
: (1.17)

Suppose that lims!0C J.s/ exists and is denoted by J0.
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Theorem 1.3. Suppose that f satisfies (f), lims!0C f .s/ D 1 and such that I0 is
well defined and I0 ¤ 0. Suppose that b satisfies (b2) and such that J0 exists and
J0 ¤ 0. Then there exist �1; �2 such that for any strictly convex solution u to problem
(1.1) it holds

��
�
�1Œ!.d.x//�

n
nC1

�
� u.x/ � ��

�
�2Œ!.d.x//�

n
nC1

�
near @�: (1.18)

And there exist �1; �2 such that for any strictly convex solution u to problem (1.2)
it holds

��
�
�1Œ!.d.x//�

n�q
nC1�q

�
� u.x/ � ��

�
�2Œ!.d.x//�

n�q
nC1�q

�
near @�: (1.19)

Corollary 1.1. In Theorem 1.3, if� is a ball of radiusR, and limd.x/!0
b.x/

p.d.x//
D Nk,

then there exists �0 such that for any strictly convex solution u to problem (1.1), it
holds

lim
x2�;
d.x/!0

u.x/

�Œ.!.d.x///
n
nC1 �

D �
1�I0
0 : (1.20)

And there exists �0 such that for any strictly convex solution u to problem (1.2), it
holds

lim
x2�;
d.x/!0

u.x/

�Œ.!.d.x///
n�q
nC1�q �

D �
1�I0
0 : (1.21)

Remark 1.3. Comparing with the previous articles, such as [12], the main features
of this paper are as follows.

(i) Our condition on f is weaker than that of [12], no assumption of the form
f .u/ < c1

ud
for u 2 .0;C1/ and for some positive constants c1, d are

assumed. Our technique depends on the construction of the function ˆ in
(1.10) which has a relation with a gradient term and a special structure con-
dition (1.15). However, in [12], the author did not define the functionˆ and
the structure condition (1.15).

(ii) The conditions on b are also different. We study not only the case b 2
C1.x�/ (considered in [12]) but also the case b is singular near @�. We
solve the difficulty of singularity by constructing a special structure condi-
tion (1.17) which is not used in [12].

(iii) We use different methods from [12] to deal with gradient terms.

The rest of this paper is organized as follows. In Section 2, we give some prelim-
inary results to be used in the subsequent sections. Section 3 is devoted to proving
Theorem 1.1 and Theorem 1.2, Section 4 is devoted to proving Theorem 1.3 and
Corollary 1.1.
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2. Preliminary results

In this section, we shall give some lemmas and definitions for the convenience of later
use.

Lemma 2.1 ([7, Proposition 2.1]). Let u 2 C 2.�/ be such that the matrix .uxixj / is
invertible for x 2 �, and let h be a C 2 function defined on an interval containing the
range of u. Then

det.D2h.u// D det.D2u/
®
Œh0.u/�n C Œh0.u/�n�1h00.u/.ru/TB.u/ru

¯
; (2.1)

where AT denotes the transpose of the matrix A, B.u/ denotes the inverse of the
matrix .uxixj /, and

ru D .ux1 ; ux2 ; : : : ; uxn/
T :

Moreover, when u.x/ D d.x/, we have

det.D2h.u// D .�h0.u//n�1h00.u/

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
; x 2 �ı1 ;

where�ı1 D ¹x 2 � W 0 < d.x/ < ı1º, xx 2 @� is the projection of the point x 2�ı1
to @� and �1; : : : ; �n�1 are the principal curvatures of @� at xx.

Lemma 2.2 ([22, Lemma 2.1]). Suppose that � � Rn is a bounded domain, and
u; v 2 C 2.�/ are strictly convex. If

(1)  .x; z; p/ � �.x; z; p/, 8.x; z; p/ 2 .� �R �Rn/;

(2) det.D2u/ �  .x; u;Du/ and det.D2v/ � �.x; v;Dv/ in �;

(3) u � v on @�;

(4)  z.x; z; p/ > 0 or �z.x; z; p/ > 0,

then u � v in �.

The following interior estimate for derivatives of smooth solutions of Monge–
Ampère equations is a special case of [15, Theorem A.42].

Lemma 2.3. Let � be a bounded domain in Rn, n � 2, with @� 2 C1. Let f 2
C1.x� � Œ0;1/ � Rn/ with f .x; u; p/ > 0 for .x; u; p/ 2 x� � Œ0;1/ � Rn. Let
u 2 C1.x�/ be a convex solution of the Dirichlet problem´

det.D2u/ D f .x; u;Du/; x 2 �;

u.x/ D c 2 R; x 2 @�:
(2.2)

Let �0 be a subdomain of � with x�0 � � and k � 1 be an integer. Then there exists
a positive constant C which depends only on k; a; b, bounds for the derivatives of
f .x; u; p/ and dist.�0; @�/ such that

kukCk.x�0/ � C:
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The existence result below is a special case of [20, Theorem 1.3].

Lemma 2.4 ([20, Theorem 1.3]). The equation of the form´
det.D2u/ D '.x; u;Du/; x 2 �;

u.x/ D �.x/ 2 C1; x 2 @�;

where '.x; u; p/ is a positive C1 function for x 2 x�, u � max �, p 2 Rn and � 2
C1.@�/, admits a strictly convex solution u 2 C1.x�/, if there exists a subsolution
u 2 C 2.x�/ such that u D � on @� and which satisfies

det.uij / � '.x; u;Du/; 8x 2 �:

If 'u � 0, then this solution is unique.

Next we prove some properties of I0 and J0 by the Karamata regular variation
theory, which was introduced and established by Karamata in 1930, and it is a basic
tool in stochastic processes (see [3, 25, 35]).

Definition 2.1. A positive measurable function f defined on .0;a/, for some constant
a > 0, is called regularly varying at zero with index �, written f 2 RVZ�, if for each
� > 0 and some � 2 R,

lim
s!0C

f .�s/

f .s/
D ��:

In particular, when � D 0, f is called slowly varying at zero.
Clearly, if f 2 RVZ�, then L.s/ D f .s/

s�
is slowly varying at zero.

Definition 2.2. A positive measurable function f defined on .0;a/, for some constant
a > 0, is called rapidly varying at zero,

if lim
s!0C

f .s/ D1; and for each � > 1; lim
s!0C

f .s/s� D1;

or if lim
s!0C

f .s/ D 0; and for each � > 1; lim
s!0C

f .s/s�� D 0:

Proposition 2.1 (Representation theorem). A function L is slowly varying at zero if
and only if it may be written in the form

L.s/ D  .s/ exp
� Z a1

s

y.�/

�
d�
�
; s 2 .0; a1/

for some 0 < a1 < a, where the functions  and y are measurable and for s ! 0C,
y.s/! 0 and  .s/! c0 with c0 > 0.

On the other hand, for .0; a1/ one says that

yL.s/ D c0 exp
� Z a1

s

y.�/

�
d�
�
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is normalized slowly varying at zero and

f .s/ D s� yL.s/; s 2 .0; a1/

is normalized regularly varying at zero with index � and write f 2 NRVZ�.

Proposition 2.2. A function f 2 RVZ� belongs to NRVZ� if and only if

f 2 C 1.0; a1/; for some a1 > 0 and lim
s!0C

sf 0.s/

f .s/
D �:

Proposition 2.3 (Asymptotic behavior). If a functionL is slowly varying at zero, then
for a > 0 and t ! 0C,

(1)
R t
0
s�L.s/ds Š .1C �/�1t1C�L.t/, for � > �1;

(2)
R a
t
s�L.s/ds Š .�1 � �/�1t1C�L.t/, for � < �1.

Lemma 2.5. Let f satisfy (f) and such that I0 is well defined, then 0 � I0 � 1.

Proof. In order to estimate I0, by integrating (1.15) from 0 to v we haveZ v

0

I.s/ds D

Z v

0

ˆ00.s/ˆ.s/

.ˆ0.s//2
ds D

Z v

0

ˆ.s/

.ˆ0.s//2
dˆ0.s/

D
ˆ.s/

ˆ0.s/

ˇ̌̌̌v
0

�

Z v

0

.ˆ0.s//3 � 2ˆ.s/ˆ0.s/ˆ00.s/

.ˆ0.s//3
ds

D
ˆ.v/

ˆ0.v/
� v C 2

Z v

0

I.s/ds:

At the same time, it follows from (1.10) that ˆ0.v/ > 0, so we have

0 � lim
v!0C

ˆ.v/

vˆ0.v/
D 1 � lim

v!0C

R v
0
I.t/ds

v
D 1 � lim

v!0C
I.v/ D 1 � I0;

i.e. I0 � 1, therefore, we get 0 � I0 � 1.

Lemma 2.6. Let f satisfy (f) and such that I0 is well defined, we have

(1) I0 2 .0; 1/ if and only if F 2NRVZpC1 with p <�1. In this case, f 2 RVZp;

(2) if I0 D 1, then F is rapidly varying at zero;

(3) if I0 D 0, then F is slowly varying at zero.

Proof. (1)

lim
s!0C

1
ˆ0.s/

s. 1
ˆ0.s/

/0
D � lim

s!0C

1
ˆ0.s/

ˆ.s/

s ˆ00.s/

.ˆ0.s//2
ˆ.s/

D �
1

I0
lim
s!0C

ˆ.s/
ˆ0.s/

s
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D �
1

I0
lim
s!0C

.ˆ0.s//2 �ˆ.s/ˆ00.s/

.ˆ0.s//2

D
I0 � 1

I0
: (2.3)

By Proposition 2.2, 1
ˆ0.s/

2 NRVI0=.I0�1/ and F 2 NRVZ.nC1��/I0=.I0�1/ by
Proposition 2.1. Denote .n C 1 � �/I0=.I0 � 1/ by p C 1, then p C 1 < 0, i.e.
p < �1.

Now, we assume thatF 2NRVZpC1 with p <�1, then 1
ˆ0.s/
2NRV.pC1/=.nC1��/,

and

lim
s!0C

s
�

1
ˆ0.s/

�0
1

ˆ0.s/

D
p C 1

nC 1 � �
;

1

ˆ0.s/
D s

pC1
nC1�� yL.s/; 8s 2 .0; a1/;

where yL.s/ is normalized slowly varying at zero. By Proposition 2.3,

I0 D � lim
s!0C

� 1

ˆ0.s/

�0
ˆ.s/

D � lim
s!0C

s
�

1
ˆ0.s/

�0
1

ˆ0.s/

lim
s!0C

1
ˆ0.s/

s
ˆ.s/

D �
p C 1

nC 1 � �
lim
s!0C

s
pC��n
nC1�� yL.s/

Z s

0

��
pC1
nC1�� yL.�/�1d�

D �
p C 1

nC 1 � �
lim
s!0C

s
pC��n
nC1�� yL.s/

�
1 �

p C 1

nC 1 � �

��1
s1�

pC1
nC1�� yL.s/�1:

It follows that I0 D pC1
p�nC�

< 1. In this case,

F.s/ D spC1 yL.s/; 80 < s < a1:

Taking the derivative with respect to s,

f .s/ D spŒ.p C 1/C y.s/�yL.s/; 80 < s < a1;

where y.s/! 0 as s ! 0C. It follows from Definition 2.1 that f 2 RVZp .
(2) If I0 D 1, by (2.3) we have

lim
s!0C

sF 0.s/

F.s/
D �1:

Then, for an arbitrary M > 1, there exists l D l.M/ > 0 small enough such that

F 0.s/

F.s/
< �

M C 1

s
; 80 < s < l:
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Integrating the above inequality with respect to s, we obtain

lnF.l/ � lnF.s/ < �.M C 1/.ln l � ln s/; 80 < s < l:

Therefore, we get
F.l/

F.s/
<
� l
s

��.MC1/
; 80 < s < l;

i.e.

F.s/sM >
F.l/lMC1

s
; 80 < s < l:

Let s ! 0C and then we see that F is rapidly varying at zero by Definition 2.2.
(3) If I0 D 0, we see

lim
s!0C

s
�

1
ˆ0.s/

�0
1

ˆ0.s/

D 0:

Let
s
�

1
ˆ0.s/

�0
1

ˆ0.s/

WD y.s/; 8s > 0;

i.e. �
1

ˆ0.s/

�0
1

ˆ0.s/

WD
y.s/

s
; 8s > 0: (2.4)

Integrating (2.4) from s to a1, we have

1

ˆ0.s/
D c0 exp

�
�

Z a1

s

y.�/

�
d�
�
; s 2 .0; a1/;

where c0 D 1
ˆ0.a1/

.
By lims!0C y.s/ D 0, we have that for each " > 1,

1
ˆ0."s/

1
ˆ0.s/

D exp
� Z "s

s

y.�/

�
d�
�
D exp

� Z "

1

y.sv/

v
dv
�
! 1 as s ! 0C:

Then 1
ˆ0.s/

is slowly varying at zero, it follows that F is slowly varying at zero.

Lemma 2.7. Let p 2Pfinite be defined as in Section 1 and such that J0 is well defined.
We have

(1) J0 � 0;

(2) J0 2 .0;1/ if and if only P 2 NRVZrC1 with �1 > r > �n� 1C �, where
r C 1 D �.n � �/J0=.J0 C 1/. In this case, p 2 RVZr .

(3) If J0 D 0, then P is slowing varying at zero.

(4) If J0 D1, then P 2 NRVZ�nC�. In this case, p 2 RVZ�nC��1.

Proof. The proof is similar to Lemma 2.6. So we omit it.
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3. Proof of Theorem 1.1 and Theorem 1.2

In this section, we will give the proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. By [5, Theorem 1.1], there exists u0 2 C1.x�/, which is the
unique strictly convex solution to

det.D2u0/ D 1 in �; u0 D 1 on @�:

Let z.x/ WD 1 � u0.x/. Then z.x/ > 0 in � and it is the unique strictly concave
solution to

.�1/n det.D2z/ D 1 in �; z D 0 on @�: (3.1)

Since � is the inverse of ˆ, we have

�0.t/ D
�
.nC 1 � �/F.�.t//

� 1
nC1��

and
�00.t/ D �

�
.nC 1 � �/F.�.t//

���nC1
nC1��f .�.t//:

We hence can easily get

.�0.t//n���1�00.t/ D �f .�.t// and
�0.t/

�00.t/
D �

�
.nC 1 � �/F.�.t//

� n��
nC1��

f .�.t//
:

(3.2)
Let v D �c�.z/, combining with (3.1), (3.2) and Lemma 2.1, then

det.D2v/ D det.D2z/
�
v0.z/n C v0.z/n�1v00.z/.rz/TB.z/rz

�
D det.D2z/

�
.�c/n�0n C .�c/n�0n�1�00.rz/TB.z/rz

�
D �cn�0n�1�00

h
�
�0

�00
� .rz/TB.z/rz

i
D cnf .�.z//�0�

h Œ.nC 1 � �/F.�.z//� n��
nC1��

f .�.z//
� .rz/TB.z/rz

i
:

Let

� D
Œ.nC 1 � �/F.�.z//�

n��
nC1��

f .�.z//
� .rz/TB.z/rz:

Since .zxixj / is negative definite for x 2 x�, so is its inverse B.z/. Since jrzj > 0

near @�, we obtain

�.rz/TB.z/rz > 0 for x 2 x� near @�:

For x 2 �,
Œ.nC 1 � �/F.�.z//�

n��
nC1��

f .�.z//
> 0
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and it is bounded away from 0 for x 2 � outside any neighborhood of @�. Hence
there exists M1 > 0 depending on c such that

� > M1:

For problem (1.1), we have � D 0. It follows that

det.D2v/ � b.x/f .�v/ � jDvjq

D cnf .�.z//� � b.x/f .�v/ � cq�0qjDzjq

D cqf .�.z//
h
cn�q� �

b.x/

cq
f .�v/

f .�v=c/

�
Œ.nC 1 � q/F.�.z//�

q
nC1�q

f .�.z//
jDzjq

i
(3.3)

Let

�� D cn�q� �
b.x/

cq
f .�v/

f .�v=c/
�
Œ.nC 1 � q/F.�.z//�

q
nC1�q

f .�.z//
jDzjq :

Since f is nonincreasing, f .�v/
f .�v=c/

� 1 for large c, combing this with the fact that
b 2 C.x�/ is positive, we can easily get that �� > 0 when c is large enough, so we
have

det.D2v/ > b.x/f .�v/C jDvjq:

By Lemma 2.4, it follows that problem (1.1) admits a strictly convex solution.
For problem (1.2), � D q, we have

det.D2v/ � b.x/f .�v/.1C jDvjq/

D cnf .�.z//�0q� � b.x/f .�v/.1C cq�0qjDzjq/

D cqf .�v/�0q
h
cn�q�

f .�v=c/

f .�v/
� b.x/

� 1

cq�0q
C jDzjq

�i
(3.4)

Similar to the proof for (1.1) we can get

det.D2v/ > b.x/f .�v/.1C jDvjq/;

i.e. problem (1.2) admits a strictly convex solution. The proof of Theorem 1.1 is com-
pleted.

Proof of Theorem 1.2. Since b satisfies (b2), it is obvious that b satisfies the condi-
tion of [38, Theorem 1.5], then there is a strictly concave function z0.x/ satisfying

.�1/n det.D2z0/ D b.x/ in �; z0 D 0 on @�: (3.5)
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Let v D �c�.z0/, combining with (3.2), (3.5) and Lemma 2.1, then

det.D2v/ D det.D2z0/
�
v0.z0/

n
C v0.z0/

n�1v00.z0/.rz0/
TB.z0/rz0

�
D det.D2z0/

�
.�c/n�0n C .�c/n�0n�1�00.rz0/

TB.z0/rz0
�

D �cn�0n�1�00b.x/
h
�
�0

�00
� .rz0/

TB.z0/rz0

i
D cnb.x/f .�.z0//�

0�
h Œ.nC 1 � �/F.�.z0//� n��

nC1��

f .�.z0//

� .rz0/
TB.z0/rz0

i
:

We first consider problem (1.1).
Similar to the proof in Theorem 1.1 we obtain that there exists c1 > 0 large enough

such that
det.D2v/ > b.x/f .�v/C jDvjq;

i.e. v D �c1�.z0/ is a subsolution of (1.1).
Moreover, there exists c2 > 0 small enough such that

det.D2v/ < b.x/f .�v/C jDvjq;

i.e. xv D �c2�.z0/ is a supersolution of (1.1).
Now, we define

�j D
°
x 2 � W v < �

1

j

±
for j D 1; 2; : : :

Clearly
x�n � �nC1

and

� D

1[
nD1

�n:

Consider 8̂<̂
:

det.D2u/ D b.x/f .�u/C jDujq; x 2 �j ;

u D �
1

j
; x 2 @�j :

(3.6)

Combining the fact that

det.D2v/ � b.x/f .�v/C jDvjq in �;

and
v D �

1

j
on @�j
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with Lemma 2.4 we get that (3.6) has a strictly convex solution uj .
Moreover, by Lemma 2.2, we have

v � uj in �j : (3.7)

Since
uj D v � ujC1 on @�j ;

using Lemma 2.2 again, we get

uj � ujC1 in �j : (3.8)

At the same time, we observe that

xv D �c2�.z0/ D
c2

c1
v D �

c2

c1

1

j
� �

1

j
on @�j

for c2
c1
� 1. Then by Lemma 2.2,

uj � xv in �j (3.9)

8x 2 �, we can choose a positive constant j0 so that x 2 �j0 . From (3.7)–(3.9), we
have

v � uj � ujC1 � xv in �j0

for any j � j0. Thus,
u.x/ D lim

j!1
uj .x/:

By Lemma 2.3, we have
kuj kC1.x�/j0

� C;

where C is a positive constant depending only on n, q, b, f , xv, v. Hence, the conver-
gence is uniform in every compact subset of � and u 2 C.�/, which implies

v � u.x/ � xv:

This shows that u is a strictly convex solution of (1.1).
The proof of the existence of solutions of (1.2) is similar to (1.1), so we omit it.

Above all, the proof of Theorem 1.2 is finished.
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4. Proof of Theorem 1.3

For ı > 0, we set

�ı D ¹x 2 � W 0 < d.x/ < ıº; �ı D ¹x 2 � W d.x/ D ıº;

where d.x/ D infy2@� jx � yj. When � is C1-smooth, we choose ı1 > 0 such that
d 2 C1.�ı1/(see [19, Lemmas 14.16 and 14.17]).

Let xx 2 @� be the projection of the point x 2�ı1 to @�, and �i .xx/ (i D 1; 2; : : : ;
n� 1) be the principle curvature of @� at xx, we can choose a coordinate system such
that

Dd.x/ D .0; 0; : : : ; 1/;

D2d.x/ D diag
h
��1.xx/

1 � d.x/�1.xx/
; : : : ;

��n�1.xx/

1 � d.x/�n�1.xx/
; 0
i
:

Since

lim
d.x/!0

n�1Y
iD1

.1 � d.x/�i .xx// D 1;

we can choose " small such that for x 2 �ı"(where ı" is corresponding to "),

1 � " <

n�1Y
iD1

.1 � d.x/�i .xx// < 1C ":

For convenience, we set

M � D max
xx2@�

n�1Y
iD1

�i .xx/; m� D min
xx2@�

n�1Y
iD1

�i .xx/: (4.1)

Thus, we have

m�

1C "
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
�

M �

1 � "
; x 2 �ı" :

Proof of Theorem 1.3. We first consider problem (1.1). In this case � D 0, we get

�0.t/n�1�00.t/ D �f .�.t// and !0.t/n�1!00.t/ D �p.t/: (4.2)

For an arbitrary " 2 .0; 1=2/, let

N�" D
h k1.1C 2"/

m�. n
nC1

/n
�
n
nC1

1
J0
C

1
nC1

1
I0

1
J0
C

1
I0

�i 1
nC1

;

�
"
D

h k2.1 � 2"/

M �. n
nC1

/n
�
n
nC1

1
J0
C

1
nC1

1
I0

1
J0
C

1
I0

�i 1
nC1

;
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where k1; k2 are given in (b2). By Lemma 2.5 and Lemma 2.7 we know 0 � I0 � 1,
0 � J0 � C1. Combining this with the condition of Theorem 1.3, we have that N�"
and �

"
are well defined.

From Lemma 2.6 and Lemma 2.7 and the definition of N�" and �
"

we see that

lim
t!0C

Œn Qp.t/�
nC1
n

p.t/
R t
0
.n Qp.�//

1
nd�

D
1

J0
;

lim
s!0C

Œ.nC 1/F.s/�
n
nC1

f .s/ˆ.s/
D

1

I0
;

N�nC1"

m�

k1

� n

nC 1

�nh n

nC 1

1

J0
C

1

nC 1

1

I0

1

J0
C
1

I0

i
� .1C "/ D ";

�nC1
"

M �

k2

� n

nC 1

�nh n

nC 1

1

J0
C

1

nC 1

1

I0

1

J0
C
1

I0

i
� .1 � "/ D �":

Define

xu" D ��
�
�
"
Œ!.d.x//�

n
nC1

�
; u" D ��

�
N�"Œ!.d.x//�

n
nC1

�
; x 2 �ı" ;

where ı" is sufficiently small such that

N�nC1"

m�

k1

� n

nC 1

�n� n

nC 1

1

J.d.x//
C

1

nC 1

1

I.�u"/

1

J.d.x//
C

1

I.�u"/

�
� .1C "/ > 0;

�nC1
"

M �

k2

� n

nC 1

�n� n

nC 1

1

J.d.x//
C

1

nC 1 � q

1

I.�xu"/

1

J.d.x//
C

1

I.�xu"/

�
� .1 � "/ < 0

hold. Then, by (2.1) and (4.1), we have

det.D2u"/ � b.x/f .�u"/ � jDu"j
q

D

h
N�"

� n

nC 1

�
!
�1
nC1!0�0

in�1h
� N�2"

� n

nC 1

�2
!
�2
nC1!02�00

C N�"
n

.nC 1/2
!
�2�n
nC1 !02�0 � N�"

n

nC 1
!
�1
nC1!00�0

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�u"/ � jDu"j

q
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D N�nC1"

� n

nC 1

�n
!0n�1!00�0n�1�00

�

h
�

n

nC 1

!02

!00!
C

1

nC 1

�0

N�"!
n
nC1�00

!02

!00!
�

�0

N�"!
n
nC1�00

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�u"/ � jDu"j

q

�
m�

k1.1C "/
N�nC1"

� n

nC 1

�n
f .�u"/b.x/

�

h n

nC 1

1

J.d.x//
C

1

nC 1

1

I.�u"/

1

J.d.x//
C

1

I.�u"/

i
� b.x/f .�u"/ � jDu"j

q

D
1

1C "
b.x/f .�u"/

²
m�

k1
N�nC1"

� n

nC 1

�nh n

nC 1

1

J.d.x//

C
1

nC 1

1

I.�u"/

1

J.d.x//
C

1

I.�u"/

i
� .1C "/ �

.1C "/jDu"j
q

b.x/f .�u"/

³
: (4.3)

Since

lim
d.x/!0C

.1C "/jDu"j
q

b.x/f .�u"/

� lim
d.x/!0C

.1C "/ N�
q
" .

n
nC1

/q!
�q
nC1!0q�0q

k2!0n�1!00�n�1�00

D lim
d.x/!0C

N�qC1"

1C "

k2

� n

nC 1

�q
�

1

I.�xu"/

1

J.d.x//
�

!2nC1�q

!0nC1�q�0n�q

D 0;

we can choose smaller ı" such that

det.D2u"/ � b.x/f .�u"/ � jDu"j
q
� 0;

which means u" is a subsolution to problem (1.1) in �ı" .
On the other hand, we have

det.D2
xu"/ � b.x/f .�xu"/ � jDxu"j

q

D

h
�
"

� n

nC 1

�
!
�1
nC1!0�0

in�1h
� �2

"

� n

nC 1

�2
!
�2
nC1!02�00

C �
"

n

.nC 1/2
!
�2�n
nC1 !02�0 � �

"

n

nC 1
!
�1
nC1!00�0

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�xu"/ � jDxu"j

q
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�
M �

k2.1 � "/
�nC1
"

.
n

nC 1
/nf .�xu"/b.x/

�

h n

nC 1

1

J.d.x//
C

1

nC 1

1

I.�xu"/

1

J.d.x//
C

1

I.�xu"/

i
� b.x/f .�xu"/

D
b.x/f .�xu"/

1 � "

²
M �

k2
�nC1
"

� n

nC 1

�n
�

h n

nC 1

1

J.d.x//
C

1

nC 1 � q

1

I.�xu"/

1

J.d.x//
C

1

I.�xu"/

i
� .1 � "/

³
� 0;

i.e. xu" is a supersolution to problem (1.1) in �ı" .
Let v.x/D�d.x/. Then we can choose a sufficiently large constantM0 > 0 such

that
uCM0v � xu" on �ı" :

Since
u D v D xu" D 0 on @�;

and

det.D2.uCM0v// � det.D2u/ D b.x/f .�u/C jDujq

� b.x/f .�.uCM0v//C jD.uCM0v/j
q;

then it follows from Lemma 2.4 that

uCM0v � xu" in �ı" ;

which implies

u

��
�
�
"
Œ!.d.x//�

n
nC1

� � 1C M0d.x/

��
�
�
"
Œ!.d.x//�

n
nC1

� in �ı" :

Since d.x/! 0 ("! 0), by L’Hospital’s rule we have

lim
d.x/!0

M0d.x/

��
�
�
"
Œ!.d.x//�

n
nC1

� D lim
d.x/!0

.nC 1/M0

�n�
"
�0!0!�

1
nC1

D 0;

therefore, we can obtain

lim
d.x/!0

inf
x2�

u.x/

��
�
�1Œ!.d.x//�

n
nC1

� � 1;
where

�1 D

�
k2

M �. n
nC1

/n
�
n
nC1

1
J0
C

1
nC1

1
I0

1
J0
C

1
I0

�� 1
nC1

:
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Similarly, we can get

lim
d.x/!0

sup
x2�

u.x/

��
�
�2Œ!.d.x//�

n
nC1

� � 1;
where

�2 D

�
k1

m�
�
n
nC1

�n� n
nC1

1
J0
C

1
nC1

1
I0

1
J0
C

1
I0

�� 1
nC1

:

It follows that (1.18) holds.
Now, we consider problem (1.2). In this case, � D q, and we can get

.�0.t//n�q�1�00.t/ D �f .�.t//; !0.t/n�1�q!00.t/ D �p.t/: (4.4)

Let

N�" D

�
k1.1C 2"/

m�
�
n�q
nC1�q

�n�q� n�q
nC1�q

1
J0
C

1
nC1�q

1
I0

1
J0
C

1
I0

�� 1
nC1�q

;

�
"
D

�
k2
�
1 � 2"

�
M �. n�q

nC1�q
/n�q

�
n�q
nC1�q

1
J0
C

1
nC1�q

1
I0

1
J0
C

1
I0

�� 1
nC1�q

;

where k1; k2 are given in Theorem 1.3. From Lemma 2.6 and Lemma 2.7 and the
definition of N�" and �

"
we see that

lim
t!0

Œ.n � q/ Qp.t/�
nC1�q
n�q

p.t/
R t
0
..n � q/ Qp.�//

1
n�q d�

D
1

J0
;

lim
s!0

Œ.nC 1 � q/F.s/�
n�q
nC1�q

f .s/ˆ.s/
D

1

I0
;

N�nC1�q"

m�

k1

� n � q

nC 1 � q

�nh n � q

nC 1 � q

1

J0
C

1

nC 1 � q

1

I0

1

J0
C
1

I0

i
� .1C "/

D ";

�nC1�q
"

M �

k2

� n � q

nC 1 � q

�nh n � q

nC 1 � q

1

J0
C

1

nC 1 � q

1

I0

1

J0
C
1

I0

i
� .1 � "/

D �":

Define

xu" D ��
�
�
"
Œ!.d.x//�

n�q
nC1�q

�
; u" D ��

�
N�"Œ!.d.x//�

n�q
nC1�q

�
;
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combining with (2.1) and (4.2), we have

det.D2u"/ � b.x/f .�u"/.1C jDu"j
q/

D

h
N�"

� n � q

nC 1 � q

�
!

�1
nC1�q!0�0

in�1h
� N�2"

� n � q

nC 1 � q

�2
!

�2
nC1�q!02�00

C N�"
n � q

.nC 1 � q/2
!
�2�nCq
nC1�q !02�0 � N�"

n � q

nC 1 � q
!

�1
nC1�q!00�0

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�u"/.1C jDu"j

q/

D N�nC1"

� n � q

nC 1 � q

�n
!

�q
nC1�q!0n�1!00�0n�1�00

�

h
�

n � q

nC 1 � q

!02

!00!
C

1

nC 1 � q

�0

N�"!
n�q
nC1�q �00

!02

!00!
�

�0

N�"!
n�q
nC1�q �00

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�u"/.1C jDu"j

q/

�
m�

k1.1C "/
N�nC1�q"

� n � q

nC 1 � q

�n�q
f .�u"/b.x/jDu"j

q

�

h n � q

nC 1 � q

1

J.d.x//
C

1

nC 1 � q

1

I.�u"/

1

J.d.x//
C

1

I.�u"/

i
� b.x/f .�u"/.1C jDu"j

q/

D
1

1C "
b.x/f .�u"/jDu"j

q

²
m�

k1
N�nC1�q"

� n � q

nC 1 � q

�n�q
�

h n � q

nC 1 � q

1

J.d.x//
C

1

nC 1 � q

1

I.�u"/

1

J.d.x//
C

1

I.�u"/

i
�

h 1C "
jDu"j

q
C .1C "/

i³
� 0;

which means u" is a subsolution to problem (1.2) in �ı" .
On the other hand, we have

det.D2
xu"/ � b.x/f .�xu"/.1C jDxu"j

q/

�

h
�
"

� n � q

nC 1 � q

�
!

�1
nC1�q!0�0

in�1h
� �2

"

� n � q

nC 1 � q

�2
!

�2
nC1�q!02�00

C �
"

n � q

.nC 1 � q/2
!
�2�nCq
nC1�q !02�0 � �

"

n � q

nC 1 � q
!

�1
nC1�q!00�0

i
�

n�1Y
iD1

�i .xx/

1 � d.x/�i .xx/
� b.x/f .�xu"/
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�
M �

k2.1 � "/
�nC1�q
"

� n � q

nC 1 � q

�n�q
f .�xu"/b.x/jDxu"j

q

�

h n � q

nC 1 � q

1

J.d.x//
C

1

nC 1 � q

1

I.�xu"/

1

J.d.x//
C

1

I.�xu"/

i
� b.x/f .�xu"/

D
1

1 � "
b.x/f .�xu"/jDxu"j

q

²
M �

k2
�nC1�q
"

� n � q

nC 1 � q

�n�q
�

h n � q

nC 1 � q

1

J.d.x//
C

1

nC 1 � q

1

I.�xu"/

1

J.d.x//
C

1

I.�xu"/

i
� .1 � "/

³
� 0;

i.e. xu" is a supersolution to problem (1.2) in �ı" .
The remaining proof is similar to that above. So we omit it here. The proof of

Theorem 1.3 is finished.

Proof of Corollary 1.1. We only prove (1.20). The proof of (1.21) is similar to that
of (1.20). So we omit it.

Since � is the inverse of ˆ, it follows from (1.10) that

�0.t/ D
�
.nC 1 � �/F.�.t//

� 1
nC1�� :

Then

lim
t!0C

t�0.t/

�.t/
D lim

t!0

t Œ.nC 1 � �/F.�.t//�
1

nC1��

�.t/

D lim
s!0C

ˆ.s/
ˆ0.s/

s
D 1 � lim

s!0C

ˆ.s/ˆ00.s/

ˆ02.s/
D 1 � I0:

It follows from Proposition 2.2 that � 2 NRVZ1�I0 .
Combing this with Theorem 1.3 and Definition 2.1 we obtain

lim
x2�;
d.x/!0

u.x/

�
�
.!.d.x///

n
nC1

�
D lim

x2�;
d.x/!0

u.x/

�
�
�0.!.d.x///

n
nC1

� ���0.!.d.x/// n
nC1

�
�
�
.!.d.x///

n
nC1

�
D �

1�I0
0 ;

where

�0 D

²
NkRn�1�

n
nC1

�n� n
nC1

1
J0
C

1
nC1

1
J0I0
C

1
I0

�³ 1
nC1

:
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[10] L. Dupaigne, M. Ghergu, and V. Rădulescu, Lane-Emden-Fowler equations with convec-
tion and singular potential. J. Math. Pures Appl. (9) 87 (2007), no. 6, 563–581
Zbl 1122.35034 MR 2335087

[11] M. Feng, Convex solutions of Monge–Ampère equations and systems: existence, unique-
ness and asymptotic behavior. Adv. Nonlinear Anal. 10 (2021), no. 1, 371–399
Zbl 1465.35262 MR 4141372

[12] M. Feng, H. Sun, and X. Zhang, Strictly convex solutions for singular Monge–Ampère
equations with nonlinear gradient terms: existence and boundary asymptotic behavior. SN
Partial Differ. Equ. Appl. 1 (2020), no. 5, Paper No. 27 Zbl 1455.35128 MR 4306776

https://zbmath.org/?q=an:1442.35163
https://mathscinet.ams.org/mathscinet-getitem?mr=4085938
https://zbmath.org/?q=an:1440.35172
https://mathscinet.ams.org/mathscinet-getitem?mr=4097623
https://zbmath.org/?q=an:0617.26001
https://mathscinet.ams.org/mathscinet-getitem?mr=898871
https://zbmath.org/?q=an:0358.35032
https://mathscinet.ams.org/mathscinet-getitem?mr=509489
https://zbmath.org/?q=an:0598.35047
https://mathscinet.ams.org/mathscinet-getitem?mr=739925
https://zbmath.org/?q=an:0347.35019
https://mathscinet.ams.org/mathscinet-getitem?mr=437805
https://zbmath.org/?q=an:1148.35022
https://mathscinet.ams.org/mathscinet-getitem?mr=2353869
https://zbmath.org/?q=an:0362.35031
https://mathscinet.ams.org/mathscinet-getitem?mr=427826
https://zbmath.org/?q=an:0564.35044
https://mathscinet.ams.org/mathscinet-getitem?mr=797314
https://zbmath.org/?q=an:1122.35034
https://mathscinet.ams.org/mathscinet-getitem?mr=2335087
https://zbmath.org/?q=an:1465.35262
https://mathscinet.ams.org/mathscinet-getitem?mr=4141372
https://zbmath.org/?q=an:1455.35128
https://mathscinet.ams.org/mathscinet-getitem?mr=4306776


X. Zhang and S. Bai 130

[13] M. Feng and X. Zhang, On a k-Hessian equation with a weakly superlinear nonlinearity
and singular weights. Nonlinear Anal. 190 (2020), Paper No. 111601 Zbl 1430.35085
MR 3994027

[14] M. Feng, A class of singular coupled systems of superlinear Monge–Ampère equations.
Acta Math. Appl. Sin. Engl. Ser. 38 (2022), no. 4, 925–942 MR 4498798

[15] A. Figalli, The Monge–Ampère equation and its applications. Zur. Lect. Adv. Math., Euro-
pean Mathematical Society (EMS), Zürich, 2017 Zbl 1435.35003 MR 3617963

[16] R. Filippucci and C. Lini, Existence of solutions for quasilinear Dirichlet problems with
gradient terms. Discrete Contin. Dyn. Syst. Ser. S 12 (2019), no. 2, 267–286
Zbl 1416.35126 MR 3842322

[17] R. Filippucci and C. Lini, Existence results and a priori estimates for solutions of quasi-
linear problems with gradient terms. Opuscula Math. 39 (2019), no. 2, 195–206
Zbl 1433.35116 MR 3897813
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