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Normal bundle of monomial curves: an application
to rational curves

Alberto Alzati and Raquel Mallavibarrena

Abstract. In this note, we give an application to the study of general rational curves in P (C)
of the calculation of the splitting type of the normal bundle of any smooth monomial rational
curve (i.e., embedded by monomial functions).

1. Introduction

In this paper, any degree d rational curve C in P*(C) (d > s > 3) will be assumed
smooth and nondegenerate. Such curves, up to projective transformations, are suitable
projections of the rational normal curve Ty of degree d in P4 (C) from a projective
linear space L of dimension d —s — 1. Letus call f : P!(C) — P*(C) the morphism
obtained in this way. The normal bundle of such curves splits as a direct sum of
line bundles Op1(£1) & Op1(§2) B --- ® Op1(E5—1) where &; are suitable integers.
In principle, one should calculate these integers for any chosen L.

In [2], the authors develop a general method to do this calculation. This method
was previously used in [1] to get the splitting type of the restricted tangent bundle
of C. However, while for the tangent bundle it is possible to get an easy formula (see
[1, Theorem 3]), for the normal bundle this is not possible.

In [3] the authors gave a method for calculating the integers &; when C is a smooth
monomial curve, i.e., when the morphism f : P1(C) — P*(C) is given by monomials
of the same degree in two variables. In other setups, C is called “monomial” if its ideal
in P¥(C) is generated by monomials. Here we do not consider the ideal of C and we
focus on f; for instance, the standard twisted cubic in P3(C) is a monomial curve
according to our definition, but its ideal is not generated by monomials.

In [4], the authors study the moduli space of rational curves whose normal bundle
has a fixed splitting type and, meanwhile, they get a very simple formula to calculate
&; for smooth monomial curves. Obviously the two methods give rise to the same
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integers (see the final part of [3, §5] and [4, Theorem 3.2]), but the two approaches
are very different and we think that they are both useful for different aims.

Here we want to give a consequence of the possibility to get the splitting type
of the normal bundle of rational monomial curves as in [3]. Our main theorem will
be Theorem 3, however, it is not possible to state it without a background. In brief
we can say that our strategy will be to associate a smooth monomial curve CA as
above to any smooth rational curve C, satisfying mild assumptions, and to prove
that /0P, f*Nc(—d — 2 — k)) < h°(P!, f*Nca(—d —2 — k)) for any k > 2
where N¢ and Ncy4 are the normal bundles of C and CA in P*(C), respectively.
As the knowledge of this cohomology implies the knowledge of the numbers ¢; :=
& —d — 2, we will get that the numbers ¢; of C are bounded by the numbers ¢; of CA
(see Examples 4 and 5).

In Section 2, we fix notations and we recall the background. In Section 3, we
associate a monomial curve CA to any smooth rational curve C having a suitable
property and we prove our main theorem. In Section 4, we give our applications.

2. Notation and background material

For us, a rational curve C C P¥(C) will be the target of a morphism f : P!(C) —
PS5 (C). We will work always over C. We will always assume that C is not contained
in any hyperplane and that it is smooth. Let us put d := deg(C) > s > 3. Let I¢
be the ideal sheaf of C, then N¢ := Homg,. (Ic/I %, Oc¢) as usual and, taking the
differential of f, we get

0— Tp1 = f*Tps > f*Ne -0

where 7 denotes the tangent bundle. Of course we can always write

;
T = f*Tps =@ Op1 (b +d +2)® 02" (d + 1),
i=1
s—1
Ny = f*Ne = P Opi(ci +d +2)
i=1
for suitable integers b; > 0 (see [1, (14)]) and ¢; > O (see [2, Proposition 10] where
we assumed ¢; > -+ > c5-1).

Every curve C is, up to a projective transformation, the projection to P* of a
d-Veronese embedding I'y of P! in P4 := P(V) from a (d — s — 1)-dimensional
projective space L := IP(T') where V and T are vector spaces of dimension, respec-
tively,d + 1 ande + 1 :=d — s. For any vector 0 # v € V let [v] be the corresponding
point in P (V). Of course we require that L N 'y = @ as we want that f is a mor-
phism.
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Let us denote by U = (x, y) a fixed 2-dimensional vector space such that P! =
IP(U), then we can identify V with S¢U (d-th symmetric power) in such a way that
the rational normal degree d curve I'y can be considered as the set of pure tensors of
degree d in P(S4U) and the d-Veronese embedding is the map

ax + By — (ax + By)4, (a:B) Pl

From now on, any degree d rational curve C will be determined (up to projec-
tive equivalences which are not important in our context) by the choice of a proper
subspace T C S?U such that P(T) N Ty = 0.

By arguing in this way, the elements of a base of 7 can be thought as homoge-
neous, degree d polynomials in x, y. In [1, 2], the authors relate the polynomials of
any base of T with the splitting type of 77 and Ny. To describe this relation we need
some additional definitions.

Let us indicate by (d, d,) the dual space U* of U, where d, and 9, indicate the
partial derivatives with respect to x and y.

Definition 1. Let 7' be any proper subspace of S?U. Then
T = (w(T)|w € U™),
07T = m o 'T,

welU*

r(T) := dim(dT) — dim(T).
Note that Definition 1 allows to define also 37 and 9~ T for any integer k > 1,

by induction. Moreover, we can set 3°7 := T. Let us recall the following:

Theorem 1. Let T C S?U be any proper subspace as above such that P(T)NTy = 0.
Then r(T) > 1 and there exist r polynomials p1,..., pr of degreed + by,...,d + b,
respectively, with b; > 0 and [p;] € IP’derf\Secbf (Lgyp;) fori =1,...,r, such that

T =" (p1)®d2(p2) @@ (pr)
and
AT = 21+ (py) @ 322 F (py) @ --- @ 3 1 (py).

Proof. 1t follows from [1, Theorem 1], because from our assumptions ST = 0 in
the notation of [1]. Recall that Sec?(I'y ) is the variety generated by sets of b + 1
distinct points of I'g4p. |

From the above decomposition of 7' it is possible to get directly the splitting type
of ‘J} depending on the integers b; (see [1, Theorem 3]), however, here we are inter-
ested in the splitting type of Ny. To this aim the following Proposition is useful:
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Proposition 1. In the above notations, for any integer k > 0, let us call (k) :=
hO(P', Ny (—d — 2 — k)). Then the splitting type of Ny is completely determined by
A2lp(k)] == p(k +2) —2¢(k + 1) + (k).

Proof. We know that Ny (—d —2) = @f;} Op1(ci), so that we have only to deter-
mine the integers c;. By definition, A%[p(k)] is exactly the number of integers c;
which are equal to k. Note that, by definition, ¢ (k) is strictly decreasing. [

From Proposition 1 it follows that to know the splitting type of [Ny it suffices to
know ¢(k) for any k > 0.
Let us consider the linear operators

Di: S¥U ® S9U — SF'U @ sS4,

such that Dy 1= 0y ® dy — dy ® 9, and D7 : SKU @ S9U — S¥2U ® S972U.
Of course, as T C S?U, we can restrict D,% to S¥U ® T and we get a linear map

D]z‘skUg)T :S*U ® T — S¥=2U ® 0°T'; let us define
Ty = ker(Dz‘SkU@)T).

Then we have the following:

Theorem 2. In the above notations,

00)=d +e,
o(1) =2(e + 1),
¢(2) = 3(e 4+ 1) — dim(3%7T),

and for any k > 2, (k) = dim(T%).
Moreover; the number of integers c; such that c; = 0isd — 1 — dim(9?T).

Proof. See [2, Theorem 1 and Proposition 11]; note that, for k = 2, there are two
different ways to get ¢(2).

By Proposition 1 the number of integers ¢; such that ¢; = 0 is A%[p(0)] =
d —1 —dim(3?7). [

In [3], a combinatorial formula is given to calculate ¢(k), for k > 2, when C is
a monomial smooth rational curve, therefore we can assume that ¢ (k) is known for
any monomial smooth rational curve. Moreover, a method to determine the set {£;} is
given in [3, Theorem 4 and Remark 2]. Let us recall this method: firstly decompose T
asT =T' @ T?>@---@ T? in such a way that °T = 0°T! @ ’T?* @ --- @ 9°T14
for some g > 1; every T/ is called irreducible. Secondly: decompose every irreducible
T7,j =1,...,q as explained in Theorem 1, getting the integers b1 (j), ..., by(j)(j)-



Normal bundle of monomial curves: an application to rational curves 211

Thirdly: define bo(j) = b,(j)+1(j) = —1 for any j = 1,..., ¢ and consider the
set {bj(j) + bit1(j) +2fori =0,...,r(j)and j = 1,...,q}. This is the set of
positive ¢;, while the number of null ¢; is given by Theorem 2. By recalling that

q
> [r(j) + 1] = dim(0*T) — dim(T)

j=1

we get aset of s — lintegers {¢;}and & =¢; +d +2,i =1,...,5s — L.

On the other hand, in [4], the authors give a very direct formula for calculating §&;
when C is a monomial smooth rational curve of degree d (see [4, Theorem 3.2]).
Such curve is the image of a map

flx:y) = (xh0 :xhly“’_h1 R xh"yd_hf Teeel xhxyd_hs)

withi =0,...,sand hg > hy > --- > hy > 0. We require that this map is an embed-
ding, hence it is necessary that: hg = d, hy =d — 1, hy—1 = 1, hy = 0, (see [4,
Lemma 3.1]) and s > 3. Then [4, Theorem 3.2] says that

& =d4+hi—1—hit fori =1,...,5s —1 (Coskun—Riedl formula).

Of course the Coskun—Ried] formula gives the same integers &; obtained by the
method described in [3]; the interested reader can find a proof of this fact in that
article.

3. Rational complete curves and main theorem

Let C be any smooth rational curve of degree d. The morphism f : P1(C) — P*(C)

is given by a (s + 1,d + 1) matrix M of rank s + 1 such that
(x:y) = MxIx? Ty 7Y

where [---]* denotes transposition. In other words, the parametric equations for C are

XO )Cd
X; oy xd—ly
Xs »!

Asrank(M) = s + 1 we can apply the Gauss elimination to M and we can trans-
form it in a row echelon form. This is equivalent to multiply M on the left by a suitable
non singular (s + 1, s + 1) matrix, i.e., to change the projective coordinate system
in P¥(C). By another change, if necessary, we can also assume that all pivots are 1.
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The point f(1:0) = (my,1:ma;1:-++:msq1,1) belongs to C, in particular
(my,1:may - imeyr1) 7 (0:0:---:0), hence we can assume that the first piv-
otismy,; = landthatm; ; =0fori >2,ie., f(1:0)=(1:0:---:0). Letus consider
the second column of M in the row echelon form (hence m; , = 0 for i > 3). If the

second pivot would be not 5 » = 1 then C would be singular at (1 : 0:---: 0), but
C is smooth, hence m; » = 1.

We give the following:
Definition 2. Let M be the above matrix. If myy; ; =0forj =1,...,d;mgy1 441
=1;ms; =0forj =1,...,d —1and my 4 = 1, then we say that C is complete.

To any smooth rational curve C, whose associated matrix M is in a row echelon
form as above, we can associate a monomial rational curve CA whose parametric
equations are

X() Xd
Xl — M/ xd_ly
X; !

where M’ is the matrix of the pivots of M, i.e., M’ := (m;.’j) is a matrix of type
(s +1.d + 1) such thatm; ; = 1 ifand only if m; ; = 1 is a pivot of M and m; ; =0
otherwise. The meaning of the above definition is clarified by the following fact, easy
to prove: if C is complete, then CA is smooth of degree d; while, in general, CA is
smooth of degree d’ < d, or singular of degree d.

Example 1. Here is a typical example of complete, smooth, rational curve C with
s = 5and d = 9, (x denotes any complex number):

—_— % ¥ % % ¥

S O O O O -
S OO O = ¥
S OO O ¥ ¥
S OO O X* ¥
S O O = ¥ ¥
S O = ¥ X ¥
S O ¥ ¥ ¥ *
S O ¥ ¥ X ¥
S = X ¥ X ¥

In other words, putting ¢ := y/x, the affine parametric equations of C are
Xo =1+ %t + -+ 27,
Xy =t+ %24 4 %2,
Xo =t* 4+ %2 + - + %2,



Normal bundle of monomial curves: an application to rational curves

X3 =17+ %8+ 4 #t°,
X4 =184 %1°,
X5 =1°.

Then the affine parametric equations for CA are

Xo =1,
X1 =1t,
X, =14,
X5 =13,
X4 =18,
Xs=1¢°

213

In practice: for any i, take the monomials in ¢ of minimal degree appearing in the

polynomials X (¢).

Example 2. Here is a typical example of a non complete, smooth, rational curve C

with s = 4 and d = 8 such that CA4 is still smooth, (* denotes any complex number,

but there is at least a non zero number in the last column):

1 % % % % *x % x
0 1 % *x *x *x x % =
00 0 0 1 % *x =*x =x
0 0 00O 0 1 * % =x*
0 0 0OO0O 0 0 1 x =x*

Now, putting ¢ := y/x, the affine parametric equations of C are

Xo =1+t + -+ %8,

Xy =t +*t2 4o 4 522,
Xo =t* 4+ %5 + -« + 18,
X3 =12+ %1% 4+ .o 4 13,
Xy =1°+xt” 4 %1%,

Then the affine parametric equations for the degree d’ = 6 curve CA are

Xo=1,
X, =1,
X, =14,
X5 =1°,
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Note that, as we want that CA is smooth, m 4/ = ms 1,441 = 1. In this example,
d' = deg(CA) = 6 < deg(C) = 8.
We have the following:

Theorem 3. Let C be a smooth, rational curve of degree d in P°(C) and let us
assume that CA is a smooth monomial rational curve of degree d’ < d associated to
C as above. Let oc and ¢cy be, respectively, the functions defined by Proposition 1
for curves C and CA. Then, for any k > 2, oc (k) < @ca(k).

Proof. Firstly, let us assume that C is complete, hence d’ = d, and let us consider the
affine parametric equations af C as in the above examples. These equations define a
regular map

Al > PS

as follows (* denotes any complex number):

Xo =14t + - + %19,
Xy =14 #t2 4 + %29,

Xi =P Pt g

Xoo1 = 197" 4 w1,
X, =14,
For any non zero complex number ¢ let us define
(1) an isomorphism ¥, : Al — Al
Y (1) =1/q:

(2) arational curve C, in P* whose affine parametric equations are

Xo=1+qg*t+-+q?% =19,

X =t—|—q*t2—|—~-~—|—qd_1 *td,

X =t g tP gt

Xeop =197 4 g9,
X, =14

defining a map
E Al — PS;
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(3) alinear isomorphism
F,: P’ - P*

whose associated (s 4+ 1, s + 1) matrix is
diag(1,q.....q%,....q% 1. q%).
The definitions are given in order to get

Fq[fq(Wq)] = f;

then we have that every curve C; is projectively equivalent to C and they all have
the same splitting type for the normal bundle in P*. Moreover, the smooth curve CA
is obtained from C, by letting ¢ — 0, hence, by semicontinuity, we have ¢c (k) <
oca(k).

If C is not complete, but CA is still smooth, of degree d’ < d, the above proof
must be changed a little, taking into account that, in these cases,

Xy =175 4P+ 4 pod

with ps = d’, but the conclusion is the same. [

When C is complete there is another proof of the main theorem “by hands” with-
out using any degeneration argument. We give here a sketch of it because we think
that it is useful when one has to calculate the value ¢¢c (k) to get the splitting type
of Ny according to Proposition 1.

Let T¢ and Tc4 be the (e 4+ 1)-dimensional vector spaces determining C, and
respectively C A, as explained in Section 2. Let us fix a monic monomial base for T 4.
By looking at the (s + 1,d + 1) matrix M for C (in a row echelon form, with all
pivots equal to 1) we see that a base for Tc4 can be chosen by taking exactly the

monomials in the string (x?, x4~ 'y, ... xy4~1, y9)

not corresponding to the s + 1
pivots of the matrix.

It is possible to choose two corresponding bases: (to, 71, ..., Te) for T¢ and
(To, T1, ..., Te) for Tca, such that 1t(t;) = 7; fori =0, ..., e, where It(r) denote
the leading term of a polynomial T € C[x, y] with respect to y.

For any k > 2, let us consider the generic element )~ _, f, ® 7, € S¥U & Tc

and let us apply the operator D ,3 to it. We get

e e
D,f[ S 5he rp] = "0y Sy ® 002y — 20:y Sy ® DTy
p=0

p=0
+ 0x0x fp ® 0,0,7p).
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Now, let us consider all the degree d — 2 monomials in C[x, y] involved by the
3(e + 1) polynomials {3%1o, 3?1y, .., 07, } generating 02 T¢, i.e., x4 72, x4 73y, ..,
x427Pr yPBr We can write

e Br
Di[ Z fo® Tp] = Z Ag @ x4y
p=0 q=0

so that DZ[Y "0 _¢ fp ® 7] = 0if and only if 4, = 0 for g € [0, B,].
Now, let us consider all the degree d — 2 monomials in C[x, y] involved by the

3(e + 1) monomials {927, %7 . ... 07%,} generating 9Tc.4. Thanks to our choice
of bases (19, 71, ..., Te) and (Tp, 71, . . ., T.) we have that
(0°%0, 9%F1,..., PT) © (x4, x93y, x4 7hr by

Let § be the dimension of 2T 4. Let us fix § monic distinct monomials among
{0%%y, 0%71, ..., 0%T,) generating 92T 4. These monomials are obviously indepen-
dent and give rise to a base B for 3> T¢ 4. Let us order this base B with respect to the
ascending powers of y. Let us call

Fi := ker(DR sk yore.,)
e e
= {pr@):fp GSkU®TCA | Di[pr(@?p] =0}.
p=0 p=0

Obviously, the condition DZ[Y"7_¢ fp ® T,] = 0 involves only the § degree d — 2
monomials belonging to B. Let us define

e e Br
E = {pr ®7, e SKURTC | D,ﬁ[z fr® fp] =) A, @x47270y1
p=0 p=0 q=0

d—2—q

and A, = 0 only for the § monomials x y4 belonging to B }

Obviously ¢¢ (k) = dim[ker(DilskU(gTC )] < dim(Ey).

To complete the proof of the theorem it is sufficient to prove that dim(E;) <
dim(Fy) = gca(k). Note that E; and Fj are both subspaces of C€+D&+D apqd
that this vector space is given by all the coefficients of the generic polynomials f, €
SkWU), p=0,....e.

We have only § relations defining Ej, one to one with the elements of B. Every

relation is of the following type and it does not depend on k:

e
> (apdids fy + bpdxdy fp + cpdydy fp) = 0. ap.bp.cp € C,
p=0
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hence they give rise to a (§, 3(e + 1)) matrix N of complex numbers which is the
union of e + 1 blocks of type (6, 3), each one in a row echelon form due to the above
choice for 8.

The § relations defining Ej, inside C €+ D®+1 can be written in matricial form as

N[0gdcfo Oxdyfo Oydyfo - Oxdrfe 0xdyfe 0ydyfe] =0. (o)

Note that the set of k + 1 variables related to every polynomial f,, is distinct from
the set of k + 1 variables related to any other polynomial f, if p’ # p.

We can argue in the same way with the § relations defining Fy inside C(¢+D&+1D
getting an analogue matrix NA and a matrix relation analogous to (e),

NA[0c0xfo 050y fo 0ydyfo -+ Oxdxfe 0xdyfe 0ydyfe] =0. ()

Note that NA is obtained from N simply by putting equal to zero every number
appearing in N which is not a pivot in a single block. Moreover, § < 3(e + 1) (in fact,
¢c4(2) = 3(e + 1) — § > 0) and therefore rank(N ) = rank(NA) = §, being both the
union of blocks in a row echelon form. Moreover, both matrices have the same pivots
in the same position.

It follows that there exists a non singular upper triangular matrix Z of complex
numbers, of order §, such that N’ := Z N, all complex numbers over the pivots of N
are zero and the pivots of every block of N’ are the same and in the same position with
respect to N and hence NA (see the example below). Of course, Ex can be defined
inside C€TD&+D al50 by the § relations

N’ [8x3xf0 axany 8yany axaxfe 8xayfe ayayfe]t =0. (ee)

Now we can see that the dimension of Ej, inside C€+D*+1) i the dimension of
the vector space over C generated by the set § of coefficients of those polynomials
among {0x0dx fo, 0x3y fo. 50y fo, ..., 0x0x fe, 0x0y fe, 050y fe} such that in (ee) the
corresponding columns of N’ do not contain a pivot. The same is true for the dimen-
sion of Fj by considering (a) and NA, note that the quoted columns are the same for
N’ and NA hence the set § is the same.

If k = 2 the dimensions of E;, and F, are exactly the number of such columns,
i.e., 3(e + 1) — 8, because the polynomials {dx0dx fo. ..., dy0dy fe} have degree 0. If
k > 3, to calculate dim(E%) and dim(F%) it is necessary to take into account all the
relations among the elements of § arising from (ee) and (a). Of course, to prove that
dim(Ey) < dim(F}), it is enough to prove that, passing from (ee) to (a), no new
relations are introduced. It can be shown that this is true by a simple case by case
examination.

In the following Example 3, we will illustrate how the above proof works. Appli-
cations of Theorem 3 will be explained later, in Examples 4 and 5.
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Example 3. Let us consider a rational smooth curve C of degree 10 in ¢ given by a
matrix M as follows (* denotes any complex number, blank denotes 0):

1 =%
1

—_— % % ¥

—_— X ¥ X ¥
* % X X ¥
* % K X X
—_— % X ¥ X ¥

—_— % % ¥ ¥ X ¥

then Tcq = (x7y3, x%y*, x3y7,x2y8), e + 1 = 4; while T¢ is generated by

7o = *x'0 + *xgy + >x<xgy2 + x7y3,

7 = #x'0 4 >!<x9y + *x8y2 + x6y4,

Ty = xx10 4 *xgy + *x8y2 + >|<xsy5 + *x4y6 + x3y7,

73 = #x'0 4 *xgy + *x8y2 + >i<x5y5 + *x4y6 + x2y8.
We have that 3°Tcq = (x7y,x6y2, x> y3, x*y4 x3y°,x2y%,xy7, y®), § = 8 and the
monomials involved by 3°T¢ are: x%, x7y, x®y2, x° 4yt x3y°,x2y% xy7, 8.
We have to forget x® and to consider the relations given by the other 8 monomials.
The matrix N = N°UN! U N2 U N3isoftype (8 = 8,12 = 3(e + 1)) and it is the
union of 4 submatrices of type (8, 3) (I}, denotes a non zero complex number),

y3x

I T T S N N T S
fo * Hg4 = * % % ok ok X
i3 s % % % k% ok %
N = He * * * * *
7 % % % * * |
s * b0 *x =
flo i *
L 12
0, % % * * N
2 a4 * *
03 s ko ox
N' = n6 * *
7 * %
s fi0 *
fo 011
L f12]
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On the other hand NA is the following:

[

From N’ we get

2
13

=

X

=

<
-

0

d

B f
B/
d
d
0
0

~<
—

x
v /2
v 2

LIRS
S

~<

QDQJQJU%Q_DQ_DQ_DQJ

LUy yf3_

la

s
i

b7

s

T DO =

f10
I11
t112_
axaxfl
axayfl
8xaxf3
axayf3

From NA we get analogous relations where every greek letter is zero.

Now, let us choose k = 3, so that f, = apx>® + 3b,x%y + 3cpxy? + dpy> and
0x0x fp = 6(apx + bpy) and so on. In this case, §
dividing all polynomials by 6 we can write all the above relations as

a0 bo
b() Co
co do
1 dy
an b2
by ¢
2 dy

| c3 d3

We get the following relations:

ao
bo
bo

o
013

B

&
D14

TD Prre=

f1s

5
n

e > =

016

ap by
b1
as b3
b3 C3

= aa; + Bby + yas + 6bs,
aby + Bcy + ybs + b3,
fi3a1 + eby + Cas + nbs,
co = h13b1 + ec1 + Cbs + nes,
co = f1ab1 + Vas + b3,

219

= {a1, b1, c1,as, b3, c3}. By
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do = H1ac1 + Vb3 + tc3,
c1 = pas + Abs,

dy = pbs + Acs,

a = pas + vbs,

by = ubs + ves,

by = thisas + §bs,

c2 = l15h3 + §cs,

c2 = f16b3,
dy = f16C3,
Cc3 = d3 =0.

Itis easy to see that pc4(3) = ¢c (3) = 0if 15 # l16 and 13 7 f1a. If 15 = f16
but 13 7 14 then 9c4(3) = ¢c(3) = 1. If 115 = fj16 and 13 = 14 then pc4(3) =2
while for E£3 we have two generators with a relation at most, hence ¢¢ (3) < 2 and we
have ¢c (3) < ¢c4(3) in any case.

In general, to get ¢c (3) we should know the exact values of the entries of M, but
in Example 3 this is not important: the Coskun—Riedl formula proves that ¢c4(3) =0
a priori. Therefore we can conclude that ¢¢c (3) = 0 for any curve C as above.

Remark 1. Unfortunately, it is not possible to get a good bound for ¢c (k) from
below: for any k, it is easy to count how many generators and relations are necessary
to define ker(D;| skuer,) inside Ce+D&+D byt every relation can provide a big
number of linear equations for ker(Dﬁ| SkU® Tc) and it is hard to determine a reason-
able bound for the independent ones. On the other hand, if we consider all of them, we

have that the bound from below becomes quickly a negative number, as k increases.

Remark 2. Itis very natural to ask whether it is possible to extend the above sketched
proof to curves C not complete, when CA is smooth of degree d’ < d. However this
is not possible. It is easy to give counterexamples.

4. Applications

The immediate application of Theorem 3 is the following:

Corollary 1. Let C be a complete, smooth, rational curve of degree d in P*(C) and
let CA be the associated smooth rational monomial curve as before, with normal bun-

dles Nc¢ and Nc 4, respectively. Let fc : P1(C) — P$(C) and fca :P1(C) — P*(C)
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be the related morphisms. Let ¢ (k) and oc (k) be the two functions introduced in
Section 2 for any integer k > 0. Then

(1)  ifocalk) = 0fork > ko (ko suitable integer) then oc (k) = 0 for k > kg,

(i) if A2pca(k) = 0 for k > ko (ko suitable integer) then A%?¢c (k) = 0 for
k > ko;

(iii) assume that f&,Nca = Op1(§]) ® Op1(§}) & --- ® Op1(§,_,) and let us
put = max{&;, ..., &_,}, then fENc =~ Opi1(§1) ® Op1(£2) & -+ D
Op1(Es—1) with& < pforanyi =1,...,5s —1;

@iv) the natural multiplication map
H°(C,0c(v—1)) ® H*(P*, Ops(1)) — H°(C,Oc (v))
is surjective for any integer v > pu — 1.

Proof. (1) and (ii) follow directly by Theorem 3.
(iii) For a suitable integer ko >> 0 it is surely true that A%2pc (k) = 0 for k > ko;
let us assume that k¢ is the minimal integer with this property. Recall that

s—1
JeaNca(=d —2) = @(9]?1(0;),
i=1
with ¢} > ¢4 > -+ > ¢/_;, and that A%[pc4(k)] is exactly the number of integers c;
which are equal to k. Hence, if A%pc4(k) = 0 for k > ko, we have that ¢} = ko — 1

and = ko + d + 1. By (ii) we have that A2¢p¢ (k) = 0 for k > kg. Recall that

s—1
fENc(=d —2) = P Opi (o),

i=1
with ¢y > ¢ > --- > ¢y_1, and that A?[pc (k)] is exactly the number of integers c;
which are equal to k. Hence c; <ko—1land & =c¢; +d +2<ko+d + 1 = pfor
anyi =1,...,s — 1.

(iv) For any integer v > 1, let us recall the following exact sequence due to Ein

(see [5, Theorem 2.4]):

0= NE(v) = Oc(v—1) ® H*(P*, Ops (1)) = P'[Oc(v)] = 0

where N is the dual of Nc and P![@O¢(v)] denotes the principal parts bundle
of Oc (v). If K (C, NZ(v)) = 0 we have that

H°(C,0c(v—1)) ® H°(P*, Ops (1)) - H*(C, P'[Oc (v)])

is surjective. On the other hand, H°(C, 2'[O¢ (v)] — H°(C, O¢ (v)) is always sur-
jective (see [5, Proposition 2.3]). Hence the natural multiplication map is surjective if
h'(cC, No(v)) = 0.
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By Serre duality h'(C, N (v)) = h%(C, Nc (—v — 2)), so that A (C, N (v)) =0
if %P, Op1(§ —v—2))=0foranyi =1,...,5s — 1, ie, & <v + 1 for any
i =1,...,5s — 1 and thisis true if v > u — 1 by (iii). [

Now we give two examples of application of Theorem 3 to find bounds for the
splitting type of rational curves. We will choose two monomial curves and we will find
bounds for the values of the numbers ¢; for all complete curves C whose associated
curves CA are the chosen ones.

Example 4. Let us choose d =17, e =7,s =d —e —1 = 9 and let CA be the
projection to P8(C) of the rational normal curve I';7 from L := P¥(T¢c4) where
Tea:= (x1y2 x1295 x%y8 x8y% x>y12 x4y13 x3y14 x2y15). CA is a monomial
smooth rational curve and, by using the results of [3], it is easy to see that the function

¢c 4 (k) has the following values for k > 0:

k 0 1 2
ocalk) 24 16 8

3 4 5 6 7
4 2 0 0O
hence the string of integers c; for CA is the following: (4,4,2,2,1,1,1,1).
Assume that CA is the associated monomial curve to a smooth rational curve C
of degree 17 in P8 (C). Assume also that ¢c (2) = ¢c4(2). By Theorem 3 we can say

that the function ¢c¢ (k), a priori, has the following values for k > 0:

k0 1 23 4567
ock) 24 16 8 ¢ 1.0 0 0

with 0 < & < 4 and 0 < n < 2. Hence the function A%2¢¢ (k) has the following values,
fork > 0:

k 0 1 2 3 4 5 6 7
A%pc(k) 0 & 8—2e+n e—=2n n 0 0 O
As A%pc(k) > 0weget8—2e+n>0ande—2n > 0.

By considering all the constraints, we have that the possible strings of ¢; for C are
(4,4,2,2,1,1,1,1),
4,3,3,2,1,1,1,1),
(3,3,3,3,1,1,1, 1),
4,3,2,2,2,1,1,1),
(3,3,3,2,2,1,1,1),
(4,2,2,2,2,2,1,1),
(3,3,2,2,2,2,1,1),
(3,2,2,2,2,2,2,1),
(2,2,2,2,2,2,2,2).
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Note that, according to the sufficient condition stated in [4, Corollary 2.6], all
above cases are possible.

Example 5. Let us choose d =17, e = 6,5s =d —e — 1 = 10 and let CA be the
projection to P8(C) of the rational normal curve I';7 from L := P®(T¢c,4) where
Tca = (x1y2,x12y5 x%y8 x8y% x*y13 x3y14 x2y15). CA is a monomial smooth
rational curve and, by using the results of [3], it is easy to see that the function ¢c 4 (k)

has the following values for k > 0:

k 0 1

2 3 45 6 17
ocalk) 23 14 6 2 0 0 0 O
hence the string of integers ¢; for CA is the following: (3,3,2,2,1,1,1,1,0).
Assume that CA is the associated monomial curve to a smooth rational curve C
of degree 17 in P?(C). Assume also that ¢¢c (2) = ¢c4(2). By Theorem 3 we can say

that the function ¢¢ (k), a priori, has the following values for k > 0:

k 0 1

2 3
ock) 23 14 6 ¢

4 5 6 17
0 00O
with 0 < & < 2. Hence the function A%¢c (k) has the following values for k > 0:

k 0 1 2 3
e

45 6 17
A2pc(k) 1 2+e 6-2¢6 ¢ 0 0 0 O

The possible strings of ¢; for C are

(3,3,2,2,1,1,1,1,0),
(3,2,2,2,2,1,1,1,0),
(2,2,2,2,2,2,1,1,0).

Note that, according to the sufficient condition stated in [4, Corollary 2.6], all
above cases are possible.
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