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A note on the real support of Silva–Hasumi–Morimoto

ultrahyperfunctions

Magno B. Alves and Daniel H. T. Franco

Abstract. Recently, we have studied the relation between the singular spectrum of a class of

tempered ultrahyperfunctions corresponding to proper convex cones and their expressions as

boundary values of holomorphic functions. In this note, we added some more results on the sin-

gular spectrum of the tempered ultrahyperfunctions. More specifically, the “microlocalization”

of a Silva–Hasumi–Morimoto ultrahyperfunction corresponding to an open proper convex cone

is addressed. Following Nishiwada’s approach to the analytic wave front set, we introduce the

real singular spectrum of such an ultrahyperfunction and prove that it canonically projects onto

Silva’s real support.

1. Introduction

In 1958, Sebastião e Silva [19,20] introduced the class of generalized functions called

by him tempered ultradistributions, which are the Fourier image of L. Schwartz dis-

tributions of exponential type. Later, Hasumi [10] considered the global theory of

tempered ultrahyperfunctions in the higher dimensional space, and Morimoto [12–14]

(who coined the name tempered ultrahyperfunctions) localized the theory of tempered

ultrahyperfunctions in the imaginary direction.

The interest in ultrahyperfunctions arose simultaneously with the growing interest

in various classes of analytic functionals and various attempts to develop a theory of

such functionals that would be analogous to the Schwartz theory of distributions. In

the first decade of this century, a renewed interest in ultrahyperfunctions appeared in

the Brüning–Nagamachi papers [1–3,15] on quantum field theory with a fundamental

length. In connection with this theme, an important topic in the spectral analysis of

a quantum field theory with a fundamental length concerns the singularities of the

ultrahyperfunctions.
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Using the cohomological approach, Morimoto gave a clear description of the

cotangential components of singularities of ultrahyperfunctions in [11] (the ultra-

hyperfunctions were called in [11] cohomological ultradistributions), not necessarily

assumed to be tempered. Following Nishiwada [16, 17], in [9] (where many other

references on ultrahyperfunctions can be found) the authors have shown an alterna-

tive way of describing the singularities of a class of tempered ultrahyperfunctions

corresponding to proper convex cones in terms of generalized boundary values of

holomorphic functions; namely, the singular spectrum of a tempered ultrahyperfunc-

tion u is characterized by the directions from which the boundary values can be taken

in an analytic representation of u. In this article, without using cohomology, we added

some more results on the singular spectrum of the tempered ultrahyperfunctions. More

specifically, using the notion of real support introduced by Sebastião e Silva [19], we

show that the canonical projection of the singular support of a tempered ultrahyper-

function coincides with its real support.

2. Tempered ultrahyperfunctions in very few words

To begin with, we shall recall very briefly the basic definition of tempered ultrahyper-

functions. Firstly, we shall consider the function

hK.�/ D sup
x2K

ˇ
ˇh�; xi

ˇ
ˇ; � 2 R

n;

the indicator of K, where K is a compact set in R
n. We have hK.�/ < 1 for every

� 2 Rn sinceK is bounded. For setsK D Œ�k;k�n, 0 < k <1, the indicator function

hK.�/ can be easily determined,

hK.�/ D sup
x2K

ˇ
ˇh�; xi

ˇ
ˇ D kj�j; � 2 R

n; j�j D

n
X

iD1

j�i j:

Let K be a convex compact subset of Rn, then Hb.R
nIK/ (b stands for bounded)

defines the space of all functions ' 2 C1.Rn/ such that ehK .�/D˛'.�/ is bounded

in R
n for any multi-index ˛. One defines in Hb.R

nIK/ seminorms

k'kK;N D sup
�2RnI˛6N

®

ehK .�/jD˛'.�/j
¯

< 1; N D 0; 1; 2; : : : (2.1)

The space Hb.R
nIK/ equipped with the topology given by the seminorms (2.1)

is a Fréchet space [10, 13]. If K1 � K2 are two compact convex sets, then hK1
.�/ 6

hK2
.�/, and thus the canonical injection Hb.R

nIK2/ ,! Hb.R
nIK1/ is continuous.

Let O be a convex open set of R
n. To define the topology of H.RnIO/ it suffices

to let K range over an increasing sequence of convex compact subsets K1; K2; : : :
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contained inO such that for each i D 1;2; : : : ,Ki �Kı
iC1 (Kı

iC1 denotes the interior

of KiC1) and O D
S1

iD1Ki . Then the space H.RnIO/ is the projective limit of the

spacesHb.R
nIK/ according to restriction mappings above, i.e.,

H.RnIO/ D lim proj
K�O

Hb.R
nIK/; (2.2)

where K runs through the convex compact sets contained in O . By H 0.RnIO/ we

denote the dual space of H.RnIO/.

Proposition 2.1 (Hasumi [10, Proposition 3], Morimoto [13, Theorem 5]). A distri-

bution V 2 H 0.RnIO/ may be expressed as a finite order derivative of a continuous

function of exponential growth

V D D



�
ŒehK .�/g.�/�;

where g.�/ is a bounded continuous function.

In the space C
n of n complex variables z� D x� C iy� , 1 6 � 6 n, we denote by

T .�/D Rn C i�� Cn the tubular set of all points z, such that yi D Imzi belongs to

the domain�, i.e.,� is a connected open set in Rn called the basis of the tube T .�/.

Let K be a convex compact subset of R
n, then Hb.T .K// defines the space of all

continuous functions ' on T .K/ which are holomorphic in the interior T .Kı/ of

T .K/ such that the estimate

j'.z/j 6 MK;N .'/.1C jzj/�N (2.3)

is valid. The best possible constants in (2.3) are given by a family of seminorms in

Hb.T .K//

k'kK;N D inf
®

MK;N .'/ j sup
z2T .K/

.1C jzj/N j'.z/j < 1; N D 0; 1; 2; : : :
¯

: (2.4)

If K1 � K2 are two convex compact sets, we have that the canonical injection

Hb.T .K2// ,! Hb.T .K1// (2.5)

is continuous.

Given that the spaces Hb.T .Ki// are Fréchet spaces, with topology defined by the

seminorms (2.4), the space H.T .O// is characterized as a projective limit of Fréchet

spaces

H.T .O// D lim proj
K�O

Hb.T .K//; (2.6)

whereK runs through the convex compact sets contained inO and the projective limit

is taken following the restriction mappings above.
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Let K be a convex compact set in R
n. Then the space H.T .K// is characterized

as an inductive limit

H.T .K// D lim ind
K1�K

Hb.T .K1//; (2.7)

where K1 runs through the convex compact sets such that K is contained in the inte-

rior of K1 and the inductive limit is taken following the restriction mappings (2.5).

The Fourier transformation is well defined on the space H.RnIO/. Further, if

' 2 H.RnIO/, the Fourier transform of ' belongs to the space H.T .O//, for any

open convex nonempty set O � Rn. By the dual Fourier transform, H 0.RnIO/ is

topologically isomorphic to the space H0.T .�O// [13].

Remark 1. We will put H D H.Cn/ D H.T .Rn// and, as usual, we shall denote the

dual space of H by H
0.

Definition 2.2. A tempered ultrahyperfunction is by definition a continuous linear

functional on H.

In this note, we are interested in the class of tempered ultrahyperfunctions corre-

sponding to proper convex cones. Therefore, we start by recalling some terminology

and simple facts concerning cones. An open set C � Rn is called a cone if C (unless

specified otherwise, all cones will have their vertices at zero) is invariant under posi-

tive homoteties, i.e., if for all � > 0, �C � C . A cone C is an open connected cone if

C is an open connected set. Moreover, C is called convex if C C C � C and proper

if it does not contain any straight line (observe that if C is a proper cone, it follows

that if y 2 C and y 6D 0 then �y … C ). A cone C 0 is called compact in C – we write

C 0
b C – if the projection

pr xC 0 def
D xC 0 \ Sn�1 � prC

def
D C \ Sn�1;

where Sn�1 is the unit sphere in R
n. Being given a cone C in the y-space, we asso-

ciate with C a closed convex cone C � in the �-space which is the set

C � D
®

� 2 R
n j h�; yi > 0;8y 2 C

¯

:

The cone C � is called the dual cone of C . As in Carmicheal [4, 5], we define the

following.

Definition 2.3. Let C be a proper open convex cone with vertex at the origin, and let

C 0
b C . Let BŒ0I r� denote a closed ball with center at the origin in R

n of radius r ,

where r is an arbitrary positive real number. We define the tube domain by

T .C 0n.C 0\BŒ0Ir�// D
®

x C iy 2 C
n j x 2 R

n; y 2 .C 0 n .C 0 \ BŒ0I r�//
¯

:
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We are going to introduce a space of holomorphic functions which satisfy certain

estimates according to Carmichael [4,5]. We want to consider the space consisting of

holomorphic functions f such that

ˇ
ˇf .z/

ˇ
ˇ 6 M.C 0/.1C jzj/N e� jyj; z D x C iy 2 T .C 0n.C 0\BŒ0Ir�//; (2.8)

for all � > 0, where M.C 0/ is a constant depending on an arbitrary compact cone

C 0
b C and N is a non-negative real number. The set of all functions f which for

every cone C 0
b C are holomorphic in T .C 0n.C 0\BŒ0Ir�// and satisfy the estimate (2.8)

will be denoted by H o
c .

Remark 2. The space of functions H o
c constitutes a generalization of the space Ai

!

of Sebastião e Silva [19] and the space A! of Hasumi [10] to arbitrary tubular radial

domains in C
n (a tube domain is said to be radial if its base is a connected cone

in Rn).

We now shall introduce another space of holomorphic functions whose elements

are analytic in a domain that is larger than T .C 0n.C 0\BŒ0Ir�// and has boundary values

in R
n. Let B.0I r/ denote an open ball with center at the origin in R

n of radius r ,

where r is an arbitrary positive real number. Let T .C 0n.C 0\B.0Ir/// denote the subset

of Cn defined by

T .C 0n.C 0\B.0Ir/// D
®

x C iy 2 C
n j x 2 R

n; y 2
�

C 0 n .C 0 \ B.0I r//
�¯

: (2.9)

Definition 2.4. Let C be a proper open convex cone with vertex at the origin, and let

C 0
b C . Denote by T .C 0/ the tube domain

®

x C iy 2 C
n j x 2 R

n; y 2 C 0
¯

:

We say that the function f D f .z/ is in the space H �o
c if it is holomorphic in T .C 0/

and satisfies the estimate

ˇ
ˇf .z/

ˇ
ˇ 6 M.C 0/.1C jzj/N e� jyj; z D x C iy 2 T .C 0n.C 0\B.0Ir///: (2.10)

Note that H �o
c � H o

c for any open convex cone C . Following Hasumi [10], we

define the kernel of the mapping f W H ! C by …, where … is the set of all pseudo-

polynomials in one of the variables z1; : : : ; zn. We recall that a pseudo-polynomial is

a function of the form
X

˛

z˛
j G˛.z1; : : : ; zj �1; zj C1; : : : ; zn/;

where G˛.z1; : : : ; zj �1; zj C1; : : : ; zn/ are functions in H �o
c with respect to .z1; : : : ;

zj �1; zj C1; : : : ; zn/. Then, the function f 2 H �o
c belongs to the kernel … if and only

if hf .z/;  .x/i D 0, with  2 H and x D Re z. Put UC D H �o
c =…, that is, UC is

the quotient space of H �o
c by the set of pseudo-polynomials ….
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Definition 2.5. The set UC is the subspace of the tempered ultrahyperfunctions gen-

erated by H �o
c corresponding to a proper open convex cone with vertex at the origin

C � R
n.

Definition 2.6. We denote by H 0
C �.R

nIO/ the subspace of H 0.RnIO/ of distribu-

tions of exponential growth with support in the cone C �,

H 0
C �.R

nIO/ D
®

V 2 H 0.RnIO/ j supp.V / � C �
¯

: (2.11)

3. Analytic representations

In this section, the boundary values of holomorphic functions are always considered

in the distribution sense defined below. We say that f 2 H �o
c has a boundary value

U D BV.f / in H0 as y ! 0, y 2 C 0
b C , if for all  2 H the limit

hU; i D lim
y!0;
y2C 0

Z

Rn

f .x C iy/ .x/ dx

exists.

For distributions V 2 H 0
C �.R

nIO/ we define the Fourier–Laplace transform by

f .z/ D .2�/�nhV; eih �;zii: (3.1)

Concerning the Fourier–Laplace (3.1) we have the following:

Lemma 3.1. To each compact subconeC 0 of C corresponds a positive real number r

such that the function f .z/ in (3.1) is analytic in the truncated tube domain

T .C 0n.C 0\BŒ0Ir�//;

where BŒ0I r� is the closed ball in Rn, centered at the origin, and with radius r .

Proof. See Carmichael [4, Theorem 2].

Lemma 3.2. The function f .z/ in (3.1) is analytic in the tube domain

T C D R
n C iC:

Proof. Just take � D C and K D ¹0º in [21, Proposition 6.6].

Example 1. If u.x/ D 1
xCi0C .x 2 R/ is the distributional boundary value, then it

corresponds to the proper cone C D .0;C1/ and we have

f .z/ D
1

z
.z 6D 0/;

which is analytic on T C D R C iC D ¹z 2 C j Im z > 0º.
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Remark 3. In Lemma 3.2, we cannot assure the analyticity of f .z/ in the tube

domain T C if the cone C is not proper. For instance, take u D ı (Dirac’s delta “func-

tion”). We have that uD ı corresponds to the coneC D R, since, up to a multiplicative

constant, we have yı D 1, whose support is C D R. Notice, in this case, that

f .z/ D
1

z
.z 6D 0/;

is not analytic in the tube domain T C D R C iR D C!

Lemma 3.3. Let C be a proper open convex cone with vertex at the origin. Let V 2

H 0
C �.R

nIO/. Then there exists a function f .z/ 2 H �o
c such that f .z/! F ŒV � 2 H0

in the weak topology of H
0 as y D Im z ! 0, y 2 C 0

b C .

Proof. See Carmichael [4, Theorem 2].

4. The real singular spectrum

In the previous section, we have examined the tempered ultrahyperfunctions as the

boundary values of holomorphic functions. Thus, in particular, one may want to know

the set in which a given tempered ultrahyperfunction corresponding to an open proper

convex cone with vertex at the origin fails to be analytic; such a set, which can be

easily defined, is the so called singular spectrum of a tempered ultrahyperfunction,

denoted by S:S:.u/. Following Nishiwada [17, Theorem 1.2], we shall introduce the

singular spectrum of a tempered ultrahyperfunction corresponding to an open proper

convex cone with vertex at the origin C � R
n, using its analytical representation,

f .z/, induced by the Fourier–Laplace transform (3.1). Precisely, we have the follow-

ing.

Definition 4.1. Let u2 UC be a tempered ultrahyperfunction generated by f 2 H �o
c

corresponding to an open proper convex cone – with vertex at the origin. Let .x0; �0/ 2

T �
R

n n ¹0º be arbitrarily fixed, where T �
R

n stands for the cotangent bundle. Then,

.x0; �0/ … S:S:.u/ � T �
R

n n ¹0º if and only if there exists an open complex neigh-

borhood zU of x0 in Rn and a cone C 0
b C in Rn such that the analytic representation

f of u fulfills the following:

(a) f is continuous over zU ;

(b) f is holomorphic in the tube-symmetric domain

T .�C 0n.�C 0\B.0Ir/// [ T .C 0n.C 0\B.0Ir///;

where T .C 0n.C 0\B.0Ir/// is defined by (2.9).
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The following result is immediate from the above definition:

Proposition 4.2. Let u 2 UC be a tempered ultrahyperfunction corresponding to an

open proper convex cone with vertex at the origin C � R
n. Then, the following prop-

erties are valid:

(a) S:S:.u/ is a closed subset of T �Rn n ¹0º;

(b) S:S:.u/ is a conic subset of T �
R

n n ¹0º in the sense that

.x0; �0/ 2 S:S:.u/ H) .x0; ��0/ 2 S:S:.u/; 8� > 0:

Proof. Item .a/. Let .x0; �0/ be an arbitrary point in the complement of

�

T �
R

n n ¹0º
�

n S:S:.u/:

Let C and zU as in Definition 4.1. Assume that

x0
0 2 . zU \ R

n/ n ¹x0º and � 0
0 2 .C � n ¹0º/ n ¹�0º:

By [6, Lemma 1.2.2] there exists a positive ˛ (depending on y) such that h� 0
0; yi >

˛j� 0
0jjyj for all � 0

0 2 C � n ¹0º and y 2 C 0. This implies that � 0
0 2 C � n ¹0º satisfies

Definition 4.1. Now, for zU as in Definition 4.1, it is clear that the analytic representa-

tion f of the tempered ultrahyperfunctionu satisfies the items .a/ and .b/ of the same

definition. Thus, according to Definition 4.1, we have that .x0
0; �

0
0/ … S:S:.u/. Hence,

. zU \ Rn/ � C 0 is an open neighborhood of .x0; �0/ 2 .T �Rn n ¹0º/ n S:S:.u/. As

.x0; �0/ is arbitrary, it follows that .T �Rn n ¹0º/ n S:S:.u/ is open, that is, it follows

that S:S:.u/ is closed on T �
R

n n ¹0º. This proves item .a/.

Item .b/. Our reasoning is based on reduction to absurd. Suppose that for some

.x0; �0/ 2 S:S:.u/ there corresponds some � > 0 such that

.x0; ��0/ … S:S:.u/:

In this case, from the definition of S:S:.u/, we would be able to conclude the absurd

that

.x0; �0/ D
�

x0;
1

�
� .��0/

�

… S:S:.u/;

because, due to the hypothesis .x0; ��0/ … S:S:.u/, we would conclude that ��0

is contained in a conical neighborhood C � such that ¹x0º � C � does not intersect

S:S:.u/ and from this we would conclude that

�

x0;
1

�
� .��0/

�

… S:S:.u/; 8� > 0:

Item .b/ follows.
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We also recall the notion of real support of a tempered ultrahyperfunctionu, intro-

duced by Sebastião e Silva [19] (see also Section 4.5 of the Master dissertation by

Debrouwere [7], and [8] which contains a detailed study of generalizations of the

Silva’s real support that are applicable to more general ultrahyperfunctions).

Definition 4.3. Let u 2 UC be a tempered ultrahyperfunction corresponding to an

open proper convex cone with vertex at the origin C � Rn. Then, its real support

suppR.u/ is the complement in R
n of the largest open set� � R

n for which the ana-

lytic representation H �o
c 3 f .z/ of u is analytic in the tube domain�C iRn � C

n.

Remark 4. Unlike distributions or hyperfunctions, tempered ultrahyperfunctions do

not have a sound notion of singular support. As matter of fact, the notion carrier of a

tempered ultrahyperfunction has a major drawback as far as uniqueness is concerned,

since in some examples the least carrier of an analytical functional is not available.

With this in mind, we must understand the reason for the real support in the previous

definition to be confined to the real part of Cn (Figure 1 can help visualizing this

situation for x 2 suppR.u/, in the case n D 1).

Theorem 4.4. Let u 2 UC be a tempered ultrahyperfunction corresponding to an

open proper convex cone with vertex at the origin C � Rn. Let � W T �Rn n ¹0º ! Rn

be the canonical projection. Then, the following identity holds:

�.S:S:.u// D suppR.u/:

„ ƒ‚ …

suppR.u/
R

C

b b

Figure 1. The real support suppR.u/ of a tempered ultrahyperfunction u in the case n D 1.
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Proof. Firstly, let .x0; �0/ … S:S:.u/ and zU andC 0 be as in Definition 4.1. By the con-

tinuous version of the Edge-of-the-Wedge theorem [18], we conclude that the analytic

representation f 2 H �o
c of u is holomorphic in an open complex neighborhood W

of x0 which, without loss of generality, may be supposed to be contained in zU . Thus,

f is holomorphic in the open set

W [ T .�C 0n.�C 0\B.0Ir/// [ T .C 0n.C 0\B.0Ir/// � C
n;

from which we are able to select an open tube domain�C iRn (x0 2��W ) where

f is holomorphic. In particular, we conclude that x0 … suppR.u/. Thus, we have

proved that

.x0; �0/ … S:S:.u/ H) .x0; �0/ … suppR.u/;

from which we conclude that

suppR.u/ � �.S:S:.u//:

Conversely, Let .x0; �0/ 2 S:S:.u/. By absurd, suppose that for all x0 … suppR.u/,

then by the definition of real support, the analytic representation f of u is holomor-

phic in a tube domain of the type �C iRn, where � � R
n is open and contains x0.

In this case, taking zU D � C iRn and C 0
b C as in Definition 4.1 which implies

the absurd conclusion that .x0; �0/ … S:S:.u/. Thus, if .x0; �0/ 2 S:S:.u/, then x0 2

suppR.u/, that is, we must have

�.S:S:.u// � suppR.u/:

The proof is complete.
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