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Theoretical analysis of a discrete population balance model
with sum kernel

Sonali Kaushik, Rajesh Kumar, and Fernando P. da Costa

Abstract. The Oort–Hulst–Safronov equation is a relevant population balance model. Its dis-
crete form, developed by Pavel Dubovski, is the main focus of our analysis. The existence
and density conservation are established for non-negative symmetric coagulation rates satisfy-
ing Vi;j 6 i C j , 8i; j 2 N. Differentiability of the solutions is investigated for kernels with
Vi;j 6 i˛ C j˛ where 0 6 ˛ 6 1 with initial conditions with bounded .1C ˛/-th moments.
The article ends with a uniqueness result under an additional assumption on the coagulation
kernel and the boundedness of the second moment.

1. Introduction

The coagulation is defined as the process when clusters of mass i and j (i and j -mers)
merge together to generate a .i C j /-mer. Coagulation processes have a plethora of
real-world applications, including the collision of asteroids [15], red blood cell aggre-
gation [14], helium bubble formation in nuclear materials [5], colloidal chemistry [1],
formation of Saturn’s rings [6], among many others.

This paper discusses a discrete model, i.e., a model for which the properties of
the particles, namely size, are described by a discrete variable i 2 N, known as the
Safronov–Dubovski (S-D) coagulation equation [8]. The equation seems to have been
first proposed by Dubovski [10, 11] in 1999, long after the introduction of the contin-
uous version, called the Oort–Hulst–Safronov (OHS) equation [13,16], in the context
of coagulation of particles in the celestial phenomena.

The S-D model is defined for t 2 Œ0;1/ as

d i .t/

dt
D  i�1.t/

i�1X
jD1

jVi�1;j j .t/ �  i .t/

iX
jD1

jVi;j j .t/

�

1X
jDi

Vi;j i .t/ j .t/; i 2 N; (1.1)
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where the first sum on the right-hand side is defined to be identically zero when i D 1.
The focus of our study is on the basic properties (existence, uniqueness, density con-
servation, differentiability) of solutions  i .t/ to the initial value problems defined by
this system with initial conditions

 i .0/ D  0i > 0: (1.2)

From a physical point of view, the equations in system (1.1) are the rate equa-
tions describing the time-dependent behavior of the concentrations of clusters of sizes
(or masses) i , (i -clusters, for short) in a system of particles whose dynamics can be
described as follows: (a) particles of size i > 2 are produced when a .i � 1/-cluster
is struck by a particle of size j 6 i � 1: the result of this collision is that the smaller
j -cluster is pulverized into j particles of size 1, each of which attaches itself to differ-
ent particles of size i � 1 to form particles of size i ; this is described mathematically
by the first expression in the right part of (1.1)

 i�1.t/

i�1X
jD1

jVi�1;j j .t/I

(b) particles of size i are destroyed either by being impacted by smaller clusters and
thus growing to clusters of size i C 1, by the mechanism just described, resulting in
the second term on the right-hand side of (1.1)

� i .t/

iX
jD1

jVi;j j .t/;

or by being themselves the smaller clusters in a collision with a larger j -cluster, in
this case it is the i -cluster which is pulverized into a number i of 1-clusters which will
then attach to j -clusters to produce .j C 1/-clusters, which results in the last term in
the right-hand side of (1.1)

�

1X
jDi

Vi;j i .t/ j .t/:

The parameters Vi;j for i ¤ j , called the coagulation kernel, are the rate constants
for the reaction between clusters of sizes i and j , and are assumed to be time-
independent, non-negative, and symmetric, i.e., Vi;j D Vj;i . As discussed in [10], the
rate Vi;i is equal to half of the collision’s rate for the particles of size i .

An extremely useful tool in the mathematical study of coagulation problems is the
moments of the solutions. The r-th moment of a solution  D . i / of (1.1) is defined
by

�r. .�// D �r.�/ WD

1X
iD1

i r i .�/: (1.3)



Theoretical analysis of a discrete population balance model with sum kernel 345

Putting r D 0 gives the zeroth moment, denoted as �0.�/, which has the physical
interpretation of the total number of particles per unit volume. Taking r D 1 in (1.3)
we get the first moment,�1.�/, which can be physically interpreted as (proportional to)
the mass of the system per unit volume. We expect the mass to be a conserved quantity,
i.e., �1.t/ D �1.0/, for kernels with slowly increasing rate of coagulation. Though
the physical relevance of the second moment has not been much discussed in the
literature, it can be interpreted as the energy dissipated in the process [9]. In some
cases, it is convenient to consider moments (1.3) with weight sequences other than i r .
In those cases, like in Section 4, where a more general sequence g D .gi / is needed,
we denote, when required, the corresponding moment by �g .

In [11], Dubovski derived this model and calculated the propagation of the coag-
ulation front. The author discovered the connection between the violation of mass
conservation law and the value of coagulation front escaping to infinity. Bagland [2]
established that the solution for the S-D model, when

lim
j!1

Vi;j

j
D 0; i; j > 1;  0 2 L1;

exists for t 2 Œ0;1/. Davidson [8], in 2014, presented a global existence theorem,
mass conservation result, and uniqueness theorem for three types of kernels, namely

jVi;j 6 M; for j 6 i I

Vi;j 6 CV hihj ; with
hi

i
! 0 as i !1I

and

Vi;j 6 CV ; 8i; j; for some CV > 0:

Mass is proven to be conserved for Vi;j 6 CV i
1=2j 1=2 and the solution is shown to

be unique in the third case, i.e., the bounded kernel is considered. In general, for
large classes of kernels such as the product kernel, mass is not a conserved quantity,
see [10] for the continuous OHS equation. This phenomenon is a consequence of a
part of the mass of the cluster distribution . i / being transported into larger and larger
values of i , and a part of it being lost, in finite time, to the limit i !1, physically
interpreted as an infinite size cluster, or gel, in a process called gelation. One can find
results on gelation for coagulation-type models in, for instance, [4, Chapter 9] and [7].

In this paper, we study the existence of mass conserving solutions to the initial
value problem (1.1)–(1.2) with rate kernels satisfying Vi;j 6 c � .i C j /, 8i; j 2 N,
for some positive constant c, and initial condition with finite mass. Actually, by divid-
ing the equations by c and redefining Vi;j and the time scale t , we can consider c D 1.
This will be done hereinafter in order to turn the expressions a little bit simpler. To



S. Kaushik, R. Kumar, and F. P. da Costa 346

establish the regularity of the solutions we need to consider a balance between the
class of kernels satisfying the growth condition Vi;j 6 i˛ C j ˛ , for ˛ 2 Œ0; 1� and
all i; j 2 N, and the initial condition with some finite higher moment. The unique-
ness result is also established for restrictive classes of kernels, namely those that in
addition to satisfying Vi;j 6 i C j , also satisfy Vi;j 6 CV min¹i�; j �º, 0 6 � 6 2,
8i; j 2 N, for some CV > 0. The boundedness of a higher moment in finite time
plays a significant role in proving uniqueness. Let us now define some basic notation
and notions that are needed throughout.

The set of finite mass sequences is defined by

X D ¹z D .zk/ W kzk <1º; (1.4)

with

kzk WD

1X
kD1

kjzkj: (1.5)

It is clear that .X; k � k/ is a Banach space. In our analysis, we will mainly consider
its non-negative cone

XC D ¹ D . i / 2 X W  i > 0º: (1.6)

Definition 1.1. The solution  D . i / of the initial value problem (1.1)–(1.2) on
Œ0;T /, where 0<T 61, is a function W Œ0;T /!XC with the following properties:

(a)  i is continuous, for every i .

(b)
R t
0

P1
jD1 Vi;j j .s/ds <1 for every i and all 0 6 t < T .

(c) For all i and t 2 Œ0; T / the mild (integrated) version of (1.1)–(1.2) holds,

 i .t/ D  0i C

Z t

0

�
 i�1

i�1X
jD1

jVi�1;j j �  i

iX
jD1

jVi;j j

�  i

1X
jDi

Vi;j j

�
.s/ds; (1.7)

where the first sum on the right-hand side is defined to be zero if i D 1.

The article is organized in six sections. The second section discusses the prelim-
inary results required to establish the main results of the work. Section 3 deals with
the existence of solutions and its corollary. Further, in Section 4, density conservation
is shown for all the solutions of the given equation and the regularity result is proved
in Section 5. Finally, the statement and proof of the uniqueness theorem are part of
Section 6.
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2. A finite-dimensional truncation

Our general approach in this paper consists in considering a finite n-dimensional trun-
cation of (1.1) and, after obtaining appropriate a priori estimates for its solutions,
passing to the limit n!1 and getting corresponding results for (1.1).

In this section, we introduce a truncated system of the S-D model and study some
useful results about the moments of its solutions. The finite n-dimensional truncated
system for the equation (1.1) that we shall consider corresponds to assuming that no
particles with size larger than n can exist initially or be formed by the dynamics. Thus,
for the phase variable  D . 1;  2; : : : ;  n/ the system is

d i

dt
D ‰ni . /; for 1 6 i 6 n; (2.1)

where

‰n1 . / WD �V1;1 
2
1 �  1

n�1X
jD1

V1;j j (2.2)

‰ni . / WD  i�1

i�1X
jD1

jVi�1;j j �  i

iX
jD1

jVi;j j �  i

n�1X
jDi

Vi;j j ;

for 2 6 i 6 n � 1;

(2.3)

‰nn. / WD  n�1

n�1X
jD1

jVn�1;j j : (2.4)

From what was stated above the initial conditions of interest are

 i .0/ D  
0
i > 0; for 1 6 i 6 n: (2.5)

It can be observed here that we have truncated the last sum up to n � 1, not n. This
was done to make sure that the truncation conserves mass, which will be beneficial in
proving the existence result. The fact that solutions to (2.1)–(2.5) exist and are unique
is an obvious consequence of the Picard–Lindelöf theorem, because the right-hand
side of (2.1) is a polynomial vector field. That the solutions with non-negative ini-
tial data are also non-negative for later times is a result that can also be established
by the standard technique of adding a positive " to the right-hand side of all equa-
tions in (2.1), proving that the positive cone RnC is invariant for the resulting system,
and using the uniform convergence in compact time intervals of its solutions  " to
solutions  of (2.1) as "! 0 (see, e.g., [12, Theorem III-4-5]).

As was already pointed out in the introduction in the analysis of coagulation-type
systems estimates about the time evolution of moments of solutions are of paramount
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importance. In particular, the establishment of uniform in n estimates of the n-trun-
cated system will provide the necessary control to pass to the limit as n!1 and
to draw conclusions about the solutions to the full, infinite-dimensional, coagulation
system. In a way analogous to the r-th moments defined in (1.3), we consider the
quantities

�ng.t/ WD

nX
iD1

gi i .t/: (2.6)

The following result on the evolution of �ng will be relevant for the argument in the
proof of the existence theorem in the next section.

Lemma 2.1. Let  D . i /i2¹1;:::;nº be a solution of (2.1)–(2.5) defined in an open
interval I containing 0. Let g D .gi / be a real sequence. Then

d�ng

dt
D

n�1X
iD1

n�1X
jDi

.igjC1 � igj � gi /Vi;j i j : (2.7)

Proof. By (2.2)–(2.4) we can write

d�ng

dt
D

nX
iD1

gi‰
n
i . /

D

�
�g1V1;1 

2
1 � g1 1

n�1X
jD1

V1;j j

�
C

n�1X
iD2

gi

�
 i�1

i�1X
jD1

jVi�1;j j �  i

iX
jD1

jVi;j j �  i

n�1X
jDi

Vi;j j

�
C gn n�1

n�1X
jD1

jVn�1;j j :

Rewriting the right-hand side by collecting together the first and fourth terms, the
second and fifth terms, and the third and sixth we obtain

d�ng

dt
D

n�1X
iD1

iX
jD1

.giC1 � gi /jVi;j i j �

n�1X
iD1

n�1X
jDi

giVi;j i j ;

and now altering the order of variables in the first equation and using the symmetry
of the rate coefficients, Vj;i D Vi;j , we finally conclude (2.7).

For g D .ip/ it is clear from (2.7) that, for all t 2 I ,

d�n0.t/

dt
6 0 (2.8)



Theoretical analysis of a discrete population balance model with sum kernel 349

and thus �n0.t/ 6 �n0.0/, for all t 2 I \ ¹t > 0º. This a priori bound implies that non-
negative solutions of the truncated systems (2.1)–(2.4) are globally defined forward
in time, i.e., I � Œ0;C1/. We also immediately conclude that, for all t > 0,

d�n1.t/

dt
D 0; (2.9)

which means that solutions to the truncated system conserve mass. For further refer-
ence, this is stated in the next lemma.

Lemma 2.2. Solutions to Cauchy problems for the truncated systems (2.1)–(2.4) are
globally defined forward in time and conserve mass, i.e., satisfy

�n1.t/ D �
n
1.0/; 8t > 0: (2.10)

For the existence proof let us consider �nm.t/ defined as in [3] by

�nm.t/ WD

nX
iDm

i ni .t/; (2.11)

where  n D . n1 ; : : : ;  
n
n / is a solution of the n-dimensional truncated system (2.1)–

(2.4). From these expressions we immediately obtain

d�nm.t/

dt
D

� n�1X
iDm

iX
jD1

jVi;j 
n
i  

n
j Cm 

n
m�1

m�1X
jD1

jVm�1;j 
n
j

�

n�1X
iDm

n�1X
jDi

iVi;j 
n
i  

n
j

�
.t/: (2.12)

Assume now 2m < n and consider the function �nm.�/ defined by

�nm.t/ WD

2mX
iDm

i ni C 2m

nX
iD2mC1

 ni ; (2.13)

where, again, nD . n1 ; : : : ; 
n
n / is a solution of the n-dimensional truncated system.

Then, after a few algebraic manipulations, we get

d�nm.t/

dt
D

2mX
iDm

i ni C 2m

nX
iD2mC1

 ni

D m nm�1.t/

m�1X
jD1

jVm�1;j 
n
j .t/C

2m�1X
iDm

 ni .t/

iX
jD1

jVi;j 
n
j .t/

�

2mX
iDm

n�1X
jDi

i ni .t/Vi;j 
n
j .t/ � 2m

n�1X
iD2mC1

n�1X
jDi

Vi;j 
n
i .t/ 

n
j .t/: (2.14)
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Finally, so that we can take n!1 (or, eventually, only on a subsequence nk !1),
we make use of the following lemma.

Lemma 2.3. Take  0 D . 0i / 2XC and, for each n 2N, consider  n0 2X
C defined

by  n0 D . 01;  02; : : : ;  0n; 0; 0; : : :/ and let it be identified with the point of Rn

obtained by discarding the j -th components, for j > n. Let  n be the solution of the
n-dimensional truncated system (2.1)–(2.4) when Vi;j 6 i C j with initial condition
 n.0/ D  n0 such that (2.10) holds, then  n is relatively compact in C.Œ0; T �/.

Proof. Using the truncated system (2.2)–(2.4) and the mass conservation of this sys-
tem, (2.10), it can be shown that there exists a constant zC > 0 such that, for all
n > i > 1,

sup
t>0

�
 ni .t/C

ˇ̌̌d ni .t/
dt

ˇ̌̌�
6 zC�1.0/2:

Thus, the Ascoli–Arzelà theorem gives the intended result.

Now, we have gathered all the required information to proceed with the existence
results.

3. Existence result for the Cauchy problem

We can now prove the first main result of the paper: the existence of solutions to the
Cauchy problem (1.1)–(1.2).

Theorem 3.1. Let, Vi;j be non-negative, symmetric, and satisfy Vi;j 6 i C j , for all
i;j , and let 0D . 0i /2XC. Then there exists a non-negative solution of (1.1)–(1.2)
defined in Œ0;1/.

Proof. Let n be an arbitrarily fixed positive integer and let  n0 be defined as in the
statement of Lemma 2.3. As we stated above, following (2.5), the initial value problem
(2.1)–(2.5) has a unique solution,  n D . ni /16i6n, which is globally defined, non-
negative and, by Lemma 2.2, density conserving. By defining  ni .t/ D 0 when i > n
we can consider  n.t/ as an element of XC, for all t , and thus

k n.t/k D

1X
iD1

i ni .t/ D

nX
iD1

i ni .t/ D

nX
iD1

i n0i D

nX
iD1

i 0i 6
1X
iD1

i 0i D k 0k:

(3.1)
By Lemma 2.3 and (2.10) for each i , there exists a subsequence of  n (not relabeled)
and a function  i W Œ0;1/! R of bounded variation on each subset of Œ0;1/, such
that  ni .t/ converges to  i .t/ as n approaches 1, for every t 2 RC. Thus for all
t > 0,

 i .t/ > 0 and k .t/k 6 k 0k: (3.2)
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Our goal is to prove that this limit function  is a mild solution of the initial value
problem (1.1)–(1.2), i.e., fulfills the conditions in Definition 1.1. This will be done
by passing to the limit n ! 1 in the integrated version of the truncated problem
(2.1)–(2.5), namely

 ni .t/ D  0i C

Z t

0

�
 ni�1.s/

i�1X
jD1

jVi�1;j 
n
j .s/

�  ni .s/

iX
jD1

jVi;j 
n
j .s/ �  

n
i .s/

n�1X
jDi

Vi;j 
n
j .s/

�
ds: (3.3)

To do this, and also to satisfy condition (b) in Definition 1.1, we need to prove that,
for every fixed i 2 N, T > 0, and " > 0, there exists m and N0, with N0 > m > i ,
such that, for all n > N0, Z T

0

�nm.t/dt 6 "; (3.4)

where �nm was defined in (2.11). This can be achieved by integrating (2.12) in Œ0; t �
and using (2.14) to yield

�nm.t/ D �
n
m.0/C

Z t

0

�n�1X
iDm

iX
jD1

jVi;j 
n
i .s/ 

n
j .s/Cm 

n
m�1

m�1X
jD1

jVm�1;j 
n
j

�

n�1X
iDm

n�1X
jDi

iVi;j 
n
i .s/ 

n
j .s/

�
ds

D �nm.0/C �
n
m.t/ � �

n
m.0/

C

Z t

0

�
 n2m.s/

2mX
jD1

jV2m;j 
n
j .s/C

n�1X
iD2mC1

iX
jD1

jVi;j 
n
i .s/ 

n
j .s/

�

n�1X
iD2mC1

n�1X
jDi

iVi;j 
n
i .s/ 

n
j .s/

C 2m

n�1X
2mC1

n�1X
jDi

Vi;j 
n
i .s/ 

n
j .s/

�
ds:

Some algebraic manipulations of the second double sum above provide

n�1X
iD2mC1

iX
jD1

jVi;j 
n
i .s/ 

n
j .s/ D

n�1X
iD2mC1

2mX
jD1

jVi;j 
n
i .s/ 

n
j .s/

C

n�1X
iD2mC1

n�1X
jDi

iVj;i 
n
j .s/ 

n
i .s/:
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Substituting this into the above expression for �nm.t/ gives

�nm.t/ D �
n
m.0/C �

n
m.t/ � �

n
m.0/C

Z t

0

� n�1X
iD2m

2mX
jD1

jVi;j 
n
i .s/ 

n
j .s/

C 2m

n�1X
iD2mC1

n�1X
jDi

Vi;j 
n
i .s/ 

n
j .s/

�
ds:

(3.5)

By (3.1), (3.2), and the pointwise convergence of  ni to  i we conclude that

8t 2 Œ0; T �;8" > 0;8p > 4k 0k
"
; 9N0 W 8n; n > N0 H)

1X
iD1

j ni .t/ �  i .t/j D

p�1X
iD1

j ni .t/ �  i .t/j C

1X
iDp

j ni .t/ �  i .t/j

<
"

2
C
2

p
k 0k < ";

which enables us to take n!1 in the definition of �nm.t/ in (2.13) and yields

�nm.t/ ����!n!1

2mX
iDm

i i .t/C 2m

1X
iD2mC1

 i .t/ DW �m.t/ 6
1X
iDm

i i .t/; (3.6)

and so limm!1 �m.t/ D 0 and j�m.t/j 6 k 0k, for all t 2 Œ0; T �. Therefore, for
every " > 0, there exist M , N0 with N0 > M , such that, for all m > M , n > N0

and n > 2mC 1, we have
�nm.t/ 6 1

3
"; (3.7)

and
�nm.0/ 6 1

3
": (3.8)

By (3.7) and (3.8) and using the assumption Vi;j 6 i C j , we can estimate the
right-hand side of (3.5) as follows (redefining)

�nm.t/ 6 "C

Z t

0

� n�1X
iD2m

2mX
jD1

j.i C j / ni .s/ 
n
j .s/

C 2m

n�1X
iD2mC1

n�1X
jDi

.i C j / ni .s/ 
n
j .s/

�
ds

6 "C

Z t

0

�
2

n�1X
iD2m

2mX
jD1

ij ni .s/ 
n
j .s/C 4m

n�1X
iD2mC1

n�1X
jDi

i ni .s/ 
n
j .s/

�
ds
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6 "C

Z t

0

�
2

nX
iDm

i ni .s/

nX
jD1

j nj .s/C 4

nX
iDm

i ni .s/

nX
jDi

j nj .s/
�
ds

6 "C 6k 0k

Z t

0

�nm.s/ds:

Hence, thanks to Gronwall’s lemma, we get, for all t 2 Œ0; T �,

�nm.t/ 6 k1" (3.9)

where k1 D e6k 0kT , which implies that for all " > 0, there existM;N0 withN0 >M ,
such that, for all m > M , n > N0 and n > 2mC 1,Z t

0

�nm.s/ds 6 "k1T; for all t 2 Œ0; T �: (3.10)

Since,  ni .t/ is pointwise convergent to  i .t/, the above expression entails that, for
all " > 0, there exists M such that, for all m > M , we haveZ T

0

1X
iDm

i i .t/dt 6 ":

Hence, when Vi;j 6 i C j , for all i > 1,Z T

0

1X
jD1

Vi;j j .t/dt <1; (3.11)

thus establishing (b) in Definition 1.1.
Now, for every fixed i , take n > i sufficiently large and, for any ` such that i <

` < n � 1, write (3.3) asˇ̌̌̌
 ni .t/ �  i .0/ �

Z t

0

�
 ni�1.s/

i�1X
jD1

jVi�1;j 
n
j .s/

�  ni .s/

iX
jD1

jVi;j 
n
j .s/ �  

n
i .s/

X̀
jDi

Vi;j 
n
j .s/

�
ds

ˇ̌̌̌

D  ni .s/

Z t

0

n�1X
jD`C1

Vi;j 
n
j .s/ds

6 2k 0k

Z t

0

�n`C1.s/ds:

Thus, from (3.10), for all " > 0, there exists M such that, for all ` C 1 > M and
all n sufficiently large, the right-hand side can be bounded above by 2"k 0kk1T .
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Considering that each sum on the left-hand side has a fixed and finite number of
terms, that  nj .s/!  j .s/ pointwise as n!1, and each of the three terms inside
the integral is bounded by 2k 0k2, we can use the dominated convergence theorem
and take n!1 to conclude that, for every " > 0, there exists M such that, for all
` > M , we haveˇ̌̌̌

 i .t/ �  i .0/ �

Z t

0

�
 i�1.s/

i�1X
jD1

jVi�1;j j .s/

�  i .s/

iX
jD1

jVi;j j .s/ �  i .s/
X̀
jDi

Vi;j j .s/
�
ds

ˇ̌̌̌
6 2"k 0kk1T:

Hence, by the arbitrariness of ", we can let `!1 and conclude that  D . i / satisfy
(1.7), which completes the proof.

Next we establish that the subsequence  nk of solutions of the truncated system
which converges to the solution  of (1.1)–(1.2) actually does so in the strong topol-
ogy of X , uniformly for t in compact subsets of Œ0;1/.

Corollary 3.2. Let  nk be the pointwise convergent subsequence of solutions to
(2.3)–(2.5). Then,  nk !  in X uniformly on compact subsets of Œ0;1/.

Proof. We prove that  nki .t/!  i .t/ for each i , uniformly on the compact subsets
of Œ0;1/. To simplify notation, denote nk simply by n. Let

�nm.t/ WD e
�t
�
�n1.t/ �

m�1X
iD1

i ni .t/C .2mC 2/�
n
1.0/

2
�
: (3.12)

Now, differentiating (3.12) gives

d�nm.t/

dt
D e�t

�d�n1.t/
dt

�
d

dt

m�1X
iD1

i ni .t/
�

� e�t
�
�n1.t/ �

m�1X
iD1

i ni .t/C .2mC 2/�
n
1.0/

2
�

(3.13)

where

d

dt

m�1X
iD1

i ni .t/ D

m�2X
iD1

iX
jD1

jVi;j 
n
i  

n
j �

m�1X
iD1

n�1X
jDi

iVi;j 
n
i  

n
j

� .m � 1/ nm�1

m�1X
jD1

jVm�1;j 
n
j : (3.14)
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Using the above expression, Lemma 2.2 and Vi;j 6 i C j in (3.13), one can obtain

d�nm.t/

dt
6 e�t

�m�1X
iD1

n�1X
jDi

j.i C j / ni  
n
j

C .m � 1/ nm�1

m�1X
jD1

j.m � 1C j / nj � .2mC 2/�
n
1.0/

2
�
:

Some simplifications guarantee that

d�nm.t/

dt
6 0; n > m; t 2 Œ0; T �:

Hence, �nm.t/! �m.t/, uniformly for t on compact subsets of Œ0; T /, where

�m.t/ WD e
�t
�
�1.t/ �

m�1X
iD1

i i .t/C .2mC 2/�1.0/
2
�
:

Let, K � Œ0;1/ be compact and tn ! t in K, then

lim
n!1

k n.tn/k D lim
n!1

1X
iD1

i ni .tn/ D

1X
iD1

i i .t/ D k .t/k

which ensures that k nk ! k k, in C.K;X/.

4. All solutions conserve density

In this section, we prove that, under the assumption on the rate coefficients we have
been using, all solutions of (1.1)–(1.2) conserve density.

Let  D . i / 2 X
C be a solution of (1.7) in Œ0; T �. Multiplying each equation

in (1.7) by gi and adding from i D 1 to n, we have, after some algebraic manipula-
tions, for all t 2 Œ0; T �,

nX
iD1

gi i .t/ �

nX
iD1

gi 0i D

Z t

0

nX
iD1

nX
jDi

.jgiC1 � jgi � gj /Vi;j i .s/ j .s/ds

�

Z t

0

nX
jD1

1X
iDnC1

gjVi;j i .s/ j .s/ds

�

Z t

0

gnC1 n.s/

nX
jD1

jVn;j j .s/ds: (4.1)
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We start by observing that, taking gi � i in (4.1), we conclude that

nX
iD1

i i .t/ 6
nX
iD1

i 0i 6 k 0k;

and, as this inequality is valid for all n, we can take the limit as n!1 and conclude
the a priori bound k .t/k 6 k 0k.

We now use (4.1) to prove that, under the assumed conditions on Vi;j , all solutions
conserve density.

Theorem 4.1. Let Vi;j 6 i C j for all i and j . Let  D . i / 2 XC be a solution of
the Safronov–Dubovski equation (1.7). Then the total density of  is constant.

Proof. Let A 2 N be fixed, and consider the sequence .gAi /i 2 `
1 defined by

gAi D min¹i; Aº: (4.2)

Then

jgAiC1 � jg
A
i � g

A
j D

´
�A; on ¹.i; j / W A 6 i 6 j 6 nº;

0; on ¹.i; j / W 1 6 i 6 A � 1 and i 6 j 6 nº;

and (4.1) becomes, for n > A,

nX
iD1

gAi  i .t/ �

nX
iD1

gAi  0i (4.3)

D �

Z t

0

A

nX
jDA

jX
iDA

Vi;j i .s/ j .s/ds (4.4)

�

Z t

0

� AX
jD1

1X
iDnC1

jVi;j i .s/ j .s/C A

nX
jDAC1

1X
iDnC1

Vi;j i .s/ j .s/
�
ds

(4.5)

�

Z t

0

A n.s/

nX
jD1

jVn;j j .s/ds: (4.6)

We first estimate the term in (4.4)

A

nX
jDA

jX
iDA

Vi;j i j 6 A

nX
jDA

 j

jX
iDA

i i C A

nX
jDA

j j

jX
iDA

 i

D A

nX
jDA

1

j
j j

jX
iDA

i i C A

nX
jDA

j j

jX
iDA

1

i
i i
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6 2

nX
jDA

j j

nX
iDA

i i

6 2

1X
jDA

j j

1X
iDA

i i : (4.7)

Thus,  2 XC implies that (4.7) converges to zero as A!1. Furthermore, since
(4.7) is bounded above by 2k 0k2, the dominated convergence theorem implies that,
for all " > 0 there exists A0 such that, for all n > A > A0 the absolute value of (4.4)
is smaller than "

5
.

Consider now (4.5). For the first double sum, observe that for n > A,

AX
jD1

1X
iDnC1

jVi;j i j 6
AX
jD1

j j

1X
iDnC1

i i C

AX
jD1

j 2 j

1X
iDnC1

 i

6 k 0k
1X

iDnC1

i i C

AX
jD1

j 2 j
1

nC 1

1X
iDnC1

i i

6 k 0k
1X

iDnC1

i i C
A

AC 1

AX
jD1

j j

1X
iDnC1

i i

6 k 0k
1X

iDnC1

i i C k 0k

1X
iDnC1

i i

6 2k 0k

1X
iDnC1

i i : (4.8)

For the second double sum in (4.5) we have a similar estimate,

A

nX
jDAC1

1X
iDnC1

Vi;j i j 6 A

nX
jDAC1

 j

1X
iDnC1

i i C A

nX
jDAC1

j j

1X
iDnC1

 i

6
A

AC 1

nX
jDAC1

j j

1X
iDnC1

i i

C A

nX
jDAC1

j j
1

nC 1

1X
iDnC1

i i

6 k 0k
1X

iDnC1

i i C
A

nC 1
k 0k

1X
iDnC1

i i

6 2k 0k

1X
iDnC1

i i : (4.9)
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Thus, by (4.8) and (4.9) we conclude that the integrand function in (4.5) is bounded
by 4k 0k2 and converges pointwise to zero as n!1, for each fixedA. Hence, again
by the dominated convergence theorem we conclude that, as previously, for all " > 0,
there exists A0 such that, for all n > A0, the absolute value of the integral (4.5) is
smaller than "

5
.

Finally, let us consider (4.6)

A n

nX
jD1

jVn;j j 6 A n

nX
jD1

j.nC j / j

6 2An n

nX
jD1

j j

6 2k 0kAn n: (4.10)

Clearly, for each fixed A, (4.10) converges to zero as n!1 and it is bounded above
by Ak 0k2, and so the dominated convergence theorem implies that, for every " > 0,
there exists A0 D A0."/ such that, for any fixed A > A0, there exists n0 D n0."; A/
such that, for all n > n0 _ A, the absolute value of (4.6) is smaller than "

5
.

To estimate (4.3) observe that, for every n > A, we can writeˇ̌̌̌ nX
iD1

gAi  i .t/ �

nX
iD1

gAi  0i

ˇ̌̌̌
>
ˇ̌̌̌ AX
iD1

i i .t/ �

AX
iD1

i 0i

ˇ̌̌̌
� A

ˇ̌̌̌ nX
iDAC1

 i .t/ �

nX
iDAC1

 0i

ˇ̌̌̌
;

and thus, ˇ̌̌̌ AX
iD1

i i .t/ �

AX
iD1

i 0i

ˇ̌̌̌
6

1X
iDAC1

i i .t/C

1X
iDAC1

i 0i

C

ˇ̌̌̌ nX
iD1

gAi  i .t/ �

nX
iD1

gAi  0i

ˇ̌̌̌
: (4.11)

Now, for every " > 0 there exists A0 such that, for all A > A0, each of the first
two sums on the right-hand side of (4.11) can be made smaller than "

5
, and since

the estimates of (4.4)–(4.6) obtained previously allow us to have the last term on the
right-hand side of (4.11) smaller than 3

5
", we conclude that

8" > 0; 9A0 W 8A;A > A0 H)

ˇ̌̌̌ AX
iD1

i i .t/ �

AX
iD1

i 0i

ˇ̌̌̌
< ";

which proves the result.



Theoretical analysis of a discrete population balance model with sum kernel 359

5. Differentiability

This section is devoted to proving that the solution of the S-D model is first-order
differentiable if the rate coefficients satisfy Vi;j 6 i˛ C j ˛ for ˛ 2 Œ0; 1�. This requires
the boundedness of .˛C 1/-moments of the solutions and an invariance result, which
are proved below in Lemma 5.1 and Theorem 5.2, respectively.

Lemma 5.1. Let the non-negative kernel Vi;j satisfy Vi;j 6 i˛ C j ˛ , for all i; j > 1,
and for some fixed 0 6 ˛ 6 1. For any T 2 .0;1/, let  be a solution to (1.1)–(1.2)
in Œ0; T � with initial condition  0 2 XC. If the .˛ C 1/-moment of  0, �1C˛. 0/, is
bounded, then the .˛ C 1/-moment of  .t/ is also bounded for all t 2 Œ0; T �.

Proof. Let  D . i / be a solution of (1.1)–(1.2) in Œ0; T � with initial condition  0.
Multiplying each equation (1.7) by i1C˛ and adding from i D 1 to n, we have, for all
t 2 Œ0; T �,

nX
iD1

i1C˛ i .t/C

Z t

0

nX
iD1

1X
jDi

i iC˛Vi;j i .s/ j .s/ds

C

Z t

0

.nC 1/1C˛ n.s/

nX
jD1

jVn;j j .s/ds

D

nX
iD1

i1C˛ 0i C

Z t

0

nX
iD1

iX
jD1

�
j.i C 1/1C˛ � j i1C˛

�
Vi;j i .s/ j .s/ds;

(5.1)

and, due to non-negativity of solutions, this implies that

nX
iD1

i1C˛ i .t/ 6
nX
iD1

i1C˛ 0i

C

Z t

0

nX
iD1

iX
jD1

�
j.i C 1/1C˛ � j i1C˛

�
Vi;j i .s/ j .s/ds: (5.2)

Since ˛ 2 Œ0; 1� and i > 1 we have

.i C 1/1C˛ � i1C˛ 6 .1C ˛/i˛ C
.1C ˛/˛

2Š
;

and so

j
�
.i C 1/1C˛ � i1C˛

�
Vi;j 6 .1C ˛/j i2˛ C .1C ˛/j 1C˛i˛ C

.1C ˛/˛

2Š
j i˛

C
.1C ˛/˛

2Š
j 1C˛;



S. Kaushik, R. Kumar, and F. P. da Costa 360

from where, using
Pn
iD1 i i .s/ 6 k 0k, we obtain

nX
iD1

iX
jD1

�
j.i C 1/1C˛ � j i1C˛

�
Vi;j i .s/ j .s/

6
1

2
.1C ˛/˛k 0k

2
C
1

2
.1C ˛/.4C ˛/k 0k

nX
iD1

i1C˛ i .s/

6 k 0k2 C 5k 0k
nX
iD1

i1C˛ i .s/

which, upon substitution in (5.2), gives

nX
iD1

i1C˛ i .t/ 6
nX
iD1

i1C˛ 0i C k 0k
2T C

Z t

0

5k 0k

nX
iD1

i1C˛ i .s/ds:

Hence, by Gronwall’s lemma, we conclude that for all t 2 Œ0; T � and n > 1,

nX
iD1

i1C˛ i .t/ 6
� nX
iD1

i1C˛ 0i C T k 0k
2
�
e5k 0kt

6
�
�1C˛. 0/C T k 0k

2
�
e5k 0kt ; (5.3)

where the inequality (5.3) is due to the assumption about the boundedness of the
.1C ˛/-moment of the initial condition  0. Since the right-hand side (5.3) does not
depend on n we conclude that the same is valid in the limit n!1, which proves the
result.

An important result regarding the evaluation of the higher moments of the solution
is analyzed next.

Theorem 5.2. Assume .gi / be a real-valued non-negative sequence such that gi D
O.i˛C1/. Let  be a solution of (1.1) when Vi;j 6 i˛ C j ˛ , ˛ 2 Œ0; 1� under the
assumption that �˛C1. 0/ is bounded on some interval Œ0; T /, for 0 < T 61. Let
0 6 t1 < t2 < T . If the following hypotheses holdZ t2

t1

1X
iD1

iX
jD1

j.giC1 � gi /Vi;j j .s/ i .s/ds <1; (H1)

Z t2

t1

1X
iD1

iX
jD1

gjVi;j i .s/ j .s/ds <1 (H2)
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then, for every m 2 N,

1X
iDm

gi i .t2/ �

1X
iDm

gi i .t1/ D

Z t2

t1

1X
iDm

iX
jD1

.jgiC1 � jgi � gj /Vi;j i .s/ j .s/ds

C ım>2

Z t2

t1

1X
iDm

m�1X
jD1

gjVi;j i .s/ j .s/ds

C ım>2

Z t2

t1

gm m�1.s/

m�1X
jD1

jVm�1;j j .s/ds

(5.4)

where ıP D 1 if P holds, and is equal to zero otherwise.

Proof. Take positive integers m < n. Multiplying each equation in (1.7) by gi and
summing over i from m to n, we obtain

nX
iDm

gi i .t2/ �

nX
iDm

gi i .t1/

D

Z t2

t1

nX
iDm

iX
jD1

.jgiC1 � jgi � gj /Vi;j i .s/ j .s/ds (5.5)

C ım>2

Z t2

t1

nX
iDm

m�1X
jD1

gjVi;j i .s/ j .s/ds (5.6)

C ım>2

Z t2

t1

gm m�1.s/

m�1X
jD1

jVm�1;j j .s/ds (5.7)

�

Z t2

t1

nX
iDm

1X
jDnC1

giVi;j i .s/ j .s/ds (5.8)

�

Z t2

t1

gnC1 n.s/

nX
jD1

jVn;j j .s/ds: (5.9)

We need to prove that, as n!1, the integrals in (5.8) and (5.9) converge to zero, and
the other integrals converge to the corresponding ones on the right-hand side of (5.4).

Using (H2) by interchanging the order of summation and replacing i for j and
then following (a) in Definition 1.1, one can obtain

lim
n!1

Z t2

t1

nX
iDm

1X
jDnC1

giVi;j i .s/ j .s/ds D 0 (5.10)
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which proves the convergence of (5.8) to zero. Putting gi � 1 in (5.5)–(5.9) and
using (H2), the terms (5.8) and (5.9) tend to zero as n!1. Therefore,

1X
iDm

 i .t2/ �

1X
iDm

 i .t1/ D

Z t2

t1

1X
iDm

iX
jD1

.�Vi;j / i .s/ j .s/ds

C ım>2

Z t2

t1

1X
iDm

m�1X
jD1

Vi;j i .s/ j .s/ds

C ım>2

Z t2

t1

 m�1.s/

m�1X
jD1

jVm�1;j j .s/ds: (5.11)

For p D 1; 2, consider,

jgnC1j

1X
iDnC1

 i .tp/ 6 C.nC 1/˛C1
1X

iDnC1

 i .tp/ 6 C

1X
iDnC1

i˛C1 i .tp/

for some C 2 RC, and thus Lemma 5.1 guarantees that

lim
n!1

jgnC1j

1X
iDnC1

 i .tp/ D 0: (5.12)

Replacing m by nC 1 in (5.11), multiplying both sides by gnC1, letting n!1, and
using (H2) together with (5.12) confirms thatZ t2

t1

gnC1 n.s/

nX
jD1

jVn;j j .s/ds ! 0: (5.13)

By Definition 1.1, the boundedness of  i .t/, (H1) and (H2), we conclude that,
as n!1, Z t2

t1

nX
iDm

iX
jD1

.jgiC1 � jgi � gj /Vi;j i .s/ j .s/ds

!

Z t2

t1

1X
iDm

iX
jD1

.jgiC1 � jgi � gj /Vi;j i .s/ j .s/ds (5.14)

andZ t2

t1

nX
iDm

m�1X
jD1

gjVi;j i .s/ j .s/ds !

Z t2

t1

1X
iDm

m�1X
jD1

gjVi;j i .s/ j .s/ds: (5.15)

Thus, using Definition 1.1 together with equations (5.10), (5.13)–(5.15) and the
bounded convergence theorem, the result follows.
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Finally, the following proposition is discussed which is essential in showing that
the solution of the S-D model is first-order differentiable.

Proposition 5.3. Let ¹Vi;j ºi;j2N be non-negative and Vi;j 6 i˛ C j ˛ , 0 6 ˛ 6 1.
Let  D . i / be a solution on some interval Œ0; T /, where 0 < T 61, of the equa-
tion (1.1) with initial condition f0 and having bounded �˛C1. 0/. Then, the seriesPi
jD1 jVi;j j .t/ i .t/ and

P1
jDi Vi;j j .t/ i .t/ are absolutely continuous on the

compact sub-intervals of Œ0; T /.

Proof. Let .gi / satisfy the conditions in the statement of Theorem 5.2. For (H1) to
hold, proving the boundedness of the series

P1
iD1

Pi
jD1 j.giC1 � gi /Vi;j i .t/ j .t/

is enough. Using the fact that giC1 � gi D O.i˛/, we have the following:
1X
iD1

iX
jD1

j.giC1 � gi /Vi;j i j 6
1X
iD1

iX
jD1

Cji˛Vi;j i j

6
1X
iD1

iX
jD1

Cji˛.i˛ C j ˛/ i j

6
1X
iD1

iX
jD1

C.j i˛C1 C i˛j ˛C1/ i j

for C being some positive constant. Hence, by Lemma 5.1 and Section 4, one can
obtain

1X
iD1

iX
jD1

j.giC1 � gi /Vi;j i j 6 2CN˛C1�1.0/: (5.16)

Thus, (H1) holds true. Further, to establish relation (H2), consider the expression
1X
iD1

iX
jD1

gjVi;j i .s/ j .s/ 6
1X
iD1

iX
jD1

C Œj 2˛C1 C i˛j ˛C1� i j

6 2CN˛C1�1.0/

which is finite by Lemma 5.1. Therefore, all the hypotheses of Theorem 5.2 are
satisfied for any t1; t2 2 Œ0; T /. Hence, considering m D 1 for t 2 Œ0; T /, equation
(5.4) implies the uniform convergence of the series

P1
iD1 gi i .t/. Since the seriesPi

jD1 jVi;j j .t/ is bounded by this series, as jVi;j D O.i˛C1/ when j < i , we
conclude the uniform convergence of

Pi
jD1 jVi;j j .t/. Further, the boundedness

of  i .t/ ensures the absolute continuity of
Pi
jD1 jVi;j j .t/ i .t/. Also, the seriesP1

jDi Vi;j j .t/ is bounded by
P1
jD1 gj j .t/, which yields its uniform convergence.

Finally, the boundedness of  i .t/ gives the desired result.

Definition 1.1 (a), hypotheses (H1)–(H2) of Theorem 5.2, and Proposition 5.3
ensure that the solution f is differentiable in the classical sense in Œ0; T /.
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6. Uniqueness

In this section, we discuss the uniqueness of solutions for the S-D model for a more
restrictive class of kernels. It should be mentioned here that just with the assumption
Vi;j 6 i C j we were unable to prove a uniqueness result, and so a further assumption
on the kernel was imposed.

Theorem 6.1. Let the kernel Vi;j be non-negative, symmetric, and satisfying the
bounds Vi;j 6 i C j and Vi;j 6 CV min¹i�; j �º, with 0 6 � 6 2, for all i; j 2 N

and some constant CV > 0. If the assumptions of Lemma 5.1 hold, then the initial
value problem (1.1)–(1.2) has a unique solution in XC.

Proof. We shall use an approach that revolves around defining a function (say u.t/)
that is the difference between two solutions of the equation (1.1) (let  i and �i ), both
satisfying the initial condition (1.2). Furthermore, it makes use of the properties of the
signum function such as

(P1) sgn.C.t//dC.t/
dt
D

d jC.t/j
dt

,

(P2) sgn.a/ sgn.b/ D sgn.ab/ and jaj D a � sgn.a/ for any real numbers a; b.

Let ui WD  i � �i . Our goal here is to obtain a differential inequality for the
evolution of

u.t/ WD

1X
iD1

jui .t/j D

1X
iD1

ˇ̌
 i .t/ � �i .t/

ˇ̌
(6.1)

and to use Gronwall’s lemma to conclude that u.t/ stays identically zero if its initial
value is zero, thus proving uniqueness.

Using the expression of the equation (1.1), we obtain

dui .t/

dt
D

�
 i�1.t/

i�1X
jD1

jVi�1;j j .t/ �  i .t/

iX
jD1

jVi;j j .t/ �

1X
jDi

Vi;j i .t/ j .t/
�

�

�
�i�1.t/

i�1X
jD1

jVi�1;j�j .t/ � �i .t/

iX
jD1

jVi;j�j .t/ �

1X
jDi

Vi;j�i .t/�j .t/
�
:

Multiplying both sides by sgn.ui .t//, using (P1), then integrating both sides between
t D 0 and an arbitrary t > 0, using ui .0/ D 0, and then summing over i from 1 to1
yields

u.t/ D

Z t

0

1X
iD1

sgn.ui .s//
�
ıi>2 i�1.s/

i�1X
jD1

jVi�1;j j .s/

�  i .s/

iX
jD1

jVi;j j .s/ �

1X
jDi

Vi;j i .s/ j .s/
�
ds
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�

Z t

0

1X
iD1

sgn.ui .s//
�
ıi>2�i�1.s/

i�1X
jD1

jVi�1;j�j .s/

� �i .s/

iX
jD1

jVi;j�j .s/ �

1X
jDi

Vi;j�i .s/�j .s/
�
ds:

Replacing i � 1 by i 0, then changing notation i 0 to i in the first and fourth sums, and
finally using  i j � �i�j D  iuj C �jui ; we get

u.t/ D

Z t

0

� 1X
iD1

�
sgn.uiC1/

iX
jD1

jVi;j . iuj C �jui /

� sgn.ui /
iX

jD1

jVi;j . iuj C �jui /

� sgn.ui /
1X
jDi

Vi;j . iuj C �jui /
��
.s/ds:

Using (P2), one can obtain the following estimate:

u.t/ 6
Z t

0

� 1X
iD1

iX
jD1

jVi;j .juj j i C jui j�j / �

1X
iD1

iX
jD1

jVi;j
�
sgn.ui /uj i C jui j�j

�
�

1X
iD1

1X
jDi

Vi;j
�
sgn.ui /uj i C jui j�j

��
.s/ds;

and canceling the second terms in the first two double sums on the right-hand side,
discarding the last term in the third double sum, and noting that � sgn.ui /uj 6 juj j,
we get the estimate

u.t/ 6
Z t

0

�
2

1X
iD1

iX
jD1

jVi;j juj j i C

1X
iD1

1X
jDi

Vi;j juj j i

�
.s/ds:

Finally, using the bounds of Vi;j , we can write

u.t/ 6
Z t

0

�
2

1X
iD1

iX
jD1

j.i C j /juj j i C

1X
iD1

1X
jDi

CV i
�
juj j i

�
.s/ds:

Applying Lemma 5.1 with ˛ D 1, leads to

u.t/ 6
Z t

0

.4�2 C CV�2/u.s/ds;
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where �2 is a bound on the second moment of  and �. The application of Gronwall’s
lemma enables us to conclude that u.t/ � 0, which implies that  i .t/ D �i .t/, 80 6
t 6 T . Since T is arbitrary, we conclude the uniqueness of the solution to the initial
value problem (1.1)–(1.2).
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