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Some surfaces with canonical map of degree 4

Federico Fallucca and Roberto Pignatelli

Abstract. In this note, we construct unbounded families of minimal surfaces of general type
whose canonical map has a degree of 4 such that the limits of the slopesK2=� assume countably
many different values in the closed interval Œ6C 2

3
; 8�.

Introduction

In this paper, a surface is a compact complex manifold of dimension 2. An unbounded
family of surfaces is a sequence of surfaces Sn with an arbitrarily large Euler charac-
teristic �.OSn/. More precisely, our unbounded families are sequences of surfaces Sn
such that limn!1 �.OSn/ D C1.

It is well known since the pioneering work of Beauville [5] and a theorem of Xiao
Gang [18] that the degree of the canonical map of a surface S , if we assume a large
enough Euler characteristic, is bounded from above by 8. Recall that the degree of the
canonical map is a birational invariant, so we can without loss of generality assume
that S is minimal.

We address the reader to the beautiful survey of M. Mendes Lopes and R. Pardini
[14] on the subject. We read from there, among other things, examples of unbounded
sequences of minimal surfaces whose canonical map has a degree of ı for every ı 2
¹2; 4; 6; 8º.

Recall that the slope � of a minimal surface S is defined as �.S/ WD K2
S

�.OS /
. By

the Bogomolov–Miyaoka–Yau inequality�.S/� 9. By the above mentioned results it
easily follows that for any unbounded family Sn of minimal surfaces whose canonical
map has a degree of ı, lim inf�.Sn/ � ı. This raises the question of investigating,
for all ı, the set of the accumulation points of the slopes of unbounded families of
minimal surfaces whose canonical map has a degree of ı. Compare [14, Question 5.6].

We only know three constructions of unbounded families of minimal surfaces
whose canonical map has a degree of 4.

The first, mentioned in [14], is obtained by taking the product of two hyperelliptic
curves. All these surfaces have slope 8.
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The second, see [6, Remark 3], is a construction as Galois cover of P1 � P1 with
Galois group .Z=2Z/3; they also have lim�.Sn/ equal to 8.

The last, constructed by F. J. Gallego and G. P. Purnaprajna, give unbounded fam-
ilies with lim �.Sn/ equal either to 8 or to 4, see the last column of [10, Table at
page 5491].

Inspired by certain constructions of K3 surfaces in [11], we show that lim�.Sn/,
when Sn is an unbounded family of minimal surfaces whose canonical map has a
degree of 4, may assume infinitely many different values. More precisely:

Theorem. There are countably many unbounded sequences Sn of surfaces of general
type that have canonical map of degree 4 such that limn!1 �.Sn/ assumes pairwise
distinct values in the range Œ6C 2

3
; 8�.

All these surfaces are product-quotient surfaces. The product-quotient surfaces
have been introduced by the second author, I. Bauer, F. Catanese and F. Grunewald
in [1] (compare also [2,4,7]). Their canonical map was studied, in the special case of
the surfaces isogenous to a product, in [8]. To our knowledge they were used first for
constructing surfaces with canonical map of high degree in [12].

Notation

For each real number z, let dze be the smallest integer greater or equal than z.
For each pair of integers z;n 2N we denote by Œz�n the unique integer, 0� Œz�n �

n � 1, such that z � Œz�n is divisible by n.
We say that a point of a complex analytic variety is a singular point of type p

q
,

with p 2 Z n ¹0º, q 2 N n ¹0º, gcd.p; q/ D 1, if one of its neighbourhoods is analyt-
ically isomorphic to the quotient of a neighbourhood of the origin of C2 by the cyclic
group generated by the automorphism .x; y/ 7! .e

2�i
q x; ep

2�i
q y/. These singularit-

ies are most commonly denoted as cyclic quotient singularities of type 1
q
.1; r/ in the

literature, where r is the remainder of the division of p by q.
We say that a variety has basket of singularities a1 p1q1 C a2

p2
q2
C � � � C ar

pr
qr

if its
singular locus is finite and can be partitioned in r subsets S1; : : : ; Sr of respective
cardinality a1; : : : ; ar such that each point in Sj is a singularity of type pj

qj
.

1. Generalized Wiman Curves

By a classical result of Harvey and Wiman ([13, 17]) an automorphism of a curve of
genus g at least 2 has order at most 4g C 2. Moreover, there is exactly one curve
of genus g with an automorphism of order 4g C 2 for each integer g � 2, usually
referred in literature as the Wiman curve of genus g.
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Definition 1.1 (Generalized Wiman curves). Consider two positive integers n;d � 1.
A generalized Wiman curve of type n; d is a curve in the weighted projective space
P .1; 1; dnd

2
e/ defined by an equation of the form

y2 D x
Œnd�2
0 f .xn0 ; x

n
1 /

where f is a homogenous polynomial of degree d in the two variables x0; x1 without
multiple roots such that neither x0 nor x1 divide f .

Remark 1.2. The assumptions on the polynomial f ensure that any generalized
Wiman curve is smooth.

By adjunction a generalized Wiman curve C of type n;d has genus gD dnd
2
e � 1.

In fact, a basis of H 0.C;KC / is given by the monomials

x
dnd2 e�2

0 ; x
dnd2 e�3

0 x1; : : : ; x0x
dnd2 e�3

1 ; x
dnd2 e�2

1 : (1.1)

A generalized Wiman curve of type n;d has the following two natural commuting
automorphisms:

�W .x0; x1; y/ 7! .x0; x1;�y/; �W .x0; x1; y/ 7!
�
x0; e

2�i
n x1; y

�
of respective order 2 and n. This shows

(1) all generalized Wiman curves are hyperelliptic, � being their hyperelliptic
involution;

(2) a generalized Wiman curve of type 2g C 1; 1 is the Wiman curve of genus g.

Since � is the hyperelliptic involution, � acts on H 0.C;KC / as the multiplication
by �1. The points fixed by � are the 2g C 2 points of the divisor y D 0.

Definition 1.3. We will say that � is the rotation of C .

We conclude this section by studying the action of the rotation.

Proposition 1.4. The action of � on the locus x0x1 ¤ 0 has all orbits of order n. The
divisor x1 D 0 is given by two points, both fixed by �.

If both n and d are odd, then the divisor x0 D 0 is given by one single point, fixed
by �. Else the divisor x0 D 0 is given by two distinct points, fixed by � if d is even and
exchanged by � if d is odd.

The monomials in (1.1) are eigenvalues for the induced action of � onH 0.C;KC /.
More precisely � acts on them as

x
dnd2 e�2�a

0 xa1 7! e.aC1/
2�i
n x
dnd2 e�2�a

0 xa1 : (1.2)
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Proof. The rotation lifts the automorphism of P1 D C=� acting as

.x0; x1/ 7!
�
x0; e

2�i
n x1

�
;

which fixes only the two points x0x1 D 0, so the analogous statement holds for �.
By the definition of f the point .x0; x1/ D .0; 1/ is a branching point of the

hyperelliptic 2 W 1 map C ! P1 if and only if both n and d are odd, in which case
the divisor x0 D 0 in C is a single (double) point, that is therefore fixed by �. Else,
if nd is even, x0 D 0 is formed by two distinct points with homogenous coordin-
ates .x0; x1; y/ D .0; 1;˙xu0/ for some xu0 ¤ 0. These two points are either fixed or
exchanged by �. By the properties of the weighted projective space they are fixed by
� if and only if .e�

2�i
n /

nd
2 D 1. We conclude the analysis of the divisor x0 D 0 by

observing that the last equation is verified if and only if d is even.
Since the point .x0; x1/D .1; 0/ is not a branching point of the hyperelliptic map,

the divisor x1 D 0 is made by two distinct points with coordinates .x0; x1; y/ D
.1; 0;˙xu1/ for some xu1 ¤ 0, both obviously fixed by �.

The function z WD x1=x0 is a local coordinate in both of them, on which � acts as
z 7! e

2�i
n z. The adjunction formula maps a monomial

x
dnd2 e�2�a

0 xa1

to the form that locally restricts to zadz and therefore � acts on it as the multiplication
by e.aC1/

2�i
n .

2. Wiman product-quotient surfaces

Definition 2.1. For all integers n;d1; d2 and for all 1 � k � n� 1 with gcd.k; n/D 1
we define a Wiman product-quotient surface of type n; d1; d2 with shift k to be the
minimal resolution S of the singularities of its quotient model X WD .C1 � C2/=H

where

• Cj , j D 1; 2 is a generalized Wiman curve of type n; dj ;

• H � Aut.C1 �C2/ is the cyclic subgroup of order n generated by the automorph-
ism

.x; y/ 7! .�1x; �
k
2y/;

where �j is the rotation of Cj .

Denote the hyperelliptic involution of Cj by �j . Then Aut.C1 � C2/ contains a
subgroup of order 4 generated by .�1; 1/ and .1; �2/. The corresponding quotient of
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C1 � C2 is isomorphic to P1 � P1. Since this group commutes with H and it inter-
sects H trivially, it defines a subgroup K Š .Z=2Z/2 of Aut.X/. Note that X=K is
dominated by P1 � P1 and therefore it is rational.

Lemma 2.2. The canonical map of S factors through the rational surface X=K.

Proof. By the Kuenneth formula

H 0.C1 � C2; KC1�C2/ Š H
0.C1; KC1/˝H

0.C2; KC2/

and then both involutions .�1; 1/ and .1; �2/ act on H 0.C1 � C2; KC1�C2/ as the mul-
tiplication by �1. Since by Freitag’s Theorem [9, Satz 1] the pull-back map sends
H 0.S;KS / D H

0.X;KX / isomorphically onto the invariant subspace H 0.C1 � C2;

KC1�C2/
H , it follows that all elements of K act on H 0.S; KS / D H

0.X; KX / as a
multiple of the identity.

This implies that H 0.S;KS / cannot separate two points in the same orbit by the
action of K.

In the “degenerate” case n D 1, S D X is the product of the two hyperelliptic
curves C1 and C2. Assuming d1; d2 � 5 (to have genera at least 2) we find an unboun-
ded family of surfaces with canonical map of degree 4 as those mentioned in [14].

The degree of the canonical map remains in fact 4, also for bigger n.

Theorem 2.3. Let S be a Wiman product-quotient surface of type n; d1; d2 and
assume n � 2.

(1) If d1; d2 � 3, then KS is nef.

(2) If d1 � 4, d2 � 5, then the canonical map of S has degree 4.

Proof. We denote by x0; x1; y the coordinates of the weighted projective space con-
taining C1 as in Definition 1.1, and by xx0; xx1; xy the analogous coordinates for C2. By
the Kuenneth formula the monomials

ma;b WD x
d
nd1
2 e�2�a

0 xx
d
nd2
2 e�2�b

0 xa1 xx
b
1

form a basis of eigenvectors for the action of the .�1; �k2 / of H on H 0.C1 � C2;

KC1�C2/ with respective eigenvalues e.aC1Ck.bC1//
2�i
n . So a basis of H 0.S; KS / is

given by the monomials®
ma;b j n divides aC 1C k.b C 1/

¯
: (2.1)

(1) Pulling back H 0.S;KS / to C1 � C2, we obtain a linear system � defined by
the vector subspace V � H 0.C1 � C2; KC1�C2/ generated by the monomials ma;b
in (2.1).
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We claim that if both dj are at least 3, then the base locus of � is finite. We first
note that the divisor defined by each ma;b on C1 � C2 is a linear combination of the
4 divisors x0 D 0, xx0 D 0, x1 D 0, xx1 D 0. Then the base locus of � is contained in
the union of these 4 divisors.

We show that the intersection of the base locus of � with x1D 0 is finite. It suffices
to prove that there is a monomial in V of the formm0;b . In other words, that there is an
integer 0� b � dnd2

2
e � 2 so that n divides 1C k.b C 1/, which is equivalent to ask

that the remainder class of b modulo n is the unique class solving the corresponding
congruence. Since d2 � 3, dnd2

2
e � 2 � n � 1 and therefore we can find a b in our

range for any such a class, giving a monomial m0;b in V .
A similar argument shows that the intersection of the base locus of � with each of

the other three divisors x0 D 0, xx0 D 0, xx1 D 0 is finite, by showing the existence of a
monomial in V of respective type m

d
nd1
2 e�2;b

, m
a;d

nd2
2 e�2

and ma;0. This concludes
the proof of the claim.

Since the base locus of � is finite, the base locus of jKX j is finite, too, whereas
the base locus of jKS j may contain some irreducible curves, all exceptional for the
map S ! X , the minimal resolution of the singularities of X . In particular, there is
no .�1/-curve in the base locus of jKS j. But a .�1/-curve on a surface S is always in
the base locus of jKS j! So S is a minimal surface, in the sense that it does not contain
a .�1/-curve. Since the canonical system is not empty, then S minimal implies that
KS is nef.

(2) If d1 � 4, d2 � 5, arguing as above, we can find a monomial of the form
m0;b in V such that also m0;bCn, mn;b , mn;bCn belong to V . These 4 monomials
map C1 � C2 as xn0 xx

n
0 ; x

n
0 xx

n
1 ; x

n
1 xx

n
0 ; x

n
1 xx

n
1 onto a smooth quadric Q � P3. Then the

canonical image of S , dominating Q, is a surface as well.
Choose a general point q 2 Q. Its preimage in C1 � C2 has cardinality .2n/2,

giving 4n points of S . The group K acts freely on them, giving n smooth points
q1; : : : ; qn of X=K. We know by Lemma 2.2 that the canonical map of X factors
through X=K; we finish the proof by showing that it separates the qj .

The automorphism .�1; 1/ of C1 � C2 commutes with H , so it defines an auto-
morphism �X of X . This automorphism commutes with K, so inducing a further
automorphism �K of order n of X=K. A straightforward direct computation shows
that �K permutes the qj cyclically.

Now choose a monomial in V of the form m1;c . Then the action of .�1; 1/ on the
vector subspace of V generated by m1;c ;m0;b;m0;bCn;mn;b;mn;bCn has exactly two
distinct eigenvalues, which differ by a primitive n-th root of the unity. This implies
that the canonical map of X separates the qj .
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Remark 2.4. The statement of Theorem 2.3 is not meant to be sharp. For example,
essentially the same proof shows that part (2) extends to the case d1 D 3 with the
possible exception n D 2.

Remark 2.5. The proof of Theorem 2.3, part (1) shows that the canonical system of
these surfaces has no fixed components.

In fact, it contains all the elements necessary to explicitly compute the base locus
of the canonical system, by describing its pull-back on C1 � C2, the base locus of the
linear system � .

Consider for example the first case n D 2, d1 D d2 D 3. In this case, k D 1.
Then the given basis of H 0.S;KS / is ¹x0x0; x1x1º. This implies that the base locus
of � is formed by 8 simple points, four defined by x0 D x1 D 0 and four defined by
x0 D x1 D 0. The involution defining S as quotient of C1 � C2 acts on these eight
points freely, so H 0.S;KS / has exactly four simple base points, their images.

By Proposition 1.4 this involution fixes exactly 4 points, those at x1 D x1 D 0,
inducing 4 singular points of type A1 on S . The standard formulas from [2] give
K2S D 4 and pg.S/ D q.S/ D 2, confirming that the canonical system is a pencil
with 4 base points.

3. Unbounded sequences of Wiman product-quotient surfaces

In this section, we only consider Wiman product-quotient surfaces of type n; d1; d2
with both d1; d2 even.

Identifying a point of X with an orbit of the action of H on C1 � C2, the singular
points of X correspond to the orbits of cardinality smaller than n.

By Proposition 1.4 the orbits of the rotation of a generalized Wiman curve of type
n; d with d even are all of order n with 4 exceptions, 4 fixed points. So X has 16
singular points. A straightforward computation shows that 8 are of type k

n
and 8 of

type �k
n

.
We consider the invariant 
 of the basket introduced in [3, Section 4]: it van-

ishes by [3, Proposition 4.4] since the basket contains as many points of type k
n

as of
type �k

n
. By [3, Proposition 4.1], K2S D 8�.OS / � 2
 � l D 8�.OS / � l where l is

the number of exceptional curves of S ! X .
Therefore

8 � �.S/ D
8�.OS / �K

2
S

�.OS /
D

l

�.OS /
D

l�
n
d1
2 �2

��
n
d2
2 �2

�
n

C 4
�
1 � 1

n

� :
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Writing the continued function of n
k

,

n

k
D b1 �

1

b2 �
1

b3 � : : :

;

then ([15, Section 3]) the number of irreducible components of the resolution above
two singular points of respective type k

n
and �k

n
equals 1C

P
.bj � 1/, so

8 � �.S/ D
8
�
1C

P
.bj � 1/

��
n
d1
2 �2

��
n
d2
2 �2

�
n

C 4
�
1 � 1

n

� �n!1 32

d1d2

1C
P
.bj � 1/

n
: (3.1)

In the simplest case k D 1 we obtain 1C
P
.bj�1/

n
D

1Cn�1
n
D 1 and then:

Theorem 3.1. There is an unbounded sequence Sn of surfaces that have canonical
map of degree 4 such that

lim
n!1

�.Sn/ D 8
�
1 �

1

m

�
for all positive integers m � 6 that are not prime numbers.

Proof. Write m D ab with a � 2, b � 3 and pick a sequence of Wiman product-
quotient surfaces Sn of type n; 2a; 2b and shift 1.

We are in the assumptions of Theorem 2.3, part (2) (d1D 2a� 4, d2D 2b� 6> 5)
so the canonical map of Sn has degree 4.

Finally, by (3.1)

lim
n!1

�.Sn/ D 8 �
32

d1d2

1C
P
.bj � 1/

n
D 8 �

8

ab

1C n � 1

n
D 8

�
1 �

1

ab

�
:

4. Further questions and possible generalizations

We have studied some natural generalizations of this construction giving surfaces
with canonical map of degree 4. Unfortunately they do not lead to a substantial
improvement of our main result, so we have decided not to include them in this work.
However, we mention them here for completeness.

We obtain in fact similar results for Wiman product-quotient surfaces where the
dj are not both even. One can also consider hyperelliptic curves with equation of the
form y2 D x0x1f .x

n
0 ; x

n
1 /. All these generalizations lead to surfaces with canonical

map of degree 4 and slope in the same range Œ6C 2
3
; 8�.

The other possible generalization is by considering shifts other than 1. More pre-
cisely, consider a sequence of positive integers kn, with 1�kn�n� 1, gcd.kn; n/D1.
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Then a sequence Sn of Wiman product-quotient surfaces of type n; 2a; 2b and shift
kn has

lim
n!1

�.Sn/ D 8 � 8
1

m
lim
n!1

�
�kn
n

�
;

where

�
�k
n

�
WD

1C
P
.bj � 1/

n
:

Obviously, �.k
n
/ > 0, �. 1

n
/ D 1. It is known [16, Lemma 3.3] that � � 1. An

independent proof has been sent to us by J. Stevens.

Question. What are the possible limits of ¹�.k
n
/º � Œ0; 1� for sequences of rational

numbers k
n

with unbounded denominators?

Note limn!1 �.
m

mnC1
/D 1

m
. We could not obtain any sequence with limit neither

zero nor of the form 1
m

. If there were more possible limits, this construction would
improve our main result.
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