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A remark on the logarithmic decay of the damped wave and
Schrödinger equations on a compact Riemannian manifold

Nicolas Burq and Iván Moyano

Abstract. In this paper, we consider a compact Riemannian manifold .M; g/ of class C 1 \

W 2;1 and the damped wave or Schrödinger equations on M , under the action of a damping
function aD a.x/. We establish the following fact: if the measure of the set ¹x 2M I a.x/ 6D 0º
is strictly positive, then the decay in time of the associated energy is at least logarithmic.

1. Introduction

Consider a compact Riemannian manifold .M;g/ of class C 1 \W 2;1, possibly with
boundaries @M , endowed with a Lipschitz metric g. Denote dgx (or simply dx) the
volume element in M associated to the metric g 2 C 0 \ W 1;1 and write volg the
associated volume on M . Let � be the Laplace–Beltrami operator in .M; g/. Recall
that in local coordinates we may write

� D
1

p
detg

@i .
p

detggij @j /: (1.1)

In this note we are interested in the evolution of respectively the wave equation and
the Schrödinger equation under the influence of a damping term localised via a func-
tion 0 � a.x/; a 2 L1.M/ non trivial (

R
M
a.x/ dx > 0) which consequently may be

supported in a small subset of M , namely E. We shall briefly recall these models.
The damped wave equation in M under the damping a@tu corresponds to the

initial value problem´
@2t u ��uC a.x/@tu D 0; RC �M;

.u; @tu/jtD0 D .u0; u1/; M;
(1.2)

where .u0; u1/ is a given initial condition in the natural energy space H DH 1.M/�

L2.M/. If @M 6D ;, we impose the boundary conditions

uj@M D 0 (Dirichlet condition) or @�uj@M D 0 (Neumann condition): (1.3)
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The energy associated to (1.2) is as usual

Ew.t; u0; u1/ D

Z
M

j@tu.t/j
2 dx C

Z
M

jrxu.t/j
2 dx; t � 0; (1.4)

defined globally as u 2 C 0.RCIH 1.M// \ C 1.RCIL2.M//.
Further, the second model we are interested in is the initial value problem for the

Schrödinger equation under the action of the damping a D a.x/, i.e.,´
i@t C� C ia.x/ D 0; RC �M;

 jtD0 D  0; M;
(1.5)

for a given  0 2 L2.M IC/. Again, if @M 6D ;, we impose the boundary condi-
tions (1.3). The energy associated to (1.5) is

ES .t;  0/ D

Z
M

j .t/j2 dx: (1.6)

In this note we prove that if E � M is any measurable set with volg.E/ > 0, the
energy functionals Ew and ES decay at least logarithmically in time. This is the con-
tent of Theorems 1 and 2 below.

1.1. Main results

Since we assume a � 0,
R
M
a.x/ dx > 0, we deduce that there exists n > 0 such that

the set
Fn D

°
x 2M I a.x/ >

1

n

±
has positive measure. As a consequence, with ˛ D 1

n
, ˇ D kakL1 , F D Fn, we get

that the damping function a D a.x/ satisfies

˛1F .x/ � a.x/ � ˇ; for almost all x 2M; (1.7)

with F �M of positive measure, not necessarily open. Our main result for the wave
equation is the following.

Theorem 1. Let a � 0,
R
M
a.x/dx > 0. Then, there exists a constant C D C.F / > 0

such that for every

.u0; u1/ 2

´
.H 2.M/ \H 1

0 .M// �H 1
0 .M/; with Dirichlet boundary conditions;

H 2.M/ �H 1.M/; otherwise;
(1.8)

the solution to the associated damped wave equation (1.2) satisfies

Ew.t; u0; u1/ �
C

log.2C t /2
.ku0k

2
H2.M/

C ku1k
2
H1.M/

/; t � 0; (1.9)

where Ew is the energy defined in (1.4).
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See Section 1.2 for notation. In the case of the Schrödinger equation we obtain the
next analogous result.

Theorem 2. Let a � 0,
R
M
a.x/dx > 0. Then, there exists a constant C D C.F / > 0

such that for every

 0 2

´
H 2.M/ \H 1

0 .M/; with Dirichlet boundary conditions;

H 2.M/; otherwise;
(1.10)

the solution to the associated Schrödinger equation (1.5) satisfies

ES .t;  0/ �
C

log.2C t /4
k 0k

2
H2.M/

; t � 0; (1.11)

where ES is the energy defined in (1.6).

The strategy of the proof combines the spectral inequalities obtained in [8] (see
Theorem 3 below) with a sharp characterisation of the logarithmic decay of energy
from [3, 4] (see Theorem 4 in Section 2.1). We give some details concerning these
results in Section 2.

1.2. Notation and setting

As mentioned above, the volume induced by g on M is defined as

volg.A/ D
Z
M

1A.x/ dgx;

for every Borel set A � M . In the case of the Euclidean flat space Rd , we simply
write jAj for the d -dimensional Lebesgue measure of a given Borel set A � Rd . In
both cases we denote B.x; r/ the ball of radius r > 0 centred at a point x.

As M is compact, the Laplace–Beltrami operator on M defined in (1.1) has com-
pact resolvent. Let .ek/k2N be the family of L2-normalised eigenfunctions of ��,
with eigenvalues �2

k
!C1 and satisfying

��ek D �
2
kek;

ekj@M D 0 (Dirichlet condition) or @�ekj@M D 0 (Neumann condition):

Recall that .ek/k2N is a Hilbert basis of L2.M/ endowed with the usual inner
product h�; �i. Moreover, the usual Sobolev norms on M can be defined using the
spectral basis .ek/k2N as follows:

kf k2H s.M/ D

X
k2N

.1C �2sk /jhf; ekij
2; f 2 H s.M/;

for every s 2 R.
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1.3. Previous work

1.3.1. Decay of damped waves. The study of the decay rates for (1.2) has been
addressed by the seminal works [2] and [11]. These works establish an intimate rela-
tion between the rate decay of the energy and the support of the damping function.
Under the geometric control condition of [2] one can expect an exponential decay, as
shown for instance in [2, 7, 11]. On the other hand, when the support of a does not
satisfy a geometric control condition, the decay rate of the associated damped wave
equation may be slower than exponential. We can find examples in the literature of
polynomial decay [1, 6, 14] or even logarithmic [7, 10–12].

Under some hypothesis on the geometry of the manifold, such as the assumption
that the manifold is compact and hyperbolic (negative curvature), it is possible to
expect exponential decay in some (positive) Sobolev spaces as soon as a is smooth
and nonzero (cf. [9]).

In this paper we establish the following fact: if j¹x 2M I a.x/ 6D 0ºj > 0, then the
decay is at least logarithmic. We do not make any assumption on the curvature of the
manifold.

1.3.2. Spectral inequalities. In the framework described in Section 1.2, Given a
small subset E � M (of positive Lebesgue measure or at least not too small), we
have studied in [8] how Lp norms of the restrictions to E of arbitrary finite linear
combinations of the form

� D
X
�k�ƒ

ukek.x/

can dominate Sobolev norms of � on the whole M . Our result [8, Thm. 2] is the
following.

Theorem 3. Let .M;g/ be a Riemannian manifold of classC 1 \W 2;1, possibly with
boundaries @M . There exists ı 2 .0; 1/ such that for any m > 0, there exist C;D > 0

such that for any ! �M with volg.!/ � m and for any ƒ > 0, we have

� D
X
�k�ƒ

ukek.x/) k�kL2.M/ � Ce
Dƒ
k�1!kL2.M/: (1.12)

We shall use the spectral inequality (1.12) in Section 2.3.

1.4. Outline

In Section 2, we gather some facts about the tools used in the proof of our main
result: Section 2.1 is devoted to a characterisation of logarithmic decay, Section 2.3
makes the link between the resolvent operators for waves and Schrödinger and the
Helmholtz equation, and Section 2.3 is concerned with some estimates for solutions to
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the Helmholtz equation obtained thanks to the spectral inequalities mentioned before.
The proof of Theorem 1 is carried out in Sections 3 and 4 which treat respectively the
case of Dirichlet boundary conditions and the case of Neumann boundary conditions.
Each of these two sections is also divided into high frequencies and low frequencies.
Finally, Section 5 is concerned with the proof of Theorem 2, which is also divided
into Section 5.1 (negative frequencies) and Section 5.2 (nonnegative frequencies).

2. Some tools

In this section, we describe first (in Section 2.1) some abstract results relating the time
decay of a semi-group with the growth of the resolvent operator at infinity. Next, in
Section 2.2 we focus on the resolvent operators related to the wave equation (1.2) and
the Schrödinger equation (1.5), which in both cases lead to a Helmholtz equation of
the form

�uC �u D S;

for some parameter � 2 R and a source term S . Finally, in Section 2.3, we use The-
orem 3 to get some estimates for solutions to the Helmholtz equation that will be
useful in the sequel.

2.1. Sufficient conditions for logarithmic decay

Consider a Hilbert space H and the functional equation

dU
dt
D AU; t � 0; with U.0/ D U0 2 H ; (2.1)

for a possibly unbounded operator A with domain D.A/ � H . As usual, z 2 C

belongs to the resolvent set �.A/ whenever .A � z/�1 2 L.H /. The spectrum of
A is �.A/ D C n �.A/.

We focus next on the elements of �.A/ lying on the imaginary axis. For every
� 2 R we consider the resolvent mapping R.�/ D .A � i�/�1 whenever i� 2 �.A/.

2.1.1. Growth of the resolvent and decay of the semi-group. Assume that A is
the infinitesimal generator of a C 0-continuous semi-group of operators in H that we
denote .etA/t�0, so that the solution to (2.1) writes U.t/ D etAU0. Assume further
that

sup
t�0

ketAkL.H/ < C1:

Batty and Duyckaerts have introduced in [3] a quantitative approach to character-
ise the asymptotic behaviour of the semi-group, i.e., the fact that for some k 2 N�,

lim
t!C1

mk.t/ D 0; with mk.t/ D ke
tA.Id � A/�kkL.H/; t � 0; (2.2)
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in terms of the purely spectral condition

�.A/ \ iR D ;: (2.3)

Observe that this condition ensures that the resolvent operators R.�/ are well defined
for any � 2 R. Moreover, it is possible to describe the decay rate of (2.2) in terms of
the growth of the function

M.�/ D sup
j� j��

k.A � i�/�1kL.H/; � 2 Œ0;C1/: (2.4)

The following result, obtained first by Lebeau–Robbiano [12] (for the subexpo-
nential growth and with a log.log.t// loss), then by Burq [4, Thm. 3] (also for the
subexponential growth but without loss) for exterior problems, and finally in greater
generality by Batty–Duyckaerts, [3, Thm. 1.5], guarantees logarithmic decay of all
mk as long as M grows at most exponentially at infinity.

Theorem 4. Assume that (2.3) holds and that

9C; c > 0 such that M.�/ < Cecj�j (resp. M.�/ < Cec
p
j�j) 8� 2 R:

Then, for any k > 0 there exists Ck such that

ketA.Id � A/�kkL.H/ �
Ck

log.2C t /k
; 8t � 0

(resp. ketA.Id � A/�kkL.H/ �
Ck

log.2C t /2k
; 8t � 0):

We shall use this result in Sections 3 and 5 to get the decay of solutions to (1.2)
and (1.5).

2.2. The resolvent operator and the Helmholtz equation

In this section, we make explicit the choice of the functional framework (compatible
with Section 2.1) associated to the wave equation and the Schrödinger equations.

2.2.1. The resolvent operator for waves. Following the notation of Section 2.1, let
us set

AU D

 
0 Id
� �a.x/

!
; U D

 
u

v

!
; (2.5)

in the Hilbert space H D H 1.M/ �L2.M/ endowed with the natural inner product.
As usual,D.A/DH 2.M/�H 1.M/ if @M D ; orD.A/D .H 2.M/\H 1

0 .M//�

H 1.M/ if we impose Dirichlet boundary conditions (the case of Neumann boundary
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conditions is slightly more involved and we deal with it in Section 4). The solution of
(2.1) is given by

U.t/ D etA

 
u0

u1

!
(2.6)

and the solution of (1.2) is given by the first component of U.t/. Let � 2 R and
consider the resolvent operator R.�/ D .A � i�/�1. For any

�
f
g

�
2 H , one has 

u

v

!
D .A � i�/�1

 
f

g

!
,

´
v � i�u D f;

�u � av � i�v D g:

Using that v D i�uC f , we find

�u � a.i�uC f /C �2u � i�f D g; in M;

and hence u satisfies the Helmholtz equation

�uC �2u D g C .aC i�/f C ia�u; in M: (2.7)

2.2.2. The resolvent operator for Schrödinger. In this case we set H DL2.M IC/

and
A D i� � a.x/; D.A/ D H 2.M IC/: (2.8)

For  0 2 H given, the solution of (1.5) is then given by the

U.t/ 0 D e
tA 0; t � 0: (2.9)

Now, let � 2 R and consider the resolvent operator R.�/ D .A � i�/�1. If for some
f 2 H the function  2 D.A/ is such that .A � i�/�1 D f , then  satisfies the
following Helmholtz equation:

� � � C ia.x/ D �if; in M: (2.10)

2.3. Estimates for the Helmholtz equation

We state for convenience a unique continuation result for the Helmholtz equation that
will be useful in Section 3.2. The unique continuation from small sets follows from
the Remez inequalities obtained in [13, Sect. 1, eq. (6)].

Lemma 2.1. Let ! � M be a measurable set with volg.!/ > 0. Let � 2 R be fixed
and let u be the solution to the Helmholtz equation

�uC �u D 0; in M: (2.11)

Then, u satisfies the unique continuation principle on !, i.e.,

uj! D 0 ) ujM D 0: (2.12)
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We state next an estimate for solutions to the Helmholtz equation with source that
will be used in Section 3.1 to get a suitable exponential bound in the high frequency
regime. The following result follows from the spectral inequality (1.12) in Theorem 3
above.

Proposition 2.2. Let ! �M be a measurable set with volg.!/ > 0. There exist con-
stants C D C.!/ > 0 andD DD.!/ > 0 such that for every � 2R and S 2 L2.M/,
the solution to the Helmholtz equation

�uC �2u D S in M; uj@M D 0 (Dirichlet) or @�uj@M D 0 (Neumann)
(2.13)

satisfies
kukL2.M/ � Ce

Dj�j.kSkL2.M/ C k1!ukL2.M//: (2.14)

Proof. Let u be given by (2.13). If S 2 L2.M/, using the orthonormal basis .ek/ as
in Section 1.2, we can write

S D
X
k2N

Skek :

Then, we can split u into “hyperbolic” and “elliptic” frequencies as follows:

u D 1j�C�2j�1uC 1j�C�2j>1u;

where
1j�C�2j>1u D

X
k2NI

�2�k2>1

Sk

�2 � k2
ek :

Thanks to this explicit expression, we have

k1j�C�2j>1ukL2.M/ � kSkL2.M/: (2.15)

Now applying Theorem 3 on the “hyperbolic” frequencies, we get

k1j�C�2j�1ukL2.M/ � Ce
Dj�j
k1j�C�2j�1ukL2.!/;

� CeDj�j.kukL2.!/ C k1j�C�2j>1ukL2.!//;

� CeDj�j.kukL2.!/ C kSkL2.M//;

where we have used (2.15).

3. Proof of Theorem 1 for Dirichlet boundary conditions

Following the notation of Section 2.1, let � 2 R and consider the resolvent operator
R.�/D .A� i�/�1. Throughout this section we assume that the boundary conditions
are of Dirichlet type only and use the notation of Section 2.2.1.
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In Section 3.1, we prove the resolvent estimate for the wave equations for � � ��

(with �� a constant sufficiently large). Then in Section 3.2 we prove the estimate for
� � ��.

3.1. Proof of Theorem 1: High frequencies

Proposition 3.1. Let F � E �M and a damping a satisfying (1.7). Then there exist
�� � 1 large enough and constants Ch; ch > 0 independent of � such that for every
j� j � �� we have

kU kH1.M/�L2.M/ � Che
chj� jk.f; g/kH1.M/�L2.M/; (3.1)

for every h D .f; g/ 2 H and every U D .u; v/ D .A � i�/�1h 2 D.A/.

Proof. First recall that for any h D
�
f
g

�
2 H , the element U D . uv / D .A � i�/�1h

satisfies the Helmholtz equation (2.7) with the boundary conditions

uj@M D 0

and the identities

v � i�u D f and �u � av � i�v D g; in M:

The first equation yields

kvkL2 � j� jkukL2 C kf kL2

and the second one, after multiplying by xu and integrating, gives, for any j� j � 1,

kruk2
L2 �

Z
M

j..aC i�/v C g/xuj dx

D

Z
M

j..aC i�/.f C i�u/C g/xuj dx

. .1C ˇ C �2/kukL2.kf kL2 C kgkL2 C kukL2/;

where we have used that a � ˇ. We deduce

kukH1 � C.1C ˇ C �2/.kf kL2 C kgkL2 C kukL2/:

Hence, it is sufficient to estimate kukL2 to get an estimate on kU kH1.M/�L2.M/.
Let us focus on kukL2 . Recalling that u satisfies the Helmholtz equation (2.7), using
Proposition 2.2 with

! D F and S D g C .aC i�/f C ia�u; � D �;
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the estimate (2.14) yields

kukL2.M/ � Ce
Dj� j

�
kg C .aC i�/f C ia�ukL2.M/ C k1F ukL2.M/

�
� CeDj� j

�
kgkL2.M/ C .j� j C ˇ/kf kL2.M/ C j� jkaukL2.M/

C k1F ukL2.M/

�
� .1C j� j C ˇ/CeDj� jk.f; g/kH C Ce

Dj� j
�
j� jkaukL2.M/

C k1F ukL2.M/

�
:

On the other hand, (1.7) implies

k1F ukL2.M/ �

p
ˇ

˛
k
p
aukL2.M/; (3.2)

and
kaukL2.M/ �

p
ˇk
p
aukL2.M/: (3.3)

As a result, we get

kukL2.M/ � .1C j� j C ˇ/Ce
Dj� j
k.f; g/kH

C

�
j� j C

1

˛

�p
ˇCeDj� jk

p
aukL2.M/: (3.4)

Next, we need to estimate k
p
aukL2.M/ in terms of k.f; g/kH and � . Using (2.7), we

obtain Z
M

.�uC �2u/xu dx D
Z
M

.g C .i� C a/f C ia�u/xu dx

and hence,

�

Z
M

jrxuj
2 dx C �2

Z
M

juj2 dx D
Z
M

.g C .i� C a/f /xu dx C i�
Z
M

ajuj2 dx:

Taking the imaginary part, we find

j� jk
p
auk2

L2.M/
D

ˇ̌̌̌
Im
Z
M

.g C .i� C a/f /xu dx
ˇ̌̌̌

�
1

2"
kg C .i� C a/f k2

L2.M/
C
"

2
kuk2

L2.M/

�
1

2"

�
kgkL2.M/ C k.i� C a/f kL2.M/

�2
C
"

2
kuk2

L2.M/

�
1

"
kgk2

L2.M/
C
1

"
.j� j2 C ˇ2/kf k2

L2.M/
C
"

2
kuk2

L2.M/
;

for every " > 0. Choosing

" D
j� je�2Dj� j

2.j� j C 1
˛
/2ˇC 2



Damped wave equation 379

one finds

k
p
auk2

L2.M/
�
2

�2

�
j� j C

1

˛

�2
ˇC 2e2Dj� j.kgk2

L2.M/
C .j� j2 C ˇ2/kf k2

L2.M/
/

C
e�2Dj� j

4.j� j C 1
˛
/2ˇC 2

kuk2
L2.M/

and thus,

k
p
aukL2.M/ �

p
2
�
1C

1

˛j� j

�p
ˇC.1C j� j C ˇ/eDj� jk.f; g/kH

C
e�Dj� j

2.j� j C 1
˛
/
p
ˇC
kukL2.M/:

Now, we get from (3.4)

kukL2.M/ � .1C j� j C ˇ/Ce
Dj� j
k.f; g/kH C

�
j� j C

1

˛

�p
ˇCeDj� jk

p
aukL2.M/

� .1C j� j C ˇ/CeDj� jk.f; g/kH

C

p
2

j� j

�
j� j C

1

˛

�2
ˇC 2e2Dj� j.1C j� j C ˇ/k.f; g/kH C

1

2
kukL2.M/:

Then, if �� is large enough so that �� � 1, we have

1

2
kukL2.M/ � C.1C j� j C ˇ/

�
1C eDj� j

p
2Cˇ

�
j� j C

1

˛

�2�
eDj� jk.f; g/kH

� C 0e3Dj� jk.f; g/kH ; (3.5)

for every j� j � ��, where C 0 is a positive constant depending only on ˛; ˇ; C;D; ��.
Hence, estimate (3.1) follows for some constants Ch; ch large enough, depending only
on ˛; ˇ; C;D; and ��.

3.2. Proof of Theorem 1: Low frequencies (Dirichlet boundary conditions)

Proposition 3.2. Let F � E �M and a damping a satisfying (1.7). For any �� > 0
(we shall choose �� given by Proposition 3.1), there exists a constant C` > 0 such that
for any j� j < ��, every h D .f; g/ 2 H and every U such that U D .A � i�/�1h,

kU kH1.M/�L2.M/ � C`k.f; g/kH1.M/�L2.M/: (3.6)

Proof. In this case, we proceed by contradiction (we follow [7, Sect. 4]). Assume that
the estimate is not true, i.e., that there exist sequences .Un/ � H and .�n/ � R with
j�nj � �� such that

kUnkH1.M/�L2.M/ D 1; 8n 2 N; and .A � i�n/Un ! 0 as n!C1:
(3.7)
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Writing Un D
�
un
vn

�
, we have

vn � i�nun ! 0; in H 1.M/ and �un � i�na.x/un C �
2
nun ! 0 in L2.M/:

(3.8)
Now multiplying the last limit by un and integrating by parts we find

�krunk
2
L2.M/

� i�n

Z
M

a.x/junj
2 dx C �2nkunk

2
L2.M/

! 0:

Taking real and imaginary parts yields

�krunk
2
L2.M/

C �2nkunk
2
L2.M/

! 0; and �n

Z
M

a.x/junj
2 dx ! 0: (3.9)

The sequence .�n/ is bounded (in modulus) by �� and consequently we can assume
that it converges to some limit � . We distinguish now two cases.

Case � D 0. In this case, we would have

krunk
2
L2.M/

! 0;

thanks to (3.9). Hence, by Poincaré’s inequality, we would also have

kunk
2
L2.M/

! 0:

But then, the first part of (3.8) would also imply

kvnk
2
L2.M/

! 0:

Henceforth,
kUnk

2
H1.M/

! 0;

which is a contradiction with (3.7).

Case � 6D 0. In this case, using (3.9) we may write

lim
n!1

krunk
2
L2.M/

D lim
n!1

�2kunk
2
L2.M/

;

and
lim
n!1

Z
M

a.x/junj
2.x/ dx D 0:

Using (3.7), we also have

lim
n!1

kvnk
2
L2.M/

D lim
n!1

�2kunk
2
L2.M/

:

Then, as

1 D lim
n!1

kUnk
2
H1.M/�L2.M/

D lim
n!1

.1C 2�2/kunk
2
L2.M/

; (3.10)



Damped wave equation 381

which means that the sequence .un/ is bounded in H 1. Then, Rellich’s compactness
theorem implies that there exists u 2 H 1.M/ such that

un ! u in L2.M/-strong; and run ! ru in L2.M/-weak;

and a fortiori, upon extracting a subsequence, we also have

un ! u a.e. in M:

Now, thanks to Fatou’s lemma and the second part of (3.9) we deduceZ
M

a.x/juj2 dx � lim inf
n!1

Z
M

a.x/junj
2 dx D 0

and hence, using (1.7),
u D 0 a.e. in F:

This is enough to apply Lemma 2.1 which yields

u D 0 a.e. in M:

But this is a contradiction with (3.10). This concludes the proof.

3.3. End of the proof of Theorem 1 (Dirichlet boundary conditions)

Once we have dealt with high and low frequencies in the previous sections, the proof
of Theorem 1 is a consequence of Theorem 4.

Proof of Theorem 1. Combining Proposition 3.1 and Proposition 3.2, we find that the
estimate

kU kH1�L2 � Ce2cj� jkhkH1�L2

holds for every � 2 R, every h 2 H 1.M/ � L2.M/, U D R.�/h and the constants

C D max.C`; Ch/; c D ch:

As a consequence, the function M defined by (2.4) satisfies in this case the growth

M.�/ � Ce2cj�j;

for every � 2 R. Hence, Theorem 4 yields that for any k 2 N,

kU.t/.Id � A/�kkL.H1�L2/ �
Ck

log.2C t /k
; 8t � 0; (3.11)
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where we have used the notation of (2.5) and (2.6). Next, let k 2 N be fixed and
let h0 D

�
u0
u1

�
2 H kC1.M/ �H k.M/. Then, W0 WD .Id � A/kh0 2 L2.M/ and in-

equality (3.11) implies

Ew.t; u0; u1/ D kU.t/h0k
2
H1�L2

D kU.t/.Id � A/�kW0k2H1�L2

�
Ck

log.2C t /2k
kW0k

2
H1�L2

�
Ck

log.2C t /2k
k.Id � A/kh0k2H1�L2 ;

for every t � 0. The proof is completed by noticing that for k D 1 the domain of A is
.H 2.M/ \H 1

0 .M// �H 1
0 .M/ with Dirichlet boundary conditions (resp. H 2.M/ �

H 1.M/ if @M D ;), and

k.Id � A/h0k2H1�L2 � Ckh0k
2
H2�H1 :

4. Proof of Theorem 1: The case of Neumann boundary conditions

In the case � D 0, we cannot use Poincaré’s inequality (that we used when dealing
with the low frequencies in Proposition 3.2) and we have to change slightly the func-
tional framework. Here we follow the exposition in [5, Appendix]. For the sake of
completeness, we recall the argument (which is taken from [5, Appendix]) below and
focus on the low frequency regime j� j � ��.

For s D 1; 2, we define by PH s D H s.M/=R the quotient space ofH s.M/ by the
constant functions, endowed with the norm

k Puk PH1 D krukL2 ; k Puk PH2 D k�ukL2 ;

(here Pu denotes the equivalence class of a function u in PH ). We define the operator

PA D

 
0 …
P� �a

!
on PH 1 � L2 with domain PH 2 �H 1, where … is the canonical projection H 1 ! PH 1

and P� is defined by
P� Pu D P.�u/

(independent of the choice of u 2 Pu). The operator PA is maximal dissipative and hence
defines a semi-group of contractions on PH D PH 1 � L2. Indeed, for UD

�
Pu
v

�
,

Re. PAU;U / PH D Re.ru;rv/L2 C . P� Pu � av; v/L2 D �.av; v/L2 ;
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and

. PA � Id/
�
Pu

v

�
D

�
Pf

g

�
, …v � Pu D Pf ; and P� Pu � .aC 1/v D g;

, …v � Pu D Pf ;

and �v � .1C a/v D g C�f 2 H�1.M/;

(4.1)

and we can solve this equation by variational theory. Notice that this shows that the
resolvent . PA � Id/�1 is well defined and continuous from PH 1 � L2 to PH 2 �H 1. We
have further the following.

Lemma 4.1. The injection PH 2 �H 1 to PH 1 � L2 is compact.

This follows from identifying PH s with the kernel of the linear form u 7!
R
M
u.

We also have the following corollary.

Corollary 4.2. The operator . PA � Id/�1 is compact on PH .

On the other hand, it is very easy to show that for .u0; u1/ 2 H 1 � L2, 
… 0

0 Id

!
etA D et

PA

 
… 0

0 Id

!
;

and hence, the logarithmic decay is equivalent to the logarithmic decay (in norm)
of et PA (and consequently, according to Theorem 4 equivalent to resolvent estimates
for PA). The high frequency resolvent estimates in our new setting are handled with
the exact same proof as for Dirichlet boundary conditions (we did not use Poincaré’s
inequality in this regime) and consequently we omit the proof. Let us focus on the low
frequency regime and revisit our proof above in this new functional setting. We prove
the following proposition.

Proposition 4.3. Let F � E �M and a damping a satisfying (1.7). For any �� > 0
(we shall choose �� given by Proposition 3.1), there exist constants C > 0 such that
for any j� j < ��, and every h D .f; g/ 2 H every U such that U D . PA � i�/�1h,

kU k PH1.M/�L2.M/ � Ck.f; g/k PH1.M/�L2.M/:

Proof. We argue by contradiction. Suppose there exist sequences .�n/, .Un/, .Fn/
such that

. PA � i�n/Un D Fn; kUnk PH > nkFnk PH :

Since Un ¤ 0, we can assume kUnk PH D 1. Extracting subsequences (still indexed by
n for simplicity) we can also assume that �n ! � 2 R as n!1. We write

Un D

�
Pun
vn

�
; Fn D

�
Pfn
gn

�
;

and distinguish according to two cases.
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Zero frequency case: � D 0. In this case, we have

PAUn D o.1/ PH , …vn D o.1/ PH1 ; � Pun � avn D o.1/L2 :

We deduce that there exists .cn/ � C such that

vn � cn D o.1/H1 ; �un � acn D o.1/L2 :

But
0 D

Z
M

�un dx) cn

Z
M

a dx D o.1/) cn D o.1/:

As a consequence, we get vn D o.1/L2 and �un D o.1/L2 , which implies that Pun D
o.1/ PH1 . This contradicts kUnk PH D 1. As a result, (4.3) follows for � D 0.

Low (nonzero) frequency case: � 2 R�. In this case, we have

. PA� i�/Un D o.1/ PH ,…vn � i� Pun D o.1/ PH1 ; � Pun � .i� C a/vn D o.1/L2 :

We deduce

�vn � i�.aC i�/vn D o.1/L2 C�.o.1/ PH1/ D o.1/H�1 :

Since .vn/ is bounded in L2, from this equation, we deduce that .�vn/ is bounded in
H�1 and consequently .vn/ is bounded in H 1. Extracting another subsequence, we
can assume that .vn/ converges in L2 to v which satisfies

�v C �2v � i�av D 0; in M:

Taking the imaginary part of the scalar product with xv in L2 gives (since � ¤ 0)R
M
ajvj2 dx D 0, and consequently av D 0 which implies that v is an eigenfunction

of the Laplace operator and vanishes on F . Let us recall the classical result.

Proposition 4.4. Let v be an eigenfunction of our Laplace operator

��v D �v:

Assume that v vanishes on a set F of positive Lebesgue measure. Then v D 0.

We deduce that vn D o.1/L2 . Now, we have

� Pun D .i� C a/vn C o.1/L2 D o.1/L2 ) Pun D o.1/ PH1 ;

but this contradicts kUnk PH D 1 and (4.3) follows also in this case. This ends the
proof.
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Remark 4.5. Proposition 4.4 is a straightforward consequence of the resolvent estim-
ate from Theorem 3 applied to this eigenfunction. However, while this quantitative
result is in turn consequence of the quite recent deep analysis in [13], the qualitative
result claimed in Proposition 4.4 (v vanishing on F implies v vanish on the wholeM )
has been known for much longer (see [15]), as it relies only on qualitative estimates
rather than quantitative estimates.

Once we have established Proposition 4.3, the proof of Theorem 1 with Neumann
boundary conditions follows the same lines of Section 3.3 without significant modi-
fications. This ends the proof of Theorem 1.

5. Proof of Theorem 2: Schrödinger equation

In order to prove Theorem 2 it is enough to prove the following resolvent estimates.

Proposition 5.1. There exists C > 0 such for any � 2 R, the operator

.� � � C ia/ W D.A/! L2.M/

is invertible with bounded inverse

k.� � � C ia/�1kL.L2.M// � Ce
c
p
j� j:

5.1. Estimates when � < 0

In this case, we may use Proposition 2.2 directly. We get the following result.

Proposition 5.2. Assume that (1.7) holds for some ˛; ˇ and let f 2 L2.M IC/ be
given. Then, for any � < 0, the resolvent .� � � C ia/�1 satisfies

k.� � � C ia/�1f kL2.M/ � 2.1C C/
2
�
1C ˇ

�
1C

1

˛

�2�
e2D
p
j� j
kf kL2 ;

where C;D are the constants in (2.14).

Proof. Recall that  D �i.�� � C ia/�1f satisfies the Helmholtz equation (2.10).
Then, thanks to (2.14) there exist some constants C;D > 0 independent of � such that

k kL2.M/ � Ce
D
p
j� j.ki.f C a /kL2.M/ C k1F kL2.M//:

On the other hand, from (3.2) and (3.3), we get

k kL2.M/ � Ce
D
p
j� j
�
kf kL2C

�
1C

1

˛

�p
ˇk
p
a kL2.M/

�
: (5.1)
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Next, using the Helmholtz equation (2.10) we obtainZ
M

.� � � / x dx D
Z
M

.�if � ia / x dx

and hence,Z
M

jrx j
2 dx C �

Z
M

j j2 dx D i
Z
M

f x dx C i
Z
M

aj j2 dx:

Now, taking the imaginary part and using Cauchy–Schwarz’s and Young’s inequalities
we find

k
p
a kL2.M/ D

s
� Im

Z
M

f x dx � kf k1=2
L2.M/

k k
1=2

L2.M/

�
1

4"
kf kL2.M/ C "k kL2.M/;

for every " > 0. Injecting this in (5.1) yields

k kL2.M/ � Ce
D
p
j� j
�
1C

p
ˇ
�
1C

1

˛

� 1

2
p
"

�
kf kL2

C CeD
p
j� j
p
ˇ"
�
1C

1

˛

�
k kL2 :

Next, choosing

" D
e�2D

p
j� j

4.1C 1
˛
/2ˇC 2

we get

k kL2.M/ � 2Ce
D
p
j� j
�
1C ˇ

�
1C

1

˛

�2
CeD

p
j� j
�
kf kL2 :

As a consequence, we get the exponential growth estimate

k kL2.M/ �
p
2.1C C/2

�
1C ˇ

�
1C

1

˛

�2�
e2D
p
j� j
kf kL2 ;

for any � > 0 given.

5.2. Estimates when 0 � �

In this section, we shall just rely on the following Poincaré-type inequality.

Proposition 5.3. Assume that a � 0 and
R
M
a.x/ dx > 0. Then there exists CP D

CP .a/ > 0 such that for all u 2 H 1.M/,

CP

Z
M

.jrxuj
2.x/C a.x/juj2.x// dx � kuk2

H1.M/
: (5.2)
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Proof. We follow a standard proof and argue by contradiction. Otherwise, there would
exist a sequence .un/ 2 H 1.M/ (that we can assume of norm 1 in H 1) such thatZ

M

.jrxunj
2.x/C a.x/junj

2.x// dx �
1

n
kunk

2
H1.M/

:

Since .un/ is bounded in H 1.M/ and M is compact, by Rellich’s compactness the-
orem there exists u 2 H 1 such that we can extract a subsequence (still denoted
by .un/) such that

kun � ukL2 ! 0; as n!C1:

Moreover, as
krxunkL2 ! 0; k

p
aunkL2.M/ ! 0;

we deduce that rxu D 0 and thus u must be constant in M . But

juj2
Z
M

a.x/ dx D
Z
M

a.x/juj2.x/ dx D lim
n!C1

Z
M

a.x/junj
2.x/ dx;

which implies that u D 0. This gives a contradiction with the fact that

kunkH1 D 1; krxunkL2 ! 0; kun � ukL2 ! 0 ) kukL2 D 1:

Hence, (5.2) follows for some positive constant CP .

Proposition 5.4. Assume that (1.7) holds for some ˛; ˇ and let f 2 L2.M IC/ be
given. Then, there exists C > 0 such that for � � 0, and any f 2 L2.M/, we have

k.� � � C ia.x//�1f kL2.M/ �
p
2CP kf kL2.M/;

where CP is the Poincaré’s constant above.

Proof. For f 2L2.M/ given, let D�i.�� � C ia/�1f . Recalling that satisfies
the Helmholtz equation (2.10), after multiplying by x and integrating by parts, we get

�

Z
M

jr j2 dx � �
Z
M

j j2 dx C i
Z
M

a.x/j j2 dx D
Z
M

f x dx: (5.3)

The modulus of the left-hand side in (5.3) is larger than

1
p
2

Z
M

.jr j2.x/C a.x/j j2.x// dx:

Using Poincaré’s inequality (5.2) on the left and Cauchy–Schwarz on the right, we get

k k2
H1 �

p
2CP kf kL2k kL2 ) k kH1 �

p
2CP kf kL2 :
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5.3. Conclusion of the proof of Theorem 2

Proof of Theorem 2. Combining Proposition 5.4 and Proposition 5.2, we find that the
estimate

kR.�/f kL2.M/ � C0e
2D
p
j� j
kf kL2

holds for every � 2 R, every f 2 L2.M/ and the constant

C0 WD max
°
2.1C C/2

�
1C ˇ

�
1C

1

˛

�2�
; 2CP

±
:

As a consequence, the function M defined by (2.4) satisfies in this case the growth

M.�/ � C1e
2D
p
j�j;

for every � 2 R. Hence, Theorem 4 yields that for any k 2 N,

kU.t/.Id � A/�kkL.L2/ �
Ck

log.2C t /2k
; 8t � 0; (5.4)

where we have used the notation of (2.8) and (2.9). Next, let k 2 N be fixed and let
 0 2 H

2k.M/ Then, ˆ0 WD .Id � A/k 0 2 L2.M/ and inequality (5.4) implies

ES .t;  0/ D kU.t/ 0k
2
L2 D kU.t/.Id � A/�kˆ0k2L2

�
Ck

log.2C t /4k
kˆ0k

2
L2 �

Ck

log.2C t /4k
k.Id � A/k 0k2L2 ;

for every t � 0. The proof is completed by noticing that for k D 1 the domain of A is
H 2.M/\H 1

0 .M/ with Dirichlet boundary conditions (resp.H 2.M/ with Neumann
boundary conditions or if @M D ;) and

k.Id � A/ 0k2L2 � Ck 0k
2
H2 :
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