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Cohomology algebra of orbit spaces of free involutions on the
product of projective space and 4-sphere

Ying Sun and Jianbo Wang

Abstract. Let X be a finitistic space with the mod 2 cohomology of the product space of a
projective space and a 4-sphere. Assume that X admits a free involution. In this paper we study
the mod 2 cohomology algebra of the quotient of X by the action of the free involution and
derive some consequences regarding the existence of Z2-equivariant maps between such X and
an n-sphere.

1. Introduction

The study of the orbit space of a topological groupG-action on a topological spaceX
is a classical topic in topology. In particular, the finitistic space plays an important role
in the cohomology theory of transformation groups. A paracompact Hausdorff space
X is said to be finitistic if every open covering of X has a finite dimensional open
refinement, where the dimension of a covering is one less than the maximum num-
ber of members of the covering which intersect nontrivially. Finitistic spaces behave
nicely under compact Lie group G actions. More precisely, the space X is finitistic if
and only if the orbit space X=G is finitistic ([6, 7]).

For a given topological space X with the action of a topological group G, it is
often difficult to determine the topological type or homotopy type of X=G. Orbit
spaces of free actions of finite groups on spheres have been studied extensively by
Livesay [13], Rice [16], Ritter [17], Rubinstein [19] and many others. Tao [25] deter-
mined orbit spaces of free involutions on S1 � S2. Later Ritter [18] extended the
results to free actions of cyclic groups of order 2n. However, there are few known
results on compact manifolds other than a sphere. Hence we try to determine the
cohomology algebra of the orbit space of some more examples.

To deal with more general spaces, by the notation X �Q Y (resp. X �p Y , p a
prime), we mean that X and Y have the same rational (resp. mod p) cohomology
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algebras, not necessarily induced by a map between X and Y . Let us list some related
results.

• R. M. Dotzel and others ([11]) have determined the cohomology algebra of orbit
spaces of Zp-action (resp. S1-action) on a finitistic space X �p Sm � Sn (resp.
X �Q Sm � Sn).

• H. K. Singh and T. B. Singh have determined the mod 2 cohomology algebras of
orbit spaces of free Z2-action on a finitistic space X �2 RP n and X �2 CP n in
[20], and also determined the mod p and rational (resp. mod p) cohomology alge-
bras of orbit spaces of free S1-action on a finitistic spaceX �F S1 �CPm�1 with
F D Zp or Q (resp. mod p cohomology lens space X �p L2m�1.pIq1; : : : ; qm/)
in [21].

• M. Singh has determined the cohomology algebras of orbit spaces of free invo-
lutions on a finitistic space X �2 RP n �RPm, X �2 CP n �CPm in [22] and
X �2 L

2m�1.pI q1; : : : ; qm/ in [23].

• P. Dey and M. Singh have calculated the mod 2 cohomology algebras of orbit
spaces of free Z2 and S1-action on a compact Hausdorff space with mod 2 coho-
mology algebra of a real or complex Milnor manifold ([9]).

• A. M. M. Morita et al. have calculated the possible Z2-cohomology rings of orbit
spaces of free actions of Z2 (or fixed point free involutions) on the Dold manifold
P.1; n/ with n odd ([15]).

• P. Dey has determined the possible mod 2 cohomology algebra of orbit spaces
of free involutions on a finite dimensional CW-complex homotopic to the Dold
manifold P.m; n/ ([8]).

• In [24], S. K. Singh and others have determined the cohomology algebra of orbit
spaces of free involutions on a finitistic space X �2 FPm � S3, where FPm is a
projective space, and F stands for either the field R of real numbers, the field C

of complex numbers or the division ring H of quaternions.

• As applications of cohomology algebras, the existence of Z2-equivariant maps
X ! Sn or Sn ! X is discussed in [9, 20, 22–24].

This paper deals with the free action of Z2 on a finitistic space X with mod 2
cohomology of the product of a projective space and 4-sphere, i.e., a space X �2
FPm � S4, along with the cohomology algebra of orbit spaces under free involutions.

The paper is organized as follows: In Section 2, we recall the Leray–Serre spectral
sequence associated to the Borel fibration X ,! XG ! BG , and list some known
results. Section 3 consists of three main Theorems 3.1, 3.2, 3.3 and two Lemmas 3.6
and 3.7. In Section 4, we prove three main theorems which describe the possible
cohomology algebras of orbit spaces. In the last Section 5, as applications of the main
theorems, we discuss the existence of Z2-equivariant maps X ! Sn or Sn ! X .
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2. Preliminaries

We now recall the Borel construction and some results on its spectral sequence. LetG
be a compact Lie group acting on a finitistic space X . Let EG ! BG be the universal
principal G-bundle. The Borel construction on X is defined as the orbit space

XG D .X �EG/=G;

where G acts diagonally (and freely) on the product X �EG . The projection X �
EG ! EG gives a fibration ([1, Chapter IV]), called the Borel fibration,

X
i
,! XG

�
�! BG :

Throughout, we use the Čech cohomology with Z2 coefficients, and suppress it from
the notation.

We exploit the Leray–Serre spectral sequence ¹Ek;lr ; drº associated to the Borel
fibration X

i
,! XG

�
�! BG ([14, Theorem 5.2]), such that

(1) dr W E
k;l
r ! E

kCr;l�rC1
r , and

E
k;l
rC1 D

ker dr W E
k;l
r ! E

kCr;l�rC1
r

im dr W E
k�r;lCr�1
r ! E

k;l
r

:

(2) The infinity termsEk;n�k1 are isomorphic to the successive quotientsF n
k
=F n

kC1

in a filtration 0 � F nn � � � � � F
n
1 � F

n
0 D H

n.XG/ of Hn.XG/.

(3) The E2-term of this spectral sequence is given by

E
k;l
2 D H

k.BG IH
l.X//;

where H l.X/ is a locally constant sheaf with stalk H l.X/, and the E2-term
converges to H�.XG/ as an algebra.

If �1.BG/ acts trivially on H�.X/, then the system of local coefficients is simple,
that is, the cohomology with local coefficients H k.BG IH

l.X// is just the (ordinary)
cohomology H k.BG IH

l.X// so that, by the universal coefficient theorem, we have

E
k;l
2 Š H

k.BG/˝H
l.X/:

Further, if the system of local coefficients is simple, the restriction of the product
structure in the spectral sequence to the subalgebras E�;02 and E0;�2 coincide with the
cup products on H�.BG/ and H�.X/, respectively. The edge homomorphisms

H k.BG/ Š E
k;0
2 � E

k;0
3 � � � �� E

k;0
k
� E

k;0
kC1
D Ek;01 � H

k.XG/

and

H l.XG/� E0;l1 D E
0;l
lC2
� E

0;l
lC1
� � � � � E

0;l
2 Š H

l.X/
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are the homomorphisms

�� W H k.BG/! H k.XG/;

i� W H l.XG/! H l.X/

respectively. The graded commutative algebraH�.XG/ is isomorphic to TotE�;�1 , the
total complex of E�;�1 , given by

.TotE�;�1 /q D
M
kClDq

Ek;l1 :

Next, we recall some known results.

Proposition 2.1 ([26, Corollary 9.6]). If a topological group G D Z2 acts freely on
a topological space X such that X ! X=G is a principal G-bundle, then the equiv-
ariant cohomology H�G.X/ D H

�.XG/ is isomorphic to H�.X=G/.

Proposition 2.2 ([2, Theorem 1.5, p. 374]). Let G D Z2 act on a finitistic space X
with H i .X/ D 0 for all i > n. Then H i .XG/ is isomorphic to H i .XG/ for i > n,
where XG is the fixed point set of the G-action.

Proposition 2.3 ([2, Corollary 7.2, p. 406]). Let G D Z2 D hgi act on a finitistic
space X . Then the element cg�.c/ 2 H 2n.X/G D H 0.BG IH

2n.X// D E
0;2n
2 is a

permanent cocycle in the spectral sequence of X ,! XG ! BG , for any c 2Hn.X/.

Proposition 2.4 ([2, Theorem 7.4, p. 407]). Let G D Z2 D hgi act on a finitistic
space X . Suppose that H i .X/ D 0 for all i > 2n and H 2n.X/ D Z2. Suppose that
c 2 Hn.X/ is an element such that cg�.c/ ¤ 0, then the fixed point set is non-empty.

Proposition 2.5 ([2, Corollary 7.5, p. 407]). Let G D Z2 D hgi act on a finitistic
space X �2 Sn � Sn and suppose that g� ¤ 1 on Hn.X/. Then the fixed point set is
non-empty.

3. Cohomology algebra of orbit space of free Z2-action on
X �2 FPm � S 4

Assume that X is a finitistic space equipped with a free involution and has the mod 2
cohomology of FPm � Sn, i.e.,

H�.X/ D Z2Œa; b�=ha
mC1; b2i;

where, deg a D �, when F D R, C or H, � D 1, 2 or 4, respectively, and deg b D n.
Now, we present three main theorems of this paper. More concretely, we determine
the cohomology algebras of orbit spaces of free involutions on X �2 FPm � S4.
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Theorem 3.1. LetG D Z2 act freely on a finitistic space X �2 RPm � S4. IfmD 5
or m D 7, assume further that the action of G on H�.X IZ2/ is trivial or X �Z

RPm � S4. Then H�.X=G/ is isomorphic to one of the following graded commuta-
tive algebras:

Z2Œx; y; z�=I1; deg x D 1; degy D 2; deg z D 4I

Z2Œx; y�=Ik; deg x D 1; degy D 1; k D 2; 3; : : : ; 9I

where the ideal Ik is listed as follows:

(1) I1 D hx2; y
mC1
2 ; z2i, where m is odd.

(2) I2 D hx5; ymC1 C ˛1xym C ˛2x2ym�1 C ˛3x3ym�2 C ˛4x4ym�3i, where
˛i 2 Z2, i D 1; : : : ; 4. If m D 1, then ˛3 D ˛4 D 0. If m D 2, then ˛4 D 0.

(3) I3 D hxmC5; ymC1 C ˛1xym C ˛2x2ym�1 C ˛3x3ym�2 C ˛4xmC1; x4yi,
where ˛i 2 Z2, i D 1; : : : ; 4. If m D 1, then ˛3 D ˛4 D 0. If m D 2, then
˛4 D 0.

(4) I4 D hxmC5; ymC1 C ˛1xym C ˛2x2ym�1 C ˛3xmy C ˛4xmC1; x3y2 C
ˇ1x

4y C ˇ2x
5; xmC3yi, where m > 2 and ˛i ; ˇ1; ˇ2 2 Z2, i D 1; : : : ; 4.

If m D 2, then ˛3 D 0.

(5) I5 D hxmC4; ymC1 C ˛1xym C ˛2x2ym�1 C ˛3xmy C ˛4xmC1; x3y2 C
ˇ1x

4y C ˇ2x
5i, where m > 2 and ˛i ; ˇ1; ˇ2 2 Z2, i D 1; : : : ; 4. If m D 2,

then ˛3 D 0.

(6) I6 D hxmC5; ymC1 C ˛1xym C ˛2xm�1y2 C ˛3xmy C ˛4xmC1; x2y3 C
ˇ1x

3y2 C ˇ2x
4y C ˇ3x

5; xmC1y2 C 1x
mC2y C 2x

mC3; xmC3yi, where
m > 3 and ˛i ; ǰ ; 1; 2 2 Z2, i D 1; : : : ; 4, j D 1; 2; 3.

(7) I7 D hxmC4; ymC1 C ˛1xym C ˛2xm�1y2 C ˛3xmy C ˛4xmC1; x2y3 C
ˇ1x

3y2 C ˇ2x
4y C ˇ3x

5; xmC1y2 C 1x
mC2y C 2x

mC3i, where m > 3
and ˛i ; ǰ ; 1; 2 2 Z2, i D 1; : : : ; 4, j D 1; 2; 3.

(8) I8 D hxmC5; ymC1 C ˛1xym C ˛2xm�1y2 C ˛3xmy C ˛4xmC1; x2y3 C
ˇ1x

3y2C ˇ2x
4yC ˇ3x

5; xmC2yi, wherem>3 and ˛i ; ǰ 2Z2, iD1; : : : ; 4,
j D 1; 2; 3.

(9) I9 D hxmC3; ymC1 C ˛1xym C ˛2xm�1y2 C ˛3xmy C ˛4xmC1; x2y3 C
ˇ1x

3y2 C ˇ2x
4y C ˇ3x

5i, where m > 3 and ˛i ; ǰ 2 Z2, i D 1; : : : ; 4,
j D 1; 2; 3.



Y. Sun and J. Wang 230

Theorem 3.2. LetG DZ2 act freely on a finitistic spaceX �2 CPm � S4. IfmD 3,
assume further that the action ofG onH�.X IZ2/ is trivial orX �Z CP 3 �S4. Then
H�.X=G/ is isomorphic to one of the following graded commutative algebras

Z2Œx; y; z�=I1; deg x D 1; degy D 4; deg z D 4I

Z2Œx; y�=Ik; deg x D 1; degy D 2; k D 2; 3I

where the ideal Ik is listed as follows:

(1) I1 D hx3; y
mC1
2 ; z2i, where m is odd.

(2) I2 D hx5; ymC1 C ˛1x2ym C ˛2x4ym�1i, where ˛1; ˛2 2 Z2.

(3) I3 D hx2mC5; ymC1 C ˛1x2ym C ˛2x2mC2; x3yi, where ˛1; ˛2 2 Z2.

Theorem 3.3. Let G D Z2 act freely on a finitistic space X �2 HPm � S4. When
m � 3 .mod 4/, assume further that the action of G on H�.X I Z2/ is trivial or
X �Z HPm � S4. Then H�.X=G/ is isomorphic to one of the following graded
commutative algebras:

Z2Œx; y; z�=I1; deg x D 1; degy D 8; deg z D 4I

Z2Œx; y�=I2; deg x D 1; degy D 4I

where the ideal I1 and I2 are as follows:

(1) I1 D hx5; y
mC1
2 C ˇx4y

m�1
2 z; z2 C y C ˛x4zi, where ˛;ˇ;  2 Z2 andm

is odd. If m D 1, then ˇ D  D 0.

(2) I2 D hx5; ymC1i.

Example 3.4. When m is odd there are standard free involutions of RPm and CPm.
The map

Œx0; x1; : : : ; xm�1; xm� 7! Œ�x1; x0; : : : ;�xm; xm�1�

defines a free involution of RPm with the orbit space RPm=Z2 �2 S1 � CP
m�1
2

([24, Example 3.3]). Quotienting by the product of the above map with the trivial Z2-
action on S4, the mod 2 cohomology algebra of the orbit space RPm � S4=Z2 is that
of S1 �CP

m�1
2 � S4, which account for case (1) in Theorem 3.1.

Similarly, the map

Œz0 W z1 W � � � W zm�1 W zm� 7! Œ�z1 W z0 W � � � W �zm W zm�1�

defines a free quaternionic involution of CPm with the orbit space CPm=Z2 �2
RP 2 �HP

m�1
2 ([24, Example 3.7]). Quotienting by the product of the above map

with the trivial Z2-action on S4, the mod 2 cohomology algebra of the orbit space
CPm � S4=Z2 is that of RP 2 �HP

m�1
2 � S4, which account for case (1) in Theo-

rem 3.2.
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The same construction as above does not apply to HPm � S4. FormD 1, namely,
X �2 S

4 � S4, by Proposition 2.5 we see that there is no free involution on X . For
m> 1, HPm has the fixed point property ([12, Example 4L.4]), where the fixed point
property of a topological space means that every continuous map (not necessarily a
self-homeomorphism) from the topological space to itself has a fixed point.

Example 3.5. Consider the trivial Z2-action on FPm and the antipodal action of Z2
on S4, then the orbit space of the free involution on FPm � S4 is FPm �RP 4. The
cohomology algebra of FPm �RP 4 account for the cases (2) of main Theorems 3.1,
3.2 and 3.3 with all coefficients zero.

When ˛1 D ˛2 D 0, Theorem 3.2 (2) describes the cohomology ring of the Dold
manifold P.4; m/. The Dold manifold P.n; m/ is the orbit space of Sn � CPm by
the free involution that acts antipodally on Sn and by complex conjugation on CPm.
Following [10], the ring structure of H�.P.n;m// is given by

H�.P.n;m// D Z2Œx; y�=hx
nC1; ymC1i;

where deg x D 1, degy D 2.

An open question coming from Theorems 3.1, 3.2 and 3.3 is to search for possible
more exotic free involutions and identify the respective cohomology algebras.

The proofs of the above three main theorems are based on spectral sequence
arguments. To make the calculation of spectral sequence easier, we firstly prove the
following general result, which is an extension of [24, Lemma 3.1].

Lemma 3.6. Let G D Z2 act freely on a finitistic space X �2 FPm � Sn, where
F D R, C or H. Let � D 1, 2 or 4, respectively. Then the action of G on H�.X IZ2/
is trivial with possibly two exceptions,

(i) m � 3 .mod 4/ and n D �;

(ii) �m D nC j , j � � .mod 2�/, 0 6 j < n and n
�
� 0 .mod 2/.

Proof. The mod 2 cohomology algebra H�.X IZ2/ has two generators a and b satis-
fying amC1 D 0 and b2 D 0. Let g be the generator of G D Z2. By the naturality of
the cup product, we get

g�.aib/ D g�.a/ig�.b/ for all i > 0;

where g� is the mod 2 cohomology isomorphism H�.X IZ2/! H�.X IZ2/.
Firstly, we claim that

g�.a/ D a, except the case: m � 3 .mod 4/ and n D �.

I If deg a D � ¤ n D deg b, we clearly have g�.a/ D a.
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I For m D 1, n D �, the mod 2 cohomology of X is the same as of

S1 � S1; S2 � S2 or S4 � S4:

If G acts nontrivially on H�.X IZ2/, by Proposition 2.5, we have that XG is
non-empty, which contradicts the action being free.

I For m > 1 and m � 1 .mod 4/, n D �. Since the orders of a and b are mC 1
and 2, respectively, it follows that g�.a/ ¤ b. Let c D a

mC1
2 2 H�mC12 .X IZ2/.

If g�.a/ D aC b, then

cg�.c/ D a
mC1
2 .aC b/

mC1
2 D a

mC1
2

�
a
mC1
2 C

mC1
2
a
m�1
2 b

�
D amb ¤ 0:

By Proposition 2.4, XG is non-empty, which contradicts the action being free. So
g�.a/ D a.

I Form> 1 even, nD �. If g�.a/D aC b, then amC1 D 0 gives 0D g�.amC1/D
.aC b/mC1 D .mC 1/amb D amb, a contradiction.

Therefore, except for the case when m � 3 .mod 4/ and n D �, we have g�.a/ D a
and Lemma 3.6 is reduced to show that

g� W Hn.X IZ2/! Hn.X IZ2/

is the identity isomorphism.
If � − n or �m<n, the cohomology groupH j .X IZ2/ is Z2 or zero for any j > 0,

Lemma 3.6 is obvious. Thus we need to consider that � j n and �m > n, m > 1.
IfG acts nontrivially onH�.X IZ2/, then we get g�.b/D a

n
� or g�.b/D a

n
� C b.

If g�.b/ D a
n
� , then g�.amb/ D amC

n
� D 0. Since g� is an isomorphism, this gives

amb D 0, which is a contradiction. So we must have

g�.b/ D a
n
� C b: (3.1)

From now on to the end of the proof of Lemma 3.6, we show that (3.1) does not hold.

• If � j n and �m > 2n, we have 0 D g�.b2/ D .a
n
� C b/2 D a

2n
� , a contradiction.

Thus (3.1) cannot happen.

• In the following, we assume that � j n and 2n > �m > n.

(1) For the case �m D nC j , j � 0 .mod 2�/ and 0 6 j < n, set c D a
j
2� b 2

H
�mCn
2 .X I Z2/. We have cg�.c/ D amb ¤ 0, which contradicts Proposition 2.4.

Thus (3.1) cannot happen.
(2) Now, let us consider the case �m D nC j , j � � .mod 2�/ and 0 6 j < n.

When l ¤ n; n C �; : : : ; n C j , the coefficient sheaf H l.X IZ2/ is constant with
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stalk H l.X IZ2/ isomorphic to Z2 or zero. Then g� W H l.X IZ2/! H l.X IZ2/ is
clearly the identity isomorphism, so �1.BG/ Š G acts trivially on H l.X IZ2/, and
the E2-term of the Leray–Serre spectral sequence associated to the Borel fibration
X ,! XG ! BG is

E
k;l
2 ŠH

k.BG IZ2/˝H
l.X IZ2/; k > 0; l ¤ n;nC �;nC 2�; : : : ;nC j: (3.2)

To consider theG-action onH l.X IZ2/ when l D n;nC �; : : : ; nC j , recall that
BG D RP1 is a connected CW-complex with one cell in each dimension,

RP1 D e0 [ e1 [ e2 [ � � � :

EG DS
1 is the universal covering space of RP1, and the corresponding cell decom-

position is
S1 D e0C [ e

0
� [ e

1
C [ e

1
� [ e

2
C [ e

2
� [ � � � ;

with ei
˙

being the upper and lower hemispheres of the i -sphere. According to [5,
§5.2.1], the action of �1.BG/ Š Z2 on S1 gives C�.S1/ the structure of a ZŒZ2�-
chain complex, where

ZŒZ2� D ZŒg�=hg2 � 1i D ¹a0 C a1g j a0; a1 2 Zº

denotes the group ring. A basis for the free (rank 1) ZŒZ2�-module Ci .S1/ is eiC.
With the choice of the basis, the ZŒZ2�-chain complex C�.S1/ is isomorphic to

� � � ! ZŒZ2�! � � �
1�g
���! ZŒZ2�

1Cg
���! ZŒZ2�

1�g
���! ZŒZ2�! 0:

Let
� D 1 � g�; � D 1C g�:

The cochain complex HomZŒZ2�.C�.S
1/;H l.X IZ2// is isomorphic to

� � �  H l.X IZ2/ � � �
�
 � H l.X IZ2/

�
 �� H l.X IZ2/

�
 � H l.X IZ2/ 0:

So the E2-term of the Leray–Serre spectral sequence associated to the fibration X ,!

XG ! BG is given by

E
k;l
2 D H

k.BG IH
l.X IZ2// Š H

k
�
HomZŒZ2�.C�.S

1/;H l.X IZ2//
�

Š

8̂̂<̂
:̂

ker �; k D 0;

ker �= im �; k > 0 even;

ker �= im �; k > 0 odd:
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For l D n; n C �; : : : ; n C j , H l.X IZ2/ Š Z2 ˚ Z2 is generated by a basis a
l
� ,

a
l�n
� b. Note that � D � and the matrix representation of � with the natural basis

is
�
0 1
0 0

�
. It is easy to see that

E
k;l
2 Š

´
0; k > 0 and l D n; nC �; : : : ; nC j;

Z2; k D 0 and l D n; nC �; : : : ; nC j:
(3.3)

IfX �2 CPm �Sn, degaD �D 2, degbD n, n being even implies thatEk;l2 D 0
for l odd. This gives d2 D 0 W E

k;l
2 ! E

kC2;l�1
2 and hence E�;�2 D E

�;�
3 . If X �2

HPm � Sn, � D 4, � dividing n implies that Ek;lr D 0 for 4 − l . This gives dr D 0 W
E
k;l
r ! E

kCr;l�rC1
r for 2 6 r 6 4 and hence E�;�2 D E

�;�
5 . That is to say, for X �2

FPm � Sn, where F D R, C or H, we have

E
�;�
2 D E

�;�
�C1

: (3.4)

If n
�
� 1 .mod 2/, by (3.2), (3.4) and the derivation property of the differential,

d�C1
�
1˝ a

n
�
�1
�
D

�n
�
� 1

��
1˝ a

n
�
�2
�
d�C1.1˝ a/ D 0:

Note that d�C1 W E
k;nCjC�

�C1
! E

kC�C1;nCj

�C1
is trivial as EkC�C1;nCj

�C1
D 0 (by (3.3))

for all k, particularly, d�C1.tk ˝ a
j
�
C1b/ D 0. By (3.4) and (3.2),

E
k;2nCj

�C1
D E

k;2nCj
2 Š H k.BG IZ2/˝H

2nCj .X IZ2/

is generated by the unique element tk ˝ a
nCj
� b. Furthermore, by the multiplicative

structure of the spectral sequence, we have

d�C1
�
tk ˝ a

nCj
� b

�
D d�C1

��
tk ˝ a

j
�
C1b

��
1˝ a

n
�
�1
��
D 0:

Consequently,

d�C1 W E
k;2nCj

�C1
! E

kC�C1;2nCj��

�C1
is trivial for all k:

Set c D a
j��
2� b. Then, by Proposition 2.3,

1˝ cg�.c/ D 1˝ a
nCj��
� b 2 E

0;2nCj��
2

is a permanent cocycle. By degree reasons, t ˝ 1 2 E1;02 is a permanent cocycle,
therefore tk ˝ a

nCj��
� b 2 E

k;2nCj��
2 is also a permanent cocycle for all k.

By (3.4), when � D 2 or 4, dr D 0 W E
k;l
r ! E

kCr;l�rC1
r for 2 6 r < � C 1.

Moreover,
d�C1 W E

k;2nCj

�C1
! E

kC�C1;2nCj��

�C1

is trivial for all k and � D 1; 2 or 4, hence tk ˝ a
nCj��
� b 2 E

k;2nCj��
r is not hit

by any dr -coboundaries, 2 6 r 6 �C 1. Since X has the mod 2 cohomology of
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FPm � Sn, for �m D nC j , we have H l.X IZ2/ D 0 for l > 2nC j . As a result,
dr WE

k�r;2nCjCr���1
r !E

k;2nCj��
r is trivial for �C 1<r asEk�r;2nCjCr���12 D0.

So tk ˝ a
nCj��
� b 2 E

k;2nCj��
r is not hit by any dr -coboundaries, r > 2. Then,

tk ˝ a
nCj��
� b survives to a nontrivial element in E1. However, this contradicts

Proposition 2.2. Thus (3.1) does not happen. Therefore, the action ofG onH�.X IZ2/
is trivial.

As stated in Lemma 3.6, there are two possible exceptional cases in which we
cannot prove that the action of G on H�.X IZ2/ is trivial. Alternatively, we prove
this when X is additionally assumed to have the integral cohomology of FPm � Sn

for F DC or H. The following proof is inspired by the discussions in [8, Theorem 4.5
and Lemma 5.1].

Lemma 3.7. Let G D Z2 act freely on a finitistic space X �Z FPm � Sn, where
F D C or H. Then the action of G on H�.X IZ2/ is trivial.

Proof. The integral cohomology generators of H�.X IZ/ Š H�.FPm � SnIZ/ are
also denoted as a and b. Let g�Z be the induced integral cohomology homomorphism
H�.X IZ/!H�.X IZ/. Then g�Z is an automorphism and preserves degrees as well
as cup-length, where for a cohomology class x, the cup-length of x is the greatest
integer k such that xk ¤ 0. Note that the cup-length of a sum of the integral generators
is the sum of the cup-lengths of the individual generators. FormD 1, nD �, the mod 2
cohomology of X is the same as of

S2 � S2 or S4 � S4:

If G acts nontrivially on H�.X IZ2/, by Proposition 2.5, we have XG is non-empty,
which contradicts the action being free. Therefore, except for the case when m D 1,
n D �, we clearly have

g�Z.a/ D ˙a; g
�
Z.b/ D ˙b:

The integral cohomology group ofX �Z FPm �Sn is torsion free for any dimen-
sion l , so

H l.X IZ2/ Š H
l.X IZ/˝ Z2:

Considering the mod 2 reduction � WH l.X IZ/!H l.X IZ2/, we have the following
commutative diagram:

H l.X IZ/

�

��

g�Z // H l.X IZ/

�

��

H l.X IZ2/
g�
// H l.X IZ2/:

Thus the mod 2 cohomology homomorphism g� is the identity homomorphism.
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Remark 3.8. For the exceptional casesmD 5;7 in Theorem 3.1, ifX �Z RPm �S4,
the trivial action of G on H�.X IZ2/ is easily seen as follows:

It is known that

H�.RP 2kC1IZ/ Š ZŒa1; a2�=h2a1; a
kC1
1 ; a22; a1a2i;

deg a1 D 2; deg a2 D 2k C 1:

Let g�Z W H
�.X IZ/! H�.X IZ/ be the induced automorphism. The action of the

involution on the generator b 2 H 4.X I Z/ coming from H 4.S4I Z/ must reduce
mod 2 to the identity action. Otherwise we would have that g�Z.b/ D ˙b C a

2
1 and

this cannot happen as the class b ˙ a21 does not square to zero in H�.X IZ/.

Lemmas 3.6, 3.7 and Remark 3.8 are sufficient for the proof of the main The-
orems 3.1, 3.2 and 3.3. The parts of the main theorems that are affected by the
exceptions of Lemma 3.6 occur only in cases of RP 5 � S4, RP 7 � S4, CP 3 � S4

and HPm � S4, m � 3 .mod 4/. But with an additional assumption about the triv-
ial action of G on H�.X IZ2/ or the integral cohomology of FPm � S4 mentioned
in Lemma 3.7 and Remark 3.8, it is possible to show the above cases of the main
theorems.

4. Proofs of the main theorems

Let G D Z2 act freely on a finitistic space X �2 FPm � S4, where F D R, C or H.
By Lemmas 3.6, 3.7 and Remark 3.8, �1.BG/ Š Z2 acts trivially on H�.X/, hence,
the E2-term of the Leray–Serre spectral sequence associated to the fibration X ,!

XG ! BG has the form

E
k;l
2 D H

k.BG/˝H
l.X/:

Recall that,
H�.BG/ D Z2Œt �; where deg t D 1:

4.1. Proof of Theorem 3.1

Let G D Z2 act freely on X �2 RPm � S4. Using the KRunneth formula, we observe
that,

H l.X/ D

8̂̂<̂
:̂

Z2; 0 6 l 6 min¹3;mº or max¹4;mC 1º 6 l 6 mC 4;
.Z2/2; 4 6 l 6 m;
0; otherwise:
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Let a 2 H 1.X/ and b 2 H 4.X/ be the generators of the cohomology algebra of
H�.X/, satisfying amC1 D 0 and b2 D 0. By degree reasons, t ˝ 1 2 E1;02 is a
permanent cocycle and survives to a nontrivial element x 2 E1;01 , i.e., by the edge
homomorphism,

x D ��.t/ 2 E1;01 � H
1.XG/: (4.1)

Since Z2 acts freely on X , by Proposition 2.2, the spectral sequence does not
collapse. Otherwise, we get H i .X=G/ ¤ 0 for infinitely many values of i > mC 4.
It implies that some differential dr W E

k;l
r ! E

kCr;l�rC1
r must be nontrivial. Note

that E�;�2 is generated by t ˝ 1 2 E1;02 , 1˝ a 2 E0;12 and 1˝ b 2 E0;42 . There can
only be nontrivial differentials dr on these generators when 2 6 r 6 5. It follows
immediately that there are five possibilities for nontrivial differentials on generators,

(i) d2.1˝ a/ ¤ 0;

(ii) d2.1˝ a/ D 0, dr.1˝ b/ D 0, r D 2; 3; 4 and d5.1˝ b/ ¤ 0;

(iii) d2.1˝ a/ D 0, dr.1˝ b/ D 0, r D 2; 3 and d4.1˝ b/ ¤ 0;

(iv) d2.1˝ a/ D 0, d2.1˝ b/ D 0 and d3.1˝ b/ ¤ 0;

(v) d2.1˝ a/ D 0 and d2.1˝ b/ ¤ 0.

In the following, we discuss each case separately.

Case (i). d2.1˝ a/ D t2 ˝ 1 ¤ 0.
Ifm is even, then amC1 D 0 gives 0D d2..1˝ am/.1˝ a//D t2˝ am, a contra-

diction. Hence m must be odd. There are two possible subcases: either d2.1˝ b/ D
t2 ˝ a3 ¤ 0 or d2.1˝ b/ D 0.

If d2.1˝ b/ D t2 ˝ a3 ¤ 0 (in this subcase, m > 3), by the derivation property
of the differential, we have8̂̂<̂

:̂
d2.1˝ a

j / D j.t2 ˝ aj�1/; 1 6 j 6 m;
d2.1˝ a

j b/ D t2 ˝ ajC3 C j.t2 ˝ aj�1b/; 0 6 j 6 m � 3;
d2.1˝ a

j b/ D j.t2 ˝ aj�1b/; m � 2 6 j 6 m:

Note that

d2.1˝ ab/ D

´
t2 ˝ b C t2 ˝ a4; m > 5;
t2 ˝ b; m D 3;

d2d2.1˝ ab/ D

´
d2.t

2 ˝ b C t2 ˝ a4/; m > 5;
d2.t

2 ˝ b/; m D 3;

D t4 ˝ a3 ¤ 0:
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This contradicts d2d2 D 0, thus d2.1 ˝ b/ D 0. By the derivation property of the
differential, we have´

d2.1˝ a
j / D j.t2 ˝ aj�1/; 1 6 j 6 m;

d2.1˝ a
j b/ D j.t2 ˝ aj�1b/; 0 6 j 6 m:

The E2-term and d2-differentials look like Figure 1. In all Figures of this paper,
we write tkal ; tkal�4b for tk ˝ al ; tk ˝ al�4b 2 Ek;l2 respectively. Each black dot
represents a Z2 summand and the two types of lines (colored by red, cyan) represent
multiplication by a and b, and the arrowed line (colored by blue) represents a non-
trivial differential. In columns k � 2 and k, if there is no arrowed line starting from a
black dot, then d2 vanishes on this class.

Since

E
k;l
3 D

ker¹d2 W E
k;l
2 ! E

kC2;l�1
2 º

im¹d2 W E
k�2;lC1
2 ! E

k;l
2 º

;

� � � k � 2 > 0 k k C 2

0

1

2

3

4

5

:::

m

mC 1

mC 2

mC 3

mC 4

:::
:::

tk�2

tk�2a

tk�2am

tk

tka

tkam

tkC2

tkC2a

tkC2am

tk�2b

tk�2amb

tkb

tkab

tkamb

tkC2b

tkC2amb

Figure 1. E2-term and d2-differentials in Case (i)
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it is clear from Figure 1 that

E
k;l
3 D

8̂̂<̂
:̂

Z2; k D 0; 1I l D 0; 2;mC 1;mC 3;

.Z2/2; k D 0; 1I 4 6 l 6 m and l even;

0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 3 as EkCr;l�rC1r D 0, so

E
�;�
3 D E�;�1 :

Since H�.XG/ Š TotE�;�1 , the additive structure of H�.XG/ is given by

H j .XG/ D

8̂̂<̂
:̂

Z2; 0 6 j 6 3 or mC 1 6 j 6 mC 4;
.Z2/2; 4 6 j 6 m;
0; j > mC 4:

As E2;01 D 0, by (4.1), we have x2 D 0. Notice that the elements 1˝ a2 2 E0;22
and 1 ˝ b 2 E0;42 are permanent cocycles and are not hit by any dr -coboundaries.
Hence, they determine nontrivial elements u 2 E0;21 and v 2 E0;41 , respectively. We
have u

mC1
2 D 0 as amC1 D 0, and v2 D 0 as b2 D 0. Thus

TotE�;�1 Š Z2Œx; u; v�=hx
2; u

mC1
2 ; v2i;

where deg x D 1, degu D 2, deg v D 4.
By the identification of the edge homomorphism there exist y 2 H 2.XG/ and

z 2H 4.XG/ such that i�.y/D a2 and i�.z/D b, respectively. Notice thatH j .XG/D

E
k;j�k
1 , where kD0;1 and j � k even. Consequently, y

mC1
2 2HmC1.XG/DE

0;mC1
1

is represented by amC1 2 E0;mC12 and z2 2 H 8.XG/ D E
0;8
1 is represented by b2 2

E
0;8
2 . So we have the following relations:

y
mC1
2 D 0; z2 D 0:

Therefore, H�.XG/ is the graded commutative algebra

Z2Œx; y; z�=hx
2; y

mC1
2 ; z2i;

where degy D 2, deg z D 4 and m is odd. This gives possibility (1) of Theorem 3.1.

Case (ii). d2.1˝ a/ D 0, dr.1˝ b/ D 0, 2 6 r 6 4 and d5.1˝ b/ D t5 ˝ 1 ¤ 0.
In this case we have dr D 0, 2 6 r 6 4, E�;�2 D E

�;�
5 , and´

d5.1˝ a
j / D 0; 1 6 j 6 m;

d5.1˝ a
j b/ D t5 ˝ aj ; 0 6 j 6 m:
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Furthermore, we have

E
k�5;lC4
5

d5
��! E

k;l
5

d5
��! E

kC5;l�4
5 ;

tk�5 ˝ alb
d5
7��! tk ˝ al

d5
7��! 0;

tk�5 ˝ alC4
d5
7��! 0; tk ˝ al�4b

d5
7��! tkC5 ˝ al�4:

So

E
k;l
6 D

´
Z2; 0 6 k 6 4I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 6 as EkCr;l�rC1r D 0, so

E
�;�
6 D E�;�1 :

The additive structure of H�.XG/ is given by

H j .XG/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

Z2; j D 0;mC 4;

.Z2/2; j D 1;mC 3;

.Z2/3; j D 2;mC 2;

.Z2/4; j D 3;mC 1;

.Z2/5; 4 6 j 6 m .for m > 4/;
0; otherwise:

(4.2)

Notice that the element 1˝ a 2 E0;12 is a permanent cocycle and is not a dr -co-
boundary. Hence, it determines a nontrivial element u 2 E0;11 . As we have remarked,
amC1 D 0, so

umC1 D 0: (4.3)

As E5;01 D 0, by (4.1), we have x5 D 0. Thus

TotE�;�1 Š Z2Œx; u�=hx
5; umC1i;

where degu D 1.
Further, choose y 2 H 1.XG/ such that i�.y/ D a. By considering the filtration

on HmC1.XG/,

0 D FmC1mC1 D � � � D F
mC1
5 � FmC14 � FmC13 � FmC12 � FmC11„ ƒ‚ …
E
4;m�3
1

„ ƒ‚ …
E
3;m�2
1

„ ƒ‚ …
E
2;m�1
1

„ ƒ‚ …
E
1;m
1

D FmC10 D HmC1.XG/; (4.4)

we get the following relation:

ymC1 D ˛1xy
m
C ˛2x

2ym�1 C ˛3x
3ym�2 C ˛4x

4ym�3;
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where ˛i 2 Z2, i D 1; : : : ; 4. Therefore,

H�.XG/ D Z2Œx; y�=hx
5; ymC1 C ˛1xy

m
C ˛2x

2ym�1

C ˛3x
3ym�2 C ˛4x

4ym�3i;

where deg y D 1. If m D 1, then ˛3 D ˛4 D 0. If m D 2, then ˛4 D 0. This gives
possibility (2) of Theorem 3.1.

In the remaining cases, Cases (iii)–(v), there will be classes u2E0;11 , y2H 1.XG/

defined as above and relation (4.3) will be satisfied.

Case (iii). d2.1˝ a/ D 0, dr.1˝ b/ D 0, r D 2; 3 and d4.1˝ b/ D t4 ˝ a ¤ 0.
This case implies that dr D 0, r D 2; 3, E�;�4 D E

�;�
2 . So we have8̂̂<̂

:̂
d4.1˝ a

j / D 0; 1 6 j 6 m;
d4.1˝ a

j b/ D t4 ˝ ajC1; 0 6 j 6 m � 1;
d4.1˝ a

mb/ D 0:

The E4-term and d4-differentials look like Figure 2. Then

E
k;l
5 D

8̂̂<̂
:̂

Z2; k > 4I l D 0; mC 4;
Z2; 0 6 k 6 3I 0 6 l 6 m; l D mC 4;
0; otherwise:

Since 1 ˝ a is a permanent cocycle, by the derivation property of the differential,
d5.1˝ a

j /D 0, 16 j 6m, and all d5 W E
k;l
5 ! E

kC5;l�4
5 is zero by degree reasons.

Similarly, dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all 6 6 r 6 mC 4. Thus

E
�;�
mC5 D E

�;�
5 :

Now, if dmC5 W E
0;mC4
mC5 ! E

mC5;0
mC5 is trivial, then by the multiplicative properties

of the spectral sequence, we have E�;�mC5 D E
�;�
1 . Therefore the bottom line (l D 0)

and the top line (l D mC 4) of the spectral sequence survive to E1, which reduces
to H i .X=G/ ¤ 0 for all i > mC 4. That contradicts Proposition 2.2. Thus, dmC5 W
E
0;mC4
mC5 ! E

mC5;0
mC5 must be nontrivial. It follows immediately that dmC5 WE

k;mC4
mC5 !

E
kCmC5;0
mC5 is an isomorphism for all k. So

E
k;l
mC6 D

8̂̂<̂
:̂

Z2; 4 6 k 6 mC 4I l D 0;
Z2; 0 6 k 6 3I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 6 as EkCr;l�rC1r D 0, so

E�;�1 D E
�;�
mC6:

It follows that the cohomology groups H j .XG/ are the same as (4.2).
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� � � k � 4 > 0 k k C 4

0

1

2

3

4

5

6

7

:::

m

mC 1

mC 2

mC 3

mC 4

tk�4

tk�4a

tk�4am

tk

tka

tka2

tkam

tkC4

tkC4a

tkC4am

tk�4b

tk�4amb

tkb

tkab

tkamb

tkC4b

tkC4amb

:::
:::

Figure 2. E4-term and d4-differentials in Case (iii)

As EmC5;01 D 0, by (4.1), we have xmC5 D 0. Clearly, x4u D 0. Combining with
(4.3), then

TotE�;�1 Š Z2Œx; u�=hx
mC5; umC1; x4ui:

Now, choose y0 2 H 1.XG/ such that i�.y0/ D a. By considering the filtration
on HmC1.XG/,

0 � FmC1mC1„ ƒ‚ …
E
mC1;0
1

D � � � D FmC14 � FmC13 � FmC12 � FmC11„ ƒ‚ …
E
3;m�2
1

„ ƒ‚ …
E
2;m�1
1

„ ƒ‚ …
E
1;m
1

D FmC10 D HmC1.XG/; (4.5)
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we get the following relation:

.y0/mC1 D ˛01x.y
0/m C ˛02x

2.y0/m�1 C ˛03x
3.y0/m�2 C ˛04x

mC1;

where ˛0i 2 Z2, i D 1; : : : ; 4. By considering the filtration on H 5.XG/,

0 � F 55„ ƒ‚ …
E
5;0
1

D F 54 � F
5
3 � F

5
2 � F

5
1 � F

5
0 D H

5.XG/;„ ƒ‚ …
E
3;2
1

„ƒ‚…
E
2;3
1

„ƒ‚…
E
1;4
1

„ƒ‚…
E
0;5
1

we can write x4y0 as
x4y0 D ˇx5; ˇ 2 Z2:

By choosing a particular
y D y0 C ˇx; (4.6)

the above relations can be simplified as

ymC1 D ˛1xy
m
C ˛2x

2ym�1 C ˛3x
3ym�2 C ˛4x

mC1;

x4y D 0;

where ˛i .i D 1; : : : ; 4/ 2 Z2. Thus, H�.XG/ is the graded commutative algebra
Z2Œx; y�=I , where I is the ideal given by

I D hxmC5; ymC1 C ˛1xy
m
C ˛2x

2ym�1 C ˛3x
3ym�2 C ˛4x

mC1; x4yi:

If m D 1, then ˛3 D ˛4 D 0. If m D 2, then ˛4 D 0. This gives possibility (3) of
Theorem 3.1.

Case (iv). d2.1˝ a/ D 0, d2.1˝ b/ D 0 and d3.1˝ b/ D t3 ˝ a2 ¤ 0.
Obviously, m > 2, d2 D 0 and E�;�3 D E

�;�
2 . Since8̂̂<̂

:̂
d3.1˝ a

j / D 0; 1 6 j 6 m;
d3.1˝ a

j b/ D t3 ˝ ajC2; 0 6 j 6 m � 2;
d3.1˝ a

j b/ D 0; j D m � 1;m;

the E3-term and d3-differentials look like Figure 3. Then

E
k;l
4 D

8̂̂<̂
:̂

Z2; k > 3I l D 0; 1;mC 3;mC 4;
Z2; 0 6 k 6 2I 0 6 l 6 m; l D mC 3;mC 4;
0; otherwise:

(4.7)

Consider the bidegrees ofE�;�4 , dr WE
k;l
r ! E

kCr;l�rC1
r is zero for all 46 r 6mC 2.

So
E
k;l
mC3 D E

k;l
4 ; for all k; l: (4.8)



Y. Sun and J. Wang 244

� � � k � 3 > 0 k k C 3

0
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5

6

:::

m

mC 1

mC 2

mC 3

mC 4

tk�3

tk�3a

tk�3am

tk

tka

tka2

tkam

tkC3

tkC3a

tkC3am

tk�3b

tk�3amb

tkb

tkab

tkamb

tkC3b

tkC3amb

:::
:::

Figure 3. E3-term and d3-differentials in Case (iv)

The differential dr W E
0;mC3
r ! E

r;mC4�r
r (r > mC 3) can only be nontrivial when

r D mC 3 or mC 4. If dr W E
0;mC3
r ! E

r;mC4�r
r is trivial for r D mC 3 and r D

mC 4, then dr D 0 W E
k;mC3
r ! E

kCr;mC4�r
r for any k, r D mC 3 and r D mC 4.

Thus E�;�mC3 D E
�;�
1 , at least two lines of the spectral sequence survive to E1, which

contradicts Proposition 2.2. Thus, we get two possibilities:

(iv.1) dmC3 W E
0;mC3
mC3 ! E

mC3;1
mC3 is nontrivial.

(iv.2) dmC3 W E
0;mC3
mC3 ! E

mC3;1
mC3 is trivial and dmC4 W E

0;mC3
mC4 !E

mC4;0
mC4 is non-

trivial.

Subcase (iv.1). If dmC3 WE
0;mC3
mC3 ! E

mC3;1
mC3 is nontrivial, then dmC3.1˝ am�1b/D

tmC3 ˝ a, and
dmC3 W E

k;l
mC3 ! E

kCmC3;l�m�2
mC3

is an isomorphism for all k and l D mC 3 and a trivial homomorphism otherwise.
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Consequently,

E
k;l
mC4 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; k > mC 3I l D 0;mC 4;
Z2; 3 6 k 6 mC 2I l D 0; 1;mC 4;
Z2; 0 6 k 6 2I 0 6 l 6 m; l D mC 4;
0; otherwise:

The differential dr W E
0;mC4
r ! E

r;mC5�r
r (r > mC 4) can only be nontrivial when

r D m C 5. If dmC5 W E
0;mC4
mC5 ! E

mC5;0
mC5 is trivial, then dmC5 D 0 W E

k;mC4
mC5 !

E
kCmC5;0
mC5 for any k. Thus E�;�mC4 D E

�;�
1 . Therefore the bottom line (l D 0) and

the top line (l D mC 4) of the spectral sequence survive to E1, which contradicts
Proposition 2.2. Therefore, the differential dmC5 W E

0;mC4
mC5 ! E

mC5;0
mC5 is nontrivial.

Then dmC5 W E
k;l
mC5 ! E

kCmC5;l�m�4
mC5 is an isomorphism for all k and l D mC 4

and a trivial homomorphism otherwise. Consequently,

E
k;l
mC6 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; k D mC 3;mC 4I l D 0;

Z2; 3 6 k 6 mC 2I l D 0; 1;
Z2; 0 6 k 6 2I 0 6 l 6 m;
0; otherwise:

(4.9)

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 6 as EkCr;l�rC1r D 0, so

E
�;�
mC6 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
As EmC5;01 D 0, by (4.1), we have xmC5 D 0. Clearly, x3u2 D 0; xmC3u D 0.

Combining with (4.3), then

TotE�;�1 Š Z2Œx; u�=hx
mC5; umC1; x3u2; xmC3ui:

Similar to the discussion of the filtration (4.4) or (4.5) and the particular choice of
y in (4.6), consider (4.9), we get the following relations:

ymC1 D ˛1xy
m
C ˛2x

2ym�1 C ˛3x
my C ˛4x

mC1;

x3y2 D ˇ1x
4y C ˇ2x

5;

xmC3y D 0;

where ˛i .i D 1; : : : ; 4/, ˇ1; ˇ2 2 Z2. So the graded commutative algebra H�.XG/
is Z2Œx; y�=I , where I is the ideal given by

I D hxmC5; ymC1 C ˛1xy
m
C ˛2x

2ym�1 C ˛3x
my C ˛4x

mC1;

x3y2 C ˇ1x
4y C ˇ2x

5; xmC3yi;

where m > 2. If m D 2, then ˛3 D 0. This gives possibility (4) of Theorem 3.1.
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Subcase (iv.2). If dmC3 WE
0;mC3
mC3 !E

mC3;1
mC3 is trivial and dmC4 WE

0;mC3
mC4 !E

mC4;0
mC4

is nontrivial, then

dmC3 D 0 W E
k;l
mC3 ! E

kCmC3;l�m�2
mC3 ; for any k; l;

dmC4.1˝ a
m�1b/ D tmC4 ˝ 1;

dmC4.1˝ a
mb/ D tmC4 ˝ a:

(4.10)

Furthermore, we obtain that

dmC4 W E
k;l
mC4 ! E

kCmC4;l�m�3
mC4 (4.11)

is an isomorphism for all k, l DmC 3;mC 4 and a trivial homomorphism otherwise.
Consequently, by (4.8), (4.10) and (4.11), we have

E
k;l
mC5 D

8̂̂<̂
:̂

Z2; 3 6 k 6 mC 3I l D 0; 1;
Z2; 0 6 k 6 2I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 5 as EkCr;l�rC1r D 0, so

E
�;�
mC5 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
AsEmC4;01 D 0, by (4.1), we have xmC4 D 0. Clearly, x3u2 D 0. Combining with

(4.3), then
TotE�;�1 Š Z2Œx; u�=hx

mC4; umC1; x3u2i:

The graded commutative algebra H�.XG/ is Z2Œx; y�=I , where I is the ideal given
by

I D hxmC4; ymC1 C ˛1xy
m
C ˛2x

2ym�1 C ˛3x
my C ˛4x

mC1;

x3y2 C ˇ1x
4y C ˇ2x

5
i;

where m > 2 and ˛i .i D 1; : : : ; 4/, ˇ1; ˇ2 2 Z2. If m D 2, then ˛3 D 0. This gives
possibility (5) of Theorem 3.1.

Case (v). d2.1˝ a/ D 0 and d2.1˝ b/ D t2 ˝ a3 ¤ 0.
Obviously, m > 3. We have8̂̂<̂

:̂
d2.1˝ a

j / D 0; 1 6 j 6 m;
d2.1˝ a

j b/ D t2 ˝ ajC3; 0 6 j 6 m � 3;
d2.1˝ a

j b/ D 0; m � 2 6 j 6 m:
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� � � k � 2 > 0 k k C 2

0

1

2

3

4

5

:::

m

mC 1

mC 2

mC 3

mC 4

tk�2

tk�2a

tk�2am

tk

tka

tka2

tkam

tkC2

tkC2a

tkC2am

tk�2b

tk�2amb

tkb

tkab

tkamb

tkC2b

tkC2amb

:::
:::

Figure 4. E2-term and d2-differentials in Case (v)

The E2-term and d2-differentials look like Figure 4. Then

E
k;l
3 D

8̂̂<̂
:̂

Z2; k > 2I l D 0; 1; 2;mC 2;mC 3;mC 4;
Z2; k D 0; 1I 0 6 l 6 m; l D mC 2;mC 3;mC 4;
0; otherwise:

(4.12)

Clearly, dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all 3 6 r 6 m. So

E
k;l
3 D E

k;l
mC1; for all k; l: (4.13)

The differential dr W E
0;mC2
r ! E

r;mC3�r
r (r > mC 1) can only be nontrivial when

r D m C 1; m C 2; m C 3. If dr W E
0;mC2
r ! E

r;mC3�r
r is trivial for r D m C 1;

mC 2;mC 3, then dr D 0 W E
k;mC2
r ! E

kCr;mC3�r
r for any k, r D mC 1, mC 2

and mC 3. Thus E�;�mC1 D E
�;�
1 , at least two lines of the spectral sequence survive to

E1, which contradicts Proposition 2.2. Therefore, we get the following subcases:

(v.1) dmC1 W E
0;mC2
mC1 ! E

mC1;2
mC1 is nontrivial.
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(v.2) dmC1 D 0 W E
0;mC2
mC1 ! E

mC1;2
mC1 and dmC2 W E

0;mC2
mC2 ! E

mC2;1
mC2 is nontriv-

ial.

(v.3) dr D 0 W E
0;mC2
r ! E

r;mC3�r
r , r D mC 1;mC 2 and dmC3 W E

0;mC2
mC3 !

E
mC3;0
mC3 is nontrivial.

Subcase (v.1). If dmC1 W E
0;mC2
mC1 ! E

mC1;2
mC1 is nontrivial, then dmC1.1˝ am�2b/D

tmC1 ˝ a2, and dmC1 W E
k;l
mC1 ! E

kCmC1;l�m
mC1 is an isomorphism for all k and l D

mC 2 and a trivial homomorphism otherwise. Consequently,

E
k;l
mC2 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; k > mC 1I l D 0; 1;mC 3;mC 4;
Z2; 2 6 k 6 mI l D 0; 1; 2;mC 3;mC 4;
Z2; k D 0; 1I 0 6 l 6 m; l D mC 3;mC 4;
0; otherwise:

(4.14)

Clearly, dmC2 W E
k;l
mC2 ! E

kCmC2;l�m�1
mC2 is zero by degree reasons. So

E
k;l
mC2 D E

k;l
mC3; for all k; l: (4.15)

The differential dr W E
0;mC3
r ! E

r;mC4�r
r (r > mC 3) can only be nontrivial when

r D mC 3;mC 4. If dr W E
0;mC3
r ! E

r;mC4�r
r is trivial for r D mC 3;mC 4, then

dr D 0 W E
k;mC3
r ! E

kCr;mC4�r
r for any k, r D mC 3 and mC 4. Thus E�;�mC3 D

E�;�1 , at least two lines of the spectral sequence survive to infinity, which contradicts
Proposition 2.2. Thus, we get two possibilities:

(v.1.1) dmC3 W E
0;mC3
mC3 ! E

mC3;1
mC3 is nontrivial.

(v.1.2) dmC3 D 0 W E
0;mC3
mC3 ! E

mC3;1
mC3 and dmC4 W E

0;mC3
mC4 ! E

mC4;0
mC4 is non-

trivial.

Subcase (v.1.1). If dmC3 W E
0;mC3
mC3 ! E

mC3;1
mC3 is nontrivial, then dmC3 W E

k;l
mC3 !

E
kCmC3;l�m�2
mC3 is an isomorphism for all k and l D mC 3 and a trivial homomor-

phism otherwise. Consequently,

E
k;l
mC4 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z2; k > mC 3I l D 0;mC 4;
Z2; k D mC 1;mC 2I l D 0; 1;mC 4;

Z2; 2 6 k 6 mI l D 0; 1; 2;mC 4;
Z2; k D 0; 1I 0 6 l 6 m; l D mC 4;
0; otherwise:

The differential dr W E
0;mC4
r ! E

r;mC5�r
r (r > mC 4) can only be nontrivial when

r D m C 5. If dmC5 W E
0;mC4
mC5 ! E

mC5;0
mC5 is trivial, then dmC5 D 0 W E

k;mC4
mC5 !

E
kCmC5;0
mC5 for any k. Thus E�;�mC4 D E

�;�
1 , the bottom line (l D 0) and the top line



Cohomology algebra of orbit space 249

(l D m C 4) of the spectral sequence survive to E1, which contradicts Proposi-
tion 2.2. Therefore, dmC5 W E

0;mC4
mC5 ! E

mC5;0
mC5 must be nontrivial. Then dmC5 W

E
k;l
mC5 ! E

kCmC5;l�m�4
mC5 is an isomorphism for all k and l D m C 4 and a trivial

homomorphism otherwise. Consequently,

E
k;l
mC6 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z2; k D mC 3;mC 4I l D 0;

Z2; k D mC 1;mC 2I l D 0; 1;

Z2; 2 6 k 6 mI l D 0; 1; 2;
Z2; k D 0; 1I 0 6 l 6 m;
0; otherwise:

(4.16)

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 6 as EkCr;l�rC1r D 0, so

E
�;�
mC6 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
As EmC5;01 D 0, by (4.1), we have xmC5 D 0. Clearly, x2u3 D 0, xmC1u2 D 0,

xmC3u D 0. Combining with (4.3), then

TotE�;�1 Š Z2Œx; u�=hx
mC5; umC1; x2u3; xmC1u2; xmC3ui:

Analyzing the filtration of H�.XG/ as in (4.4) and (4.5) and choosing the partic-
ular y as in (4.6), consider (4.16), we get the following relations:

ymC1 D ˛1xy
m
C ˛2x

m�1y2 C ˛3x
my C ˛4x

mC1;

x2y3 D ˇ1x
3y2 C ˇ2x

4y C ˇ3x
5;

xmC1y2 D 1x
mC2y C 2x

mC3;

xmC3y D 0

for some ˛i .i D 1; : : : ; 4/, ǰ .j D 1; 2; 3/, 1; 2 2 Z2. So the graded commutative
algebra H�.XG/ is Z2Œx; y�=I , where I is the ideal given by

I D hxmC5; ymC1 C ˛1xy
m
C ˛2x

m�1y2 C ˛3x
my C ˛4x

mC1;

x2y3 C ˇ1x
3y2 C ˇ2x

4y C ˇ3x
5;

xmC1y2 C 1x
mC2y C 2x

mC3; xmC3yi;

where m > 3. This gives possibility (6) of Theorem 3.1.
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Subcase (v.1.2). If dmC3 WE
0;mC3
mC3 !E

mC3;1
mC3 is trivial and dmC4 WE

0;mC3
mC4 !E

mC4;0
mC4

is nontrivial, then

dmC3 D 0 W E
k;l
mC3 ! E

kCmC3;l�m�2
mC3 ; for any k; l;

dmC4.1˝ a
m�1b/ D tmC4 ˝ 1;

dmC4.1˝ a
mb/ D tmC4 ˝ a:

(4.17)

Furthermore, we obtain that

dmC4 W E
k;l
mC4 ! E

kCmC4;l�m�3
mC4 (4.18)

is an isomorphism for all k and l D mC 3;mC 4 and a trivial homomorphism oth-
erwise. Consequently, by (4.15), (4.17) and (4.18), we have

E
k;l
mC5 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; mC 1 6 k 6 mC 3I l D 0; 1;
Z2; 2 6 k 6 mI l D 0; 1; 2;
Z2; k D 0; 1I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 5 as EkCr;l�rC1r D 0, so

E
�;�
mC5 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
As EmC4;01 D 0, by (4.1), we have xmC4 D 0. Clearly, x2u3 D 0, xmC1u2 D 0.

Combining with (4.3), then

TotE�;�1 Š Z2Œx; u�=hx
mC4; umC1; x2u3; xmC1u2i:

The graded commutative algebra H�.XG/ is Z2Œx; y�=I , where I is the ideal given
by

I D hxmC4; ymC1 C ˛1xy
m
C ˛2x

m�1y2 C ˛3x
my C ˛4x

mC1;

x2y3 C ˇ1x
3y2 C ˇ2x

4y C ˇ3x
5; xmC1y2 C 1x

mC2y C 2x
mC3
i;

wherem> 3 and ˛i .i D 1; : : : ; 4/, ǰ .j D 1;2;3/, 1; 2 2Z2. This gives possibility
(7) of Theorem 3.1.

Subcase (v.2). If dmC1 WE
0;mC2
mC1 !E

mC1;2
mC1 is trivial and dmC2 WE

0;mC2
mC2 !E

mC2;1
mC2

is nontrivial, then

dmC1 D 0 W E
k;l
mC1 ! E

kCmC1;l�m
mC1 ; for any k; l;

dmC2.1˝ a
m�2b/ D tmC2 ˝ a;

dmC2.1˝ a
m�1b/ D tmC2 ˝ a2:

(4.19)
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Furthermore, we obtain that

dmC2 W E
k;l
mC2 ! E

kCmC2;l�m�1
mC2 (4.20)

is an isomorphism for all k and l D mC 2;mC 3 and a trivial homomorphism oth-
erwise. Consequently, by (4.13), (4.19) and (4.20), we have

E
k;l
mC3 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; k > mC 2I l D 0;mC 4;
Z2; 2 6 k 6 mC 1I l D 0; 1; 2;mC 4;
Z2; k D 0; 1I 0 6 l 6 m; l D mC 4;
0; otherwise:

The differential dr W E
0;mC4
r ! E

r;mC5�r
r (r > mC 3) can only be nontrivial when

r D m C 5. If dmC5 W E
0;mC4
mC5 ! E

mC5;0
mC5 is trivial, then dmC5 D 0 W E

k;mC4
mC5 !

E
kCmC5;0
mC5 for any k. Thus E�;�mC3 D E

�;�
1 , the bottom line (l D 0) and the top line

(l D m C 4) of the spectral sequence survive to E1, which contradicts Proposi-
tion 2.2. Therefore, dmC5 W E

0;mC4
mC5 ! E

mC5;0
mC5 is nontrivial. Then dmC5 W E

k;l
mC5 !

E
kCmC5;l�m�4
mC5 is an isomorphism for all k and l D mC 4 and a trivial homomor-

phism otherwise. Consequently,

E
k;l
mC6 D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; mC 2 6 k 6 mC 4I l D 0;
Z2; 2 6 k 6 mC 1I l D 0; 1; 2;
Z2; k D 0; 1I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 6 as EkCr;l�rC1r D 0, so

E
�;�
mC6 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
As EmC5;01 D 0, by (4.1), we have xmC5 D 0. Clearly, x2u3 D 0, xmC2u D 0.

Combining with (4.3), then

TotE�;�1 Š Z2Œx; u�=hx
mC5; umC1; x2u3; xmC2ui:

The graded commutative algebra H�.XG/ is Z2Œx; y�=I , where I is the ideal given
by

I D hxmC5; ymC1 C ˛1xy
m
C ˛2x

m�1y2 C ˛3x
my C ˛4x

mC1;

x2y3 C ˇ1x
3y2 C ˇ2x

4y C ˇ3x
5; xmC2yi;

where m > 3 and ˛i .i D 1; : : : ; 4/, ǰ .j D 1; 2; 3/ 2 Z2. This gives possibility (8)
of Theorem 3.1.
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Subcase (v.3). If dr WE
0;mC2
r !E

r;mC3�r
r is trivial for r DmC 1;mC 2 and dmC3 W

E
0;mC2
mC3 ! E

mC3;0
mC3 is nontrivial, then

dr D 0 W E
k;l
r ! EkCr;lC1�rr ; for any k; l and r D mC 1;mC 2;

dmC3.1˝ a
j b/ D tmC3 ˝ aj�mC2; j D m � 2;m � 1;m:

(4.21)

Furthermore, we obtain that

dmC3 W E
k;l
mC3 ! E

kCmC3;l�m�2
mC3 (4.22)

is an isomorphism for all k and l DmC 2;mC 3;mC 4 and a trivial homomorphism
otherwise. Consequently, by (4.13), (4.21) and (4.22), we have

E
k;l
mC4 D

8̂̂<̂
:̂

Z2; 2 6 k 6 mC 2I l D 0; 1; 2;
Z2; k D 0; 1I 0 6 l 6 m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > mC 4 as EkCr;l�rC1r D 0, so

E
�;�
mC4 D E

�;�
1 :

We observe that the cohomology groups H j .XG/ are the same as (4.2).
AsEmC3;01 D 0, by (4.1), we have xmC3 D 0. Clearly, x2u3 D 0. Combining with

(4.3), then
TotE�;�1 Š Z2Œx; u�=hx

mC3; umC1; x2u3i:

The graded commutative algebra H�.XG/ is Z2Œx; y�=I , where I is the ideal given
by

I D hxmC3; ymC1 C ˛1xy
m
C ˛2x

m�1y2 C ˛3x
my C ˛4x

mC1;

x2y3 C ˇ1x
3y2 C ˇ2x

4y C ˇ3x
5
i;

where m > 3 and ˛i .i D 1; : : : ; 4/, ǰ .j D 1; 2; 3/ 2 Z2. This gives possibility (9)
of Theorem 3.1.

4.2. Proof of Theorem 3.2

Let G D Z2 act freely on X �2 CPm � S4. For m > 2, we have

H l.X/ D

8̂̂<̂
:̂

Z2; l D 0; 2; 2mC 2; 2mC 4;

.Z2/2; l D 4; 6; : : : ; 2m;

0; otherwise:
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For m D 1, we have

H l.X/ D

´
Z2; l D 0; 2; 4; 6;

0; otherwise:

Note that Ek;l2 D H
k.BG/˝H

l.X/ D 0 for l odd. This gives dr D 0 for r even.
Let a 2H 2.X/ and b 2H 4.X/ be generators of the cohomology algebra ofH�.X/,
satisfying amC1 D 0 and b2 D 0. As in the proof of Theorem 3.1, it is clear that
t ˝ 1 2 E

1;0
2 is a permanent cocycle and survives to a nontrivial element x 2 E1;01 ,

i.e.,
x D ��.t/ 2 E1;01 � H

1.XG/: (4.23)

Since Z2 acts freely on X , by Proposition 2.2, the spectral sequence does not
collapse. Otherwise, we getH i .X=G/¤ 0 for infinitely many values of i > 2mC 4.
This implies that some differential dr W E

k;l
r ! E

kCr;l�rC1
r must be nontrivial. Note

thatE�;�2 is generated by t ˝ 12E1;02 , 1˝ a 2E0;22 and 1˝ b 2E0;42 . There can only
be nontrivial differentials dr on the generators when r D 3; 5. It follows immediately
that there are three possibilities for nontrivial differentials:

(i) d3.1˝ a/ ¤ 0.

(ii) d3.1˝ a/ D 0, d3.1˝ b/ D 0 and d5.1˝ b/ ¤ 0.

(iii) d3.1˝ a/ D 0 and d3.1˝ b/ ¤ 0.

Case (i). d3.1˝ a/ D t3 ˝ 1 ¤ 0.
Ifm is even, then amC1 D 0 gives 0D d3..1˝ am/.1˝ a//D t3˝ am, a contra-

diction. Hence m must be odd. There are two possible subcases: either d3.1˝ b/ D
t3 ˝ a ¤ 0 or d3.1˝ b/ D 0.

Firstly, let us consider d3.1˝ b/ D t3 ˝ a ¤ 0. Note that by the derivation prop-
erty of the differential we have8̂̂<̂

:̂
d3.1˝ a

j / D j.t3 ˝ aj�1/; 1 6 j 6 m;
d3.1˝ a

j b/ D j.t3 ˝ aj�1b/C t3 ˝ ajC1; 0 6 j 6 m � 1;
d3.1˝ a

mb/ D t3 ˝ am�1b:

Note that

d3.1˝ ab/ D

´
t3 ˝ b C t3 ˝ a2; m > 1;

t3 ˝ b; m D 1:

d3d3.1˝ ab/ D

´
d3.t

3 ˝ b C t3 ˝ a2/; m > 1;

d3.t
3 ˝ b/; m D 1:

D t6 ˝ a ¤ 0

This contradicts d3d3 D 0, thus d3.1˝ b/ D 0.
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By the derivation property of the differential we have´
d3.1˝ a

j / D j.t3 ˝ aj�1/; 1 6 j 6 m;
d3.1˝ a

j b/ D j.t3 ˝ aj�1b/; 0 6 j 6 m:

The E3-term and d3-differentials look like Figure 5. Then

E
k;l
4 D

8̂̂<̂
:̂

Z2; 0 6 k 6 2I l D 0; 2mC 2;
.Z2/2; 0 6 k 6 2I l D 4; 8; 12; : : : ; 2m � 2;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 4 as EkCr;l�rC1r D 0, so

E
�;�
4 D E�;�1 :

Since H�.XG/ Š TotE�;�1 , the additive structure of H�.XG/ is given by

H j .XG/ D

8̂̂<̂
:̂

Z2; 0 6 j 6 2 or 2mC 2 6 j 6 2mC 4;
.Z2/2; 4 6 j 6 2m and j ¤ 7; 11; 15; : : : ; 2m � 3;

0; otherwise:

As E3;01 D 0, by (4.23), we have x3 D 0. Notice that the elements 1˝ a2 2 E0;42
and 1 ˝ b 2 E0;42 are permanent cocycles and are not hit by any dr -coboundaries.

� � � k � 3 > 0 k k C 3

0

2

4

6

:::

2m � 2

2m

2mC 2

2mC 4

tk�3

tk�3a

tk�3am

tk

tka

tkam

tkC3

tkC3a

tkC3am

tk�3b

tk�3amb

tkb

tkab

tkamb

tkC3b

tkC3amb

Figure 5. E3-term and d3-differentials in Case (i)
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Hence, they determine nontrivial elements u 2 E0;41 and v 2 E0;41 , respectively. We
have u

mC1
2 D 0 as amC1 D 0, and v2 D 0 as b2 D 0. Thus

TotE�;�1 Š Z2Œx; u; v�=hx
2; u

mC1
2 ; v2i;

where deg x D 1, degu D 4, deg v D 4.
By the edge homomorphism, let y 2 H 4.XG/ and z 2 H 4.XG/ be such that

i�.y/D a2 and i�.z/D b, respectively. Notice that y
mC1
2 2H 2mC2.XG/ D E

0;2mC2
1

is represented by amC1 2 E0;2mC22 and z2 2 H 8.XG/ D E
0;8
1 is represented by b2 2

E
0;8
2 . Since the edge homomorphism is an isomorphism in degrees 8 and 2mC 2, we

have the following relations:

y
mC1
2 D 0; z2 D 0:

Therefore,
H�.XG/ D Z2Œx; y; z�=hx

3; y
mC1
2 ; z2i;

where deg x D 1, deg y D 4, deg z D 4 and m is odd. This gives possibility (1) of
Theorem 3.2.

Case (ii). d3.1˝ a/ D 0, d3.1˝ b/ D 0 and d5.1˝ b/ D t5 ˝ 1 ¤ 0.
This case implies that d3 D 0. We have´

d5.1˝ a
j / D 0; 1 6 j 6 m;

d5.1˝ a
j b/ D t5 ˝ aj ; 0 6 j 6 m;

and

E
k�5;lC4
5

d5
��! E

k;l
5

d5
��! E

kC5;l�4
5 ;

tk�5 ˝ a
l
2 b

d5
7��! tk ˝ a

l
2

d5
7��! 0;

tk�5 ˝ a
l
2C4

d5
7��! 0; tk ˝ a

l
2�4b

d5
7��! tkC5 ˝ a

l
2�4:

So

E
k;l
6 D

´
Z2; 0 6 k 6 4I l D 0; 2; : : : ; 2m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 6 as EkCr;l�rC1r D 0, so

E
�;�
6 D E�;�1 :
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The additive structure of H�.XG/ is given by

H j .XG/ D

8̂̂̂̂
<̂
ˆ̂̂:

Z2; j D 0; 1; 2mC 3; 2mC 4;

.Z2/2; j D 2; 2mC 2 or j D 3; 5; : : : ; 2mC 1;

.Z2/3; j D 4; 6; : : : ; 2m;

0; otherwise:

(4.24)

Notice that the element 1˝ a 2 E0;22 is a permanent cocycle and is not a dr -co-
boundary. Hence, it determines a nontrivial element u 2 E0;21 . As we have remarked,
amC1 D 0, so

umC1 D 0: (4.25)

As E5;01 D 0, by (4.23), we have x5 D 0. Thus

TotE�;�1 Š Z2Œx; u�=hx
5; umC1i;

where deg x D 1, degu D 2.
Now, choose y 2 H 2.XG/ such that i�.y/ D a. By considering the filtration on

H 2mC2.XG/,

0 D F 2mC22mC2 D � � � D F
2mC2
5 � F 2mC24„ ƒ‚ …

E
4;2m�2
1

D F 2mC23 � F 2mC22„ ƒ‚ …
E
2;2m
1

D F 2mC21 D F 2mC20 D H 2mC2.XG/; (4.26)

we get the following relation:

ymC1 D ˛1x
2ym C ˛2x

4ym�1;

where ˛1; ˛2 2 Z2. Therefore,

H�.XG/ D Z2Œx; y�=hx
5; ymC1 C ˛1x

2ym C ˛2x
4ym�1i;

where deg x D 1, degy D 2. This gives possibility (2) of Theorem 3.2.
In the remaining Case (iii) there will be classes u 2 E0;21 , y 2 H 2.XG/ defined

as above and the relation (4.25) will be satisfied.

Case (iii). d3.1˝ a/ D 0 and d3.1˝ b/ ¤ 0.
Clearly, d3.1˝ b/ D t3 ˝ a. So we have8̂̂<̂

:̂
d3.1˝ a

j / D 0; 1 6 j 6 m;
d3.1˝ a

j b/ D t3 ˝ ajC1; 0 6 j 6 m � 1;
d3.1˝ a

mb/ D 0:
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Figure 6. E3-term and d3-differentials in Case (iii)

The E3-term and d3-differentials look like Figure 6. Then

E
k;l
5 D E

k;l
4 D

8̂̂<̂
:̂

Z2; k > 3I l D 0; 2mC 4;
Z2; 0 6 k 6 2I l D 0; 2; : : : ; 2m or l D 2mC 4;

0; otherwise:

It is easy to see that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all 5 6 r 6 2mC 4. Now, if

d2mC5 W E
0;2mC4
2mC5 ! E

2mC5;0
2mC5 is trivial, then by the multiplicative properties of the

spectral sequence, we have E�;�2mC5 D E
�;�
1 . Therefore the bottom line (l D 0) and

the top line (l D 2m C 4) of the spectral sequence survive to E1, which reduces
to H i .X=G/ ¤ 0 for all i > 2m C 4. This contradicts to Proposition 2.2. Thus,
d2mC5 WE

0;2mC4
2mC5 !E

2mC5;0
2mC5 must be nontrivial. It follows immediately that d2mC5 W

E
k;2mC4
2mC5 ! E

kC2mC5;0
2mC5 is an isomorphism for all k. So

E
k;l
2mC6 D

8̂̂<̂
:̂

Z2; 3 6 k 6 2mC 4I l D 0;
Z2; 0 6 k 6 2I l D 0; 2; : : : ; 2m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 2mC 6 as EkCr;l�rC1r D 0, so

E
�;�
2mC6 D E

�;�
1 :

It follows that the cohomology groups H j .XG/ are the same (4.24) as in Case (ii).
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As E2mC5;01 D 0, by (4.23), we have x2mC5 D 0. Clearly, x3u D 0. Combining
with (4.25), then

TotE�;�1 Š Z2Œx; u�=hx
2mC5; umC1; x3ui;

Choose y02H 2.XG/ such that i�.y0/ D a and let y D y0 C ˇx22H 2.XG/, ˇ2Z2.
As before, we conclude that the graded commutative algebra H�.XG/ is Z2Œx; y�=I ,
where I is the ideal given by

I D hx2mC5; ymC1 C ˛1x
2ym C ˛2x

2mC2; x3yi;

where ˛1; ˛2 2 Z2. This gives possibility (3) of Theorem 3.2.

4.3. Proof of Theorem 3.3

Let G D Z2 act freely on X �2 HPm � S4. We observe that m > 1,

H l.X/ D

8̂̂<̂
:̂

Z2; l D 0; 4mC 4;

.Z2/2; l D 4; 8; : : : ; 4m;

0; otherwise:

Note that Ek;l2 D H
k.BG/˝H

l.X/ D 0 for l 6� 0 .mod 4/. This gives dr D 0 for
2 6 r 6 4 and hence E�;�2 D E

�;�
5 . Let a 2 H 4.X/ and b 2 H 4.X/ be generators

of the cohomology algebra ofH�.X/, satisfying amC1 D 0 and b2 D 0. The element
t ˝ 1 2 E

1;0
2 is a permanent cocycle and survives to a nontrivial element x 2 E1;01 ,

i.e.,
x D ��.t/ 2 E1;01 � H

1.XG/: (4.27)

Since Z2 acts freely on X , by Proposition 2.2, the spectral sequence does not
collapse. It implies that some differential dr W E

k;l
r ! E

kCr;l�rC1
r must be nontrivial.

Note that E�;�2 is generated by t ˝ 1 2 E1;02 , 1˝ a 2 E0;42 and 1˝ b 2 E0;42 . The
first nontrivial differential dr occurs possibly only when r D 5. It follows immediately
that there are three possibilities for the nontrivial differential:

(i) d5.1˝ a/ ¤ 0 and d5.1˝ b/ ¤ 0.

(ii) d5.1˝ a/ ¤ 0 and d5.1˝ b/ D 0.

(iii) d5.1˝ a/ D 0 and d5.1˝ b/ ¤ 0.

Case (i). d5.1˝ a/ D t5 ˝ 1 ¤ 0 and d5.1˝ b/ D t5 ˝ 1 ¤ 0.
Note that by the derivation property of the differential we have´

d5.1˝ a
j / D j.t5 ˝ aj�1/; 1 6 j 6 m;

d5.1˝ a
j b/ D t5 ˝ aj C j.t5 ˝ aj�1b/; 0 6 j 6 m:
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Figure 7. E5-term and d5-differentials in Case (i)

If m is even, then amC1 D 0 gives 0 D d5..1˝ am/.1˝ a// D t5 ˝ am, a contra-
diction. Hence m must be odd. The E5-term and d5-differentials look like Figure 7.
Then

E
k;l
6 D

´
Z2; 0 6 k 6 4I l D 0; 4; 8; : : : ; 4m;
0; otherwise:

Note that dr W E
k;l
r ! E

kCr;l�rC1
r is zero for all r > 6 as EkCr;l�rC1r D 0, so

E
�;�
6 D E�;�1 :

Since H�.XG/ Š TotE�;�1 , we have

H j .XG/ D

8̂̂<̂
:̂

Z2; 0 6 j 6 4mC 4 and j ¤ 4; 8; : : : ; 4m;

.Z2/2; j D 4; 8; : : : ; 4m;

0; otherwise:

As E5;01 D 0, by (4.27), we have x5 D 0. Notice that the elements 1˝ a2 2 E0;82 and
1˝ .a C b/ 2 E

0;4
2 are permanent cocycles and are not hit by any dr -coboundaries.

Hence, they determine nontrivial elements u 2 E0;81 and v 2 E0;41 , respectively. We
have u

mC1
2 D 0 as amC1 D 0, and v2 C u D 0 as b2 D 0. Thus

TotE�;�1 Š Z2Œx; u; v�=hx
5; u

mC1
2 ; v2 C ui;

where deg x D 1, degu D 8, deg v D 4.
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Let y 2 H 8.XG/ and z 2 H 4.XG/ be such that i�.y/ D a2 and i�.z/ D aC b,
respectively. By considering the filtrations ofH 4mC4.XG/ andH 8.XG/, we have the
short exact sequence

0! E4;j�41 ! H j .XG/ �! E0;j1 ! 0; j D 4mC 4 or 8: (4.28)

By (4.28), we get the following relations:

y
mC1
2 D ˇx4y

m�1
2 z; ˇ 2 Z2;

z2 C y D ˛x4z; ˛ 2 Z2:

Therefore,

H�.XG/ D Z2Œx; y; z�=hx
5; y

mC1
2 C ˇx4y

m�1
2 z; z2 C y C ˛x4zi;

where degx D 1, degy D 8, degz D 4, ˛;ˇ;  2Z2 andm is odd. Also,  D 1 except
when m D 1.

Case (ii). d5.1˝ a/ D t5 ˝ 1 ¤ 0 and d5.1˝ b/ D 0.
If m is even, then 0 D d5.1˝ amC1/ D t5 ˝ am, a contradiction. So m must be

odd. Note that by the derivation property of the differential we have´
d5.1˝ a

j / D j.t5 ˝ aj�1/; 1 6 j 6 m;
d5.1˝ a

j b/ D j.t5 ˝ aj�1b/; 0 6 j 6 m:

The E5-term and d5-differentials look like Figure 8. Then Ek;l6 is the same as in
Case (i),

E
k;l
6 D

´
Z2; 0 6 k 6 4I l D 0; 4; 8; : : : ; 4m;
0; otherwise:

Thus the cohomology groups H j .XG/ are also the same as in Case (i),

H j .XG/ D

8̂̂<̂
:̂

Z2; 0 6 j 6 4mC 4 and j ¤ 4; 8; : : : ; 4m;

.Z2/2; j D 4; 8; : : : ; 4m;

0; otherwise:

As E5;01 D 0, by (4.27), we have x5 D 0. Notice that the elements 1˝ a2 2 E0;82
and 1˝ b 2 E0;42 are permanent cocycles and are not hit by any dr -coboundaries.
Hence, they determine nontrivial elements u 2 E0;81 and v 2 E0;41 , respectively. We
have u

mC1
2 D 0 as amC1 D 0, and v2 D 0 as b2 D 0. Thus

TotE�;�1 Š Z2Œx; u; v�=hx
5; u

mC1
2 ; v2i;

where deg x D 1, degu D 8, deg v D 4.
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Figure 8. E5-term and d5-differentials in Case (ii)

Let y 2H 8.XG/ and z 2H 4.XG/ be such that i�.y/D a2 and i�.z/D b, respec-
tively. Similar to Case (i), by (4.28), we get the following relations:

y
mC1
2 D ˇx4y

m�1
2 z; ˇ 2 Z2;

z2 D ˛x4z; ˛ 2 Z2:

Therefore,

H�.XG/ D Z2Œx; y; z�=hx
5; y

mC1
2 C ˇx4y

m�1
2 z; z2 C ˛x4zi;

where degx D 1, degy D 8, degz D 4, ˛;ˇ 2Z2 andm is odd. IfmD 1, then ˇ D 0.
By combining results in Case (i) and (ii), we can rewrite the result as follows:

H�.XG/ D Z2Œx; y; z�=hx
5; y

mC1
2 C ˇx4y

m�1
2 z; z2 C y C ˛x4zi;

where deg x D 1, deg y D 8, deg z D 4, ˛; ˇ;  2 Z2 and m is odd. If m D 1, then
ˇ D 0;  D 0. This gives possibility (1) of Theorem 3.3.

Case (iii). d5.1˝ a/ D 0 and d5.1˝ b/ ¤ 0.
Immediately, d5.1˝ b/ D t5 ˝ 1, so we have´

d5.1˝ a
j / D 0; 1 6 j 6 m;

d5.1˝ a
j b/ D t5 ˝ aj ; 0 6 j 6 m:
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and

E
k�5;lC4
5

d5
��! E

k;l
5

d5
��! E

kC5;l�4
5 ;

tk�5 ˝ a
l
4 b

d5
7��! tk ˝ a

l
4

d5
7��! 0;

tk�5 ˝ a
l
4C1

d5
7��! 0; tk ˝ a

l
4�4b

d5
7��! tkC5 ˝ a

l
4�4:

Then Ek;l6 is the same as in Case (i),

E
k;l
6 D

´
Z2; 0 6 k 6 4I l D 0; 4; : : : ; 4m;
0; otherwise:

Thus the cohomology groups H j .XG/ are also the same as in Case (i),

H j .XG/ D

8̂̂<̂
:̂

Z2; 0 6 j 6 4mC 4 and j ¤ 4; 8; : : : ; 4m;

.Z2/2; j D 4; 8; : : : ; 4m;

0; otherwise:

As E5;01 D 0, by (4.27), we have x5 D 0. Notice that the element 1˝ a 2 E0;42
is a permanent cocycle and is not a dr -coboundary. Hence, it determines a nontrivial
element u 2 E0;41 . As we have remarked, amC1 D 0, so umC1 D 0. Thus

TotE�;�1 Š Z2Œx; u�=hx
5; umC1i;

where deg x D 1, degu D 4.
Choose y0 2 H 4.XG/ such that i�.y0/ D a and let y D y0 C ˛x4 2 H 4.XG/,

˛ 2 Z2. we get the following relation:

ymC1 D 0:

Therefore,
H�.XG/ D Z2Œx; y�=hx

5; ymC1i;

where deg x D 1, degy D 4. This gives possibility (2) of Theorem 3.3.

5. Applications to Z2-equivariant maps

We will now use the above results to study the existence of equivariant maps to and
from X . This is an application that we find highly motivating. Let X be a compact
Hausdorff space with a free involution and the unit n-sphere Sn carries the antipodal
involution. Let us recall some numerical indices.
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Definition 5.1 ([4]). The index of the involution on X is

ind.X/ D max¹n j there exists a Z2-equivariant map Sn ! Xº:

Definition 5.2 ([4]). The mod 2 cohomology index of the involution on X is

co-ind2.X/ D max¹n j !n ¤ 0º;

where!2H 1.X=Z2IZ2/ is the Whitney class of the principal Z2-bundleX!X=Z2.

The above index and co-index are both defined by Conner and Floyd. Further, they
gave the relationship between these indices.

Proposition 5.3 ([4]). The following holds: ind.X/ 6 co-ind2.X/.

Given a G-space X , Volovikov defined a numerical index i.X/ as the following:

Definition 5.4 ([27]). The index i.X/ is the smallest r such that for some k, dr W
E
k�r;r�1
r ! E

k;0
r in the cohomology Leray–Serre spectral sequence of the fibration

X
i
,! XG

�
! BG is nontrivial.

Let ˇk.X/ be the k-th Betti number of the space X . Using Volovikov index,
Coelho, Mattos and Santos proved the following results.

Proposition 5.5 ([3, Theorem 1.1]). Let G be a compact Lie group and X; Y be
Hausdorff, path-connected and paracompact free G-spaces. With a PID as the coef-
ficient for the cohomology, suppose that i.X/ > l C 1 for some natural l > 1 and
H kC1.Y=G/ D 0 for some 1 6 k 6 l .

(i) If k D l and ˇl.X/ < ˇlC1.BG/, then there is no G-equivariant map
f W X ! Y .

(ii) If 1 6 k < l and 0 < ˇkC1.BG/, then there is no G-equivariant map
f W X ! Y .

Using these Conner and Floyd indices, we get the following results.

Proposition 5.6. Let X �2 RPm � S4 be a finitistic space with a free involution and
consider the antipodal involution on Sn. If m D 5 or m D 7, assume further that the
action of Z2 on H�.X IZ2/ is trivial or X �Z RPm � S4. Then the mod 2 co-index
of X can only take the values C D 1; 4; mC 2; mC 3 and mC 4 and there are no
Z2-equivariant maps Sn ! X for n > C C 1.

Proof. For the principal Z2-bundle X ! X=Z2, we can take a classifying map

f W X=Z2 ! BZ2 :
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It would uniquely determine a homotopy class of ŒX=Z2; BZ2 �. Let � W X=Z2 ! XZ2

be a homotopy inverse of the homotopy equivalence h W XZ2 ! X=Z2, then �� W
X=Z2! BZ2 also classifies the principal Z2-bundleX ! X=Z2. Therefore, we find
the following homotopy equivalence f ' ��. Consider the map

�� W H 1.BZ2/! H 1.XZ2/:

The characteristic class t 2 H 1.BZ2/ of the universal bundle Z2 ,! EZ2

�
! BZ2 is

mapped to ��.t/ 2 H 1.XZ2/ Š H
1.X=Z2/, which is the Whitney class of the prin-

cipal Z2-bundle X ! X=Z2.
For X �2 RPm � S4, by possibility (1) of Theorem 3.1, we see that x ¤ 0 and

x2 D 0. Thus, co-ind2.X/D 1. By Proposition 5.3, ind.X/ 6 1, this means that there
is no Z2-equivariant map Sn ! X for n > 2.

In possibility (2) of Theorem 3.1, x4¤0 and x5D0. Accordingly, co-ind2.X/D4,
ind.X/ 6 4 and there is no Z2-equivariant map Sn ! X for n > 5.

In possibilities (3), (4), (6) and (8) of Theorem 3.1, xmC4 ¤ 0 and xmC5 D 0.
Accordingly, co-ind2.X/ D mC 4, ind.X/ 6 mC 4 and there is no Z2-equivariant
map Sn ! X for n > mC 5.

In possibilities (5) and (7) of Theorem 3.1, xmC3 ¤ 0 and xmC4 D 0. Therefore,
co-ind2.X/ D mC 3, ind.X/ 6 mC 3 and there is no Z2-equivariant map Sn ! X

for n > mC 4.
Finally, in possibility (9) of Theorem 3.1, xmC2¤ 0 and xmC3D 0. Thus, we have

co-ind2.X/ D mC 2, ind.X/ 6 mC 2 and there is no Z2-equivariant map Sn ! X

for n > mC 3.

By a similar proof, we get the following results for the Z2-equivariant maps from
Sn to X �2 CPm � S4 or X �2 HPm � S4.

Proposition 5.7. LetX �2 CPm � S4 be a finitistic space with a free involution and
consider the antipodal involution on Sn. If m D 3, assume further that the action of
Z2 on H�.X IZ2/ is trivial or X �Z CP 3 � S4. Then the mod 2 co-index of X can
only take the values C D 2; 4 and 2m C 4 and there are no Z2-equivariant maps
Sn ! X for n > C C 1.

Proposition 5.8. LetX �2 HPm � S4 be a finitistic space with a free involution and
consider the antipodal involution on Sn. When m � 3 .mod 4/, assume further that
the action of Z2 on H�.X IZ2/ is trivial or X �Z HPm � S4. Then the mod 2 co-
index of X can only take the value 4 and there are no Z2-equivariant maps Sn ! X

for n > 5.

Note that the index of X �2 FPm � S4 (Definition 5.1) can be no more than
mC 4, 2mC 4 and 4, when F D R, C or H respectively.
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We get the following immediate consequences by the proof of Theorem 3.1, The-
orem 3.2 and Theorem 3.3.

Proposition 5.9. Let Z2 act freely on a finitistic space X �2 RPm � S4. If m D 5
or m D 7, assume further that the action of Z2 on H�.X IZ2/ is trivial or X �Z

RPm �S4. Then i.X/ has one of the following values: 2; 5; mC 3; mC 4 or mC 5.

Proposition 5.10. Let Z2 act freely on a finitistic space X �2 CPm � S4. If m D 3,
assume further that the action of Z2 on H�.X IZ2/ is trivial or X �Z CP 3 � S4.
Then i.X/ has one of the following values: 3; 5 or 2mC 5.

Proposition 5.11. Let Z2 act freely on a finitistic space X �2 HPm � S4. When
m � 3 .mod 4/, assume further that the action of Z2 on H�.X IZ2/ is trivial or
X �Z HPm � S4. Then i.X/ D 5.

By Proposition 5.5 and Proposition 5.9, we obtain:

Proposition 5.12. Suppose that Z2 acts freely on a finitistic space X �2 RPm � S4

and a path-connected, paracompact Hausdorff space Y . If m D 5 or m D 7, assume
further that the action of Z2 onH�.X IZ2/ is trivial orX �Z RPm � S4. Then there
is no Z2-equivariant map X ! Y ,

(a) if i.X/ D 5 and H k.Y=Z2/ D 0 for some 2 6 k < 5;

(b) if i.X/ D mC 3 and H k.Y=Z2/ D 0 for some 2 6 k < mC 3;

(c) if i.X/ D mC 4 and H k.Y=Z2/ D 0 for some 2 6 k < mC 4;

(d) if i.X/ D mC 5 and H k.Y=Z2/ D 0 for some 2 6 k < mC 5.

Proof. We observe that ˇl.BZ2 IZ2/ D 1 for all l . By Proposition 5.9, i.X/ is one
of 2, 5, m C 3, m C 4 or m C 5. We can apply these results to Proposition 5.5. If
i.X/ D 5; mC 3; mC 4 or mC 5, then we get the possibilities (a), (b), (c) or (d),
respectively.

For the same reason, we obtain the following propositions directly.

Proposition 5.13. Suppose that Z2 acts freely on a finitistic space X �2 CPm � S4

and a path-connected, paracompact Hausdorff space Y . If m D 3, assume further
that the action of Z2 on H�.X IZ2/ is trivial or X �Z CP 3 � S4. Then there is no
Z2-equivariant map X ! Y ,

(a) if i.X/ D 3 and H k.Y=Z2/ D 0 for k D 2;

(b) if i.X/ D 5 and H k.Y=Z2/ D 0 for some 2 6 k < 5;

(c) if i.X/ D 2mC 5 and H k.Y=Z2/ D 0 for some 2 6 k < 2mC 5.
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Proposition 5.14. Suppose that Z2 acts freely on a finitistic space X �2 HPm �

S4 and a path-connected, paracompact Hausdorff space Y . When m � 3 .mod 4/,
assume further that the action of Z2 onH�.X IZ2/ is trivial or X �Z HPm � S4. If
i.X/ D 5 and H k.Y=Z2/ D 0 for some 2 6 k < 5, then there is no Z2-equivariant
map X ! Y .

Replacing Y in the above by Sn, we obtain the following results.

Corollary 5.15. Let X �2 RPm � S4 be a finitistic space and the unit n-sphere Sn

be equipped with a free involution. If m D 5 orm D 7, assume further that the action
of Z2 onH�.X IZ2/ is trivial or X �Z RPm � S4. Then, there is no Z2-equivariant
map X ! Sn,

(a) if i.X/ D 5 and n < 4;

(b) if i.X/ D mC 3 and n < mC 2;

(c) if i.X/ D mC 4 and n < mC 3;

(d) if i.X/ D mC 5 and n < mC 4.

Corollary 5.16. Let X �2 CPm � S4 be a finitistic space and the unit n-sphere Sn

be equipped with a free involution. If m D 3, assume further that the action of Z2
on H�.X IZ2/ is trivial or X �Z CP 3 � S4. Then, there is no Z2-equivariant map
X ! Sn,

(a) if i.X/ D 3 and n < 2;

(b) if i.X/ D 5 and n < 4;

(c) if i.X/ D 2mC 5 and n < 2mC 4.

Corollary 5.17. Let X �2 HPm � S4 be a finitistic space and the unit n-sphere Sn

be equipped with a free involution. When m � 3 .mod 4/, assume further that the
action of Z2 on H�.X IZ2/ is trivial or X �Z HPm � S4. If i.X/ D 5 and n < 4,
then there is no Z2-equivariant map X ! Sn.
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