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1 Introduction

Regular spatial heptagons, in the following referred to simply as heptagons, are understood
to be 7-gons in the Euclidean space E3, with equal lengths of sides and equal angles ˛
between adjacent sides. The side lengths are normalized to 1, and intersecting sides as
well as coinciding vertices are permitted.

For the tetrahedral bond angle ˛D arccos.�1
3
/� 109:5°, heptagons have been consid-

ered for a long time in stereochemistry, with the aim of examining seven-membered rings
of carbon atoms, as they appear, for instance, in cycloheptane. Most articles on this subject
are based on a combination of chemical and mathematical approaches. Investigations on
heptagons with the tetrahedral angle that refer only to mathematics can be found in [2, 4].

What are the investigations on heptagons with any possible angle ˛? There is an
extensive literature – even dating back to Archimedes – about the special case of the
well-known planar heptagons. However, we only know two studies on all nonplanar hep-
tagons – Cox [1] and Kamiyama [3] – both of which are concerned with the configuration

Diese Arbeit befasst sich mit regulären räumlichen Heptagonen, d. h. mit gleichseiti-
gen und gleichwinkligen Siebenecken im euklidischen Raum E3. Im Vordergrund steht
die Frage nach den Zusammenhangskomponenten im Sinne einer stetigen Überführ-
barkeit innerhalb bestimmter Teilmengen. Dabei nimmt man wesentlich Bezug auf die
möglichen Symmetrietypen regulärer Heptagone, welche ausführlich dargelegt wer-
den. Die Menge aller regulären Heptagone mit einem festem Winkel zerfällt je nach
Winkelbereich in mehrere Komponenten, zu deren Charakterisierung symmetrische
Repräsentanten dienen. Schliesslich zeigt sich, dass die Menge aller regulären räumli-
chen Heptagone zusammenhängend ist. Animationen zu dieser Arbeit und zusätzliche
Informationen zu weiteren Aspekten finden sich in [7].
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space. In principle, this involves the following: heptagons are flexible, i.e., they can be
continuously transformed while retaining their regularity conditions. The extent to which
such transformations are possible depends on the set of considered heptagons and leads to
a partition into connected components. In both studies, but with different approaches, the
topological structure of the connected components is described for the sets of heptagons
with a fixed angle ˛.

The present article provides an overview of all heptagons, where the focus is put
on symmetry. We examine several subsets of heptagons and determine the associated
connected components. After presenting some preliminary properties, heptagons of the
possible kinds of symmetry are discussed in detail. Next, we consider the sets of hep-
tagons with a fixed angle ˛, first in the specific case of ˛ D 60° and then for any other ˛.
As a result, we also obtain a characterization of the connected components of these sets.
This is essentially based on symmetric heptagons, in contrast to the two studies mentioned
above, in which symmetry is not considered at all. Finally, a combination of derived state-
ments reveals that the set of all heptagons is connected.

The results of this article, which are not based on theorems, are obtained from numeri-
cal approximations and, thus, are not formally proven. To reproduce computations, it needs
a computer algebra system. Animations to outcomes of this paper and some additional
properties of heptagons are attached to a website [7] (originally created in connection
with [5]).

We use notations for a heptagon with consecutive vertices v1; : : : ; v7, as shown in
Figure 1. The common length of the seven diagonals connecting a vertex with the next but
one is denoted by q, and we have

q D 2 sin
˛

2
: (1)

The other seven diagonals are said to be the main diagonals (red), and in general, they
differ in length.
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Figure 1: Notations for a heptagon.

A particular role will play the three well known planar heptagons. According to Figure
2, we denote them by stari (1  i  3), although star3 is convex and not really star-
shaped. The corresponding angles ↵i and by (1) the corresponding diagonals qi are
given as follows:

↵i =
1

7
(2i � 1)180�, qi = 2 sin

↵i

2
with 1  i  3. (2)
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Figure 1: Notations for a heptagon.

An important role will play the three well known planar heptagons. According to Fig-
ure 2, we denote them by stari (1  i  3), although star3 is convex and not really star-
shaped. The corresponding angles ↵i and by (1) the secondary diagonals qi are given as
follows:

↵i =
1

7
(2i � 1)180�, qi = 2 sin

↵i

2
with 1  i  3. (2)In the following, the three planar heptagons, as shown in figure in Figure ??,

will play an important role; the corresponding secondary diagonals result from
(1).

1

star1 with �1�25.7� star2 with �1�77.1� star3 with �1�128.6�

Figure 2: The three planar heptagons.

We will also refer to the following concepts: A set of heptagons is called connected if,
within the set, each heptagon can be continuously transformed into each other. Conse-
quently, a set of heptagons is the disjoint union of maximal connected subsets, which
we call its connection components.

To conclude the introduction, we give two general results.

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. The statement is involved in the already mentioned configuration space given
in [Cox] or [Kamiyama]. It also follows from a general result about the angle sum of
polygons in sace [Siegerist/Wirth] and Theorem 3 below.
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In the following, the three planar heptagons, as shown in figure in Figure ??,

will play an important role; the corresponding secondary diagonals result from
(1).
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Figure 2: The three planar heptagons.

We will also refer to the following concepts: A set of heptagons is called connected
if within the set each heptagon can be continuously transformed into each other, oth-
erwise disconnected. A disconnected set consists of connection components, i.e., of
maximal connected subsets. If a disconnected set becomes connected by adjoining a
set of further heptagons, this is said to be a linkage set of the diconnected one.

We will also refer to the following concepts: A set of heptagons is called connected if,
within the set, each heptagon can be continuously transformed into each other, other-
wise disconnected. A disconnected set decomposes into connection components, i.e.,
maximal connected subsets.

For heptagon angles, we have:

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. The statement is involved in the already mentioned configuration space given
in [Cox] or [Kamiyama]. It also follows from a general result about the angle sum of
polygons [Siegerist/Wirth] and Theorem 3 below.

A heptagon symmetry must clearly be ring-preserving, i.e., it preserves the sequence
of vertices.

Theorem 2. A heptagon is asymmetric, plane- or line-symmetric.

2
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2 General properties

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. That the condition ↵1  ↵  ↵3 is necessary for the existence of a heptagon,
results from the following property about n-gons in space [8]: for an odd n, the sum of
the angles  180� between adjacent sides is at least 180�. That the condition is suffi-
cent, arises from Theorem 4 below.

Let ui,j be the vector pointing from vi to vj (indices larger than 7 are understood
modulo 7).

Theorem 2. In a heptagon special scalar products for 1  k  7 are given as follows:

uk,k+3 · uk+1,k+2 = 2uk,k+3 · uk+5,k+2 = q2 � 1,

(uk,k+3 + uk,k+4) · uk+2,k+5 = 0.

2

Figure 1. Notations for a heptagon.

According to Figure 2, we denote the three well-known planar heptagons by star1,
star2, and star3, although the last is convex and not really star-shaped. The corresponding
angles ˛i and, by (1), the assigned diagonals qi are given as follows:

˛i D .2i � 1/
180°
7
; qi D 2 sin

˛i

2
with i 2 ¹1; 2; 3º: (2)
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We use notations for a heptagon with consecutive vertices v1, ..., v7, as shown in Figure
1. The common length of the seven diagonals connecting a vertex with the next but one
is denoted by q, and we have

q = 2 sin
↵

2
. (1)

The other seven diagonals are said to be the main diagonals (red), and in general, they
differ in length.
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A particular role will play the three well known planar heptagons. According to Figure
2, we denote them by stari (1  i  3), although star3 is convex and not really star-
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2 General properties

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. That the condition ↵1  ↵  ↵3 is necessary for the existence of a heptagon,
results from the following property about n-gons in space [8]: for an odd n, the sum of
the angles  180� between adjacent sides is at least 180�. That the condition is suffi-
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Figure 1: Notations for a heptagon.

According to Figure 2, we denote the three well-known planar heptagons by stari with
i 2 {1, 2, 3}, although star3 is convex and not really star-shaped. The corresponding
angles ↵i and, by (1), the assigned diagonals qi are given as follows:

↵i = (2i � 1)
180�

7
, qi = 2 sin

↵i

2
with 1  i  3. (2)
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What is the degree of freedom of heptagons? For the coordinates of 7 freely selectable
vertices, we have 21 degrees. Congruence invariance reduces this number by 6, nor-
malized side lengths by 7, and equal diagonal lengths q by 6. Thus, 2 degrees remain.
Taking into account an additional constraint, such as a symmetry or a fixed angle ↵,
the degree of freedom becomes 1, so that one parameter should be sufficient.

We now give two general properties of heptagons.

2

Figure 2. The three planar heptagons.

What is the degree of freedom of heptagons? For the coordinates of 7 freely selectable
vertices, we have 21 degrees. Congruence invariance reduces this number by 6, normalized
side lengths by 7, and equal diagonal lengths q by 6. Thus, 2 degrees remain. Taking into
account an additional constraint, such as a symmetry or a fixed angle ˛, the degree of
freedom becomes 1. Thus, one parameter is sufficient to describe the sets of incongruent
heptagons in the following sections.

We now give two general properties of heptagons.

Theorem 1. A heptagon with angle ˛ exists if and only if ˛ 2 Œ˛1; ˛3�.

Proof. That the condition ˛ 2 Œ˛1; ˛3� is necessary for the existence of a heptagon results
from the following property about n-gons in space [6]: for an odd n, the sum of the angles
between adjacent sides is at least 180° and at most .n � 2/180°. That the condition is
sufficient follows from Theorem 3 below.

Theorem 2. A heptagon is asymmetric, plane-symmetric, or line-symmetric.

Proof. Clearly, a heptagon symmetry is ring-preserving, which means that it must preserve
the sequence of the vertices. The symmetry group of the highest order is achieved when all
main diagonals are equal. Then it is isomorphic to the dihedral group D7, and the induced
vertex permutations are generated by cycle � D .v1v2v3v4v5v6v7/ and an involution �.
As each �k (1 � k � 6) is a cycle of length seven, it can be induced only by the rotation
of a planar heptagon. Thus, we have the symmetry group of each of the three stars, which
obviously are both plane- and line-symmetric. The nonplanar heptagons, therefore, are
asymmetric, or their symmetry group is isomorphic to a group generated by �. Since � is
an involution, it can be induced only by a plane, line, or point reflection. The last, however,
can be excluded. In fact, an odd number of vertices would coincide with the symmetry
center, implying that angle ˛ of at least one of them would be mapped onto itself, and thus
˛ D 180°.

Next, we capture already mentioned concepts that in the following we subsume under
connectedness: a continuous transformation of a heptagon is given by continuously vary-
ing the lengths of the diagonals (or the underlying vertex coordinates) while retaining the
regularity conditions. A set of heptagons is called connected if, within the set, for any two
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heptagons h and h0, there is a continuous transformation from h to h0. We write h$ h0 for
the equivalence relation thus defined. Consequently, a set of heptagons is subdivided into
classes of maximal connected subsets, which are said to be the connected components.

Lemma. The set QS of all heptagons, which are congruent to those of a connected set S
with at least one plane-symmetric heptagon, is also connected.

Proof. Let Qh1 and Qh2 be any two heptagons from QS . Further, consider heptagons h1 and
h2 from S congruent to Qh1 and Qh2, respectively. We show that there exists a continuous
transformation Qh1$

Qh2 within QS , composed as follows: Qh1$ h1$ h2$
Qh2. The trans-

formation h1$ h2 can be realized within S . Therefore, it suffices to indicate h1$
Qh1, as

this implies the existence of the reversed Qh1 $ h1 and of h2 $
Qh2.

If h1 and Qh1 are properly congruent, h1 $
Qh1 can be implemented with a motion,

which is a continuous transformation within QS . If h1 and Qh1 are improperly congruent, we
consider first a continuous transformation h1 $ pl$ h�1 , where pl is a plane-symmetric
heptagon from S and h�1 a mirror image of h1. By assumption, h1 $ pl exists within S ,
and by reflecting each heptagon of this transformation at the symmetry plane of pl, we
obtain pl$ h�1 within QS . Then, for h�1 $ Qh1, a motion can be applied.

2 Plane-symmetric heptagons

Plane-symmetric heptagons allow for an exact representation. Without loss of generality,
we can assume that vertex v1 lies on the symmetry plane, which implies three pairs of
equal diagonal lengths: v1v4 D v1v5, v2v5 D v4v7, and v2v6 D v3v7.

Theorem 3. Define

QC D Œq1; q3�; Q� D Œ�q2;�1� with q1; q2; and q3 from (2);

and for given p, let

a D �p3
C p2

C 2p � 1; b D
p
p2 � p C 1; c D

p
�p2 C p C 3:

For each p 2 QC [ Q� and w 2 ¹1;�1º, the following vertices form a plane-symmetric
heptagon, and (up to congruence) there are no other heptagons that are plane-symmetric:

v1 D

�
0;

p
a.�p2 C 2p C 1/

bc
;
3p2 C p � 3

2bc

�
;

v2;7 D

�
˙
p

2
; 0;

b.p C 1/

2c

�
;

v3;6 D

�
˙
p2 � 1

2
; 0;

b.p2 � 2/

2c

�
;

v4;5 D

�
˙
1

2
;�w

p
a.p C 1/

c
; 0
�
:



Regular spatial heptagons based on symmetry 5

The diagonal length q is jpj, and the lengths of the main diagonals are given as fol-
lows:

v1v4 D
1

c

s
sgn.p/w

2a
p
aC p C 2

b
C ap C .p C 1/2;

v2v5 D

p
p2 C p; v2v6 D

p
p3 � p C 1; v3v6 D jp

2
� 1j:

Proof. The plane-symmetric heptagons are placed in an xyz-coordinate system such that
they are symmetric with respect to the yz-plane. Then vertex v1 lies on this plane, and
without loss of generality, we can choose vertices v2, v3, v6, and v7 (forming an isosceles
trapezoid) on the xz-plane, and v4 and v5 on the xy-plane. Thus, we use the following
ansatz, which already includes v4v5 D 1:

v1 D .0; f; g/; v2;7 D

�
˙
p

2
; 0; h

�
; v3;6 D .˙k; 0; l/; v4;5 D

�
˙
1

2
;m; 0

�
:

From v2v7 D q, it immediately follows that p D ˙q. To obtain a compact represen-
tation, it is appropriate to use parameter p instead of q. Then the remaining regularity
conditions v1v2 D v2v3 D v3v4 D 1 and v1v3 D v2v4 D v3v5 D jpj generate a system
of equations with the unknowns f , g, h, k, l , and m. Calculation with a computer alge-
bra system results in eight solutions, consisting of four each, which lead to congruent
heptagons related by reflections on the xy-plane, the xz-plane, and the x-axis. Thus, to
describe all incongruent heptagons, it suffices to consider two solutions. We take those
where, for the arbitrarily chosen reference case q D 1:2, the coordinates of v1 become
non-negative. It turns out that these two solutions differ only in the sign of m, which we
specify with w 2 ¹1;�1º. Finally, the auxiliary variables a, b, and c simplify terms.

Considering that q1, �q2, and q3 are the zeros of a, it can be shown that QC [ Q�

is the largest range of p such that all occurring roots are real (the root appearing in m is
decisive).

The diagonal lengths are obtained from the vertices; in particular, it holds q D jpj.

The results of Theorem 3 are illustrated in Figure 3. Taking into account that q D jpj,
the two closed curves are obtained from the diagonal pairs .q; v1v4/ of all plane-sym-
metric heptagons. For some selected values of q, we show the corresponding heptagons
pl1; : : : ; pl11, which are considered from different viewpoints to get the optimal depth
effects.

The closed curve containing star1 and star3 (blue) results from heptagons with p 2
QC, and the curve containing star2 (red) from those with p 2 Q�; we speak of large and
small heptagons, respectively. Both intersection points of the two curves represent a large
and a small heptagon with equal diagonal lengths v1v4 but different v2v5.

Within both closed curves, the solid segments are given by heptagons with w D 1,
and the dashed ones by those with w D �1; they represent what we call upper and lower
heptagons, respectively. The diagonal length v1v4 of an upper heptagon is always larger
than or equal to that of a lower heptagon (equal in the case of the stars and pl4, which are
of both types). Note that, for the appropriate conformers of cycloheptane (q D 2

3

p
6), an

upper heptagon is called a chair and a lower a boat.
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Figure 3. Plane-symmetric heptagons represented by diagonal pairs .q; v1v4/, with examples of some selected
values of q.
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Remarks. (a) Of course, the described heptagons are incongruent, except in the boundary
cases with p 2 ¹q1;�1;�q2; q3º, where the values w 2 ¹1;�1º give the same heptagon.

(b) For a fixed q, we have the following number of incongruent plane-symmetric hep-
tagons:

1 for q D q1 or q D q3I

2 for q 2 �q1; 1Œ or q 2 �q2; q3ŒI

3 for q D 1 or q D q2I

4 for q 2 �1; q2Œ:

(3)

(c) The plane-symmetric heptagons with qD 1 have double vertices, namely one in pl3
and pl5 and three in pl4. Furthermore, pl4 shows an additional plane and line symmetry,
but both of which, however, are not ring-preserving.

(d) In a nonplanar plane-symmetric heptagon with q¤ 1, there is one intersection point
of the sides if the heptagon is small, and two (in one special case even four) if q < 1.

The vertex coordinates of the heptagons from Theorem 3 are continuous in p, and for
a fixed q, large and small heptagons differ in at least one of the diagonal lengths v1v4 and
v2v5. From this and the lemma, we obtain the following.

Connectedness 1. The set of all plane-symmetric heptagons has two connected compo-
nents, one containing large heptagons and the other small heptagons.

3 Line-symmetric heptagons

In searching for the vertex coordinates of all line-symmetric heptagons, we obtain a sys-
tem of equations that we assume no longer allows solutions with radicals. Therefore, we
present the results based on numerical approximations; v1 is presumed to be on the sym-
metry axis.

The results are shown in Figure 4 analogically to the plane-symmetric case. The pairs
.q; v1v4/, each uniquely representing a line-symmetric heptagon, yield a single closed
curve. For the same values of q as in Figure 3, the corresponding line-symmetric hep-
tagons ln1; : : : ; ln11 are presented. Also analogously, we make the following definition:
the segment of the curve between ln4 and ln5 with star1 and star3 (blue) stands for large
heptagons and the remaining segment with star2 (red) for small heptagons, the solid seg-
ments for upper heptagons and the dashed segments for lower heptagons.

Remarks. (a) From Figure 4, it follows that, for a fixed q, the number of incongruent
line-symmetric heptagons is the same as in the plane-symmetric case (see (3)).

(b) The heptagons ln3, ln4, and ln5 with q D 1 have two double vertices, and ln4 shows
two plane symmetries, which are not ring-preserving.

The continuity of the curve in Figure 4, the plane symmetry of the stars, and the lemma
imply the following.

Connectedness 2. The set of all line-symmetric heptagons is connected.
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Figure 4. Line-symmetric heptagons represented by diagonal pairs .q; v1v4/, with examples of some selected
values of q.

4 Heptagons with q D 1

First, consider heptagons with double vertices. As certain diagonals of length q coincide
with sides, it follows that q D 1. Heptagons with double vertices can be specified with an
exact representation.
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Theorem 4. Assume that '0 D
1
2

arccos 1
3

, and for given ', let

a D cos'; b D sin':

For each ' 2 Œ�2'0; � � '0�, the following vertices form a heptagon with at least one
double vertex, and (up to congruence) there are no other heptagons with this property:

v1 D .0; 0; 0/; v2 D

�1
2
;

p
3

2
; 0
�
; v3 D

�1
2
;

p
3

6
;

p
6

3

�
;

v4 D .1; 0; 0/; v5 D v1; v6 D

�1
2
;�

p
3a

2
;

p
3b

2

�
;

v07 D
�3a � 1
5 � 3a

;
2
p
3.1 � a/

5 � 3a
;
2
p
3b

5 � 3a

�
if ' 2 Œ�2'0; 2'0�;

or v007 D v4 if ' 2 Œ�'0; � � '0�:

Proof. Without loss of generality, we can choose as a double vertex v5 D v1. Because
q D 1, the vertices of the tetragon t D v1v2v3v4 form a regular tetrahedron, which is
placed in an xyz-coordinate system, as indicated. From v6v1 D v6v4 D 1, it follows that
v6 lies on a circle parallel to the yz-plane with center .1

2
; 0; 0/ and radius

p
3=2, and we

use the angle parameter ' (by radian) to obtain the coordinates of v6. Finally, the system
of equations, resulting from the remaining regularity conditions v7v1 D v7v2 D v7v6 D 1,
yields the two solutions v07 and v007 .

We show that the indicated intervals for ' are sufficient to describe all incongruent
heptagons with double vertices. This is done by verifying that the complementary sets
with respect to a full circle interval of length 2� give no further incongruent heptagons.

For heptagons with v07, consider the symmetry plane P of the tetragon t passing
through the double vertex v1. The boundaries of the interval Œ�2'0; 2'0� yield plane-
symmetric heptagons, namely pl3 for ' D �2'0 and pl5 for ' D 2'0 (see Section 2), both
withP as the symmetry plane. Since, for each ', there exists exactly one heptagon with v07,
the extension of ' beyond these interval boundaries must lead to mirrored heptagons with
respect to P .

The situation is similar for heptagons with v007 . Let L be the symmetry axis of the
tetragon t passing through the midpoint of the double side v4v5. Here, the boundaries of
the interval Œ�'0; � � '0� result in line-symmetric heptagons, which are ln3 for ' D �'0

and ln5 for ' D � � '0 (see Section 3), both with L as the symmetry axis. Since each
' uniquely determines a heptagon with v007 , the extension to the complementary interval
gives mirrored heptagons with respect to L.

For ' D 0, it holds that v07 D v
00
7 . Thus, we have a linkage between heptagons with v07

and v007 . Figure 5 shows the corresponding (asymmetric) heptagon, which is characterized
by the fact that four points (v1, v2, v4, and v6) form a rhombus. We speak of a linkage
heptagon and denote it by lk.
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4 Heptagons with a given q

First we consider the special case q = 1, which permits an exact description.

Theorem 4. Suppose that
a = cos t, b = sin t.

Then coordinates of the vertices of all heptagons with q = 1 are given by

v1 = (0, 0, 0), v2 =
⇣1

2
,

p
3

2
, 0
⌘
, v3 =

⇣1

2
,

p
3

6
,

p
6

3

⌘
, v4 = (1, 0, 0),

v5 = v1, v6 =
⇣1

2
,�

p
3 a

2
,

p
3 b

2

⌘
,

v07 =
⇣3a � 1

5 � 3a
,
2
p

3 (1 � a)

5 � 3a
,

2
p

3 b

5 � 3a

⌘
with �2t0  t  2t0, and

v007 = v4 with �t0  t  ⇡ � t0.

Proof. A heptagon with q = 1 has at least one double vertex. This result has been
stated in [1], based on numerical approximations, and we have confirmed it by a cum-
bersome analytical proof.

Since v5 = v1, the vertices v1, v2, v3 and v4 must form a regular tetrahedron with sides
1, which can be placed in a xyz-coordinate system as indicated. From v6v1 = v6v4 =
1 it follows that v6 lies on a circle parallel to the yz-plane, with center ( 1

2 , 0, 0) and
radius

p
3/2. Finally, v0

7 and v00
7 are obtained by solving the equality system resulting

from v7v1 = v7v2 = v7v6 = 1. The parameter t has been restricted in order to get
incongruent heptagons.

Remark. Theorem 4 gives the symmetric heptagons with q = 1 of Section 2 and 3 as
follows:

if v7 = v07, then pl3 for t = �2t0, pl5 for t = 2t0, ln4 for t = ⇡ � 4t0;
if v7 = v007 , then ln3 for t = �t0, ln5 for t = ⇡ � t0, pl4 for t = ⇡ � 2t0.

For t = 0, we obtain v07 = v00
7 . Figure 5 shows the corresponding (chiral) heptagon,

where v1v2v4v6 forms a rhombus.

 

v 1 = v 5  

v 2  v 6 

v 3  

v 4 = v 7  

Figure 5: Heptagon with v0
7 = v00

7 .

7

Figure 5. Linkage heptagon lk.

Remarks. (a) Apart from lk, all other heptagons of Theorem 4 are incongruent. This is
because two such heptagons with coinciding diagonals always coincide in v6 and in v7.

(b) There exist two further symmetric heptagons with q D 1 (see Sections 2 and 3),
which are given by Theorem 4 as follows: ln4 with v07 for ' D � � 4'0 and pl4 with v007
for ' D � � 2'0. Note that ln4 is the only heptagon with two double vertices but without
a double side, whereas pl4 is the only one with two double sides.

Now, let us turn to all heptagons with q D 1. In [1], it is said that these heptagons must
have at least one double vertex, a statement that is based on numerical approximations,
and we confirmed it with our own investigations; however, a formal proof is still pending.
Therefore, there is an interesting unsolved problem that we highlight.

Conjecture. Heptagons with q D 1 always have at least one double vertex.

Provided that this conjecture is true, Theorem 4 includes (up to congruence) all hep-
tagons with q D 1. Then the continuity of the vertex coordinates, the linkage heptagon lk,
and the lemma imply the following.

Connectedness 3. The set of all heptagons with q D 1 is connected.

We add that continuous transformations of heptagons with q D 1 lead to two other
branching possibilities besides lk, which are given by ln4 (possible switch to new double
vertex) and pl4 (possible switch to new double side). Taking into account all successively
occurring branches, a complex network – whose structure is presented in the appendix
of [1] – emerges.

5 Heptagons with a fixed q ¤ 1

Again, we are assuming that the solutions of a system of equations for the vertex coordi-
nates of heptagons with a fixed q cannot be expressed in terms with radicals. Once more,
it is necessary to resort to numerical approximations, and together with the lemma, we
obtain the following.

Connectedness 4. Each connected component of the set of all nonplanar heptagons with
a fixed q ¤ 1 contains (up to congruence) exactly one plane- and one line-symmetric
heptagon given as follows: (i) both large or both small, (ii) one upper and one lower for
q 2 �q1; 1Œ and both upper or both lower for q 2 �1; q3Œ.
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Remark. Look at the examples in Figures 3 and 4. Each of the following pairs of sym-
metric heptagons characterizes a connected component:

.pl1; ln2/; .pl2; ln1/ for q D 0:8I

.pl6; ln6/; .pl8; ln7/; .pl7; ln8/; .pl9; ln9/ for q D 1:15I

.pl10; ln10/; .pl11; ln11/ for q D 1:5:

How can heptagons with a fixed q ¤ 1 be generated? Basically, a q-preserving contin-
uous transformation is needed between the two characterizing symmetric heptagons of the
connected component under consideration. This will now be explained in more detail for
the two connected components of q D 1:5 with Figure 6.

In both cases, consider first the area on the very left (shaded). The curves restricted in it
show the varying lengths of the seven main diagonals during a continuous transformation,
where one diagonal (bold red line segment) is the chosen parameter, and thus the variable
of the horizontal coordinate axis. The points of the curves on an imagined vertical line give
the diagonal lengths of a single heptagon, being line-symmetric at the left and plane-sym-
metric at the right border of the area (dashed and solid lines, respectively). The heptagons
of this first area represent (up to congruence) the connected component.

 

 
 

Component characterized by (pl10, ln10). 
 

 
 

Component characterized by (pl11, ln11). 
 

1.2

1.4

1.6

1.8

2.0

2.2

1.2

1.4

1.6

1.8

2.0

Figure 6: Transformation within the connection components of q = 1.5.

becomes the length of the starting heptagon. By passing a plane-symmetric heptagon
the orientation changes, and thus from two enantiomeric heptagons always one appears
in a tinted and the other in a white area. It needs therefore a second transformation run
in order to obtain a heptagon which has not only the same diagonal lengths as the
starting one but also its orientation. Animations realizing such transformations can be
found in [6].
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Figure 6. Transformation within the connected components of q D 1:5.

This transformation process can be extended as follows: the farther areas are successive
mirror images of the previous one. This leads to a continued continuous transformation,
where the thought horizontal coordinate axis can be interpreted as the time axis of an
associated animation so that the entire diagram shows time-dependent diagonal lengths.
The first 14 vertical lines alternatingly represent the line- and plane-symmetric heptagons,
where in both cases each of the seven vertices comes to lie once on the symmetry element.
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At the very right of the diagram, each of the main diagonals becomes the length from
that of the starting heptagon at the very left. By passing a plane-symmetric heptagon, the
orientation changes, i.e., from two asymmetric heptagons that are mirror-inverted to each
other, one always appears in a shaded area and the other in a white area. This implies
that a transformation run from the left to the right changes the orientation, and it therefore
needs a second run to get the original orientation. In contrast to the case of q D 1, this
transformation process allows no branching possibilities.

We conclude by considering all heptagons. Due to Connectedness 4, each asymmetric
heptagon with q ¤ 1 is connected to a plane-symmetric and to a line-symmetric heptagon
with the same q. According to Sections 2 and 3, each symmetric heptagon is connected to
one with q D 1, and together with Connectedness 3, it results in the following.

Connectedness 5. The set of all heptagons is connected.

A subset of all heptagons with a fixed q, however, consists of the following number of
connected components (cf. (3)):

1 for q D q1; q D 1; or q D q3I

2 for q 2 �q1; 1Œ or q 2 �q2; q3ŒI

3 for q D q2I

4 for q 2 �1; q2Œ:
1
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