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In its simplest setting the fair division problem asks that two people “fairly” divide a
piece of cake. A widely known solution is: “one cuts the other chooses.” The general
problem is, like most cakes over which it is posed, very rich and has blossomed since
its introduction by Steinhaus in 1948 [9]. In the case of n persons, there are various
ways to guarantee all persons at least 1/nth of the cake by their own assessments [4, 5,
8, 9, 10]. If a piece can be found on which two persons disagree, all can be guaranteed
strictly more than 1/nth of the cake by their assessment [13]. It is also known how to
guarantee each of three persons an “envy free” piece (i.e. nobody thinks another has a
preferred piece) using at most five cuts [12]. Existence proofs for envy free portions have
been given [1, 3, 12] and there are two procedures that generate envy-free pieces for n
persons, but neither procedure has a bound (as a function of n) for the number of cuts
that may be required [2, 7]. Existence proofs have been given to show there are n pieces

.

Ob man einen Kuchen teilt, eine Erbschaft oder das Volkseinkommen – wenn die Be-
troffenen die Teilung nicht als fair empfinden, so sind Konflikte vorprogrammiert. Bei
der Teilung eines Kuchens unter zwei Parteien können alle Eltern glücklicherweise von
der bekannten und eleganten Lösung profitieren: Der eine teilt, der andere wählt! Wen
überrascht es, dass sich die Mathematik für diese brilliante Idee weiter interessiert?
In der Tat lässt sich das Verfahren auf kompliziertere Situationen verallgemeinern,
auf Teilungsprobleme zwischen mehreren Parteien und auf solche mit zusätzlichen,
einschränkenden Bedingungen. Wie immer, wenn die Mathematik ein Problem auf-
greift, taucht eine Menge neuer und interessanter Fragen auf. Einigen davon gehen
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which all n players think are equal [1]. “Moving knife” continuous algorithms have been
given for the latter problem for n = 2 [7], for the envy free problem for n = 3 [11], and
the original problem above for any n [10,12]. Players can be guaranteed fair rational
unequal portions if that is what they deserve [6], and much attention has been given to
trying to minimize the number of cuts used to accomplish the various tasks.

The purpose of this note, after all this activity, is to return to the most basic procedure of
two person “cut-and-choose” and explore what can be accomplished with a sequence of
such steps. In keeping with the simplicity of the cut-and-choose procedure, we will not
give the careful mathematical formulation (found widely in print, e.g. [12]) but rather
rely on the intuitive aspects of the procedures. Note that the cut-and-choose procedure
assumes only that the cutter can cut one piece into two pieces on which the cutter has
no preference, that the chooser can exercise a preference on the two pieces presented,
and that the total value of the cake or its pieces is not diminished or enhanced by the
cut. Thus, a notable feature of such a simple cut-and-choose procedure is that it requires
only a preference ranking and not a numerical evaluation of the pieces.

What divisions can be done utilizing only cut-and-choose procedures? When can fair di-
vision be accomplished with a finite number of steps? The following discussion provides
the answers to these questions.

Looking first at a specific example, suppose P1 cuts the cake and P2 chooses one of
the pieces. Now P2 cuts the unchosen piece and P1 chooses between the resulting two
pieces. Finally P1 cuts the new unchosen piece, P2 chooses one piece and P1 gets what
is left. We claim that this procedure quarantees P1 at least 3/8 and P2 at least 5/8 of
the cake. (See Example 1 below.) How do we know this and how do we decide who
should cut next? When should we stop? It turns out that the rule is quite easy, works for
rational or irrational ratios, and is given in general by:

Procedure I: A Sequence of Cut-and-Choose Steps that Guarantees Two Players P1

and P2 Fair Pieces in the Ratio α : β for any Real Numbers α > 0, β > 0, α+ β = 1.

1. Write α = .α1 α2 α3 · · · and β = .β1 β2 β3 · · · in binary form, using the terminating
forms if possible.

2. At the ith stage, P1 cuts if αi = 0; P2 cuts if βi = 0; either cuts if αi = βi = 1. The
other chooses and keeps (or banks) the chosen piece.

3. The procedure stops in the case αi = βi = 1 with the unchosen piece given to the
cutter. Otherwise the procedure continues on the unchosen piece.

Example 1. Players P1 and P2 are to share the cake in the ratio 3 : 5 or 3/8 : 5/8.

1. 3/8 = .011 5/8 = .101

2. a. P1 cuts the cake X = X11 ∪ X12; P2 chooses (wlog) X12.

b. P2 cuts X11 = X21 ∪ X22; P1 chooses (wlog) X21.

c. Either, say P1, cuts X22 = X31 ∪ X32; P2 chooses (wlog) X32 and X31 is given
to P1.

3. The procedure stops since α3 = β3 = 1. Player P1 has X21 ∪ X31 while P2 has
X12 ∪ X32.
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If the binary forms are non-terminating the procedure is countably infinite. Since α+β =
1 we know αi + βi = 1 unless αi = βi = 1 in the last place of terminating forms.

We must show P1 and P2 receive pieces they value at least α and β respectively. Let Xj1

and Xj2 be the two pieces produced by the jth cut and let µ1(Xj k ) be the fraction of
the entire cake X that piece Xj k represents according to player P1; µ2(Xj k ) is defined
similarly for P2.

If X = X1 ∪ X2, where X1 and X2 are the totality of all pieces assigned to P1 and P2

respectively, we must show µ1(X1) ≥ α and µ2(X2) ≥ β. This will be established by
induction. After k steps of Procedure I, P1 and P2 will have received certain portions of
the cake. We will denote these two total banked holdings through step k by Yk and Zk

respectively and the remaining unchosen piece by Rk . Also set Ak = .α1 α2 · · ·αk and
Bk = .β1 β2 · · ·βk . We show through k steps P1 and P2 both think they are doing fine
so far and the other is not running ahead.

Claim: For k = 1, 2, 3 · · ·
a. µ1(Yk ) ≥ Ak , b. µ1(Zk ) ≤ Bk , c. µ2(Yk ) ≤ Ak ,
d. µ2(Zk ) ≥ Bk , and e. µi(Rk ) ≤ 1

2k , i = 1, 2.

Proof. For k = 1, the chooser should think he or she receives at least half of the cake
while the cutter should not think more than half has been given away. That is exactly
what cut-and-choose accomplishes. Inequality (e) is clear for k = 1 also.

Thus assuming the k th case let us examine what happens at the (k + 1)st step.

Case 1: αk+1 = 0, βk+1 = 1.

Player P1 will cut Rk in two and P2 will choose and bank one of the two pieces. We know
µi(Rk ) = 1 − µi(Yk ) − µi(Zk ) for i = 1, 2. Since Yk = Yk+1, µ1(Yk+1) = µ1(Yk ) ≥
Ak = Ak+1 from the induction assumption (a), and µ2(Yk+1) = µ2(Yk ) ≤ Ak = Ak+1

from (c).

Also µ2(Zk+1) ≥ µ2(Zk ) + 1
2 (1 − µ2(Yk ) − µ2(Zk )) = 1

2 (1 + µ2(Zk ) − µ2(Yk )) ≥
1
2 (1 + Bk −Ak ) = 1

2 + Bk − 1
2 (Bk + Ak ) = 1

2 + Bk − 1
2 (1− 1

2k ) = Bk + 1
2k+1 = Bk+1. For

(b), µ1(Zk+1) = µ1(Zk )+ 1
2 (1−µ1(Yk )−µ1(Zk )) = 1

2 (1+µ1(Zk )−µ1(Yk )) ≤ 1
2 (1+Bk−

Ak ) = Bk+1, as was seen above. Finally for (e), µi(Rk+1) ≤ 1
2µ1(Rk ) ≤ 1

2 ·
1

2k = 1
2k+1 .

Case 2: αk+1 = 1, βk+1 = 0

This is established the same way as Case 1.

Case 3: αk+1 = βk+1 = 1.

This case is established by observing that Rk+1 is empty, Ak+1 + Bk+1 = 1, and by
justifying (b) and (d) exactly as in Case 1. Thus, the claim is established and the procedure
accomplishes the required division.
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In fact the procedure just described gives the only sequence of cut-and-choose steps
which guarantees pieces in the ratio α : β. For suppose we have a prescribed sequence
of cut-and-choose steps indicating which player is to cut at each step. We will further
assume that if the procedure terminates after the ith step that the cutter receives the
unchosen piece at that step. (Note that this is equivalent to the ith stage cutter repeatedly
choosing on the remainders as the other cuts. We will always opt for the terminating
form.)

On the basis of this information about the procedure, let us define

ai =


0 if P1 cuts and does not receive the unchosen piece at
step i, or the procedure terminates before step i.

1 if P2 cuts and P1 chooses, or, P1 cuts and
receives the unchosen piece at step i.

Define bi similarly for P2. It is clear that (.a1a2 · · ·) + (.b1b2 · · ·) = 1 in either the
terminating or non-terminating case.

What is the most cake guaranteed P1 by this sequence of steps? In particular it may be the
case that (i) the two players use the same measure (although they may not realize it) and
(ii) P2 always cuts halves when P2 cuts (maybe unbeknownst to P1). From the previous
discussion above we know this guarantees P2 a share B with µ2(B) ≥ .b1b2 · · · . Hence,
since the players are using the same measure, µ1(X−B) ≤ 1− .b1b2 · · · = .a1a2 · · · . So
the most this sequence of cut-and-choose steps can guarantee P1 in the general case is
.a1a2 · · · of the cake. By the same agrument with the players switched, P2 is guaranteed
in general no more than .b1b2 · · · by the procedure. It follows that any sequence of steps
other than that found in Procedure I will generate two numbers where either .a1a2 · · · < α
or .b1b2 · · · < β.

Furthermore, we see that in order to guarantee a fair share for a player, that player must
cut halves at each stage. For if the ith stage is the first step where the cutter fails to cut
halves, the chooser can take the cutter’s larger piece. Again they may be using the same
measure. Using the notation in the proof above and assuming P1 cut non-halves in step
i we then have µ j(Yi−1) = Ai−1, µ j(Zi−1) = Bi−1, µ j(Zi) > Bi and µ j(Ri) < 1/(2i) for
j = 1, 2. But, arguing as above, (for the share .αi+1αi+2 · · · on Ri) the most P1 can then
receive is Ai−1 + 2i(α− Ai−1)µ1(Ri) < Ai−1 + (α− Ai−1) = α.

In summary, Procedure I is the unique sequence of cut-and-choose steps which guarantees
the fair shares in the given ratio, and the only strategy which guarantees those fair shares
is for the cutter to always cut halves.

Example 2: Suppose P1,P2, and P3 are to share in the ratios 1/2 : 1/3 : 1/6. Using
Procedure I, P1 and P2 can first divide the cake in the ratio 1/2 : 1/3 which is 3/5 : 2/5.
Then P3 can repeat Procedure I in the ratio 1/6 : 5/6 with each of P1 and P2. Then P1

will have at least 5/6·3/5 = 1/2,P2 will have at least 5/6·2/5 = 1/3 and P3 will have at
least 1/6th of everything. In order to avoid a sequence of three infinite procedures back
to back, a single countable process can be described using a diagonalization procedure
that permits P3 to start the division of pieces with P1 and P2 as soon as they are chosen
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by P1 or P2. Once a piece is banked in either the P1,P3 or P2,P3 division, it remains
banked and uncut.

For P1, · · · ,Pn to share in the ratios α1 : α2 : · · · : αn first have P1, · · · ,Pn−1 share in

the ratios
α1

1− αn
:

α2

1− αn
: · · · : αn−1

1− αn
. Then Pn will share with each of P1, · · · ,Pn−1

in the ratio αn : 1− αn. The procedures can be diagonalized so that a single countable
sequence suffices.

When is a finite procedure possible? For n = 2 this is an easy question, the procedure
is finite if and only if α/(α + β) = a/2m for some positive integers a and m. Hence,
the ratio 5:11 is accomplished by 4 steps while the ratio 1/π : (π − 1)/π requires an
infinite procedure (even on pies).

The case for three or more players is more interesting. For example, suppose the ratios
are 12:3:1. If P1 and P2 divide first, the ratio is 4/5 : 1/5 which leads to an infinite
process. However, if P2 and P3 divide first in the ratio 3/4 : 1/4, that process is finite
and must be followed by P1 dividing with each of P2 and P3 in the ratio 3/4 : 1/4 each
of which is finite. In general the inductive procedure given above for n players is finite
if and only for some permutation a1 : a2 : · · · : an of the ratios each of the fractions
ai/(a1 + a2 + · · ·+ ai), 2 ≤ i ≤ n, can be written as a/2m.

The example above shows that the order of the divisions can be important. Indeed the
procedure cannot be finite for all possible permutations of the ratios. Suppose we have
three positive numbers α, β, γ with α + β + γ = 1 so that the overall process is finite
regardless which pair goes first. This would require α/(α + β) and β/(α + β) to have
the form a/2m and b/2m where a + b = 2m. Thus, α/β = a/b is rational as is α/γ. It
follows that we can assume α : β : γ are the same ratios as n1 : n2 : n3 where all ni are
integers. Since we are assuming the divisions in the ratios n1 : n2, n1 : n3, n2 : n3 and
(n1 + n2) : n3 are all finite procedures we have:

n1 + n2 = 2 j ,
n1 + n3 = 2k ,
n2 + n3 = 2l,
n1 + n2 + n3 = 2m,

where j, k , l ≥ 1 and m ≥ 2.

Thus 2m = 2 j−1 +2k−1 +2l−1 and this equality requires (wlog) j−1 = m−1, k−1 =
l − 1 = m− 2. But then n1 + n2 = 2m and n3 = 0 contradicting γ > 0.

We have seen above that using a sequence of strict cut-and-choose steps, a finite pro-
cedure is only possible when the binary forms terminate. We next describe a finite
procedure “in the spirit of cut and choose” which applies to all rational ratios a : b. As
before, each step will have a cutter with the other player choosing and banking one of
the two pieces produced at that step. We will have to use more than a simple preference
evaluation on pieces however.

In what follows we will assume a and b are positive integers and that the cake X is to
be divided in the ratio a : b between P1 and P2 respectively. We will describe a finite,
modified cut-and-choose procedure which we will denote P(a, b).
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The procedure P(1, 1) is the original cut-and-choose where each person gets at least 1/2
of the cake. Now assume P(c, d) has been defined for all c and d such that c + d < n,
so as to assure P1 receives at least c/(c + d) and P2 receives at least d/(c + d) of the
cake in a finite number of steps. With a + b = n ≥ 3, we will now describe P(a, b).
Intuitively, the cutter cuts in the ratio α : β where α+ β = a + b, α and β are integers
and α/β is as close to 1 as possible. Formally:

Procedure II: A Finite Sequence of Modified Cut-and-Choose Steps that Guarantees
Two Players, P1 and P2, Fair Pieces in the Rational Ratio a : b.

(1) For a > 0,P(a, 0) is P1 takes the piece; for b > 0,P(0, b) is P2 takes the piece and
the procedure stops. For a = b = 1,P(a, b) is either player cuts halves, the other
chooses. The remaining piece goes to the cutter and the procedure stops.

Assume for (2) and (3) that ab 6= 0, a + b > 2 and (a, b) = 1.

(2) If a + b is even and (wlog) a < b then P1 cuts equal pieces, X = X1 ∪X2. Then P2

chooses the larger of X1 or X2 and procedure P
(

a,
b − a

2

)
is applied to the other

piece.

(3) If a + b is odd and (wlog) a < b then P1 cuts X = X1 ∪X2 in the ratio
a + b − 1

2
:

a + b + 1
2

respectively. Player P2 chooses X1 if it is considered to have value at least

a + b − 1
2

· 1
a + b

and chooses X2 if it is at least
a + b + 1

2
· 1

a + b
. If P2 chooses X1

apply P
(

a,
b − a + 1

2

)
to X2. If P2 chooses X2 apply P

(
a,

b − a− 1
2

)
to X1.

Since a+ 1
2 (b−a+1) = 1

2 (a+b)+1/2 < a+b = n, all of the specified finite number of
additional procedures are inductively defined. Also, since the two values against which
X1 and X2 are measured in (3) have sum one, one of the two choices must be satisfactory
to P2.

We can now verify that P1 will get at least
a

a + b
and P2 will get at least

b
a + b

.

For example, suppose a + b is odd and P2 chooses X1. Then P1 is guaranteed at

least a/
(

b + a + 1
2

)
of X2 by procedure P

(
a,

b − a + 1
2

)
and P1 views X2 as worth

a + b + 1
2

· 1
a + b

. Thus, P1 gets at least
2a

b + a + 1
· a + b + 1

2(a + b)
=

a
a + b

.

Similarly, if a+b is odd and P2 chooses X2 then P1 gets at least
2a

b + a− 1
· a + b − 1

2(a + b)
=

a
a + b

.

To prove that P2 will get at least
b

a + b
we could give an argument like that for P1.

Rather let us assume that P2 is not satisfied by either choice presented in Case 3.
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Then

µ2(X1) +
(

b − a + 1
a + b + 1

)
µ2(X2) <

b
a + b

if P2 chooses X1, and

µ2(X2) +
(

b − a− 1
a + b − 1

)
µ2(X1) <

b
a + b

, if P2 chooses X2.

Adding these inequalities we obtain 2bµ2(X1) + 2bµ2(X2) < b
a+b (2a + 2b), or µ2(X1) +

µ2(X2) < 1. This contradicts µ2(X1) + µ2(X2) = µ2(X) = 1.

The case for a + b even is similar.

Example 3: Suppose the ratio is 5 : 8 with player P1 receiving the smaller portion. The
diagram in Fig. 1 summarizes the branching procedure.

13

6 7

3 3 3 4

1 2 1 2 1 2 2 2

1 1 1 1 1 1

5:8 5:8

5:1 5:1 5:2 5:2

2:1 2:1 2:1 2:1 1:2 1:2 2:2 2:2

1:1 1:1 1:1 1:1 1:1 1:1

Step 1:

Step 2:

Step 3:

Step 4:

cuts

cuts

either
cutscuts

either
cutscuts

either
cuts

either

cuts cuts

cuts

P

P

PPP

P

1

2

122

2

Fig. 1 Branching procedure

For one instance, in the path shown, P1 cuts in the ratio 6/13 : 7/13; P2 chooses and
banks the 7/13 piece; P2 cuts the other piece in the ratio 3/6; 3/6; P1 chooses and
banks the left piece; P2 cuts in the ratio 2/3 : 1/3; P1 chooses and banks the 1/3 piece;
either cuts the remaining piece in halves, the other chooses first with the chosen piece
given to the last cutter.
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