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A cevian in a triangle is either a line or a segment connecting a vertex with a point on
the opposite side, called the footpoint of the cevian. When its length is involved, a cevian
clearly means a segment. Special cases of cevians are the triangle’s altitudes, medians and
angle bisectors. If three cevians from distinct vertices are concurrent, their intersection
point is called a cevian point, and the triangle determined by their footpoints is a cevian
triangle of the given triangle. Many triangle centers are introduced or discussed as special
cevian points; known examples are orthocenters, centroids and incenters. Cevian triangles
are, for instance, the pedal triangles of arbitrary triangle points, or Seebach triangles. In
the literature, one can find various results and interesting problems on cevians that are still
a popular area of research today. A small selection of such problems is presented below.

Eine Ecktransversale (Cevane) in einem Dreieck ist eine Gerade, die durch eine seiner
Ecken verläuft. Die Länge einer Cevane wird von der Ecke bis zum Schnittpunkt mit
der gegenüberliegenden Seite gemessen. Sind die Längen von drei kopunktalen Ce-
vanen alle gleich, so heissen sie Äquicevane und ihr Schnittpunkt Äquicevan-Punkt.
Laut einem Satz von Abu-Saymeh, Hajja und Stachel besitzen Dreiecke bis zu zwei
Äquicevan-Punkte, die nicht auf den Dreickseiten liegen. Diese Punkte sind dann
just die Brennpunkte der Steiner-Umellipse des Dreiecks. Deren Mittelpunkt ist der
Schwerpunkt des Dreiecks. Die Autoren der vorliegenden Arbeit zeigen, dass bis zu
sechs weitere Äquicevan-Punkte auf den Dreieckseiten (resp. deren Verlängerungen)
liegen. Dabei werden alle Fälle klassifiziert und das allgemeine Resultat für gleich-
schenklige Dreiecke geometrisch bewiesen.
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Comprehensive representations of theorems about cevians are given in [4, Section 1.2]
and in the survey [13, Section 1]. Three concurrent cevians of the same length are called
equicevians, and their intersection is an equicevian point. These two notions will be central
to our paper, but before getting to them, we discuss a few related, more general results.

The notion of a cevian goes back to the Italian mathematician Ceva, whose famous
theorem about concurrent cevians in a triangle was published in 1687; see [4] and [3, Chap-
ter VIII]. Seebach showed that if ABC and X 0Y 0Z0 are arbitrary triangles, then there is
a unique triplet of concurrent cevians AX; BY; CZ of ABC such that XYZ is similar
to X 0Y 0Z0; see [5, 9] and [13, Subsection 1.3]. Čerin showed in [3] that, for any triangle
ABC , an algebraic curve of order 12 bounds the locus S of all points X with the property
that the three cevians through them are congruent to the sides of a triangle. It has also
been shown that the particular case of the cevians through the centroid of a triangle, the
medians, always yields a triangle. This theorem and related results from plane geometry
lead to intriguing questions about simplices, and these questions are answered by giving
a smooth entrance to higher-dimensional geometry; see [7]. More details about this curve
are given in [8]. Cevians are also interesting from the viewpoint of convexity; they rep-
resent all affine diameters of a triangle, a notion also important for general convex sets
in higher dimensions; see the survey [17]. Inspired by the Heronian triangles, interesting
results on rational-sided triangles with triplets of concurrent cevians of rational lengths are
obtained in [12]; certain triangles can have infinitely many such triplets, and this is shown
by a correspondence to points in certain elliptic surfaces of positive rank. The centroid of
a tetrahedron is the intersection of the cevians connecting the vertices with the centroids of
the opposite faces, and a similar statement holds for simplices in higher dimensions. In [6],
it is shown that this inductive property does not hold for other famous cevian points, such
as the Nagel center, the Lemoine center, the orthocenter, the incenter and the circumcenter.
The Steiner–Lehmus theorem, see [4, Section 1.5], says that any triangle with two equice-
vians that are angle bisectors is isosceles. One interesting generalization is derived in [15]:
if two equicevians intersect on the angle bisector from the remaining vertex, then the tri-
angle is isosceles. More generally, in [14], triangles with two equicevians intersecting at
a point on a third cevian are considered. The author studies all possible combinations of
external or internal cevians, and also the possibilities of equicevian points. And in [1],
it is shown that, besides points on the affine hulls of the sides of a triangle, the real and
the imaginary focal points of the Steiner circumellipse are the only equicevian points.
Furthermore, non-Euclidean analogues of theorems on equicevians and equicevian points
have been used to show that an admissible triangle in the isotropic plane has two equi-
cevian points whose position is centroid-symmetric, and analogously, they are the foci of
the Steiner circumellipse; see [11].

Steiner proved in the mid 1800s that each triangle admits a unique circumellipse cen-
tered at the centroid. If ABC is the triangle and a; b; c are its side lengths, then the ellipse
has semi-axes 1

3

p
a2 C b2 C c2 ˙ 2z2 and focal radius 2

3
z, where

z D
4
p
a4 C b4 C c4 � a2b2 � b2c2 � c2a2:

More properties of Steiner’s circumellipse are found in [18, 19].
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We set the stage with the following theorem, due to Abu-Saymeh, Hajja and Stachel
in [1], on equicevian points of a triangle.

Theorem A. Let � be the Steiner circumellipse of a triangle ABC . Then

(i) the triangle has either one or two equicevian points that fall outside the sidelines,
namely, the foci of � that fall outside the sidelines;

(ii) the common length of the equicevian triplets in part (i) is 3
2

times the major semi-
axis of � .

The proof of Theorem A in [1] is based on complex analytic geometry, namely, on
considering the Steiner circumellipse as a curve in the complex plane. This means that
the cartesian coordinates .x; y/ of points in the plane are viewed as complex coordinates
x C iy. In this case, Steiner’s circumellipse has two real foci on the major semi-axis and
two imaginary foci on the minor semi-axis. The main ingredient of this proof is Marden’s
theorem, asserting that if p.�/ is a cubic polynomial whose roots are the complex coordi-
nates A;B;C of the triangle’s vertices A;B;C , say p.�/ D .� �A/.� � B/.� � C/, then
the complex coordinates of the foci of the triangle’s Steiner circumellipse are the roots
of p0.�/.

A partial proof of the theorem, using real analytic geometry, for isosceles triangles
with a vertex angle of at least 60°, and addressing only one inclusion in part (i), appeared
earlier in the Monthly problem [16]. Neither of the two papers addresses the equicevian
points on the sidelines.

The goal of this article is to extend the result of Theorem A to a more detailed version
for the isosceles triangle that also includes the classification of all equicevian points on
the sidelines, and to provide an independent classical geometric proof for the extended
theorem. Our extended theorem has two parts.

The following theorem, whose proof is given in Section 1, summarizes the first part
of our results on equicevian points of isosceles triangles, namely, those properties that are
independent of Steiner’s circumellipse. See Figure 1 where, in keeping with our convention
that †A is the smallest angle and †C is the largest, ˛ may be either †A or †C . Here
a point is on the extended boundary, or eboundary, if it belongs to the support line of
a side, and is considered as an exterior point of the triangle if it is an exterior point that
does not belong to the support line of a side.

Theorem 1. In every triangle, a vertex is an equicevian point if and only if the triangle is
isosceles and the vertex is its top vertex. In an isosceles triangle with top angle ˛,

(i) the distribution of all equicevian points is as follows.

• If ˛ < 53:13°, there are one interior, three eboundary and one exterior equi-
cevian points.

• If ˛ D 53:13°, there are one interior, four eboundary and no exterior equi-
cevian points.

• If ˛ is between 53:13° and 60°, there are two interior, five eboundary and no
exterior equicevian points.

• If ˛ D 60°, there are one interior, three boundary and no exterior equicevian
points.
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(i) ˛ < 53:13°
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F1

F2

A

B C

(ii) ˛ D 53:13° (iii) 53:13° < ˛ < 60°

A

B C

(iv) ˛ D 60°

A

B C
(v) 60° < ˛ < 70:53°

C

A B

C

A B

F1

(vi) ˛ D 70:53° (vii) 70:53° < ˛ < 90°

C

A B

C

A B
(viii) ˛ D 90°

C

A B
(ix) ˛ > 90°.

Figure 1. An isosceles triangle with its triplets of cevians concurrent at the marked equicevian points, as the top
angle ˛ varies.
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• If ˛ is between 60° and 70:53°, there are two interior, five eboundary and no
exterior equicevian points.

• If ˛ D 70:53°, there are no interior, five eboundary and no exterior equi-
cevian points.

• If ˛ > 70:53°, there are no interior, five eboundary and two exterior equi-
cevian points.

(ii) The common lengths for all triplets of equicevians are distributed as follows.

• The longest side lengths appear in all cases, and the shortest occur when
˛ � 53:13°.

• The length of the altitude appears when ˛ � 60°.
• The length of the base times 1

2

p
3 appears when ˛ > 60°.

Here the angle 53.13° is 2 tan�1.1
2
/; it corresponds to the case when ha D a, that is,

b D c D a
2

p
5. The angle 70.53° is 2 tan�1.

1p
2
/; it corresponds to the case when a D b D

c
2

p
3. All cases in Theorem 1 are illustrated in Figure 1.
The same theorem is complemented by the result of Proposition 7 asserting that, except

for some obvious cases, all equicevian points of an isosceles triangle lie on the symmetric
of the circumscribed circle relative to the base. Another complement of Theorem 1 is
Proposition 2 of Section 1, classifying all equicevian points on the sidelines of a non-
isosceles triangle.

The second part of our results on equicevian points in an isosceles triangle is repre-
sented by our geometric proof of Theorem A, given in Section 2, where the theorem is
restated in an equivalent form for the isosceles triangle as Theorem 6.

Motivation

The remaining part of the introduction includes (1) a basic motivation for Theorem A, by
looking at Figure 1; (2) a proof of Theorem A, based on Theorem 1, for the two easier
cases illustrated in Figure 1 (ii), (vi), that gives insight into our general geometric proof
of Theorem A for the isosceles triangle; and (3) a computation related to the first of the
same two cases that relates the result of Theorem 6 to a consequence of Marden’s theorem
mentioned in [1].

(1) Figure 1 shows that, in almost all cases, an isosceles triangle has two non-ebound-
ary equicevian points. Exception make cases (ii) and (vi) where one or both of the two
distinct points belong to the perimeter, and case (iv) where the two points coincide with
the centroid of the equilateral triangle. Since, in this last case, the centroid is also the center
of the circumscribed circle, one might think that, in general, the two distinct points might
be the foci of a circumscribed ellipse.

(2) In case (ii), with the notation from the figure and the known relations between
sides,
• in the right triangle ACF2,

tanC D
AF2

CF2

D
a

1
2
a
D 2;
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• in the isosceles triangle BCB 0,

tanB D tan.180 � 2C / D � tan 2C D
2 tanC

tan2 C � 1
D
4

3
;

• in the right triangle BF1F2,

F1F2 D BF2 � tanB D
a

2
�
4

3
D
2a

3
D
2

3
AF2;

and so the midpoint of F1F2 is the centroid. Then

AF1 C AF2 D
4a

3
and BF2 C BF1 D

a

2
C

r�2a
3

�2

C

�a
2

�2

D
a

2
C
5a

6
D
4a

3
;

making F1 and F2 the foci of Steiner’s circumellipse of major semi-axis 2a
3

. Then the com-
mon length of the equicevians through either focus is a D 3

2
�

2a
3

, validating the remaining
part of Theorem A.

In case (vi), by the Law of Cosines, we have

cosC D
a2 C b2 � c2

2ab
D

�3c2

2
� c2

�3c2

2
D
1

3
:

In the isosceles triangleBCF1, CF1 D 2a cosC D 2a
3

, so the midpoint of F1F2 is the cen-
troid. Moreover, AF1 C AF2 D

a
3
C a D 4a

3
and CF1 C CF2 D 2

2a
3
D

4a
3

make F1; F2

the foci of Steiner’s circumellipse of major semi-axis 1
2

4a
3
D

2a
3

. The length of the equice-
vians through the foci is a, whose expression 3

2
2a
3

validates the result of Theorem A.
(3) A consequence of Marden’s theorem mentioned in [1] is that, relative to any cartes-

ian coordinate system centered at the triangle’s centroid, the complex coordinates of the
two foci of Steiner’s circumellipse are

F1;2 D ˙

r
2

3
.A2 C B2 C C 2/:

In case (ii) above, the complex coordinates for the vertices of the isosceles triangle with
base a and height a, relative to the centroid, are

A D
2a

3
i; B D �

a

2
�
a

3
i and C D

a

2
�
a

3
i:

We compute

A2
C B2

C C 2
D �

4a2

9
C
2a2

4
�
2a2

9
D �

a2

6

to deduce that

F1;2 D ˙

r
2

3

�
�
a2

6

�
D ˙

a

3
i;

which is consistent with the result of Theorem 6 that the focal radius in this case is

2

3

p

b2 � a2 D
a

3
:
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1 Proof of Theorem 1

The proof of Theorem 1 is divided into three parts, by putting the equicevian points of
an isosceles triangle in three baskets: those that lie on the supporting lines of the sides,
those that lie on the symmetry axis, and neither. The last category is split into two separate
cases, depending on how the top angle compares with the 60° angle. We make a few useful
observations before proceeding with the announced schedule for the proof.

Let ABC be a triangle with sides BC D a, AC D b, AB D c. Without loss of gener-
ality, we may assume that a � b � c; hence the altitudes ha; hb; hc satisfy ha � hb � hc .
Suppose the triangle has three concurrent interior cevians of length `. Then ` satisfies the
following system of inequalities:

ha � ` < max.b; c/ D c; hb � ` < max.a; c/ D c; hc � ` < max.a; b/ D b; (1)

with solution
ha D max.ha; hb; hc/ � ` < min.c; c; b/ D b: (2)

When three equicevians meet at an exterior point, then two of them are exterior cevians
and the third is an interior cevian. As the lower bounds of inequalities (1) remain the same
for all three such length-` cevians, the two exterior cevians do not have upper bounds. In
this way, the only component of the minimum in (2) is the one provided by the interior
cevian, or the maximum of its adjacent sides. For an isosceles triangle, this is larger than
the upper bound in (2), given by the medium side b, precisely when a D b < c and the
interior cevian has c as one of its adjacent sides. In this case, the range for the length ` of
three equicevians concurrent at an exterior equicevian point is

ha D max.ha; hb; hc/ � ` � c; (3)

with ` > b precisely when a D b < c and the interior cevian ` is adjacent to the side c.
With the exception of the top vertex of an isosceles triangle, where two triplets of

equicevians pass through the point, every equicevian point uniquely determines the triplet
of equicevians passing through it. For this reason, counting triplets of equicevians in a tri-
angle is the same as counting equicevian points.

1.1 Equicevian points on the supporting lines of the sides

It is obvious that the top vertex of an isosceles triangle is an equicevian point. Conversely,
if a vertex of a triangle is an equicevian point, then the cevians from the other two vertices
are equal, and so the equicevian point is the top vertex of an isosceles triangle. In particular,
all vertices of an equilateral triangle are equicevian points.

Each altitude of a triangle is shorter than any of the adjacent sides. If it is longer
than the opposite side, then that side must be the shortest. If an equicevian point lies on
the support line of a side, then two of the cevians are that side, and the third is a cevian
from its opposite vertex. In particular, the common length ` of the cevians is the length
of the side, and this is at least the length of its corresponding altitude. Consequently, the
support line of a side has no equicevian points precisely when the side is smaller than its
corresponding altitude. For an isosceles triangle, this makes the side the smallest side a,
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and a < b D c; see Figure 1 (i). The condition a < ha amounts to the top angle being less
than 2 tan�1.1

2
/ � 53:13°.

Since there are up to two cevians of a given length from a vertex, in all cases, the
supporting lines of the sides have up to two equicevian points. If they have one, then the
cevian from that vertex is an altitude and this has to be equal to the opposite side, with two
possibilities: ˛ D 53:13°, where the implied equicevian point on line BC , or the midpoint
of segment BC , is unique; and ˛ D 90°, where the implied equicevian point C is not
a unique equicevian point on either AC or BC . See Figure 1 (ii), (viii).

In the leftover cases, each remaining supporting line of a side has precisely two equi-
cevian points. As the top vertex is an equicevian point, and two equal cevians from a vertex
are symmetric relative to the altitude from the vertex, the other equicevian points on the
supporting lines of the equal sides are the symmetric of the top vertex relative to the
altitudes from the base vertices. These are exterior points when ˛ < 60° or ˛ > 90°,
see Figure 1 (i)–(iii) or (ix), and they fall on the sides when ˛ is between 60° and 90°,
see Figure 1 (v)–(vii). Two equicevian points are on the supporting line of the base when
˛ > 53:13°. These are interior or exterior to the side, depending on ˛ being smaller or
larger than 60°.

As a parenthesis from the isosceles case, the following proposition completes the clas-
sification of all equicevian points on the sidelines of any triangle by providing the result
for the non-isosceles triangle. Without loss of generality, the sides a; b; c of such a triangle
ABC satisfy a < b < c. Let Na; Nb; Nc denote their respective supporting lines.

Proposition 2. If ABC is a triangle with side lengths a < b < c, then

(i) there are two distinct equicevian points on either Nb or Nc, and two, one or no equi-
cevian points on Na, depending on the altitude ha being smaller, equal or greater
than a;

(ii) both equicevian points on Nc fall outside c. The ones on Nb fall one inside b and
the other outside b and opposite to A. The one(s) on Na fall outside a when †C
is obtuse, and inside a when †C is acute; there are no equicevian points on Na
when †C is close to right.

Proof. (i) When three length-` equicevians meet on the supporting line of a side, then `
equals that side. The supporting line of a side ` has less than two equicevian points if and
only if ` � h`. As h` is clearly smaller than the two adjacent sides, the only way that this
can possibly happen is when ` is the smallest side a.

Part (ii) follows from the comparison between the length ` of a cevian through an
equicevian point on the support line of a side and the lengths of the other two sides, and
the comparison between angle †C and the right angle.

Back to isosceles, this section finished the proof of the part of Theorem 1 that pertains
to eboundary equicevian points. The rest of the proof will describe the non-eboundary
equicevian points. These are equicevian points with the property that each belongs to one
of the seven open connected two-dimensional regions determined by the sidelines. The
next section will show that the number of such regions that a non-eboundary equicevian
point may belong to is reduced to up to three and, without loss of generality, to up to two.
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Figure 2. Proof of Lemma 3.

1.2 Equicevian points and the seven open regions determined by the sidelines

We start with the following lemma, showing that a non-eboundary equicevian point of
a scalene triangle may lie in only three of the seven open regions determined by the side-
lines.

Lemma 3. Let P be a non-eboundary equicevian point of a scalene triangle. Then P may
not belong to either of the following regions:

(i) the exterior region bounded by the largest side and the extensions of the other
sides;

(ii) the interior of either opposite vertical angle.

Proof. Let ` be the length of a cevian through P . (i) Suppose the triangle ABC has sides
a � b � c. Then †A is acute. If P is in the exterior region bounded by the largest side c,
see Figure 2 (left), then the exterior cevian BE through P is the longest side in the obtuse
triangle ABE, so ` > c, a contradiction to (3).

(ii) Without loss of generality, assume that P is an interior point of the vertical angle
opposite to †C , as shown in Figure 2 (left). Then the cevian CF through P is an interior
cevian, while the cevians AD and BE are exterior cevians through P . Without loss of
generality, we may assume that †CFA � 90°. Since C is between P and F , the parallel
from C to PA meets AB at a point S between A and F . The assumption on angle †CFA
makes it the largest angle in triangle CFS , or its opposite side is the longest side, i.e.,
CF <CS . On the other hand, S betweenA andB andCS kAD makesCS <AD. Putting
together, by transitivity, we deduce that CF < AD, a contradiction to the assumption that
the two cevians through P have the same length `.

The next corollary is the precise version of Lemma 3 for an isosceles triangle with top
angle ˛.

Corollary 4. Let P be a non-eboundary equicevian point of an isosceles triangle. Then
P falls in one of the following three possible cases.

(i) If ˛ < 60°, then P is in the interior of the top angle.

(ii) If ˛ D 60°, then P is an interior point of the triangle.

(iii) If ˛ > 60°, then P is in the interior of a base angle.
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Proof. Note that the three regions in Proposition 3 are uniquely determined by the longest
side. If ˛ < 60° or a < b D c, then there are two choices for the longest side, b or c, hence
two choices of a triplet of open regions for P to belong to. If ˛ D 60° or a D b D c, then
there are three choices for the longest side, a, b or c, hence three choices of a triplet of
open regions for P to belong to. Finally, if ˛ > 60° or a D b < c, then c is the unique
longest side, and so there is a unique triplet of open regions for P to belong to. Then (i),
(ii), (iii) follow easily from here by intersecting the two, three, one triplets of open regions,
respectively.

1.3 Equicevian points on the symmetry axis

When P is on the symmetry axis, then one of the cevians through P is the symmetry axis.
By (3), this must be the longest altitude, making ˛ � 60°. The other two cevians through P
are reflections of each other in the symmetry axis. Conversely, when ˛ < 60°, there are two
pairs of reflected cevians from the base vertices that are equal to the symmetry axis; these
correspond to two equicevian points on the axis—see Figure 1 (i), (iii). We conclude that
there are precisely two equicevian points on the symmetry axis precisely when ˛ � 60°.
This case is clear.

Before continuing with the rest of the proof of Theorem 1, we observe that the cases
in Figure 1 (ii), (iv), (vi) are obtained as limiting cases of their adjacent cases. And since
the proofs of the limiting cases are nearly identical to the proofs of the adjacent cases, we
will not even mention the limiting cases from now on to the end of the section.

1.4 The remaining equicevian points

The remaining non-eboundary equicevian points P are those that do not belong to the
symmetry axis. The following lemma shows that such points must belong to the interior
of a base angle.

Lemma 5. There is no non-eboundary equicevian point that lies inside the top angle,
outside the triangle and not on the symmetry axis.

Proof. Let P be such a point, as shown in Figure 3 (left). Without loss of generality, due
to symmetry, we may assume that PB > PC , hence†BCP >†CBP . Let BB1 and CC1

be the exterior equicevians through P . The triangles BCC1 and CBB1 have BC D CB ,
obtuse adjacent angles†CBB1D†BCC1 and acute adjacent angles†BCC1 >†CBB1.
This forces CC1 > BB1, a contraction with these segments being equicevians.

We finish the proof of Theorem 1 in the remaining case where, by Corollary 4, the
non-eboundary non-symmetry axis equicevian point P is interior to one of a base angle.
Due to symmetry and without loss of generality, we may assume that this angle is †B and
that P is in the right open half plane bounded by the symmetry axis, as shown in Figure 3
(right), where, for simplicity, P is chosen to be an interior point of the triangle. The same
proof works when P is an exterior point.

Let AD, BE and CF be the three equicevians through P . By scaling and without
loss of generality, we may assume that a D 2. Denote CE D x1, hence AE D b � x1,
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B1C1

A

B C

P ``

P

E

F

A

B CD

x1

x2

y2

Figure 3. (Left) Proof of Lemma 5. (Right) The remaining case.

and BF D x2, hence AF D b � x2. The condition that P is in the right half plane deter-
mined by the symmetry axis makes x1 � x2. The numbers x1 and x2 are the roots of the
quadratic equation b2x C 4.b � x/ � `2b D bx.b � x/ induced by Stewart’s relations
(see [2, Item 308] or [4, Section 1.2 (Exercise 4)]) for the cevians BE and CF . This is the
same as

bx2
� 4x C 4b � `2b D 0; (4)

with roots

CE D x1 D
2 �
p
4 � 4b2 C `2b2

b
and BF D x2 D

2C
p
4 � 4b2 C `2b2

b
:

Similarly, yD y2 WDBD satisfies the Stewart relation b2yC b2.2� y/� 2`2D 2y.2� y/

corresponding to the cevian AD, which simplifies to the quadratic equation

y2
� 2y C b2

� `2
D 0; (5)

whose largest root is
BD D y2 D 1C

p
1 � b2 C `2;

and so
CD D 2 � y2 D 1 �

p
1 � b2 C `2:

The concurrence of the ceviansAD,BE and CF is equivalent to Ceva’s relation (see, e.g.,
[4, Section 1.2]), which is given by

AF

BF
�
BD

CD
�
CE

AE
D 1;

which can be expressed in terms of the above notation as

b � x2

x2

�
y2

2 � y2

�
x1

b � x1

D 1:

Multiply both sides by the reciprocal of the middle fraction on the left side. Then expand
the product of the two fractions on the left side and use the substitution x1x2 D 4 � `

2,
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implied by the Viète relation for the quadratic (4), to deduce that

bx1 � 4C `
2

bx2 � 4C `2
D
2 � y2

y2

:

This is equivalent to the derived proportions equation

bx1 � 4C `
2

b.x1 C x2/=2 � 4C `2
D
2 � y2

1
;

where the denominators are the averages of the old numerators and denominators. Replace
x1 and y2 by their exact values obtained earlier, and use the substitution x1 C x2 D

4
b

, or
the other Viète relation for the quadratic (4), to deduce that

2 �
p
4 � 4b2 C `2b2 � 4C `2

2 � 4C `2
D 1 �

p
1 � b2 C `2:

By subtracting 1 from both sides, squaring and then multiplying by the denominator, this
is equivalent to

4 � 4b2
C `2b2

D .`2
� 2/2.1 � b2

C `2/:

This cubic equation in `2 factors as `2.`2 � 3/.`2 � b2/ D 0, with only one acceptable
solution, `2 D 3. This forces equation (5) to have distinct real roots precisely when its
discriminant 4 � b2 is positive or b < 2. This is equivalent to the top angle ˛ > 60°.

To recap, the above proof has shown that a non-eboundary non-symmetry axis equi-
cevian point exists if and only if ˛ >60°, and if it does exist, then it is unique and `D a

2

p
3,

where a is the base of the isosceles triangle.
By symmetry, this completes the remaining part of the proof of Theorem 1.

2 The geometric proof of Theorem A for the isosceles triangle

The general geometric proof of Theorem A for the isosceles triangle, or rather the part of it
that was not covered in Theorem 1, follows along the lines of the proofs for the two simpler
cases in Figure 1 (ii), (vi), given in the introduction. These two proofs will be generic for
the two possible cases of the general theorem, when the top angle ˛ is either smaller or
greater than a 60° angle, highlighted by the proof of Theorem 1.

The following is a restatement of Theorem A in a more detailed form for the isosceles
triangle, as shown in Figure 1.

Theorem 6. For an isosceles triangle ABC with sides a � b � c, the non-eboundary
equicevian points and the equicevian points on the open sides when the top angle is 53:13°
or 70:53° are the foci of Steiner’s circumellipse. In addition,

(i) when ˛ � 60°, the ellipse’s focal axis is the symmetry axis and has major semi-axis
2
3

p

b2 �
1
4
a2, focal radius 2

3

p
b2 � a2 and minor semi-axis a

3

p
3;

(ii) when ˛ > 60°, the ellipse’s focal axis is parallel to the base and has minor semi-
axis 2

3

p

b2 �
1
4
c2, focal radius 2

3

p
c2 � b2 and major semi-axis c

3

p
3.
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D

F1

F2C2

C1

B1

B2

A

B C
Case 1: ˛ � 60°.

C

A B

B1

A1

C1

F1F2

Case 2: ˛ � 60°.

Figure 4. Proof of Theorem 6.

Proof. (i) Without loss of generality, we assume that aD 2, hence b � 2. With the notation
from Figure 4 (left), by Section 1.4, the lengthsBC1DCB2 and the signed lengthsCB1D

BC2 are the roots of equation (4) with `2 D h2
a D b

2 � 1. These are

2˙
p
b4 � 5b2 C 4

b
;

with CB2 taking the positive sign for the radical. We can then compute the ratio

AB2

CB2

D
b � CB2

CB2

D
b2 � 2 �

p
b4 � 5b2 C 4

2C
p
b4 � 5b2 C 4

:

Then the van Aubel relation makes

AF1

DF1

D
AB2

CB2

C
AC1

BC1

D
2AB2

CB2

;

and derived proportions in the equality of the first and last terms yield

AF1

ha

D
2AB2

2AB2 C CB2

D
b2 � 2 �

p
b4 � 5b2 C 4

b2 � 1 � 1
2

p
b4 � 5b2 C 4

;

which rationalizes to

AF1

ha

D
2

3
�
b2 � 1 �

p
b4 � 5b2 C 4

b2 � 1
:

Similarly,
AF2

ha

D
2

3
�
b2 � 1C

p
b4 � 5b2 C 4

b2 � 1
:

By averaging these two values and multiplying by ha, the distance between A and the
midpoint of F1F2 becomes 2

3
ha, making the midpoint of F1F2 the centroid.
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The double of the above distance equation is AF1 C AF2 D
4
3
ha. The last ingredient

needed in the proof of Theorem A (i), that F1;2 are the foci of the Steiner circumellipse,
is BF1 C BF2 D

4
3
ha. To prove this, we compute the lengths BF1 and BF2, using the

Pythagorean theorem in triangles BDF1 and BDF2. Indeed,

BF1 D

q
BD2 CDF 2

1 D

p
1C .ha � AF1/2 D

s
1C h2

a

�1
3
�
2

3

p
b4 � 5b2 C 4

b2 � 1

�2

D
1

3

q
9C .

p

b2 � 1 � 2
p

b2 � 4/2 D
1

3

q
5b2 � 8 � 4

p
b4 � 5b2 C 4;

and similarly,

BF2 D
1

3

q
5b2 � 8C 4

p
b4 � 5b2 C 4:

Denote ˛ D 3BF1 and ˇ D 3BF2. Then, by the above, we have ˛2C ˇ2 D 10b2 � 16 and
˛2ˇ2 D 25b4 � 80b2 C 64 � 16.b4 � 5b2 C 4/ D 9b4, or ˛ˇ D 3b2. As a consequence
of this,

.˛ C ˇ/2 D ˛2
C ˇ2

C 2˛ˇ D 10b2
� 16C 6b2

D 16.b2
� 1/ D 16h2

a;

hence ˛ C ˇ D 4ha, or BF1 C BF2 D
4
3
ha, as needed.

The common length of both triplets of equicevians is ha, or 3
2

times the ellipse’s major
semi-axis. This proves part (ii) of Theorem A.

(ii) As in Section 1, we assume that the triangle has c D 2 and a D b < 2. With the
notation in Figure 4 (right), in Section 1.4, it was proved that the length of the two triplets
of equicevians is ` D

p
3 and that AC1 D 1C

p
4 � b2 and

BA1 D AB1 D
2˙
p
4 � b2

b
;

where BA1 < AB1. We apply the van Aubel relation
CF1

C1F1

D
CA1

BA1

C
CB1

AB1

or
CF1

p
3 � CF1

D
b � 2�

p
4�b2

b

2�
p

4�b2

b

C
b � 2C

p
4�b2

b

2C
p

4�b2

b

D 2:

The equation of the first and last terms above has the solution CF1 D
2
3

p
3, thereby locat-

ing F1 on the line through the centroid and parallel to the base. The symmetry makes the
centroid to be the midpoint of F1F2. Similar computations yield

AF1 D

p
3

3
.2C

p

4 � b2/; BF1 D

p
3

3
.2 �
p

4 � b2/;

hence

AF1 C AF2 D BF1 C BF2 D AF1 C BF1 D
4

3

p
3 D 2CF1 D CF1 C CF2;

making F1;2 the foci of Steiner’s circumellipse, with major semi-axis 2
3

p
3 D c

3

p
3, focal

radius 2
3
.1 � BC1/ D

2
3

p
4 � b2 and minor semi-axis 2

3

p
b2 � 1.
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Figure 5. Proof of Proposition 7.

3 Equicevian points and a reflection of the circumcircle

Given a triangle ABC , a point P in the same half plane determined by AB is on the
circumcircle if †C D †APB , and P is on the reflection of the circumcircle relative to
BC if the two angles are supplementary.

Suppose now that the triangle is isosceles, and let C be the symmetric of the circum-
circle relative to the base of an isosceles triangle. In addition to the base vertices, it is well
known (see [2,10]) that the orthocenter H belongs to C , and we note that the same is true
for the second equicevian points on the supporting lines of the equal sides, those other than
the top vertex.

The following proposition shows that, except for the obvious cases, all of the remaining
equicevian points belong to C as well—see Figure 1.

Proposition 7. All equicevian points of an isosceles triangle that do not belong to the
circle C fall in two categories:

(i) all equicevian points on the symmetry axis, except for the right angle vertex of an
isosceles right triangle, and the centroid of an equilateral triangle;

(ii) all equicevian points on the base, except for the base points of an equilateral or
an isosceles right triangle.

Proof. That all equicevian points on the supporting lines of the sides satisfy the result is
proved by analyzing Figure 1, which reflects the result of Theorem 1. The same proof is
given for all equicevian points on the symmetry axis, using the facts that the only points
on the symmetry axis that belong to C are the orthocenter and the symmetric of the top
vertex relative to the base and that two equal cevians from a (base) vertex are symmetric
relative to the altitude from the vertex.

It remains to show that all other equicevian points belong to the circle. Note that, by
symmetry, Theorem 1, Figure 1 and without loss of generality, each such equicevian point
P falls in the shaded region highlighted in Figure 3 (right). This is relabeled in Figure 5
according to the notation in Figure 1, and based on the result in Section 1.4 that ˛ > 60°.
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The figure is divided into two cases, depending on the point P being either an interior or
an exterior point of the triangle.

First, suppose P is an interior equicevian point, as shown in Figure 5 (left), covering
the situation in Figure 1 (v). With the notation from the first figure, the congruence of right
triangles AA0D and BB 0E makes the angles †PDC and †PEC supplementary, which
in turn makes the quadrilateral PECD cyclic. Then †APB D †DPE is the supplement
of †C , or P belongs to C .

Second, suppose P is at the intersection of the exterior cevians BE;CF and the inte-
rior cevian AD, as shown in Figure 5 (right). Symmetries make the triangles ACD and
BME congruent to BCW , hence to each other. Then the angles †CAD and †MBE are
congruent, which in turn makes the quadrilateral ABPM cyclic. In particular, P belongs
to C .
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