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Introduction
In a stimulating article P.J. Hilton and J. Pedersen [1] recommend the teaching of Cata-
lan numbers to secondary school pupils. Their recommendation is backed by several
arguments:

• Catalan numbers appear in various mathematical disciplines. By showing pupils dif-
ferent interpretations of the Catalan numbers one can make them aware of links
between seemingly unrelated phenomena.

• The basic study of Catalan numbers is accessible at pre-university level; it requires
no knowledge beyond elementary mathematics.

• In the process of discovering properties and generalizations of Catalan numbers, new
techniques and methods of mathematical reasoning can be acquired.

.

Binomialkoeffizienten, Fibonaccizahlen, Catalanzahlen sind durch ganz einfache kom-
binatorische Probleme definiert. Trotzdem weisen sie eine überraschende Vielfalt von
Strukturen auf; das Pascalsche Dreieck der Binomialzahlen ist dafür ein bekanntes und
schönes Beispiel. Da viele dieser Strukturaussagen ohne besondere mathematische Vor-
bildung entdeckt werden können, bietet es sich geradezu an, Schülerinnen und Schüler
im Bereich dieser speziellen Zahlen selbständig mathematische Entdeckungen machen
zu lassen. Eindrücklich kann hier erfahren werden, wie eine einfache Umformulierung
neue Einsichten und oft sogar die Lösung eines Problems bringt. Und schliesslich
drängen sich sofort Verallgemeinerungen auf; an diesen wird exemplarisch klar, wie
jede mathematische Erkenntnis zu immer neuen Fragen führt. – Der Beitrag von Judita
Cofman geht zurück auf die “Advanced Royal Institution Master Classes for young
people", in London, an denen die Autorin 1995 mit jungen Schülerinnen und Schülern
über Catalanzahlen gearbeitet hat. ust
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The authors describe various representations of the Catalan numbers and derive the

formula Cn =
1

n + 1

(
2n
n

)
for the n-th Catalan number Cn by counting two-dimensional

lattice paths. The latter can be done by following the elegant method of D. André, a
nineteenth century French mathematician.

The contents of the Hilton-Pedersen paper can be presented – with slight alterations –
to advanced pupils in their final years at secondary school. My intention was to find out
whether it made sense to talk to younger pupils – aged 13–14 – about Catalan numbers
and to determine to what extent the youngsters could benefit from the underlying ideas.

Last summer, at the “Advanced Royal Institution Master Classes for young people” in
London, I had the opportunity of presenting Catalan numbers to young teenagers, keen
to study mathematics. I am greatly indebted to the organizers, Joan Glastonbury, Terry
Heard and Martin Perkins for inviting me to participate in this event.

Attempts to simplify the approach to Catalan numbers led to a method for finding a
formula for Cn which is different from André’s, and can be extended to generalized
Catalan numbers. This method will be described in Sections 2 and 3. Section 1 outlines
the introductory work session with the pupils, aimed at raising their interest in the subject.
Section 4 contains suggestions for further studies and comments on our work.

1 How to motivate the study of Catalan numbers

The youngsters were told that they are going to learn about a sequence of numbers
which played an important role in the history of mathematics and continues to turn up
in different areas of modern research. The sequence is named after E.C. Catalan, a 19-th
century Belgian mathematician. It was discovered in the 18-th century by L. Euler in
connection with the following problem:

In how many ways can a convex n-gon be divided into triangles by its diagonals such
that no two of them intersect inside the n-gon?

Let En be the number of different partitions of a convex n-gon into triangles by means of
non-intersecting diagonals. Euler succeeded in finding a formula for En for any natural
number n ≥ 3, but thought that his method was rather cumbersome.

It was suggested that, later on, interested pupils try to rediscover Euler’s formula. Some
pupils asked:

Euler was one of the greatest mathematicians of all times. Can we hope to solve a
problem which he himself found difficult?

The pupils were reassured by pointing out that since the 18-th century mathematics
has developed in many directions. In particular, the Catalan numbers have appeared in
various areas of mathematics and some of their new interpretations have provided easier
methods for their calculation.

We considered next a special case, namely the number E5. By solving a series of exercises
the pupils saw that:
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• Each partition of a convex pentagon into triangles by nonintersecting diagonals leads
to a tree-diagram, each tree-diagram leads to a code, and each code to a lattice path
from (0, 0) to (3, 3) which lies below the line y = x (see Figure 1, Steps 1–4).

• Conversely, each lattice path from (0, 0) to (3, 3) below the line y = x leads to a
code, each code to a tree-diagram, and each tree-diagram to a partition of a convex
pentagon into triangles by non-intersecting diagonals. This is seen by reversing the
steps in the constructions in Figure 1.
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Step 4: The lattice paths, obtained from the codes
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Fig. 1

In this way we found four different interpretations of E5, related to geometry, graphs,
codes and lattice paths respectively.
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The number of lattice paths from (0, 0) to (n,n) below the line y = x is usually denoted
by Cn and is called the n-th Catalan number. From Figure 1 the pupils concluded that
E5 = C3, and formulated the following

Hypothesis 1: En = Cn−2 for n ≥ 3.

In the ensuing discussion it was pointed out that the above hypothesis could be verified
by proving the following two statements:

Theorem 1: The different partitions of a convex n-gon into triangles by non-intersecting
diagonals correspond to different lattice paths from (0, 0) to (n− 2,n− 2), lying below
the line y = x.

Theorem 2: The different lattice paths from (0, 0) to (n−2,n−2), below the line y = x
correspond to different partitions of a convex n-gon into triangles by non-intersecting
diagonals.

Proving Theorem 1 would imply that En ≤ Cn−2 and proving Theorem 2 would show
that Cn−2 ≤ En . From these relations it would follow that En = Cn−2.

The pupils understood intuitively how the proofs of Theorems 1 and 2 would work for
an arbitrary n. Consequently, they accepted the truth of the hypothesis. I told them that
exact proofs of Theorems 1 and 2 involve various technical details, and that, at this
stage, it would not be appropriate to dwell on them.

Finally, I made two remarks:

The first remark explained the connection between Catalan and the numbers named after
him. Catalan stated and solved the following algebraic problem:

The product a1 · a2 · a3 · · · an of n numbers a1, a2, a3, . . . , an is computed step by step, so
that at each stage two of the numbers are multiplied together. At no stage can the order
of the factor be altered. In how many ways can this be done?

The youngsters found the answer for n = 4 and were shown that the different ways of
computing a product of four numbers (say 2 · 3 · 5 · 10) are in one-to-one correspondence
with the tree-diagrams in Figure 1 (see Figure 2).
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Fig. 2

Catalan’s solution of the general case gave the number Cn−1. His problem provides yet
another interpretation of the numbers En.

The second remark stressed the importance of lattice paths in modern mathematics:
Many problems in combinatorics and in the theory of probability can be interpreted in
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the terms of lattice paths. The solution of such problems is often simplified thanks to
various established methods for counting lattice paths. – We could try to solve Euler’s
problem by counting the lattice paths from (0, 0) to (n,n), n ≥ 0, underneath the line
y = x.

2 How to guess a formula for Cn
From a group of 22 youngsters four volunteered to embark on a project on Catalan
numbers. They produced good work. I shall mention their names and thank them for
inspiring me to think about further problems related to this topic. The pupils were: Ed-
mund Harrison (13 years old), and Maria Russell, Douglas Shaw, and Peter Zimmermann
(all 14 years old).

The first task of the project was to try to find a formula for the numbers Cn of lattice
paths from (0, 0) to (n,n) underneath the line y = x. This could have been done by
following the well-known, ingenious method of André, which involves reflections of
parts of lattice paths in the line y = x (see e.g. [ 3 ]). Although this method is beautiful,
I decided to adopt a different approach, enabling the pupils to guess what Cn is:

The youngsters first determined Cn for a sequence of initial values of n. This was done
by completing, step by step, the number pattern in Fig. 3a. In this pattern each point is
labelled with the number of those lattice paths connecting it to (0, 0) which pass below
the line y = x. (Hence each number inside the pattern is the sum of the number below
it and the number on its left). The labels of the points on the line y = x were the first
terms of the Catalan sequence:

1, 1, 2, 5, 14, 42, . . .

The pupils were unable to provide a clue for continuing the sequence. It was decided
to compare the Catalan numbers found so far with the numbers of all lattice paths from
(0, 0) to (n,n), for n = 0, 1, 2, 3, 4, 5. Therefore another number pattern was constructed,
in which the points were labelled with the numbers of all lattice paths connecting them
with (0, 0) (see Fig. 3b).
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n 0 1 2 3 4 5

Cn 1 1 2 5 14 42

number of all
lattice paths 1 2 6 20 70 252
from (0, 0) to (n,n)

Fig. 4

The numbers on the line y = x in Fig. 3b were compared to the corresponding numbers
in Fig. 3a. The table in Figure 4 was revealing; it led to

Hypothesis 2: Cn multiplied by n + 1 gives the number of all lattice paths from (0, 0)
to (n,n).

Some of the youngsters recognized the number pattern in Fig. 3b as Pascals’ triangle
and reformulated Hypothesis 2, suggesting a formula for Cn:

Hypothesis 2′: Cn =
1

n + 1

(
2n
n

)
for n ≥ 0.

We were left with the problem of verifying Hypothesis 2. To do this, we agreed to try
to partition the set of all lattice paths from (0, 0) to (n,n) into disjoint subsets of n + 1
elements each, such that each subset contained exactly one lattice path below the line
y = x. Carrying out such a partition would prove Hypothesis 2.

The next section outlines a method for partitioning all lattice paths from (0, 0) to (n,n)
subject to the conditions stated above.

3 A method for proving Hypothesis 2
Denote by Sn the set of all lattice paths from (0, 0) to (n,n) and by Un the subset of Sn

consisting of the lattice paths below the line y = x. Any lattice path l ∈ Sn contains n
horizontal steps. Denote the successive steps from (0, 0) to (n,n) by h1, h2, . . . , hn. Put
hi = k if and only if the step hi lies on the line y = k .

In this way any lattice path l ∈ Sn can be represented by an ordered n-tuple (h1, h2,
. . ., hn). Since the heights of the horizontal steps of l form a non-decreasing sequence,
it follows that

0 ≤ h1 ≤ h2 ≤ . . . ≤ hn ≤ n . (1)

Conversely, any ordered n-tuple of integers satisfying (1) corresponds to a lattice path
l ∈ Sn.

The lattice paths in Un are represented by ordered n-tuples which, in addition to (1),
satisfy the inequalities

hi ≤ i − 1 for i = 1, 2, . . . ,n . (2)

Representing lattice paths by ordered n-tuples makes it possible to explain ideas about
partitioning Sn in terms of algebra. One has only to understand addition modulo n + 1.
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To the youngsters the explanations were given for small values of n, accompanied by
diagrams (see Figures 5 and 6). Here we shall describe the procedure in general terms.

Take any l0 ∈ Un. From its corresponding n-tuple (h1, h2, . . . , hn) form the n-tuples

(h1 ⊕ k , h2 ⊕ k , . . . , hn ⊕ k) for k = 0, 1, . . . ,n,

where ⊕ denotes addition modulo n + 1. If in the n-tuple (h1 ⊕ k , h2 ⊕ k , . . . , hn ⊕ k)
smaller numbers turn up after larger ones, rearrange them, so that they appear in non-
decreasing order. This associates a lattice path lk with a (possibly rearranged) n-tuple
(h1 ⊕ k , h2 ⊕ k , . . . , hn ⊕ k). Denote the collection l0, l1, . . . , ln of paths by L.

In order to verify Hypothesis 2 we have to prove
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Theorem 3: For any l0 ∈ Un we have:

(a) lk /∈ Un for k = 1, . . . ,n.

(b) l0, l1, . . . , ln are distinct.

(c) For any two distinct paths l0, l′0 ∈ Un the corresponding sets L = {l0, l1, . . . , ln} and
L ′ = {l′0, l′1, . . . , l′n} are disjoint.

(d) For any path l ∈ Sn there exists a path l0 ∈ Un such that l ∈ {l0, l1, . . . , ln}.

The proofs of (a), (b) and (c) are straightforward. They are based on properties of addition
mod (n + 1) and on the relations (1) and (2).

The proof of (d) requires some thought; it is illustrated graphically in Figure 6.
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Let l ↔ (h1, h2, . . . , hn) be a path in Sn \Un. Let m be the smallest integer such that l
lies below the line y = x + m, and suppose that the first horizontal segment of the path
from (0, 0) to (n,n) which touches the line y = x + m is the r-th. Denote by h′r the
inverse of hr with respect to addition mod (n + 1) (that is, the number n + 1− hr), and
construct the n - tuple

(h0 ⊕ h′r, h1 ⊕ h′r, . . . , hn ⊕ h′r).

By rearranging the above n-tuple in non-decreasing order, we obtain an n-tuple which
represents a lattice path. It is left to the reader to verify that this lattice path is a path
l0 ∈ Un and that the path lr coincides with l in the corresponding set L = {l0, l1, . . . , ln}.

The proof of the Theorem 3 implies that Cn =
1

n + 1

(
2n
n

)
.

4 Suggestions for further study – for pupils and “grown-ups”
In the final part of the project the pupils studied questions related to the Catalan numbers:

(a): It was pointed out that the method for finding the formula for Cn can be adapted
for calculating the number of lattice paths below the line y = kx for any integer k ≥ 1.
It can be shown that for k ≥ 1 the number of the lattice paths from (0, 0) to (n, kn)
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which lie below the line with equation y = kx is kn + 1 times smaller than the number
of all lattice paths from (0, 0) to (n, kn).

(b): Maria studied three-dimensional lattice paths below the diagonal plane y = z. She
formulated the Hypothesis:

Hypothesis 3: The number D(3)
n of those lattice paths from (0, 0, 0) to (n,n,n) which

lie below the plane z = y is n + 1 times smaller than the number of all lattice paths
from (0, 0, 0) to (n,n,n).

Maria’s hypothesis can be verified. This made me think of a problem for “grown-ups”:

The “proper way” to generalize Cn in space is to consider the number C(3)
n of the lattice

paths from (0, 0, 0) to (n,n,n) which pass through the lattice points (x, y, z) such that
x ≥ y≥ z. Is it true that

Hypothesis 4: C(3)
n =

1(n+2
2

)D(3)
n , that is

C(3)
n =

1(n+2
2

) · 1(n+1
1

) · (3n)!
n!n!n!

? (3)

The idea for stating Hypothesis 4 arose from considerations indicated in Figure 7.

Fig. 7
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To my astonishment, Hypothesis 4 turned out to be true. I verified it by using a recurrence
relation for C(3)

n . Formula (3) is known; it can be found, e.g. in an equivalent form in
Macmahon’s beautiful book [2]. Moreover, the formula can be further generalized, for
arbitrary, k - dimensional spaces (see [3]):

The number of those k -dimensional lattice paths from (0, 0, . . . , 0) to (n,n, . . . ,n) which
pass through lattice points (x1, x2, . . . , xk ) such that x1 ≥ x2 ≥ . . . ≥ xk is given by the
formula

C(k)
n =

1(n+1
1

) · 1(n+2
2

) · · · 1(n+k−1
k−1

) · (kn)!
n!n! · · ·n!

.

I wish to conclude this article by remarks on classroom teaching provoked by our activ-
ities. Watching pupils at work confirmed my belief, formed on various occasions, that
solving simple combinatorial problems plays an important role in developing thought
processes, and should be practised throughout secondary school. Many questions on
counting, selecting and ordering are accessible at an early age. There are many topics
in the syllabus, whose teaching can profit from the inclusion of a selection of carefully
formulated problems of combinatorial nature. In many schools Fibonacci numbers have
already entered the classroom. Should we introduce Catalan numbers to young teenagers?
Probably not, but we should definitely teach them some of the ideas underlying their
study.
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Judita Cofman hat über die ihre “Maths-Workshops” auch die folgenden zwei Bücher
veröffentlicht:

Judita Cofman: What to solve? Problems for young mathematicians, Oxford University
Press, 1990,

Judita Cofman: Numbers and shapes revisited. More problems for young mathemati-
cians, Oxford University Press, 1995.


