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1 Introduction
Let K be a closed convex set in the plane. In [1], Danzer establishes the following pretty
result.

Theorem 1. If no rectangle inscribed in K has exactly three of its vertices on the
boundary of K , then K is a circular disk.

We generalize Danzer’s characterization in the following way. Let OX , OY be given,
fixed orthogonal axes in the plane. We say that K is a rectangular set if no inscribed
rectangle with edges parallel to the given axes has exactly three of its vertices on the
boundary of K . Some anomalies can occur in this new setting. For example, if K has two
adjacent perpendicular edges which are parallel to the axes, there is an infinite number
of ‘inscribed’ rectangles having just three vertices on the boundary of K . We therefore
interpret inscribed here to imply that the given rectangle is the largest in the family of
homothetic rectangles having vertices on the boundary of K . This is the assumption we
would make if talking about an incircle of K .

We now ask if it is possible to characterize in some way the family 5 of rectangular
sets. We note that 5 contains sets which are symmetric about either or both of the axes.

.

Let K be a closed convex set in the plane, and OX , OY given, fixed orthogonal axes.
We say that K is a rectangular set if no inscribed rectangle with edges parallel to the
given axes has exactly three of its vertices on the boundary of K . We show that if SX ,
SY denote Steiner symmetrizations about the axes OX , OY respectively, then K is a
rectangular set (relative to these axes) if and only if SX SY (K) = SY SX(K). psc
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It turns out that the family 5 has a nice characterization in terms of Steiner symmetriza-
tion, which we now define. Let OA be a given line – the axis l of symmetrization. For
each point p on OA let u(p) be the line through p which is perpendicular to l. The set
u(p) ∩ K is either the empty set, a point, or a line segment. If it is the empty set, we
define B(p) to be the empty set. If it is a point, we define B(p) to be the point p. If it
is a line segment, we define B(p) to be the segment of equal length whose midpoint is
p and which lies on u(p). We now define KA by

KA = ∪p∈lB(p).

The process of obtaining KA from K in this way is called Steiner symmetrization about
the line OA. Properties of this well-known and useful form of symmetrization can be
found, for example, in Eggleston [2].

We shall establish the following connection between Steiner symmetrization and the
family 5 of rectangular sets.

Theorem 2. Let SX ,SY denote symmetrizations about the axes OX , OY respectively.
Then K is a rectangular set (relative to these axes) if and only if

SX SY (K) = SY SX(K).

2 Proof of Theorem 2
For consistency in naming in the proof, we drop the function notation used in the
statement of the theorem, and use SX SY , for example, to mean first apply SX and then
apply SY . We shall also use the words horizontal and vertical to describe lines which
are parallel to OX , OY respectively.

First we suppose that K is a rectangular set. Let A be a point on the boundary of K . By
assumption, A will be a vertex of a (perhaps degenerate) rectangle ABCD whose four
vertices lie on the boundary of K (see Figure 1).
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Let AB = 2x and BC = 2y. If we symmetrize K using SY to obtain a symmetrized set
KY , then A will map to a point AY , a vertex of a rectangle AYBY CYDY , inscribed in KY ,
and congruent to ABCD. For, under the symmetrization, lengths AB,DC are preserved,
and the image segments AYBY ,DYCY are centred on the axis OY . In particular, AY

has x-coordinate x, and AY DY = 2y. If we now symmetrize KY using SX to obtain
set KYX , then AY maps to a point AYX , a vertex of a rectangle inscribed in KYX and
congruent to ABCD. For, under the symmetrization, lengths AY DY ,BY CY are preserved,
and the image segments AY DY ,BY CY are centred on the axis OX . In particular, AYX

has x-coordinate x, and y-coordinate y.

It is clear from the symmetry of X and Y in this argument that the image of A under
the product SX SY will be AXY = AYX(= A∗ in Figure 1). We deduce that KXY = KYX .

Now let us suppose that K is a set which has the same image under SY SX as it does
under SX SY . Thus KYX = KXY . We wish to show that K is a rectangular set. We observe
that it will be sufficient to establish this result for the case when K is a polygon. The
general case will then follow using a standard approximation argument. We may thus
assume that the final symmetrized set KXY = KYX is the convex hull of a finite family of
rectangles having horizontal and vertical edges. If each of these rectangles occurs as the
image of an inscribed rectangle in K , then K is a rectangular set, and there is nothing to
prove. Suppose then that one of these rectangles, RXY = RYX does not occur in this way.
Let this rectangle have horizontal and vertical dimensions 2x, 2y respectively. Suppose
too that y is the largest number for which this happens.
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Now RXY is the image under SY of a set RX (see Figure 2). In fact RX is itself a
rectangle, since it is inscribed in a set KX which is symmetric about the X-axis. Further,
RX has horizontal and vertical dimensions 2x, 2y respectively. Now rectangle RX occurs
as the image under symmetrization SX of a set P inscribed in the original set K . By
the properties of symmetrization, this set P must be a parallelogram having one pair
of vertical parallel edges. The length of each of these parallel edges is 2y, and the
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distance between them is 2x. In the same way, RXY occurs as the image under SY SX

of a parallelogram Q inscribed in K having two horizontal parallel edges; the length of
each of these parallel edges is 2x, and the distance between them is 2y.

If either of P, Q is a rectangle, then P, Q will coincide, as we have already seen that
the image of a rectangle inscribed in K having horizontal and vertical edges is the same
under the two successive symmetrizations, no matter which order of symmetrization
is used. Hence parallelogram P extends strictly above or below the parallel horizontal
edges of parallelogram Q. Inverting the figure if necessary, we may assume that P
extends strictly below Q. Let UV denote the bottom horizontal edge of Q, labelled as
in Figure 2, and W the vertex of P which lies below it. Then points U,W,V lie in
an anti-clockwise order on the boundary of K . Since symmetrization is a continuous
transformation, U,W,V will map under the successive symmetrizations SY , SX to image
points U∗,W ∗,V∗ lying in anti-clockwise order on the boundary of KXY . But U∗V∗ is
the bottom edge of RXY . It follows that W ∗ is the vertex of a rectangle inscribed in KXY

which does not arise as the image of a rectangle inscribed in K . Further, the vertical
dimension of this rectangle exceeds the vertical dimension 2y of RXY which was chosen
to be maximal. This contradiction establishes the theorem.

3 Final Comment
The class of rectangular sets appears naturally here in terms of successive orthogonal
symmetrizations; to my knowledge, this class does not occur elsewhere in the literature. It
would be interesting to investigate whether this class of sets has other special properties.
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